1

In the quest of the best form of local consistency for Weighted CSP

Javier Larrosa
Department of Software

Thomas Schiex

Dépt. de Biongtrie et Intelligence Atrtificielle

Universitat Politecnica de Catalunya Institut National de Recherche Agronomique

Barcelona, Spain
larrosa@lsi.upc.es

Abstract

The weighted CSP (WCSP) framework is a soft
constraint framework with a wide range of appli-
cations. In this paper, we consider the problem
of maintaininglocal consistency during search for
solving WCSP. We first refine the notionsdifec-
tional arc consistencyDAC) and full directional

arc consistency(FDAC) introduced in[Cooper,
2009 for binary WCSP, define algorithms that en-
force these properties and study their complexities.
We then consider algorithms that maintain either
arc consistency (AC), DAC or FDAC during search.
The efficiency of these algorithms is empirically
studied. It appears that despite its high theoreti-
cal cost, the strongest FDAC property is the best
choice.

Introduction

It is well known thatarc consistencfAC) plays a preemi-
nent role in efficient constraint solving. In the last few years,can be assigned to iti, a) denotes the assignment of value
the CSP framework has been augmented with so-calbéid 3 ) A
constraintswith which it is possible to express preferencesVvariables. Actuallyt is an ordered set of values assigned to
among solutiongSchiexet al,, 1995; Bistarelliet al., 1997.
Soft constraint frameworks associate costs to tuples and tH@ent oft is the value assigned to titeth element oft;). For
goal is to find a complete assignment with minimum com-a subseB of &;, the projection of over B is notedt | 5. Cis
bined cost. Costs from different constraints are combined set of unary and binary constraints. A unary consti@jris

with a domain dependent operator Extending the notion

Toulouse,France
Thomas.Schiex@toulouse.inra.fr

al., 1999, combinatorial auctiongSandholm, 1999 bioin-
formaticsandprobabilistic reasoningPearl, 1988 [Larrosa,
2009 introduced AC*, a refinement of the AC definition for
WCSP. This definition provides a stronger yet simple and el-
egant property to be maintained during search.

In this paper, we take the definitions of DAC and FDAC,
strengthen and extend them to binary WCSP, defining the
DAC* and FDAC* properties. We then define correspond-
ing enforcing algorithms. As in the classical CSP case, we
then consider the problem of maintaining AC*, DAC* and
FDAC* during search and empirically compare these algo-
rithms. These algorithms have a wide range of applications
and allow a nice integration of hard and soft constraints in a
common algorithmic framework.

2 Preliminaries

21 CSP

A binary constraint satisfaction problerfCSP) is a triple
P=(x,D,C). X ={1,...,n} is a set of variables. Each
variablei € X has a finite domairD; € D of values that
a € D; to variablei. A tuplet is an assignment to a set of

the ordered set of variablel, C X (namely, thek-th ele-

a subset ofD; containing the permitted assignments to vari-

of AC to soft constraint frameworks has been a challenge irdble:i. A binary constrainC;; is a set of pairs fronD; x D;
the last few years. ¢From previous works we can concludgéontaining the permitted simultaneous assignmentsatiod
that the extension is direct as long as the operat idem-
potent. Then[Schiex, 200 proposed an extension of AC Scope A tuple ¢ is consistentf it satisfies all constraints
which can deal with non-idempoteat. This definition has } 0 1A ton !
three nice properties(i) it can be enforced in polynomial complete assignment. Finding a solution in a CSP is an NP-
time, (ii) the process of enforcing AC reveals infeasible val-complete problem. The task of searching for a solution can

ues that can be pruned atwi) it reduces to existing defini-

tions in the idempotent operator cag€ooper, 200Bfurther
introduceddirectional arc consistenc¢DAC) andfull direc-
tional arc consistencyor strictly monotonic®.

Weighted constraint satisfaction probleri8/CSP) is a

j. The set of variables affected by a constraint is called its
whose scope is included ;. A solutionis a consistent
be simplified by enforcing arc consistency, which may prune
values that cannot participate to a solution.

2.2 Weighted CSPs
Valued CSP (as well asemi-ring CSP) extend the CSP

well known soft-constraint framework with a non-idempotent framework by associatingoststo tuples[Schiexet al., 1995;
operator®. It provides a very general model with several ap-Bistarelli et al, 1997. In general, costs are specified by
plications in domains such assource allocatiorf Cabonet

means of a so-calledaluation structuredefined as a triple



S = (E,®, =), whereFE is the set of costs totally ordered by «(z)
>. The maximum and a minimum costs are nofednd L, "
respectivelys is an operation o’ used to combine costs.
A valuation structure iglempotentf Va € E, (a®a) = a.
It is strictly monotonicif Va,b,c € E,s.t.(a = ¢) A (b # 4
T),we have(a @ b) = (c D b). v O,
Following [Larrosa, 200R we define Weighted CSP
(WCSP) as a specific subclass of valued CSP that relies op@ G=1
a specific valuation structurg(k). z

Definition 1 S(k) is a triple ([0, 1, ..., k], ®,>) where, bO
e kell,..., o0 (@ (O}
e @ isdefined as © b = min{k,a + b} y d) bOy e)
e > isthe standard order among naturals.

Observe that i (k), we have) = L andk = T

A binary WCSP is a tuple® = (k, X, D,C). The valua-
tion structure isS(k). X andD are variables and domains, strictly monotonic valuation structure where finite costs can-
as in standard CSF. is a set of cost functions. A binary not lead to deletion. In practice, mostanch and bound
constraintC;; assigns costs to assignments to variab@sd  based solvers maintain an upper boudthe maximum ac-
j (namely,C;; : D, x D; — [0,...,k]). A unary con- ceptable cost so-far, and a lower bouhan the optimal ex-
straintC; assigns costs to assignments to variak{igamely, tension of the current assignment. Value pruning occurs as
C; : D; — [0,...,k]). We assume the existence of a unarysoon agb > ub. The WCSP framework makes these two ele-
constraintC; for every variable, and aercarity constraint, ments explicit: a solver uses the valuation structgifeb) at
noted Cy (if no such constraint is defined, we can alwaysevery subproblem an@y provides the lower bound.
definedummyonesC;(a) = 1,Va € D; or Cy = 1).

When a constrain€' assigns cost to a tuplet, it means 3 Some local consistencies in WCSP
that C forbidst¢, otherwiset is permitted byC' with the cor- . . ) . .

In this Section we define node, arc, directed arc and full di-

responding cost. Theostof a tuplet, notedV(¢), is the sum . . : X
over all applicable costs rected arc consistencies. For node and arc consistencies, our
' definitions are equivalent to the NC* and AC* definitions
N N _ _ in [Larrosa, 200R For DAC, and FDAC, the starred (*) def-
>, Gultlus >, Giltlw) @ Co initions refine the definitions ifiCooper, 200Bto the WCSP
case, using node consistency arid. In the sequel, we as-
Tuplet is consistenif V(¢) < T. The usual task of inter- SUMe that the set of variablésis totally ordered by-.

est is tofind a complete consistent assignment with minimunDefinition 2 Let P = (k, X, D,C) be a binary WCSP.

cost which is NP-hard. Observe that WCSP with= 1 « Node consistency(i, a) is star node consistent (NC*) if

reduces to classical CSP. In additigi(k) is idempotent iff C *
- : Ce . p» @ Ci(a) < T. Variabled is NC* if: 4) all its values
k = 1 and strictly monotonic iff = co. Two WCSP defined are NC* andii) there exists a value € D; such that

over the same variables are said tebeivalenif they define Ci(a) — L. Valuea is a support for the variablé. P is
the same cost distribution on complete assignments. NZC* if eve}y variable is NC* '

For simplicity in our exposition, we assume that every con- . T ' ) ]
straint has a different scope. For the moment, we also assume® ArC consistency (i, a) is arc consistent (AC) with re-
that constraints are implemented as tables and that it is pos- SPect to constrainC; if there is a valueb € D; such
sible to consult and modify entries. This is done without loss ~ that Ci;(a,b) = L. Valueb is called a support of the

Figure 1: Six equivalent WCSPs (fér= 4).

Cij€C, {i,j}Cx CiE€C, i€X,

of genera"ty (See the proof of Theorem 3) VaIUE(i, a). Variablei is AC if all its values are AC wirt.
) ) ) every binary constraint affecting P is AC* if every
Example 1 Figure 1a shows a WCSP with valuation struc- variable is AC and NC*.

ture S(4) (the set of costs if0,...,4], with L = 0 and

T = 4). It has three variable&’ = {z, y, z} with valuesa, b.
There are 2 binary constraints; ., C,. and two non trivial
unary constraint’,, and C,. Unary costs are depicted in-
side their domain value. Binary costs are depicted as labelled
edges connecting the corresponding pair of values (default
cost of 1). Zero costs are not shown. One optimal solution is

o Directional arc consistencyi, a) is directional arc con-
sistent (DAC) wrt. constrain€;;,j > 1, if there is a
valueb € D; such thatC;;(a,b) & C;(b) = L. Valueb
is called afull supportof a. Variablei is DAC if all its
values are DAC with respect to evety;,j > i. P is
DAC* if every variable is DAC and NC*.

eg.x =y = z = b, with cost2. e Full directional arc consistencyP is fully star direc-
Our definition of WCSP is the same asllrarrosa, 200p tional arc consistent (FDAC*) if it is DAC* and AC*.
It differs from usual definitiongSchiexet al., 1995; Bistarelli In the CSP case.é, k = 1), being a support fofi, a) is

et al, 1997 which restrict WCSP to thé& = oo case, a obviously equivalent to being full supportfor it and both



notions reduce to the classical notion of support. Thereforef-or the subtraction to be defined, the maximum flow that can
AC* and DAC* reduce to their classical definitions in CSP be projected isninye p, {C;;(a, b) }. The conversextension
while FDAC* reduces to arc consistency. In WCSP, howeverpf 3 cost units from valuéi, a) to C;; € Cis areverse flow of

a support is not necessarily a full support. For this reasong cost units fron{:, ) to the binary constraint. Itis embodied
DAC* (which requires a full support on one side of each con-in the Proceduré&xtend(i, a, j, 3). The maximum flow that
straint) and AC* (which requires a support on both sides) arean be extended i§;(a). Unless stated otherwise, we always
incomparable. FDAC* (which requires a support on one sideassume that maximum flows are projected or extended in the
and a full support on the other) cannot be weaker than AC*est of the paper. Similar operations can be defined between
or DAC*L. In WCSP, FDAC* can actually be stronger, in the unary constraints andy,.

sense that it may provide a better lower bound as the follow-

ing example shows. Procedure Project(i, a, j, )
Example 2 The problem in Figure %.is not NC* since: h Cila) := Ci(a) ® g
xample e problem in Figure L.is no sincezhas ;| foreachb € D, do Cy;(a,b) = Cij(a,b) © a:

no support. Problem &.is an equivalent NC* problem. Itis
not DAC* for orderxyz since(y, a) has no full support on
z. Itis not AC* either since eg.z,a) and (y,a) have no
support onz andz respectively. Problem dis an equivalent
DAC* problem. It is not AC* sincdz,a) has no support
onz. Problem 1d is an equivalent AC* problem. It is not Theorem 1 [Schiex, 200DLet P = (k, X', D, C) be a binary
DAC* since(y,b) has no full support orx. Problem leis  WCSP. Letx < minye p,{Ci;(a,b)}, B < Ci(a). Thepro-
an equivalent FDAC* problem. The 2 optimal solutions arejection of o cost unit ofC;; € C over (i,a) or the converse
made obvious here. extensionof 3 cost unit from(i, a) to C;; transform P into
There is a strong relation between directional arc consisan equivalent problen#”.
tency and mini-bucket§Dechter, 199J. It can easily be Example 3 Consider the problem in Figure 1.a. To enforce
shown that given a WCSP defined over the valuation strucNC* we must force a support faor by projectingC, onto
ture S(oo) and a variable ordering, the lower bound inducedc,,. The resulting problem &.is NC* but not AC*. To en-
by mini-buckets involving at most 2 variables is the same asorce AC*, it suffices to force a support fog,a) and (z, a):
the lower bound induced bg after the problem is made e projectC,,. over (y,a) by addingl to C,(a) and sub-
directional arc consistent. However, the mini-bucket com-racting 1 from Cy:(a,a) andCy(a,b) and similarly project
putation provides only a lower bound while DAC enforcing ¢, over (z,a). We get probiem &.which is AC* but not
provides both a lower bound and a directional arc consistertDAC* using the ordetryz since(y, b) has no full support
equivalent problem. All the work done to compute the loweron . To force a full support fofy, b), we extend cost unit
bound is captured in this problem which offers the opportufrom . (a) to Cy. by addingl to Cy(a,a) and Cy. (b, a)

ProcedureExtend(z, a, j, 3)
2 | foreachb € D; do C;j(a,b) := C;;(a,b) & B;
Ci(a) == Ci(a) © 5;

nity to perform incremental updates of the lower bound. and subtractingl from C.(a). We then projec€,. to (y, b)
_ ) ) which increase&”, (b) to 1. y is now node-inconsistent, we
4 Enforcing Arc Consistencies projecty onCy and getCy, = 2. x is now node-inconsistent,

of€ prune(z, a) and get problem t.which is FDAC* accord-

The previous node and arc consistency properties can be
Ing to orderxyz.

forced by applying basic operations until the correspond
ing property is satisfied: pruning node-inconsistent values, For simplicity, the following descriptions assume that no
forcing supports to variables (NC*), forcing (full) support to empty domain is produced and that the initial problem is
node-consistent values (AC). As pointed outSthiex, 2000; NC*. It also assumes that the problems have no constraints
Larrosa, 200P, value (resp. variable) supports can be forcedof arity larger than two[Larrosa, 200Rdefined W-AC*2001,

by sendingcosts from binary (resp. unary) constraints toan algorithm based on AC20QBessere and Rgin, 200] to
unary constraints (resg’s). Full support can be forced by enforce AC*. It is embodied in thaC*() function of Algo-

first sending costs from a unary constraifjtto C;; and then  rithm 1. It requires two data structurei, a, j) and S(i)
sending the cost frorfy;; to C; [Cooper, 2008 Letus review  which respectively store the current value support(for)

these concepts before introducing basic algorithms. with respect to constrairdt;; and the current variable support
Leta,b € [0,..., k|, be two costs such that> b. a© bis  fori. The algorithm uses three auxiliary functions : Function
the subtractionof b from a, defined as, ProjectUnary(:) projectsC; onto Cy, FunctionPruneVar(:)
prunes node inconsistent values/i and returngrue if the
aob= { a=b : a#Fk domain is changed. FunctidfindSupportAC*(i, 7) forces a
ko:a=k support onC;; for each value inD; by projectingC;; on

C;. The main proceduraC*() uses a queué) containing
those variables whose domain has been pruned: adjacent vari-
ables may have unsupported values in their domains and new
supports must be sought)) should be initialized with all
1The Stronger local property that would require a full Supportvariables because eVery Variable must f|nd an |n|t|a| Support

on both sides suffers from the fact that most WCSP don’t have a®n every constraint. Ignore for the moment the boolean re-
equivalent WCSP that satisfies this property. turned byFindSupportAC* and the use oR. [Larrosa, 200P

The projectionof « cost units fromC;; € C over value(i, a)
is a flow of« cost units from the binary constraint to the unary
costC;(a). Itis embodied in the Procedureoject(i, a, j, o).



showed thatCx() is time O(n?d?) and spac®(ed) on gen-
eral WCSP.

Procedure ProjectUnary(s)
S(1) :== argmingep,{Ci(a)};
a = Ci(S®));
Cy :=Cy @ aq;
| foreacha € D; do Cs(a) := Ci(a) © o

Function FindSupportAC*(z, j) : boolean
flag := false
foreacha € D; s.t.5(¢,a,j) ¢ D; do
S(i,a,7) := argminpep;{Cij(a,b)};
a = Ci;(a,S(i,a,7));
if (Ci(a) = 1) A (a> 1)thenflag:= true;
Project(i, a, j, a);
ProjectUnary(i);
|_return flag;

Function PruneVar(z) : boolean
change:= false
foreacha € D; s.t. (Ci(a) ® Cx
D;:=D; — {a};
change:= true;
|_return change

Procedure AC*()
while (Q # @) do
j = pop(Q);
for Cij e Cdo
| if FindSupportAC*(s, j) then R := R U {i};

foreachi € X do
| if PruneVar(¢) then @ := Q U {i};

T) do

Algorithm 1: Enforcing AC*, initially @ = X

[Cooper, 200Bintroduced non incremental algorithms for
enforcing DAC and FDAC orstrictly monotonicvaluation

structures. These algorithms are inadequate for maintaining

DAC* or FDAC* in a WCSP branch and bound algorithm

that relies on a non strictly monotonic valuation structure

S(k), k # +o0 as soon as a feasible solution is found.

The new basic operation needed to enfoiggDAC* con-
sists in forcingfull supportsfor the values of a variableon
one side of a constrairt;;. As shown in the example, this
can be done by extending unary costs frémto C;; and
then projecting”;; onto variableC;. However, extending all
unary costs may destroy supports joon C;;. Consider the
AC* Problem 1.d. If we exten@ cost units from(z, a) to
Cy. instead ofl as in the example and then project Y,
we get Problem 1.f wheréz, a) has lost all supports op.

In order to smoothly integrate DAC* and AC* enforcing to
obtain FDAC* enforcing, we must obtain full supports for
variablei on C;; while preservingsupportsfor all values of
jonC;;. This is obtained by extending the minimum cost o
C; required for the subsequent projection oftp The cor-

an equivalent WCSP s.t. every node consistent value of
is DAC wrt. C;; and s.t. every valuéj, b) is supported by
argmazq.ep,{Pla] — Ci;j(a,b)} if itis node consistent.

Proof: We denoteC?;(a, b) the original value ofC;(a, b).

We first show thatZ[b] and P[a] are possible flows. We first
prove thatd < E[b] < C;(b): we havePla ] — Cij(a,b) =

miny ¢ p, (Cyj(a,b") ® C; (b’) ”(a b) < (Cyj(a,b) ®
C5(b)) -~ Cijlab) < (€ (a b) + C;(b)) = Cij(a,b) =
C;(b) and thereforeE [b] g (D). Slncej is AC, it has
a support(z a) s.t. CU (a,b) = L < Pla]. Therefore

P[a] — Cij((l,b) >0 andE[b] > 1.

After the extension ofE[b] cost units, C;;(a,b) will
be equal toC?;(a,b) ® max,ep,{Pla’] — CP;(a’,b)} >
Ci(a,b) ® (Pla] — C(a,b)). Either this is equal tor
and obviouslyC;;(a,b) > P[a] or elseC?;(a,b) & (Pla] —
CP;(a,b)) = P[a] and agairCy;(a,b) > Pla].

SincePla] = minye p, {CY;(a,b) © C;(b)} the valueb for
which this minimum is reached will elther be a full support
for (i,a) if Pla] # T or (i,a) will be deleted.

On the other side, consider valug,b) and a
argmaz(Pla] — Cf;(a,b)). After extension and projection,
eitherC;;(a,b) = Cf;(a,b) @ (Pla] — CP;(a,b)) © Pla] <
Pla] © Pla] and eitherP[a] < T anda is a support of j, b)
or Pla] = T anda is node inconsistent. O

Based on this theorem, FunctiGindFullSupportAC*(i, 5)
forces full supports for all the values 6bn C;; while taking
care of supports for values iR;. It returnstrue whenever
the cost of a valuéi, a) has been increased froh. The
ProcedurebAC*() has been designed to be used alone to en-
force DAC* or in conjunction withAC*() to enforce FDAC*.
Therefore, whenever a value is prunedC*() inserts its vari-
able in@ to inform AC*() of the deletion.DAC* further uses
priority queueR that contains those variables such that a
nary cost has been increased frdm in this case, some
values in lower variables may have lost full support and new
supports need to be found. The main loop iterates whiis
not empty. At each iteration, the highest variapis fetched
from R. Node inconsistent values (due to unary cost and
lower bound increments) are removed usirgneVar() and
pruned variables are insertedd Then new full supports
are sought for every lower variable connected td=inally,
all variables are processed to enforce NC* which can be lost
during the process, due to lower bound increments. Pruned
variables are inserted i@). FDAC*() simply enforces AC*
and DAC* simultaneously: the enforcement of AC* empties
Q but may add variables tB, and the enforcement of DAC*
emptiesR but may add variables Q. FDAC* is achieved
when bothR and(@ are simultaneously empty. Correction of

¢ both algorithms follows from theorem 2.

Theorem 3 The complexity 0DAC*() is time O(ed?) and

rectness of our algorithms is based on the following theoremspaceO(ed). n, e andd are the number of variables, con-

Theorem 2 Let j, a variable whose values are AC wi;;.
Va € DL,b S Dj, let P[a} = minbepj{C’ij(a,b) S5 Oj(b)}
and E[b] = maxqep,{Pla] — Ci;(a,b)}. ExtendingE|[b]
cost units from(j,b) to C;; for all b € D; and project-
ing P[a] cost units fromC;; to (i,a) for all a € D, yields

straints and largest domain size respectively.

Proof: FindFullSupportAC*(i, j) and PruneVar(i) have com-
plexitiesO(d?) andO(d) respectively. The only way a vari-
ablej may enter the queuR is because some null unary cost
C;(b) has been increased HindFullSupportAC*. R being a



Function FindFullSupportAC*(z, 5) : boolean
flag := false
foreacha € D; s.tCij(a, S(i,a,j)) ® C;(S(¢,a,5)) > L do
S(i,a,5) := argminpep;{Cij(a,b) ® Cj(b)};
Pla] := Cyj(a, S(i,a,4)) © C;(S(i,a, j));
if (Pla] > L) A (Ci(a) = 1) thenflag := true;
foreachb € D; do
LS(]a bv 7’) ‘= argmaZaeeD, {P[a’] - Cij (CL, b)}’
E[p] := P[S(4,b,9)] — Ci;(a,b);
foreachb € D; do Extend(y, b, ¢, E[b]);
foreacha € D; do Project(i, a, j, Plal);
ProjectUnary(i);
|_return flag;

Procedure DAC*()
while (R # @) do
j :=pop (R);
if PruneVar(j) then @ := QU {j};
foreachCy; € Cs.t.i < jdo
| if FindFullSupportAC*(i, j) then R := R U {i};

foreachi € X do
| if PruneVar(i) then Q := Q U {i};

Procedure FDAC*()
while (Q # @) V (R # @) do
AC*();

Algorithm 2: DAC* and FDAC*. Initially, @ = R = X.

fore, line 3 of Proceduracx() is executed at moge(d + 1)
times and line 4 at mostd times. Globally, line 7 of Al-
gorithm 2 will therefore us€(n2d? + ed?) elementary op-
erations. For the same reason, line 8 is executed at most
O(nd) times. SinceDAC* is in O(ed?), this can generate
O(end®) elementary operations. Globally, the algorithm is
time O(n2d? + ed® + end®) = O(end?). O

A consequence of these complexity results is that all algo-
rithms terminate (even in th&(co) structure).

5 Experimental results

In this Section we perform an empirical evaluation of the ef-
fect of maintaining various forms of arc consistency during
search. We consider a depth-first search maintaining either
NC*, AC*, DAC* or FDAC* which yields the algorithms
MNC*, MAC*, MDAC* and MFDAC*. For comparison,
we include results obtained with PFC-RDACarrosaet al.,
1999, which is normally considered as a reference algorithm.
For variable selection we use thiem /deg heuristic which
for each variable computes the ratio of the domain-size di-
vided by the future degree.€., degree considering future
variables only) and selects the variable with the smallest
value. For value selection we consider values in increasing
order of unary cost’;. The variable ordering used for direc-
tional arc consistencies is lexicographic.
We consider the Max-CSP problem, where the goal is

to find a complete assignment with a maximum number
orit h ble tracted fromiz. all th of satisfied constraints in an overconstrained CSP. It can
priarity queue, when a variableis extracted from, all the easily be formulated as a WCSP. We experiment with bi-

variables beforg in R have already been processed. Slncenary random problems using the well-known four-parameters

FindFullSupportAC*() can only increase non zero unary costs,, o [Smith. 1993. A random CSP class is defined by
of variables strictly lower thap, j will never be reintroduced (n,d, e, 1) Whéren is the number of variables] is the do-
in I and therefore each variabjés added to the queug at main size,e is the number of binary constraints (i.e, graph

modstoncg.tTh(;,\ qtjheuE_lsr:mé)nIJemclented ?S aAndz_rray of boﬂlea%nnectivity, andt the number of forbidden tuples in each
an at p(t)cl)?%er 0 the :jg t'e tehe em_e? : i Ing nevt\{ € constraint (i.etightnes$. Pairs of constrained variables and
ements means updating the pointer, tpep operation their forbidden tuples are randomly selected using a uniform

consists on returning the value of the pointer and Seamhingistribution Samples havi) instances and we report aver-

for the new highestrue element. CIearIyD_AC*() only tra- age values. The experiments were performed on a 800 MHz
verses the array once. Thus, the complexity ofvtthée loop Pentium 1l computer

isin O(ed?). Since the complexity of the secofateachloop For fixed values of., d ande and increasing tightness

is in O(nd), the global complexity is i) (ed?). ; ;
N o A ; o . most problems are solved almost instantly until the cross-over
Ast't 'IS'E DAACS{(L) IS spac;ooo(ﬁd ) sm?etLt] TOdh'f'eS btl)nary point is reached. Then, problems become overconstrained
constraints. arrosa, Wwe note that wheén a binary 5,4 mych harder to solve. We dendétehe lowest tightness

for;Stri'mCéj 1S drg_(t).dlfled (Imt?t 1 ?.nd 2f|rProjtecttr?ntdcliEx- dWhere every instance in our sample is overconstrained. Based
end), it is by addition or subtraction of costs that depen on this, we define different categories of problems:

either on: or j. It is therefore possible to record only row ) )
and column changes, the current valuggf(a, b) being ob- e For graph density, we define two problem typsparse
(S) withe = 2.5n and ,dense(D) with ¢ = (=1

tained asCy)(a,b) & F(i,j,a) © F(j,i,b) whereC;(a,b)
denotes the original constraint. There is dn@, j,a) entry e For tightness, we define two problem typdsose(L)
with ¢ = t°, andtight (T) with ¢t = d? — 0.25t°.

per constraint-value pair which is spa@éed). O

Combining the different types, we obtairdifferent classes,
each being denoted by a pair of characters (SL,ST,DL and
spaceO(ed). DT). In each class, the domain size is set@cand the num-
Proof: Regarding space, there is no difference withC*()  ber of variables: is used as a varying parameter. Figure 2
and the same proof applies. Regarding time, a varigble shows the average cpu time used with SL, ST, DL and DT
enters@ only if a value has been deleted. Therefore, eacHrom left to right. In each plot, the five algorithms are listed
variablej is added ta at mostd + 1 times (once at initial-  in increasing order of efficiency, from top to bottom. In all
ization and then upon value deletion at lines 5, 6 or 4). Thereeases, the search effort seems to grow exponentiallyswith

Theorem 4 The complexity ofDAC*() is timeO(end?) and



25 80 + 60 70 -
Sparse Loose Sparse Tight H Dense Loose Dense Tight
2 {70 A s 1 60
PFC-RDAC -~ iy 60 MNGC* —— ; 4 MDAG* - /| s0 MNC* ——
15 MAC* - 50 MAC* oo i 0 MFDAC* MAC* -
MNG» —— 40,  PFC-RDAC-- S MAC . PFC-RDAG =~
MDAC* - MDAC* - PFC-RDAC—+— MDAC* -
10r  MFDAC* e 30}  MFDAC* —o— MNC* —— MFDAG* ---=---
20
5 20
10 10
o 2 0 I 0
10 15 20 25 30 10 12 14 16 12 14 16 18 20 22 10 11

Figure 2: Cpu-time in seconds for an increasing number of variable on our 4 classes of problems. In each case, the 4 algorithms
are listed in increasing order of efficiency from top to bottom.

For all classes except the DL class, MFDAC* is the mostlems and take into account heuristics for the variable and
efficient algorithm, with only minor differences with MDAC* value ordering used in AC, DAC and FDAC enforcing.
(sometimes they are so closed that the two lines can hardly
be distinguished). The best performance of MFDAC* is ob-References
tained in the ST problems, where it is up to 5 times faster tha R . . .
PFC-RDAC, 20 times faster than MAC* and 50 times fasterTB‘]f.Ssere ﬁm% Rgin, 200} C. Bessére and Jl-C..Rhgln. Re-
than MNC*. For the DL class, however, MNC* is the most ning t fh asic constraint propagation algorithmpPhoc.
efficient algorithm, followed by PFC-RDAC, MAC*, MF- of the 14" IJCAI, pages 309-315, 2001.
DAC* and MDAC*. The differences between the algorithms [Bistarelliet al, 1997 S. Bistarelli, U. Montanari, and
are however more limited than in previous classes (MNC*is F. Rossi. Semiring based constraint solving and optimiza-
twice faster than MFDAC?). tion. Journal of the ACM44(2):201-236, 1997.

The ability of directional arc consistency to collect costs[Cabonet al, 1999 B. Cabon, S. de Givry, L. Lobjois,

along the constraints in order to bring them tOgether in the T. Schiex, and J.P. Warners. Radio link frequency a_ssign_
same variable allows to build stronger lower bounds. This is ment. Constraints Journal4:79-89, 1999.

confirmed by the analysis of the number of nodes expandeﬁ: . . . :

by each algorithm (not reported here for lack of space) wheré~9°Peh 200B Martin C. Cooper. Reduction operations in
MDAC* and MFDAC* always expand less nodes that PFC- fuzzy or valued constraint satisfactidfuzzy Sets and Sys-
RDAC, MNC* or MAC*, with a ratio that can reacB00 be- tems 134(3), 2003.

tween the extreme algorithms on eg. ST problems. On théDechter, 199F R. Dechter. ~ Mini-buckets: A general
DL problems however, this ratio is much more limited, typi- scheme for generating approximations in automated rea-
cally bounded byt. With loose constraints, the upper bound  soning. InProc. of IJCAI'97, Nagoya, Japan, 1997.

reaches low values early in the search which allows pruni”QLarrosaet al, 1999 J. Larrosa, P. Meseguer, and T. Schiex.
at high levels of the search tree and makes sophisticated lower Maintaining reversible DAC for Max-CSPAxrtificial In-

bounds less significant. telligence 107(1):149-163, 1999.

It is worth to mention at this point that PFC-RDAC heuris- [Larrosa, 2001 Javier Larrosa. On arc and node consistency
tically assigns a direction to every constraint in each sub* N wei:qhted CSP. IfProc. AAA02 2002,

problem and this has a strong influence on the efficiency on
random Max-CSP. Similarly, the behavior of AC, DAC and [Pearl, 1988 Judea PearlProbabilistic Reasoning in Intel-
FDAC based algorithms depends on the order in which vari- ligent Systems, Networks of Plausible Inferenborgan
ables are fetched fro®® and R (i.e., on the variable order- Kaufmann, Palo Alto, 1988.

ing used to define DAC) and on the order in which valuesgandhoim, 1990 T. Sandholm. An algorithm for optimal

are considered for projection. In our current implementation, \vinner determination in combinatorial auctions. Rroc.

Q is implemented as a stack, values are considered in lexi- ¢ |3cAI'99 pages 542-547, 1999.

cographic ordering and the DAC variable ordering is lexico- , ’ o . .

graphic. This leaves room for further improvement. [Schiexet al, 1993 T. Schiex, H. Fargier, and G. Verfail-
lie. Valued constraint satisfaction problems: hard and easy

problems. InProc. of IJCAI'95 pages 631-637, 1995.

[Schiex, 2000 T. Schiex. Arc consistency for soft con-

In this paper we have refined two local consistency properties straints. InCP’200Q volume 1894 of.NCS pages 411—
and adapted them to WCSP. We have developed enforcing 424, 2000.
algorithms and have studied their complexity. _ {Smith, 1994 B. Smith. Phase transition and the mushy re-

As in classical CSP, we observe that the choice of the righ gion in constraint satisfaction. IRroc. of the 11 ECAI
level of local consistency to maintain during search is impor- pages 100-104, 1994 '
tant. Despite its theoretical cost, the strongest local consis- ' '
tency we considered (FDAC*) appears to be the best level for
solving WCSP. In the future, we want to extend these algo-
rithms to non binary constraints, apply them to other prob-

6 Conclusion and Future Work



