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Abstract

The weighted CSP (WCSP) framework is a soft
constraint framework with a wide range of appli-
cations. In this paper, we consider the problem
of maintaininglocal consistency during search for
solving WCSP. We first refine the notions ofdirec-
tional arc consistency(DAC) and full directional
arc consistency(FDAC) introduced in[Cooper,
2003] for binary WCSP, define algorithms that en-
force these properties and study their complexities.
We then consider algorithms that maintain either
arc consistency (AC), DAC or FDAC during search.
The efficiency of these algorithms is empirically
studied. It appears that despite its high theoreti-
cal cost, the strongest FDAC property is the best
choice.

1 Introduction
It is well known thatarc consistency(AC) plays a preemi-
nent role in efficient constraint solving. In the last few years,
the CSP framework has been augmented with so-calledsoft
constraintswith which it is possible to express preferences
among solutions[Schiexet al., 1995; Bistarelliet al., 1997].
Soft constraint frameworks associate costs to tuples and the
goal is to find a complete assignment with minimum com-
bined cost. Costs from different constraints are combined
with a domain dependent operator⊕. Extending the notion
of AC to soft constraint frameworks has been a challenge in
the last few years. ¿From previous works we can conclude
that the extension is direct as long as the operator⊕ is idem-
potent. Then,[Schiex, 2000] proposed an extension of AC
which can deal with non-idempotent⊕. This definition has
three nice properties:(i) it can be enforced in polynomial
time, (ii) the process of enforcing AC reveals infeasible val-
ues that can be pruned and(iii) it reduces to existing defini-
tions in the idempotent operator case.[Cooper, 2003] further
introduceddirectional arc consistency(DAC) andfull direc-
tional arc consistencyfor strictly monotonic⊕.

Weighted constraint satisfaction problems(WCSP) is a
well known soft-constraint framework with a non-idempotent
operator⊕. It provides a very general model with several ap-
plications in domains such asresource allocation[Cabonet

al., 1999], combinatorial auctions[Sandholm, 1999], bioin-
formaticsandprobabilistic reasoning[Pearl, 1988]. [Larrosa,
2002] introduced AC*, a refinement of the AC definition for
WCSP. This definition provides a stronger yet simple and el-
egant property to be maintained during search.

In this paper, we take the definitions of DAC and FDAC,
strengthen and extend them to binary WCSP, defining the
DAC* and FDAC* properties. We then define correspond-
ing enforcing algorithms. As in the classical CSP case, we
then consider the problem of maintaining AC*, DAC* and
FDAC* during search and empirically compare these algo-
rithms. These algorithms have a wide range of applications
and allow a nice integration of hard and soft constraints in a
common algorithmic framework.

2 Preliminaries
2.1 CSP
A binary constraint satisfaction problem(CSP) is a triple
P = (X ,D, C). X = {1, . . . , n} is a set of variables. Each
variablei ∈ X has a finite domainDi ∈ D of values that
can be assigned to it.(i, a) denotes the assignment of value
a ∈ Di to variablei. A tuple t is an assignment to a set of
variables. Actually,t is an ordered set of values assigned to
the ordered set of variablesXt ⊆ X (namely, thek-th ele-
ment oft is the value assigned to thek-th element ofXt). For
a subsetB ofXt, the projection oft overB is notedt ↓B . C is
a set of unary and binary constraints. A unary constraintCi is
a subset ofDi containing the permitted assignments to vari-
ablei. A binary constraintCij is a set of pairs fromDi ×Dj

containing the permitted simultaneous assignments toi and
j. The set of variables affected by a constraint is called its
scope. A tuple t is consistentif it satisfies all constraints
whose scope is included inXt. A solution is a consistent
complete assignment. Finding a solution in a CSP is an NP-
complete problem. The task of searching for a solution can
be simplified by enforcing arc consistency, which may prune
values that cannot participate to a solution.

2.2 Weighted CSPs
Valued CSP (as well assemi-ring CSP) extend the CSP
framework by associatingcoststo tuples[Schiexet al., 1995;
Bistarelli et al., 1997]. In general, costs are specified by
means of a so-calledvaluation structuredefined as a triple



S = (E,⊕,�), whereE is the set of costs totally ordered by
�. The maximum and a minimum costs are noted> and⊥,
respectively.⊕ is an operation onE used to combine costs.

A valuation structure isidempotentif ∀a ∈ E, (a⊕a) = a.
It is strictly monotonicif ∀a, b, c ∈ E, s.t.(a � c) ∧ (b 6=
>),we have(a⊕ b) � (c⊕ b).

Following [Larrosa, 2002], we define Weighted CSP
(WCSP) as a specific subclass of valued CSP that relies on
a specific valuation structureS(k).

Definition 1 S(k) is a triple ([0, 1, . . . , k],⊕,≥) where,

• k ∈ [1, . . . ,∞].

• ⊕ is defined asa⊕ b = min{k, a + b}
• ≥ is the standard order among naturals.

Observe that inS(k), we have0 = ⊥ andk = >.
A binary WCSP is a tupleP = (k,X ,D, C). The valua-

tion structure isS(k). X andD are variables and domains,
as in standard CSP.C is a set of cost functions. A binary
constraintCij assigns costs to assignments to variablesi and
j (namely,Cij : Di × Dj → [0, . . . , k]). A unary con-
straintCi assigns costs to assignments to variablei (namely,
Ci : Di → [0, . . . , k]). We assume the existence of a unary
constraintCi for every variable, and azero-arity constraint,
notedC∅ (if no such constraint is defined, we can always
definedummyonesCi(a) = ⊥,∀a ∈ Di or C∅ = ⊥).

When a constraintC assigns cost> to a tuplet, it means
thatC forbids t, otherwiset is permitted byC with the cor-
responding cost. Thecostof a tuplet, notedV(t), is the sum
over all applicable costs,

V(t) =
∑

Cij∈C, {i,j}⊆Xt

Cij(t ↓{i,j})⊕
∑

Ci∈C, i∈Xt

Ci(t ↓{i})⊕ C∅

Tuple t is consistentif V(t) < >. The usual task of inter-
est is tofind a complete consistent assignment with minimum
cost, which is NP-hard. Observe that WCSP withk = 1
reduces to classical CSP. In addition,S(k) is idempotent iff
k = 1 and strictly monotonic iffk = ∞. Two WCSP defined
over the same variables are said to beequivalentif they define
the same cost distribution on complete assignments.

For simplicity in our exposition, we assume that every con-
straint has a different scope. For the moment, we also assume
that constraints are implemented as tables and that it is pos-
sible to consult and modify entries. This is done without loss
of generality (see the proof of Theorem 3).

Example 1 Figure 1.a shows a WCSP with valuation struc-
ture S(4) (the set of costs is[0, . . . , 4], with ⊥ = 0 and
> = 4). It has three variablesX = {x, y, z} with valuesa, b.
There are 2 binary constraintsCxz, Cyz and two non trivial
unary constraintsCx and Cz. Unary costs are depicted in-
side their domain value. Binary costs are depicted as labelled
edges connecting the corresponding pair of values (default
cost of 1). Zero costs are not shown. One optimal solution is
eg.x = y = z = b, with cost2.

Our definition of WCSP is the same as in[Larrosa, 2002].
It differs from usual definitions[Schiexet al., 1995; Bistarelli
et al., 1997] which restrict WCSP to thek = ∞ case, a
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Figure 1: Six equivalent WCSPs (fork = 4).

strictly monotonic valuation structure where finite costs can-
not lead to deletion. In practice, mostbranch and bound-
based solvers maintain an upper boundub, the maximum ac-
ceptable cost so-far, and a lower boundlb on the optimal ex-
tension of the current assignment. Value pruning occurs as
soon aslb ≥ ub. The WCSP framework makes these two ele-
ments explicit: a solver uses the valuation structureS(ub) at
every subproblem andC∅ provides the lower bound.

3 Some local consistencies in WCSP
In this Section we define node, arc, directed arc and full di-
rected arc consistencies. For node and arc consistencies, our
definitions are equivalent to the NC* and AC* definitions
in [Larrosa, 2002]. For DAC, and FDAC, the starred (*) def-
initions refine the definitions in[Cooper, 2003] to the WCSP
case, using node consistency andC∅. In the sequel, we as-
sume that the set of variablesX is totally ordered by>.

Definition 2 LetP = (k,X ,D, C) be a binary WCSP.

• Node consistency: (i, a) is star node consistent (NC*) if
C∅ ⊕ Ci(a) < >. Variablei is NC* if: i) all its values
are NC* andii) there exists a valuea ∈ Di such that
Ci(a) = ⊥. Valuea is a support for the variablei . P is
NC* if every variable is NC*.

• Arc consistency. (i, a) is arc consistent (AC) with re-
spect to constraintCij if there is a valueb ∈ Dj such
that Cij(a, b) = ⊥. Valueb is called a support of the
value(i, a). Variablei is AC if all its values are AC wrt.
every binary constraint affectingi. P is AC* if every
variable is AC and NC*.

• Directional arc consistency. (i, a) is directional arc con-
sistent (DAC) wrt. constraintCij , j > i, if there is a
valueb ∈ Dj such thatCij(a, b)⊕ Cj(b) = ⊥. Valueb
is called afull supportof a. Variablei is DAC if all its
values are DAC with respect to everyCij , j > i. P is
DAC* if every variable is DAC and NC*.

• Full directional arc consistency. P is fully star direc-
tional arc consistent (FDAC*) if it is DAC* and AC*.

In the CSP case (i.e, k = 1), being a support for(i, a) is
obviously equivalent to being afull support for it and both



notions reduce to the classical notion of support. Therefore,
AC* and DAC* reduce to their classical definitions in CSP
while FDAC* reduces to arc consistency. In WCSP, however,
a support is not necessarily a full support. For this reason,
DAC* (which requires a full support on one side of each con-
straint) and AC* (which requires a support on both sides) are
incomparable. FDAC* (which requires a support on one side
and a full support on the other) cannot be weaker than AC*
or DAC*1. In WCSP, FDAC* can actually be stronger, in the
sense that it may provide a better lower bound as the follow-
ing example shows.

Example 2 The problem in Figure 1.a is not NC* sincez has
no support. Problem 1.b is an equivalent NC* problem. It is
not DAC* for orderxyz since(y, a) has no full support on
z. It is not AC* either since eg.(z, a) and (y, a) have no
support onx andz respectively. Problem 1.c is an equivalent
DAC* problem. It is not AC* since(z, a) has no support
on x. Problem 1.d is an equivalent AC* problem. It is not
DAC* since(y, b) has no full support onz. Problem 1.e is
an equivalent FDAC* problem. The 2 optimal solutions are
made obvious here.

There is a strong relation between directional arc consis-
tency and mini-buckets[Dechter, 1997]. It can easily be
shown that given a WCSP defined over the valuation struc-
tureS(∞) and a variable ordering, the lower bound induced
by mini-buckets involving at most 2 variables is the same as
the lower bound induced byC∅ after the problem is made
directional arc consistent. However, the mini-bucket com-
putation provides only a lower bound while DAC enforcing
provides both a lower bound and a directional arc consistent
equivalent problem. All the work done to compute the lower
bound is captured in this problem which offers the opportu-
nity to perform incremental updates of the lower bound.

4 Enforcing Arc Consistencies
The previous node and arc consistency properties can be en-
forced by applying basic operations until the correspond-
ing property is satisfied: pruning node-inconsistent values,
forcing supports to variables (NC*), forcing (full) support to
node-consistent values (AC). As pointed out in[Schiex, 2000;
Larrosa, 2002], value (resp. variable) supports can be forced
by sendingcosts from binary (resp. unary) constraints to
unary constraints (resp.C∅). Full support can be forced by
first sending costs from a unary constraintCj to Cij and then
sending the cost fromCij toCi [Cooper, 2003]. Let us review
these concepts before introducing basic algorithms.

Let a, b ∈ [0, . . . , k], be two costs such thata ≥ b. a	 b is
thesubtractionof b from a, defined as,

a	 b =
{

a− b : a 6= k
k : a = k

Theprojectionof α cost units fromCij ∈ C over value(i, a)
is a flow ofα cost units from the binary constraint to the unary
costCi(a). It is embodied in the ProcedureProject(i, a, j, α).

1The stronger local property that would require a full support
on both sides suffers from the fact that most WCSP don’t have an
equivalent WCSP that satisfies this property.

For the subtraction to be defined, the maximum flow that can
be projected isminb∈Dj{Cij(a, b)}. The converseextension
of β cost units from value(i, a) toCij ∈ C is a reverse flow of
β cost units from(i, a) to the binary constraint. It is embodied
in the ProcedureExtend(i, a, j, β). The maximum flow that
can be extended isCi(a). Unless stated otherwise, we always
assume that maximum flows are projected or extended in the
rest of the paper. Similar operations can be defined between
unary constraints andC∅.

ProcedureProject(i, a, j, α)
Ci(a) := Ci(a)⊕ α;

1 foreach b ∈ Dj do Cij(a, b) := Cij(a, b)	 α;

ProcedureExtend(i, a, j, β)
2 foreach b ∈ Dj do Cij(a, b) := Cij(a, b)⊕ β;

Ci(a) := Ci(a)	 β;

Theorem 1 [Schiex, 2000] LetP = (k,X ,D, C) be a binary
WCSP. Letα ≤ minb∈Dj

{Cij(a, b)}, β ≤ Ci(a). Thepro-
jection of α cost unit ofCij ∈ C over (i, a) or the converse
extensionof β cost unit from(i, a) to Cij transformP into
an equivalent problemP ′.

Example 3 Consider the problem in Figure 1.a. To enforce
NC* we must force a support forz by projectingCz onto
C∅. The resulting problem 1.b is NC* but not AC*. To en-
force AC*, it suffices to force a support for(y, a) and(z, a):
we projectCyz over (y, a) by adding1 to Cy(a) and sub-
tracting1 fromCyz(a, a) andCyz(a, b) and similarly project
Cxz over (z, a). We get problem 1.d which is AC* but not
FDAC* using the orderxyz since(y, b) has no full support
on z. To force a full support for(y, b), we extend1 cost unit
from Cz(a) to Cyz by adding1 to Cyz(a, a) and Cyz(b, a)
and subtracting1 from Cz(a). We then projectCyz to (y, b)
which increasesCy(b) to 1. y is now node-inconsistent, we
projecty onC∅ and getC∅ = 2. x is now node-inconsistent,
we prune(x, a) and get problem 1.e which is FDAC* accord-
ing to orderxyz.

For simplicity, the following descriptions assume that no
empty domain is produced and that the initial problem is
NC*. It also assumes that the problems have no constraints
of arity larger than two.[Larrosa, 2002] defined W-AC*2001,
an algorithm based on AC2001[Bessìere and Ŕegin, 2001] to
enforce AC*. It is embodied in theAC*() function of Algo-
rithm 1. It requires two data structuresS(i, a, j) andS(i)
which respectively store the current value support for(i, a)
with respect to constraintCij and the current variable support
for i. The algorithm uses three auxiliary functions : Function
ProjectUnary(i) projectsCi onto C∅, FunctionPruneVar(i)
prunes node inconsistent values inDi and returnstrue if the
domain is changed. FunctionFindSupportAC*(i, j) forces a
support onCij for each value inDi by projectingCij on
Ci. The main procedureAC*() uses a queueQ containing
those variables whose domain has been pruned: adjacent vari-
ables may have unsupported values in their domains and new
supports must be sought.Q should be initialized with all
variables because every variable must find an initial support
on every constraint. Ignore for the moment the boolean re-
turned byFindSupportAC* and the use ofR. [Larrosa, 2002]



showed thatAC*() is timeO(n2d3) and spaceO(ed) on gen-
eral WCSP.

ProcedureProjectUnary(i)
S(i) := argmina∈Di{Ci(a)};
α := Ci(S(i));
C∅ := C∅ ⊕ α;
foreacha ∈ Di do Ci(a) := Ci(a)	 α;

Function FindSupportAC*(i, j) : boolean
flag := false;
foreacha ∈ Di s.t.S(i, a, j) /∈ Dj do

S(i, a, j) := argminb∈Dj{Cij(a, b)};
α := Cij(a, S(i, a, j));
if (Ci(a) = ⊥) ∧ (α > ⊥) then flag := true;
Project(i, a, j, α);

ProjectUnary(i);
return flag;

Function PruneVar(i) : boolean
change:= false;
foreacha ∈ Di s.t. (Ci(a)⊕ C∅ = >) do

Di := Di − {a};
change:= true;

return change;

ProcedureAC*()
while (Q 6= ∅) do

j := pop (Q);
for Cij ∈ C do

3 if FindSupportAC*(i, j) then R := R ∪ {i};
foreach i ∈ X do

4 if PruneVar(i) then Q := Q ∪ {i};

Algorithm 1: Enforcing AC*, initiallyQ = X

[Cooper, 2003] introduced non incremental algorithms for
enforcing DAC and FDAC onstrictly monotonicvaluation
structures. These algorithms are inadequate for maintaining
DAC* or FDAC* in a WCSP branch and bound algorithm
that relies on a non strictly monotonic valuation structure
S(k), k 6= +∞ as soon as a feasible solution is found.

The new basic operation needed to enforce{F}DAC* con-
sists in forcingfull supportsfor the values of a variablei on
one side of a constraintCij . As shown in the example, this
can be done by extending unary costs fromCj to Cij and
then projectingCij onto variableCi. However, extending all
unary costs may destroy supports forj on Cij . Consider the
AC* Problem 1.d. If we extend2 cost units from(z, a) to
Cyz instead of1 as in the example and then project onCy,
we get Problem 1.f where(z, a) has lost all supports ony.
In order to smoothly integrate DAC* and AC* enforcing to
obtain FDAC* enforcing, we must obtain full supports for
variablei on Cij while preservingsupportsfor all values of
j onCij . This is obtained by extending the minimum cost of
Cj required for the subsequent projection ontoCi. The cor-
rectness of our algorithms is based on the following theorem,

Theorem 2 Let j, a variable whose values are AC wrt.Cij .
∀a ∈ Di, b ∈ Dj , let P [a] = minb∈Dj

{Cij(a, b) ⊕ Cj(b)}
and E[b] = maxa∈Di

{P [a] − Cij(a, b)}. ExtendingE[b]
cost units from(j, b) to Cij for all b ∈ Dj and project-
ing P [a] cost units fromCij to (i, a) for all a ∈ Di yields

an equivalent WCSP s.t. every node consistent value ofi
is DAC wrt. Cij and s.t. every value(j, b) is supported by
argmaxa∈Di

{P [a]− Cij(a, b)} if it is node consistent.

Proof: We denoteC0
ij(a, b) the original value ofCij(a, b).

We first show thatE[b] andP [a] are possible flows. We first
prove that0 ≤ E[b] ≤ Cj(b): we haveP [a] − Cij(a, b) =
minb′∈Dj

(Cij(a, b′) ⊕ Cj(b′)) − Cij(a, b) ≤ (Cij(a, b) ⊕
Cj(b)) − Cij(a, b) ≤ (Cij(a, b) + Cj(b)) − Cij(a, b) =
Cj(b) and thereforeE[b] ≤ Cj(b). Sincej is AC, it has
a support(i, a) s.t. C0

ij(a, b) = ⊥ ≤ P [a]. Therefore
P [a]− Cij(a, b) ≥ 0 andE[b] ≥ ⊥.

After the extension ofE[b] cost units, Cij(a, b) will
be equal toC0

ij(a, b) ⊕ maxa′∈Di
{P [a′] − C0

ij(a
′, b)} ≥

C0
ij(a, b) ⊕ (P [a] − C0

ij(a, b)). Either this is equal to>
and obviouslyCij(a, b) ≥ P [a] or elseC0

ij(a, b) ⊕ (P [a] −
C0

ij(a, b)) = P [a] and againCij(a, b) ≥ P [a].
SinceP [a] = minb∈Dj

{C0
ij(a, b)⊕Cj(b)} the valueb for

which this minimum is reached will either be a full support
for (i, a) if P [a] 6= > or (i, a) will be deleted.

On the other side, consider value(j, b) and a =
argmax(P [a] − C0

ij(a, b)). After extension and projection,
eitherCij(a, b) = C0

ij(a, b) ⊕ (P [a] − C0
ij(a, b)) 	 P [a] ≤

P [a] 	 P [a] and eitherP [a] < > anda is a support of(j, b)
or P [a] = > anda is node inconsistent.

Based on this theorem, FunctionFindFullSupportAC*(i, j)
forces full supports for all the values ofi onCij while taking
care of supports for values inDj . It returnstrue whenever
the cost of a value(i, a) has been increased from⊥. The
ProcedureDAC*() has been designed to be used alone to en-
force DAC* or in conjunction withAC*() to enforce FDAC*.
Therefore, whenever a value is pruned,DAC*() inserts its vari-
able inQ to inform AC*() of the deletion.DAC* further uses
a priority queueR that contains those variables such that a
unary cost has been increased from⊥: in this case, some
values in lower variables may have lost full support and new
supports need to be found. The main loop iterates whileR is
not empty. At each iteration, the highest variablej is fetched
from R. Node inconsistent values (due to unary cost and
lower bound increments) are removed usingPruneVar() and
pruned variables are inserted inQ. Then new full supports
are sought for every lower variable connected toj. Finally,
all variables are processed to enforce NC* which can be lost
during the process, due to lower bound increments. Pruned
variables are inserted inQ. FDAC*() simply enforces AC*
and DAC* simultaneously: the enforcement of AC* empties
Q but may add variables toR, and the enforcement of DAC*
emptiesR but may add variables toQ. FDAC* is achieved
when bothR andQ are simultaneously empty. Correction of
both algorithms follows from theorem 2.

Theorem 3 The complexity ofDAC*() is time O(ed2) and
spaceO(ed). n, e and d are the number of variables, con-
straints and largest domain size respectively.

Proof: FindFullSupportAC*(i, j) andPruneVar(i) have com-
plexitiesO(d2) andO(d) respectively. The only way a vari-
ablej may enter the queueR is because some null unary cost
Cj(b) has been increased inFindFullSupportAC*. R being a



Function FindFullSupportAC*(i, j) : boolean
flag := false;
foreacha ∈ Di s.tCij(a, S(i, a, j))⊕ Cj(S(i, a, j)) > ⊥ do

S(i, a, j) := argminb∈Dj{Cij(a, b)⊕ Cj(b)};
P [a] := Cij(a, S(i, a, j))⊕ Cj(S(i, a, j));
if (P [a] > ⊥) ∧ (Ci(a) = ⊥) then flag := true;

foreach b ∈ Dj do
S(j, b, i) := argmaxa∈Di{P [a]− Cij(a, b)};
E[b] := P [S(j, b, i)]− Cij(a, b);

foreach b ∈ Dj do Extend(j, b, i, E[b]);
foreacha ∈ Di do Project(i, a, j, P [a]);
ProjectUnary(i);
return flag;

ProcedureDAC*()
while (R 6= ∅) do

j := pop (R);
5 if PruneVar(j) then Q := Q ∪ {j};

foreachCij ∈ C s.t. i < j do
if FindFullSupportAC*(i, j) then R := R ∪ {i};

foreach i ∈ X do
6 if PruneVar(i) then Q := Q ∪ {i};

ProcedureFDAC*()
while (Q 6= ∅) ∨ (R 6= ∅) do

7 AC*();
8 DAC*();

Algorithm 2: DAC* and FDAC*. Initially,Q = R = X .

priority queue, when a variablej is extracted fromR, all the
variables beforej in R have already been processed. Since
FindFullSupportAC*() can only increase non zero unary costs
of variables strictly lower thanj, j will never be reintroduced
in R and therefore each variablej is added to the queueR at
most once. The queue is implemented as an array of booleans
and a pointer to the highesttrue element. Adding new el-
ements toR means updating the pointer, thepop operation
consists on returning the value of the pointer and searching
for the new highesttrue element. Clearly,DAC*() only tra-
verses the array once. Thus, the complexity of thewhile loop
is inO(ed2). Since the complexity of the secondforeachloop
is in O(nd), the global complexity is inO(ed2).

As it is, DAC*() is spaceO(ed2) since it modifies binary
constraints. As[Larrosa, 2002], we note that when a binary
constraintCij is modified (line 1 and 2 inProject and Ex-
tend), it is by addition or subtraction of costs that depend
either oni or j. It is therefore possible to record only row
and column changes, the current value ofCij(a, b) being ob-
tained asC0

ij(a, b) 	 F (i, j, a) 	 F (j, i, b) whereC0
ij(a, b)

denotes the original constraint. There is oneF (i, j, a) entry
per constraint-value pair which is spaceO(ed).

Theorem 4 The complexity ofFDAC*() is timeO(end3) and
spaceO(ed).

Proof: Regarding space, there is no difference withDAC*()
and the same proof applies. Regarding time, a variablej
entersQ only if a value has been deleted. Therefore, each
variablej is added toQ at mostd + 1 times (once at initial-
ization and then upon value deletion at lines 5, 6 or 4). There-

fore, line 3 of ProcedureAC*() is executed at most2e(d + 1)
times and line 4 at mostnd times. Globally, line 7 of Al-
gorithm 2 will therefore useO(n2d2 + ed3) elementary op-
erations. For the same reason, line 8 is executed at most
O(nd) times. SinceDAC* is in O(ed2), this can generate
O(end3) elementary operations. Globally, the algorithm is
timeO(n2d2 + ed3 + end3) = O(end3).

A consequence of these complexity results is that all algo-
rithms terminate (even in theS(∞) structure).

5 Experimental results
In this Section we perform an empirical evaluation of the ef-
fect of maintaining various forms of arc consistency during
search. We consider a depth-first search maintaining either
NC*, AC*, DAC* or FDAC* which yields the algorithms
MNC*, MAC*, MDAC* and MFDAC*. For comparison,
we include results obtained with PFC-RDAC[Larrosaet al.,
1999], which is normally considered as a reference algorithm.

For variable selection we use thedom/deg heuristic which
for each variable computes the ratio of the domain-size di-
vided by the future degree (i.e., degree considering future
variables only) and selects the variable with the smallest
value. For value selection we consider values in increasing
order of unary costCi. The variable ordering used for direc-
tional arc consistencies is lexicographic.

We consider the Max-CSP problem, where the goal is
to find a complete assignment with a maximum number
of satisfied constraints in an overconstrained CSP. It can
easily be formulated as a WCSP. We experiment with bi-
nary random problems using the well-known four-parameters
model [Smith, 1994]. A random CSP class is defined by
〈n, d, e, t〉 wheren is the number of variables,d is the do-
main size,e is the number of binary constraints (i.e, graph
connectivity), andt the number of forbidden tuples in each
constraint (i.e,tightness). Pairs of constrained variables and
their forbidden tuples are randomly selected using a uniform
distribution. Samples have50 instances and we report aver-
age values. The experiments were performed on a 800 MHz
Pentium III computer.

For fixed values ofn, d ande and increasing tightnesst,
most problems are solved almost instantly until the cross-over
point is reached. Then, problems become overconstrained
and much harder to solve. We denoteto the lowest tightness
where every instance in our sample is overconstrained. Based
on this, we define different categories of problems:

• For graph density, we define two problem types:sparse
(S) withe = 2.5n and ,dense(D) with e = n(n−1)

8 .

• For tightness, we define two problem types:loose(L)
with t = to, andtight (T) with t = d2 − 0.25to.

Combining the different types, we obtain4 different classes,
each being denoted by a pair of characters (SL,ST,DL and
DT). In each class, the domain size is set to10 and the num-
ber of variablesn is used as a varying parameter. Figure 2
shows the average cpu time used with SL, ST, DL and DT
from left to right. In each plot, the five algorithms are listed
in increasing order of efficiency, from top to bottom. In all
cases, the search effort seems to grow exponentially withn.
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Figure 2: Cpu-time in seconds for an increasing number of variable on our 4 classes of problems. In each case, the 4 algorithms
are listed in increasing order of efficiency from top to bottom.

For all classes except the DL class, MFDAC* is the most
efficient algorithm, with only minor differences with MDAC*
(sometimes they are so closed that the two lines can hardly
be distinguished). The best performance of MFDAC* is ob-
tained in the ST problems, where it is up to 5 times faster than
PFC-RDAC, 20 times faster than MAC* and 50 times faster
than MNC*. For the DL class, however, MNC* is the most
efficient algorithm, followed by PFC-RDAC, MAC*, MF-
DAC* and MDAC*. The differences between the algorithms
are however more limited than in previous classes (MNC* is
twice faster than MFDAC*).

The ability of directional arc consistency to collect costs
along the constraints in order to bring them together in the
same variable allows to build stronger lower bounds. This is
confirmed by the analysis of the number of nodes expanded
by each algorithm (not reported here for lack of space) where
MDAC* and MFDAC* always expand less nodes that PFC-
RDAC, MNC* or MAC*, with a ratio that can reach300 be-
tween the extreme algorithms on eg. ST problems. On the
DL problems however, this ratio is much more limited, typi-
cally bounded by4. With loose constraints, the upper bound
reaches low values early in the search which allows pruning
at high levels of the search tree and makes sophisticated lower
bounds less significant.

It is worth to mention at this point that PFC-RDAC heuris-
tically assigns a direction to every constraint in each sub-
problem and this has a strong influence on the efficiency on
random Max-CSP. Similarly, the behavior of AC, DAC and
FDAC based algorithms depends on the order in which vari-
ables are fetched fromQ andR (i.e., on the variable order-
ing used to define DAC) and on the order in which values
are considered for projection. In our current implementation,
Q is implemented as a stack, values are considered in lexi-
cographic ordering and the DAC variable ordering is lexico-
graphic. This leaves room for further improvement.

6 Conclusion and Future Work
In this paper we have refined two local consistency properties
and adapted them to WCSP. We have developed enforcing
algorithms and have studied their complexity.

As in classical CSP, we observe that the choice of the right
level of local consistency to maintain during search is impor-
tant. Despite its theoretical cost, the strongest local consis-
tency we considered (FDAC*) appears to be the best level for
solving WCSP. In the future, we want to extend these algo-
rithms to non binary constraints, apply them to other prob-

lems and take into account heuristics for the variable and
value ordering used in AC, DAC and FDAC enforcing.
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