
Optimization in Graphical Models
Connecting NP-complete frameworks

T. Schiex, MIAT, INRA

Many more co-workers and contributors, see bibliography

November 2015 - ICTAI - Vietri sul Mare

The power of NP-complete problem solving

Powering numerous AI areas (several industry related)

1 Model Based Diagnosis, Planning,. . .

2 Scheduling, Configuration, Resource Allocation,. . .

3 NLP, Planning/reasoning under uncertainty (*MDP). . .

Powering computer (and other) science areas

1 Verification, Cryptography, Testing

2 Image analysis (stereovision, segmentation. . .)

3 Statistics, Bioinformatics (structural biology). . .

Various exact approaches: (weighted) SAT & CSP, ILP, QP. . .

What is a Graphical Model ?

Informal

1 A set of discrete variables, each with a domain

2 We want to define a joint function on all those variables

3 We do this by combining small functions involving few
variables

Why Graphical ?

1 a vertex per variable, a (hyper)edge per function

2 Or its incidence graph (Factor graphs28)

3 Allows to describe knowledge on a lot of variables concisely

4 Usually hard to manipulate (NP-hard queries).

What is a Graphical Model ?

Informal

1 A set of discrete variables, each with a domain

2 We want to define a joint function on all those variables

3 We do this by combining small functions involving few
variables

Why Graphical ?

1 a vertex per variable, a (hyper)edge per function

2 Or its incidence graph (Factor graphs28)

3 Allows to describe knowledge on a lot of variables concisely

4 Usually hard to manipulate (NP-hard queries).

A Constraint Network is a GM

Constraint Network

1 Set X 3 xi of n variables, with finite domain D i (|D i | ≤ d)

2 Set C 3 cS : DS → {0, 1} of e constraints

3 cS has scope S ⊂ X (|S | ≤ r)

4 Defines a factorized joint constraint over X :

∀t ∈ DX ,C (t) = max
cS∈C

cS(t[S])

Graph coloring/RLFAP-feas

1 A graph G = (V ,E) and m
colors.

2 Can we color all vertices in such
a way that no edge connects
two vertices of the same color ?

x1 x2

x3

A Constraint Network is a GM

Constraint Network

1 Set X 3 xi of n variables, with finite domain D i (|D i | ≤ d)

2 Set C 3 cS : DS → {0, 1} of e constraints

3 cS has scope S ⊂ X (|S | ≤ r)

4 Defines a factorized joint constraint over X :

∀t ∈ DX ,C (t) = max
cS∈C

cS(t[S])

Graph coloring/RLFAP-feas

1 A graph G = (V ,E) and m
colors.

2 Can we color all vertices in such
a way that no edge connects
two vertices of the same color ?

x1 x2

x3

SAT : boolean CN with clauses

SAT

1 Variables xi are boolean (0 ≡ true, 1 ≡ false)

2 Constraints are defined as clauses li1 ∨ · · · ∨ lip
li is xi or x̄i = (1− xi) (negation).

3 Truth value: (li1 ∨ · · · ∨ lip) = li1 × · · · × lip

∀t ∈ DX ,C (t) = max
cS∈C

cS(t[S])

Beyond Feasibility

Simply

Shift from boolean functions to cost functions

Lifting CSP to optimization

Cost Function Networks - Weighted Constraint Networks

Variables and domains as usual

Cost functions W 3 cS : DS → {0, . . . , k} (k finite or not)

Cost combined by (bounded) addition8 (other, see VCSP46).

cost(t) =
∑
cS∈C

cS(t[S]) c∅ : lower bound

A solution has cost < k. Optimal if minimum cost.

Benefits

Defines feasibility and cost homogeneously

A constraint is a cost function with costs in {0, k}

Lifting CSP to optimization

Cost Function Networks - Weighted Constraint Networks

Variables and domains as usual

Cost functions W 3 cS : DS → {0, . . . , k} (k finite or not)

Cost combined by (bounded) addition8 (other, see VCSP46).

cost(t) =
∑
cS∈C

cS(t[S]) c∅ : lower bound

A solution has cost < k. Optimal if minimum cost.

Benefits

Defines feasibility and cost homogeneously

A constraint is a cost function with costs in {0, k}

Weighted Partial Max-SAT

Just associate a positive integer cost vi to each clause.

Cost value: (li1 ∨ · · · ∨ lip , vi) = vi × (li1 × · · · × lip)

Minimize the sum of all these.

Polynomial Pseudo-Boolean Optimization.5

A clause with cost k is hard.

Stochastic Graphical Models

Markov Random Fields, Bayesian Networks

Random variables X with discrete domains

joint probability distribution p(X) defined through the product
of positive real-valued functions:

p(X = t) ∝
∏
cS∈C

cS(t[S])

Massively used in 2/3D Image Analysis, Statistical Physics, NLP,
planning/reasoning under uncertainty. . .

Maximum a Posteriori MAP-MRF

MRF≡ CFN up to a (− log) transform.

Stochastic Graphical Models

Markov Random Fields, Bayesian Networks

Random variables X with discrete domains

joint probability distribution p(X) defined through the product
of positive real-valued functions:

p(X = t) ∝
∏
cS∈C

cS(t[S])

Massively used in 2/3D Image Analysis, Statistical Physics, NLP,
planning/reasoning under uncertainty. . .

Maximum a Posteriori MAP-MRF

MRF≡ CFN up to a (− log) transform.

Binary MRF/CFN as 01LP (infinite k , finite costs)

01 LP Variables, for a binary MRF/CFN

1 xia: value a used for variable xi .

2 yiajb: pair (a, b) used for xi and xj

Minimize
∑
i ,a

ci (a) · xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · yiajb subject to

∑
a∈D i

xia = 1 ∀i ∈ {1, . . . , n}

∑
b∈D j

yiajb = xia ∀cij ∈ C ,∀a ∈ D i

xia, yiajb ∈ {0, 1}

Linear relaxation : the local polytope47,25,53

Graphical Model Processing

Exact approaches (beyond ILP)

1 Full dynamic programming (Variable elimination,3,13

resolution12,43,14)

2 Tree search + fast, incremental approximate local reasoning

Fast, approximate reasoning with some guarantees

Arc Consistency and Unit Propagation (CSP/SAT)

Message Passing (MRF/BN)

Soft Arc Consistency in CFN and UP in PWMaxSAT

Arc Consistency = local dynamic programming

AC as Dynamic programming

Imagine a CSP with linear graph

Which values of xi belong to a
solution of x1, . . . xi knowing
those for xi−1.

minxi−1(max(ci−1, ci ,i−1))

Revise = Equivalence Preserving Transformation (EPT)

@b ∈ D j | cij(a, b) = 0.

we can delete a in ci (or D i).

the resulting problem is equivalent (same set of solutions)

Arc Consistency = local dynamic programming

AC as Dynamic programming

Imagine a CSP with linear graph

Which values of xi belong to a
solution of x1, . . . xi knowing
those for xi−1.

minxi−1(max(ci−1, ci ,i−1))

Revise = Equivalence Preserving Transformation (EPT)

@b ∈ D j | cij(a, b) = 0.

we can delete a in ci (or D i).

the resulting problem is equivalent (same set of solutions)

Arc Consistency = local dynamic programming

AC as Dynamic programming

Imagine a CSP with linear graph

Which values of xi belong to a
solution of x1, . . . xi knowing
those for xi−1.

minxi−1(max(ci−1, ci ,i−1))

Revise = Equivalence Preserving Transformation (EPT)

@b ∈ D j | cij(a, b) = 0.

we can delete a in ci (or D i).

the resulting problem is equivalent (same set of solutions)

(Directional) AC solves Berge-acyclic CN

Rooted tree CN

Revise from leaves to root

Root domain: values that
belong to a solution

(Directional) AC solves Berge-acyclic CN

Tree CN

Revise from leaves and back

All domains: values that
belong to a solution

Resulting problem solved
backtrack-free20,19

Can be done on any CN, with arbitrary graph

Arc consistency (Waltz 72)

1 Linear time (tables)

2 Unique fixpoint (confluent)

3 Preserves equivalence

4 May detect infeasibility

5 Problem transformation
(incremental)

Maintaining AC during search.

Unit Propagation as Dynamic programming

1 Same update equation.

2 One litteral and one clause.

3 minxi−1(max(ci−1, ci ,i−1))

Maintaining UP during search (DPLL, ancestor of CDCL)

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming40,28

1 optimum cost from x1 to a ∈ Di

knowing those for xi−1

2 minxi−1(ci−1 + ci ,i−1)

3 Use external functions
(messages) to store DP results

xi-1

xi

a b c d

a b c d

1

4

3

250

2

2

13

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce “good” solutions
(turbo-decoding42)

4 More recently introduced in Distributed COP18

5 Not an equivalence preserving transformation40

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming40,28

1 optimum cost from x1 to a ∈ Di

knowing those for xi−1

2 minxi−1(ci−1 + ci ,i−1)

3 Use external functions
(messages) to store DP results

xi-1

xi

a b c d

a b c d

1

4

3

250

2

2

13

0 003

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce “good” solutions
(turbo-decoding42)

4 More recently introduced in Distributed COP18

5 Not an equivalence preserving transformation40

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming40,28

1 optimum cost from x1 to a ∈ Di

knowing those for xi−1

2 minxi−1(ci−1 + ci ,i−1)

3 Use external functions
(messages) to store DP results

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce “good” solutions
(turbo-decoding42)

4 More recently introduced in Distributed COP18

5 Not an equivalence preserving transformation40

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming40,28

1 optimum cost from x1 to a ∈ Di

knowing those for xi−1

2 minxi−1(ci−1 + ci ,i−1)

3 Use external functions
(messages) to store DP results

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce “good” solutions
(turbo-decoding42)

4 More recently introduced in Distributed COP18

5 Not an equivalence preserving transformation40

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming40,28

1 optimum cost from x1 to a ∈ Di

knowing those for xi−1

2 minxi−1(ci−1 + ci ,i−1)

3 Use external functions
(messages) to store DP results

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce “good” solutions
(turbo-decoding42)

4 More recently introduced in Distributed COP18

5 Not an equivalence preserving transformation40

MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming40,28

1 optimum cost from x1 to a ∈ Di

knowing those for xi−1

2 minxi−1(ci−1 + ci ,i−1)

3 Use external functions
(messages) to store DP results

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce “good” solutions
(turbo-decoding42)

4 More recently introduced in Distributed COP18

5 Not an equivalence preserving transformation40

Soft Arc Consistency ˜ MP with reformulation

Soft AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (·) to store
optimum cost from x1 to xi

3 Preserves equivalence by “cost
shifting”47,52,45

xi-1

xi

a b c d

a b c d

1

4

3

240

2

4

13
c =1
k=5
∅

Soft Arc Consistency ˜ MP with reformulation

Soft AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (·) to store
optimum cost from x1 to xi

3 Preserves equivalence by “cost
shifting”47,52,45

xi-1

xi

a b c d

a b c d

1

4

3

240

2

4

13
c =1
k=5
∅

Soft Arc Consistency ˜ MP with reformulation

Soft AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (·) to store
optimum cost from x1 to xi

3 Preserves equivalence by “cost
shifting”47,52,45

xi-1

xi

a b c d

a b c d

1

4

5

040

4

4

33
c =1
k=5
∅

2

Soft Arc Consistency ˜ MP with reformulation

Soft AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (·) to store
optimum cost from x1 to xi

3 Preserves equivalence by “cost
shifting”47,52,45

xi-1

xi

a b c d

a b c d

1

4

5

040

4

1 c =1
k=5
∅

2

3

Soft Arc Consistency ˜ MP with reformulation

Soft AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (·) to store
optimum cost from x1 to xi

3 Preserves equivalence by “cost
shifting”47,52,45

xi-1

xi

a b c d

a b c d

1

4

5

040

4

1 c =1
k=5
∅

2

3 0 0 0

Equivalence Preserving Transformation

Arc EPT: Project ({ij}, {i}, a, α)

Shifts α units of cost between ci (a) and cij .

Shift direction: sign of α.

α constrained: no negative costs!

Precondition: −ci (a) ≤ α ≤ mint′∈D ij ,t′[i]=a cij(t
′);

Procedure Project({i , j}, {i}, a, α)
ci (a)← ci (a) + α;
foreach (t ′ ∈ D ij such that t ′[i] = a, cij(t

′) < k) do
cij(t

′)← cij(t
′)− α;

end

Example

Project({1, 2}, {1}, b, 1) Project({1, 2}, {2}, a, 1)
← →

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→

←

Project({1, 2}, {1}, b,−1)

Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→

←

Project({1, 2}, {1}, b,−1)

Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Example

Project({1, 2}, {1}, b, 1)

Project({1, 2}, {2}, a, 1)

←

→

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Properties

Solves tree structured problems (ordering), optimum in c∅

Reformulation: incremental

May loop indefinitely (graphs)

No unique fixpoint (when it exists)

Exploited since the 70s by the Ukrainian school47,27,26,53 and
for a subclass of ILP.52

Convergent Soft Arc Consistencies

Breaking the loops

1 Arc consistency: prevent loops at the arc level45

2 Node consistency30

3 Directional AC: prevent loops at a global level6,32,33

4 Combine AC and DAC into FDAC32,33

5 Pool costs from all stars to c∅ in EAC34

6 Combine AC+DAC+EAC in EDAC34

All O(ed) space. Equivalent to their “CSP” counterpart on
constraints.

Max SAT Unit propagation (resolution)

Semantically, it’s the the same

Problems with leftovers after cost shifting

Includes non CNF (Heras, Larrosa31)

Represented as a linear number of “compensation clauses”4

Beyond chaotic application

Finding an optimal order8

Finding an optimal sequence of integer arc EPTs that maximizes
the lower bound is NP-hard.

Finding an optimal set7

Finding an optimal set of rational arc EPTs that maximizes the
lower bound is in P.
This is achieved by solving an LP (OSAC, finite costs, k =∞).

Beyond chaotic application

Finding an optimal order8

Finding an optimal sequence of integer arc EPTs that maximizes
the lower bound is NP-hard.

Finding an optimal set7

Finding an optimal set of rational arc EPTs that maximizes the
lower bound is in P.
This is achieved by solving an LP (OSAC, finite costs, k =∞).

Optimal Soft Arc Consistency (finite costs, k =∞)

LP Variables, for a binary CFN

1 ui : amount of cost shifted from ci to c∅
2 pija: amount of cost shifted from cij to a ∈ D i

OSAC

Maximize
n∑

i=1

ui subject to

ci (a)− ui +
∑

(cij∈C)

pija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ D i

cij(a, b)− pija − pjib ≥ 0 ∀cij ∈ C ,∀(a, b) ∈ D ij

Optimal Soft Arc Consistency (finite costs, k =∞)

LP Variables, for a binary CFN

1 ui : amount of cost shifted from ci to c∅
2 pija: amount of cost shifted from cij to a ∈ D i

OSAC

Maximize
n∑

i=1

ui subject to

ci (a)− ui +
∑

(cij∈C)

pija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ D i

cij(a, b)− pija − pjib ≥ 0 ∀cij ∈ C ,∀(a, b) ∈ D ij

See [47, 25, 7, 53, 11].

OSAC is the dual of the local polytope

01 LP Variables, for a binary CFN

1 xia: value a used for variable xi .

2 yiajb: pair (a, b) used for xi and xj

The MRF local polytope53

Minimize
∑
i ,a

ci (a) · xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · yiajb s.t

∑
a∈D i

xia = 1 ∀i ∈ {1, . . . , n} (1)

∑
b∈D j

yiajb − xia = 0 ∀cij/cji ∈ C , ∀a ∈ D i (2)

ui multiplier for (1) and pija for (2).

Better understanding

1 Soft ACs (MP with reformulation) are approximate greedy
Block Coordinate Descent solvers of the dual LP (OSAC).

2 They find feasible (but non necessarily optimal) solutions of
the dual.

3 optimal does not mean more efficient for tree search.

Generality of the local polytope

2015

Prusa and Werner41 showed that any “normal” LP can be reduced
to such a polytope in linear time (constructive proof).

Could soft arc consistency/MP speed-up LP?

Can we organize our EPTs better w/o LP?

Bool(P)10

Given a CFN P = (X ,D,C , k)
Bool(P) is the CSP (X ,D,C − {c∅}, 1).

Bool(P) forbids all positive cost assignments, ignoring c∅.

Virtual AC

A CFN P is Virtual AC iff Bool(P) has a non empty AC closure.

Virtual AC and MP

TRW-S,24 MPLP1,49 SRMP,23 Max-Sum diffusion,27,11 Aug-DAG26

converge to fixpoints that satisfy the same property.

Can we organize our EPTs better w/o LP?

Bool(P)10

Given a CFN P = (X ,D,C , k)
Bool(P) is the CSP (X ,D,C − {c∅}, 1).

Bool(P) forbids all positive cost assignments, ignoring c∅.

Virtual AC

A CFN P is Virtual AC iff Bool(P) has a non empty AC closure.

Virtual AC and MP

TRW-S,24 MPLP1,49 SRMP,23 Max-Sum diffusion,27,11 Aug-DAG26

converge to fixpoints that satisfy the same property.

Can we organize our EPTs better w/o LP?

Bool(P)10

Given a CFN P = (X ,D,C , k)
Bool(P) is the CSP (X ,D,C − {c∅}, 1).

Bool(P) forbids all positive cost assignments, ignoring c∅.

Virtual AC

A CFN P is Virtual AC iff Bool(P) has a non empty AC closure.

Virtual AC and MP

TRW-S,24 MPLP1,49 SRMP,23 Max-Sum diffusion,27,11 Aug-DAG26

converge to fixpoints that satisfy the same property.

Properties of VAC

Solutions of Bool(P) are optimal in P.

VAC

1 solves tree-structured problems,

2 solves CFNs with submodular cost functions (Monge matrices)

3 solves CFNs for which AC is a decision procedure in Bool(P).

4 if P is VAC and one value a in each domain such that
ci (a) = 0 is solved.

5 There is always at least one such value (or else not VAC).

Properties of VAC

Solutions of Bool(P) are optimal in P.

VAC

1 solves tree-structured problems,

2 solves CFNs with submodular cost functions (Monge matrices)

3 solves CFNs for which AC is a decision procedure in Bool(P).

4 if P is VAC and one value a in each domain such that
ci (a) = 0 is solved.

5 There is always at least one such value (or else not VAC).

In practice - Solvers
toulbar2, daoopt, AbsCons (Depth first tree search)
MaxHS, wpm1, wpm2, akmaxsat, minimaxsat. . . (DFS)
ILP-Cplex, QP-Cplex, SDP-BiqMac (Best first tree search)
OpenGM2 (MRF algorithms, Message passing and more).

Progress: Radio Link Frequency Assignment (tb2)

CELAR 06, n = 100, d = 44 - one core

1 1997: 26 days of a Sun UltraSparc 167 MHz.

2 2015: optimum found in 7”, proved in 73” (2.1GHz CPU)

12.5 fold increase in frequency (+architecture)

More than 30,000 times faster (now easy problem).

All min-interference CELAR instances closed (see fap.zib.de)

http://fap.zib.de/problems/CALMA/

Computational Protein Design51,1

Design new enzymes for biofuels, drugs. . . cosmetics too

Reduced to a non convex mixed optimization problem

Discretized (non convexity) leading to a NP-hard. . .

binary MAP-MRF capturing molecule stability based on
atom-scale forces (electrostatics. . .)

Few variables (from 10 to few hundreds)

Huge domains (typ. d = 450)

Exact solvers: A∗+substituability (DEE15), ILP22

By far most used: simulated annealing (Rosetta21).

Multi-paradigm comparison -
QP,SDP,ILP,WMaxsat,MRF,CFN

Here, VAC faster than LP, often close/same bound

CPLEX V12.4.0.0
Problem ’3e4h.LP’ read.

Root relaxation solution time = 811.28 sec.

...

MIP - Integer optimal solution: Objective = 150023297067

Solution time = 864.39 sec.

tb2 and VAC
loading CFN file: 3e4h.wcsp

Lb after VAC: 150023297067

Preprocessing time: 9.13 seconds.

Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

Exact (simulated annealing is stochastic)48

Faster than dedicated simulated annealing48

mulcyber.toulouse.inra.fr/projects/toulbar2

1 First/second in approximate graphical model MRF/MAP
challenges (2010, 2012, 2014).

2 Global cost functions (weighted Regular, AllDiff, GCC. . .)

3 Bioinformatics: pedigree debugging,44 Haplotyping
(QTLMap), structured RNA gene finding54

4 Inductive Logic Programming,2 Natural Langage
Processing (in hltdi-l3), Multi-agent and cost-based
planning,29,9 Model Abstraction,50 diagnostic,36 Music
processing and Markov Logic,39,38 Data mining,37 Partially
observable Markov Decision Processes,16 Probabilistic
counting17 and inference,35 . . .

https://mulcyber.toulouse.inra.fr/projects/toulbar2
https://code.google.com/p/hltdi-l3

Everything is connected :-)

Questions ?

References I

David Allouche et al. “Computational protein design as an optimization
problem”. In: Artificial Intelligence 212 (2014), pp. 59–79.

Érick Alphonse and Céline Rouveirol. “Extension of the top-down data-driven
strategy to ILP”. In: Inductive Logic Programming. Springer, 2007, pp. 49–63.

Umberto Bertelé and Francesco Brioshi. Nonserial Dynamic Programming.
Academic Press, 1972.

Marıa Luisa Bonet, Jordi Levy, and Felip Manyà. “Resolution for max-sat”.
In: Artificial Intelligence 171.8 (2007), pp. 606–618.

E. Boros and P. Hammer. “Pseudo-Boolean Optimization”. In: Discrete Appl.
Math. 123 (2002), pp. 155–225.

M C. Cooper. “Reduction operations in fuzzy or valued constraint
satisfaction”. In: Fuzzy Sets and Systems 134.3 (2003), pp. 311–342.

M C. Cooper, S. de Givry, and T. Schiex. “Optimal soft arc consistency”. In:
Proc. of IJCAI’2007. Hyderabad, India, Jan. 2007, pp. 68–73.

M C. Cooper and T. Schiex. “Arc consistency for soft constraints”. In:
Artificial Intelligence 154.1-2 (2004), pp. 199–227.

References II

Martin C Cooper, Marie de Roquemaurel, and Pierre Régnier. “A weighted
CSP approach to cost-optimal planning”. In: Ai Communications 24.1 (2011),
pp. 1–29.

Martin C Cooper et al. “Virtual Arc Consistency for Weighted CSP.” In:
AAAI. Vol. 8. 2008, pp. 253–258.

M. Cooper et al. “Soft arc consistency revisited”. In: Artificial Intelligence
174 (2010), pp. 449–478.

Martin Davis and Hilary Putnam. “A computing procedure for quantification
theory”. In: Journal of the ACM (JACM) 7.3 (1960), pp. 201–215.

Rina Dechter. “Bucket Elimination: A Unifying Framework for Reasoning”.
In: Artificial Intelligence 113.1–2 (1999), pp. 41–85.

Rina Dechter and Irina Rish. “Directional resolution: The Davis-Putnam
procedure, revisited”. In: KR 94 (1994), pp. 134–145.

J Desmet et al. “The dead-end elimination theorem and its use in protein
side-chain positioning.” In: Nature 356.6369 (Apr. 1992), pp. 539–42. issn:
0028-0836. url: http://www.ncbi.nlm.nih.gov/pubmed/21488406.

http://www.ncbi.nlm.nih.gov/pubmed/21488406

References III

Jilles Steeve Dibangoye et al. “Optimally solving Dec-POMDPs as
continuous-state MDPs”. In: Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence. AAAI Press. 2013, pp. 90–96.

Stefano Ermon et al. “Embed and project: Discrete sampling with universal
hashing”. In: Advances in Neural Information Processing Systems. 2013,
pp. 2085–2093.

Alessandro Farinelli et al. “Decentralised coordination of low-power embedded
devices using the max-sum algorithm”. In: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent
systems-Volume 2. International Foundation for Autonomous Agents and
Multiagent Systems. 2008, pp. 639–646.

Eugene C. Freuder. “A sufficient Condition for Backtrack-Bounded Search”.
In: Journal of the ACM 32.14 (1985), pp. 755–761.

Eugene C. Freuder. “A sufficient Condition for Backtrack-free Search”. In:
Journal of the ACM 29.1 (1982), pp. 24–32.

Dominik Gront et al. “Generalized fragment picking in Rosetta: design,
protocols and applications”. In: PloS one 6.8 (2011), e23294.

References IV

Carleton L Kingsford, Bernard Chazelle, and Mona Singh. “Solving and
analyzing side-chain positioning problems using linear and integer
programming.” In: Bioinformatics (Oxford, England) 21.7 (Apr. 2005),
pp. 1028–36. issn: 1367-4803. doi: 10.1093/bioinformatics/bti144. url:
http://www.ncbi.nlm.nih.gov/pubmed/15546935.

Vladimir Kolmogorov. “A new look at reweighted message passing”. In:
Pattern Analysis and Machine Intelligence, IEEE Transactions on 37.5 (2015),
pp. 919–930.

Vladimir Kolmogorov. “Convergent tree-reweighted message passing for
energy minimization”. In: Pattern Analysis and Machine Intelligence, IEEE
Transactions on 28.10 (2006), pp. 1568–1583.

A M C A. Koster. “Frequency assignment: Models and Algorithms”. Available
at www.zib.de/koster/thesis.html. PhD thesis. The Netherlands: University of
Maastricht, Nov. 1999.

VK Koval’ and Mykhailo Ivanovich Schlesinger. “Two-dimensional
programming in image analysis problems”. In: Avtomatika i Telemekhanika 8
(1976), pp. 149–168.

VA Kovalevsky and VK Koval. “A diffusion algorithm for decreasing energy of
max-sum labeling problem”. In: Glushkov Institute of Cybernetics, Kiev,
USSR (1975).

http://dx.doi.org/10.1093/bioinformatics/bti144
http://www.ncbi.nlm.nih.gov/pubmed/15546935

References V

Frank R Kschischang, Brendan J Frey, and Hans-Andrea Loeliger. “Factor
graphs and the sum-product algorithm”. In: Information Theory, IEEE
Transactions on 47.2 (2001), pp. 498–519.

Akshat Kumar and Shlomo Zilberstein. “Point-based backup for decentralized
POMDPs: Complexity and new algorithms”. In: Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems:
volume 1-Volume 1. International Foundation for Autonomous Agents and
Multiagent Systems. 2010, pp. 1315–1322.

J. Larrosa. “On Arc and Node Consistency in weighted CSP”. In: Proc.
AAAI’02. Edmondton, (CA), 2002, pp. 48–53.

J. Larrosa and F. Heras. “Resolution in Max-SAT and its relation to local

consistency in weighted CSPs”. In: Proc. of the 19th IJCAI. Edinburgh,
Scotland, 2005, pp. 193–198.

J. Larrosa and T. Schiex. “In the quest of the best form of local consistency

for Weighted CSP”. In: Proc. of the 18th IJCAI. Acapulco, Mexico, Aug.
2003, pp. 239–244.

Javier Larrosa and Thomas Schiex. “Solving weighted CSP by maintaining arc
consistency”. In: Artif. Intell. 159.1-2 (2004), pp. 1–26.

References VI

J. Larrosa et al. “Existential arc consistency: getting closer to full arc

consistency in weighted CSPs”. In: Proc. of the 19th IJCAI. Edinburgh,
Scotland, Aug. 2005, pp. 84–89.

Paul Maier, Dominik Jain, and Martin Sachenbacher. “Compiling AI
engineering models for probabilistic inference”. In: KI 2011: Advances in
Artificial Intelligence. Springer, 2011, pp. 191–203.

Paul Maier, Dominik Jain, and Martin Sachenbacher. “Diagnostic hypothesis
enumeration vs. probabilistic inference for hierarchical automata models”. In:
the International Workshop on Principles of Diagnosis (DX), Murnau,
Germany. 2011.

Jean-Philippe Métivier, Samir Loudni, and Thierry Charnois. “A constraint
programming approach for mining sequential patterns in a sequence
database”. In: Proceedings of the ECML/PKDD Workshop on Languages for
Data Mining and Machine Learning. arXiv preprint arXiv:1311.6907. Praha,
Czech republic, 2013.

Hélene Papadopoulos and George Tzanetakis. “Exploiting structural
relationships in audio music signals using Markov Logic Networks”. In:
ICASSP 2013-38th International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Canada (2013). 2013, pp. 4493–4497.

References VII

Hélène Papadopoulos and George Tzanetakis. “Modeling Chord and Key
Structure with Markov Logic.” In: Proc. Int. Conf. of the Society for Music
Information Retrieval (ISMIR). 2012, pp. 121–126.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems, Networks of
Plausible Inference. Palo Alto: Morgan Kaufmann, 1988.

Daniel Prusa and Tomas Werner. “Universality of the local marginal
polytope”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions
on 37.4 (2015), pp. 898–904.

Thomas J Richardson and Rüdiger L Urbanke. “The capacity of low-density
parity-check codes under message-passing decoding”. In: Information Theory,
IEEE Transactions on 47.2 (2001), pp. 599–618.

J. Alan Robinson. “A machine-oriented logic based on the resolution
principle”. In: Journal of the ACM 12 (1965), pp. 23–44.

Martı Sánchez, Simon de Givry, and Thomas Schiex. “Mendelian Error
Detection in Complex Pedigrees Using Weighted Constraint Satisfaction
Techniques”. In: Constraints 13.1-2 (2008), pp. 130–154.

T. Schiex. “Arc consistency for soft constraints”. In: Principles and Practice
of Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept.
2000, pp. 411–424.

References VIII

T. Schiex, H. Fargier, and G. Verfaillie. “Valued Constraint Satisfaction

Problems: hard and easy problems”. In: Proc. of the 14th IJCAI. Montréal,
Canada, Aug. 1995, pp. 631–637.

M.I. Schlesinger. “Sintaksicheskiy analiz dvumernykh zritelnikh signalov v
usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in
noisy conditions)”. In: Kibernetika 4 (1976), pp. 113–130.

D. Simoncini et al. “Guaranteed Discrete Energy Optimization on Large
Protein Design Problems”. In: Journal of Chemical Theory and Computation
(Nov. 2015).

David Sontag et al. “Tightening LP relaxations for MAP using message
passing”. In: arXiv preprint arXiv:1206.3288 (2012).

Peter Struss, Alessandro Fraracci, and D Nyga. “An Automated Model
Abstraction Operator Implemented in the Multiple Modeling Environment
MOM”. In: 25th International Workshop on Qualitative Reasoning,
Barcelona, Spain. 2011.

Seydou Traoré et al. “A new framework for computational protein design
through cost function network optimization”. In: Bioinformatics 29.17 (2013),
pp. 2129–2136.

References IX

Dag Wedelin. “An algorithm for large scale 0–1 integer programming with
application to airline crew scheduling”. In: Annals of operations research 57.1
(1995), pp. 283–301.

T. Werner. “A Linear Programming Approach to Max-sum Problem: A
Review.” In: IEEE Trans. on Pattern Recognition and Machine Intelligence
29.7 (July 2007), pp. 1165–1179. url:
http://dx.doi.org/10.1109/TPAMI.2007.1036.

Matthias Zytnicki, Christine Gaspin, and Thomas Schiex. “DARN! A weighted
constraint solver for RNA motif localization”. In: Constraints 13.1-2 (2008),
pp. 91–109.

http://dx.doi.org/10.1109/TPAMI.2007.1036

