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The power of NP-complete problem solving

Powering numerous AI areas (several industry related)

1 Model Based Diagnosis, Planning,. . .

2 Scheduling, Configuration, Resource Allocation,. . .

3 NLP, Planning/reasoning under uncertainty (*MDP). . .

Powering computer (and other) science areas

1 Verification, Cryptography, Testing

2 Image analysis (stereovision, segmentation. . . )

3 Statistics, Bioinformatics (structural biology). . .

Various exact approaches: (weighted) SAT & CSP, ILP, QP. . .



What is a Graphical Model ?

Informal

1 A set of discrete variables, each with a domain

2 We want to define a joint function on all those variables

3 We do this by combining small functions involving few
variables

Why Graphical ?

1 a vertex per variable, a (hyper)edge per function

2 Or its incidence graph (Factor graphs28)

3 Allows to describe knowledge on a lot of variables concisely

4 Usually hard to manipulate (NP-hard queries).
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A Constraint Network is a GM

Constraint Network

1 Set X 3 xi of n variables, with finite domain D i (|D i | ≤ d)

2 Set C 3 cS : DS → {0, 1} of e constraints

3 cS has scope S ⊂ X (|S | ≤ r)

4 Defines a factorized joint constraint over X :

∀t ∈ DX ,C (t) = max
cS∈C

cS(t[S ])

Graph coloring/RLFAP-feas

1 A graph G = (V ,E ) and m
colors.

2 Can we color all vertices in such
a way that no edge connects
two vertices of the same color ?

x1 x2

x3
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SAT : boolean CN with clauses

SAT

1 Variables xi are boolean (0 ≡ true, 1 ≡ false)

2 Constraints are defined as clauses li1 ∨ · · · ∨ lip
li is xi or x̄i = (1− xi ) (negation).

3 Truth value: (li1 ∨ · · · ∨ lip) = li1 × · · · × lip

∀t ∈ DX ,C (t) = max
cS∈C

cS(t[S ])



Beyond Feasibility

Simply

Shift from boolean functions to cost functions



Lifting CSP to optimization

Cost Function Networks - Weighted Constraint Networks

Variables and domains as usual

Cost functions W 3 cS : DS → {0, . . . , k} (k finite or not)

Cost combined by (bounded) addition8 (other, see VCSP46).

cost(t) =
∑
cS∈C

cS(t[S ]) c∅ : lower bound

A solution has cost < k. Optimal if minimum cost.

Benefits

Defines feasibility and cost homogeneously

A constraint is a cost function with costs in {0, k}
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Weighted Partial Max-SAT

Just associate a positive integer cost vi to each clause.

Cost value: (li1 ∨ · · · ∨ lip , vi ) = vi × (li1 × · · · × lip)

Minimize the sum of all these.

Polynomial Pseudo-Boolean Optimization.5

A clause with cost k is hard.



Stochastic Graphical Models

Markov Random Fields, Bayesian Networks

Random variables X with discrete domains

joint probability distribution p(X ) defined through the product
of positive real-valued functions:

p(X = t) ∝
∏
cS∈C

cS(t[S ])

Massively used in 2/3D Image Analysis, Statistical Physics, NLP,
planning/reasoning under uncertainty. . .

Maximum a Posteriori MAP-MRF

MRF≡ CFN up to a (− log) transform.



Stochastic Graphical Models

Markov Random Fields, Bayesian Networks

Random variables X with discrete domains

joint probability distribution p(X ) defined through the product
of positive real-valued functions:

p(X = t) ∝
∏
cS∈C

cS(t[S ])

Massively used in 2/3D Image Analysis, Statistical Physics, NLP,
planning/reasoning under uncertainty. . .

Maximum a Posteriori MAP-MRF

MRF≡ CFN up to a (− log) transform.



Binary MRF/CFN as 01LP (infinite k , finite costs)

01 LP Variables, for a binary MRF/CFN

1 xia: value a used for variable xi .

2 yiajb: pair (a, b) used for xi and xj

Minimize
∑
i ,a

ci (a) · xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · yiajb subject to

∑
a∈D i

xia = 1 ∀i ∈ {1, . . . , n}

∑
b∈D j

yiajb = xia ∀cij ∈ C ,∀a ∈ D i

xia, yiajb ∈ {0, 1}

Linear relaxation : the local polytope47,25,53



Graphical Model Processing

Exact approaches (beyond ILP)

1 Full dynamic programming (Variable elimination,3,13

resolution12,43,14)

2 Tree search + fast, incremental approximate local reasoning

Fast, approximate reasoning with some guarantees

Arc Consistency and Unit Propagation (CSP/SAT)

Message Passing (MRF/BN)

Soft Arc Consistency in CFN and UP in PWMaxSAT



Arc Consistency = local dynamic programming

AC as Dynamic programming

Imagine a CSP with linear graph

Which values of xi belong to a
solution of x1, . . . xi knowing
those for xi−1.

minxi−1(max(ci−1, ci ,i−1))

Revise = Equivalence Preserving Transformation (EPT)

@b ∈ D j | cij(a, b) = 0.

we can delete a in ci (or D i ).

the resulting problem is equivalent (same set of solutions)
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(Directional) AC solves Berge-acyclic CN

Rooted tree CN

Revise from leaves to root

Root domain: values that
belong to a solution



(Directional) AC solves Berge-acyclic CN

Tree CN

Revise from leaves and back

All domains: values that
belong to a solution

Resulting problem solved
backtrack-free20,19



Can be done on any CN, with arbitrary graph

Arc consistency (Waltz 72)

1 Linear time (tables)

2 Unique fixpoint (confluent)

3 Preserves equivalence

4 May detect infeasibility

5 Problem transformation
(incremental)

Maintaining AC during search.



Unit Propagation as Dynamic programming

1 Same update equation.

2 One litteral and one clause.

3 minxi−1(max(ci−1, ci ,i−1))

Maintaining UP during search (DPLL, ancestor of CDCL)



MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming40,28

1 optimum cost from x1 to a ∈ Di

knowing those for xi−1

2 minxi−1(ci−1 + ci ,i−1)

3 Use external functions
(messages) to store DP results

xi-1

xi

a b c d

a b c d

1

4

3

250

2

2

13

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)

2 Does not converge on graphs (Loopy Belief Propagation)

3 Massively used to produce “good” solutions
(turbo-decoding42)

4 More recently introduced in Distributed COP18

5 Not an equivalence preserving transformation40
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Soft Arc Consistency ˜ MP with reformulation

Soft AC as Dynamic programming

1 MRF message passing but. . .

2 use c∅ and ci (·) to store
optimum cost from x1 to xi

3 Preserves equivalence by “cost
shifting”47,52,45
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Soft Arc Consistency ˜ MP with reformulation

Soft AC as Dynamic programming

1 MRF message passing but. . .
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Equivalence Preserving Transformation

Arc EPT: Project ({ij}, {i}, a, α)

Shifts α units of cost between ci (a) and cij .

Shift direction: sign of α.

α constrained: no negative costs!

Precondition: −ci (a) ≤ α ≤ mint′∈D ij ,t′[i ]=a cij(t
′);

Procedure Project({i , j}, {i}, a, α)
ci (a)← ci (a) + α;
foreach (t ′ ∈ D ij such that t ′[i ] = a, cij(t

′) < k) do
cij(t

′)← cij(t
′)− α;

end



Example

Project({1, 2}, {1}, b, 1) Project({1, 2}, {2}, a, 1)
← →

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1
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Properties

Solves tree structured problems (ordering), optimum in c∅

Reformulation: incremental

May loop indefinitely (graphs)

No unique fixpoint (when it exists)

Exploited since the 70s by the Ukrainian school47,27,26,53 and
for a subclass of ILP.52



Convergent Soft Arc Consistencies

Breaking the loops

1 Arc consistency: prevent loops at the arc level45

2 Node consistency30

3 Directional AC: prevent loops at a global level6,32,33

4 Combine AC and DAC into FDAC32,33

5 Pool costs from all stars to c∅ in EAC34

6 Combine AC+DAC+EAC in EDAC34

All O(ed) space. Equivalent to their “CSP” counterpart on
constraints.



Max SAT Unit propagation (resolution)

Semantically, it’s the the same

Problems with leftovers after cost shifting

Includes non CNF (Heras, Larrosa31)

Represented as a linear number of “compensation clauses”4



Beyond chaotic application

Finding an optimal order8

Finding an optimal sequence of integer arc EPTs that maximizes
the lower bound is NP-hard.

Finding an optimal set7

Finding an optimal set of rational arc EPTs that maximizes the
lower bound is in P.
This is achieved by solving an LP (OSAC, finite costs, k =∞).
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Optimal Soft Arc Consistency (finite costs, k =∞)

LP Variables, for a binary CFN

1 ui : amount of cost shifted from ci to c∅
2 pija: amount of cost shifted from cij to a ∈ D i

OSAC

Maximize
n∑

i=1

ui subject to

ci (a)− ui +
∑

(cij∈C)

pija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ D i

cij(a, b)− pija − pjib ≥ 0 ∀cij ∈ C ,∀(a, b) ∈ D ij



Optimal Soft Arc Consistency (finite costs, k =∞)

LP Variables, for a binary CFN

1 ui : amount of cost shifted from ci to c∅
2 pija: amount of cost shifted from cij to a ∈ D i

OSAC

Maximize
n∑

i=1
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∑
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pija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ D i
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See [47, 25, 7, 53, 11].



OSAC is the dual of the local polytope

01 LP Variables, for a binary CFN

1 xia: value a used for variable xi .

2 yiajb: pair (a, b) used for xi and xj

The MRF local polytope53

Minimize
∑
i ,a

ci (a) · xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · yiajb s.t

∑
a∈D i

xia = 1 ∀i ∈ {1, . . . , n} (1)

∑
b∈D j

yiajb − xia = 0 ∀cij/cji ∈ C , ∀a ∈ D i (2)

ui multiplier for (1) and pija for (2).



Better understanding

1 Soft ACs (MP with reformulation) are approximate greedy
Block Coordinate Descent solvers of the dual LP (OSAC).

2 They find feasible (but non necessarily optimal) solutions of
the dual.

3 optimal does not mean more efficient for tree search.



Generality of the local polytope

2015

Prusa and Werner41 showed that any “normal” LP can be reduced
to such a polytope in linear time (constructive proof).

Could soft arc consistency/MP speed-up LP?



Can we organize our EPTs better w/o LP?

Bool(P)10

Given a CFN P = (X ,D,C , k)
Bool(P) is the CSP (X ,D,C − {c∅}, 1).

Bool(P) forbids all positive cost assignments, ignoring c∅.

Virtual AC

A CFN P is Virtual AC iff Bool(P) has a non empty AC closure.

Virtual AC and MP

TRW-S,24 MPLP1,49 SRMP,23 Max-Sum diffusion,27,11 Aug-DAG26

converge to fixpoints that satisfy the same property.
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Properties of VAC

Solutions of Bool(P) are optimal in P.

VAC

1 solves tree-structured problems,

2 solves CFNs with submodular cost functions (Monge matrices)

3 solves CFNs for which AC is a decision procedure in Bool(P).

4 if P is VAC and one value a in each domain such that
ci (a) = 0 is solved.

5 There is always at least one such value (or else not VAC).
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In practice - Solvers
toulbar2, daoopt, AbsCons (Depth first tree search)
MaxHS, wpm1, wpm2, akmaxsat, minimaxsat. . . (DFS)
ILP-Cplex, QP-Cplex, SDP-BiqMac (Best first tree search)
OpenGM2 (MRF algorithms, Message passing and more).



Progress: Radio Link Frequency Assignment (tb2)

CELAR 06, n = 100, d = 44 - one core

1 1997: 26 days of a Sun UltraSparc 167 MHz.

2 2015: optimum found in 7”, proved in 73” (2.1GHz CPU)

12.5 fold increase in frequency (+architecture)

More than 30,000 times faster (now easy problem).

All min-interference CELAR instances closed (see fap.zib.de)

http://fap.zib.de/problems/CALMA/


Computational Protein Design51,1

Design new enzymes for biofuels, drugs. . . cosmetics too

Reduced to a non convex mixed optimization problem

Discretized (non convexity) leading to a NP-hard. . .

binary MAP-MRF capturing molecule stability based on
atom-scale forces (electrostatics. . . )

Few variables (from 10 to few hundreds)

Huge domains (typ. d = 450)

Exact solvers: A∗+substituability (DEE15), ILP22

By far most used: simulated annealing (Rosetta21).



Multi-paradigm comparison -
QP,SDP,ILP,WMaxsat,MRF,CFN



Here, VAC faster than LP, often close/same bound

CPLEX V12.4.0.0
Problem ’3e4h.LP’ read.

Root relaxation solution time = 811.28 sec.

...

MIP - Integer optimal solution: Objective = 150023297067

Solution time = 864.39 sec.

tb2 and VAC
loading CFN file: 3e4h.wcsp

Lb after VAC: 150023297067

Preprocessing time: 9.13 seconds.

Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.



Exact (simulated annealing is stochastic)48



Faster than dedicated simulated annealing48



mulcyber.toulouse.inra.fr/projects/toulbar2

1 First/second in approximate graphical model MRF/MAP
challenges (2010, 2012, 2014).

2 Global cost functions (weighted Regular, AllDiff, GCC. . . )

3 Bioinformatics: pedigree debugging,44 Haplotyping
(QTLMap), structured RNA gene finding54

4 Inductive Logic Programming,2 Natural Langage
Processing (in hltdi-l3), Multi-agent and cost-based
planning,29,9 Model Abstraction,50 diagnostic,36 Music
processing and Markov Logic,39,38 Data mining,37 Partially
observable Markov Decision Processes,16 Probabilistic
counting17 and inference,35 . . .

https://mulcyber.toulouse.inra.fr/projects/toulbar2
https://code.google.com/p/hltdi-l3


Everything is connected :-)

Questions ?
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