
Noname manuscript No.
(will be inserted by the editor)

High order consistencies for Weighted CSPs

Hiep Nguyen ⋅ Thomas Schiex ⋅
Christian Bessiere ⋅ Simon de Givry

Received: date / Accepted: date

Abstract Keywords Weighted CSP ⋅ Cost Function Networks ⋅ high order
consistencies consistency ⋅ path inverse consistencies ⋅ max-restricted path
consistencies

1 Introduction

Graphical model processing is a central problem in AI. The optimization of
the combined cost of local cost functions, central in the valued CSP frame-
work [17], captures problems such as weighted MaxSAT, Weighted CSP or
Maximum Probability Explanation in probabilistic networks. It has applica-
tions in resource allocation, combinatorial auctions, bioinformatics. . .

Dynamic programming approaches such as bucket or cluster tree elimina-
tion can be used to tackle such problems but are inherently limited by their
guaranteed exponential time and space behavior on graphical models with high
tree-width. Instead, Depth First Branch and Bound allows to keep a reason-
able space complexity but requires good (strong and cheap) lower bounds on
the minimum cost to be efficient.

In the last years, increasingly better lower bounds have been designed by
enforcing local consistencies on Cost Function Networks (CFNs). The most
simplest are arc consistencies such as AC*, DAC*, FDAC* or EDAC* [13],
inspired from the arc consistency in hard constraint networks. They have a
slight enforcing time but do not provide large lower-bounds as expected.

F. Author
first address
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: fauthor@example.com

S. Author
second address

2 Hiep Nguyen et al.

Beyond arc consistencies, up to now, only few strong consistencies, have
been proposed for WCSPs such as complete k-consistency [6] and tuple Con-
sistency [9] In this paper, we will show that strong soft consistencies
can be defined for WCSPs by extending hard high order consistencies used
for CSPs such as RPC, PIC, maxRPC, NIC, SAC, k-inverse consistency,. . .
Among them, the group of triangle-based consistencies consisting of RPC,
PIC, maxRPC are most interested because they have a pruning power strong
enough and their computational cost is much cheaper than the others by only
dealing with subnetworks of three variables.

By exploiting the combined costs involving unary, binary and ternary terms
inside triangles of variables, the new strong consistencies allow to improve the
lower bound compared to soft arc consistencies. As a result, they provide
significant speedups on some specific problems.

2 Background

2.1 CSPs

A constraint satisfaction problem (CSP) is a triple (X,D,C) where X is a set
of n variables, D is a set of n domains (Di ∈ D for variable i ∈ X), and C
is a set constraints. Each constraint cS ∈ C defined over a set S of variables
specifies the authorized assignments τ of values for variables in S, denoted by
τ ∈ C. S and ∣S∣ are the scope and the arity of the constraint. For simplicity,
c{i}, c{i,j} are replaced by ci, cij . The constraints ci, cij , cS with ∣S∣ > 2 are
respectively called unary, binary and non-binary. Given a set of variables S,
`(S) denotes the set of assignments (tuples) of values for variables in S. Given
a variable i ∈ S and a subset S′ ∈ S, τ[i] and τ[S′] respectively denote the
projection of tuple τ on i and S. A tuple τ is consistent if it satisfies all the
constraints whose scope is included in the scope of τ . A solution is a consistent
complete assignment. The problem is consistent if it has at least one solution.

Definition 1 (Local consistencies) Given a CSP P = (X,D,C).
– P is arc consistent (AC) if ∀i ∈ X, ∀a ∈ Di, ∀cS ∈ C such that i ∈ S, there

exists a tuple τ ∈ `(S) such that τ[i] = a and τ ∈ cS . Such a tuple τ is
called the support of value (i, a) in the constraint cS .

– P is restricted path consistent (RPC, [4]) iff it is AC and ∀i ∈X, ∀a ∈Di,
∀cij ∈ C on which a has only one support b ∈ Dj , ∀k linked to i and j by
cik, cjk, there exists a value c ∈Dk such that (a, c) ∈ cik and (b, c) ∈ cjk.

– P is path inverse consistent (PIC, [11]) iff it is AC and ∀i ∈X, ∀a ∈Di, ∀j, k
such that i, j, k are linked one-by-one by binary constraint, there exists a
value b ∈Dj , c ∈Dk such that (a, b) ∈ cij , (a, c) ∈ cik and (b, c) ∈ cjk.

– P is max-restricted path consistent (maxRPC, [8]) iff it is AC and ∀i ∈X,
∀a ∈ Di, ∀cij ∈ C, a has a support b ∈ Dj such that ∀k linked to both i, j
by cik, cjk, there exists a value c ∈Dk such that (a, c) ∈ cik and (b, c) ∈ cjk.

– Let Φ be a hard consistency Φ and CSP P . Φ−closure of P is a CSP which
is equivalent to P (has the same set of solutions as P) and satisfies Φ

High order consistencies for Weighted CSPs 3

2.2 Weighted CSPs

Weighted CSPs (WCSPs, [16]) extends CSPs by associating costs to tuples.
A WCSP is a tuple (X,D,C,m) where X and D are respectively the sets of
variables and domains as in classical CSPs. C is a set of cost functions. Each
cost function cS ∈ C assigns costs to tuples τ ∈ `(S) i.e. cS ∶ `(S) → [0..m]
where m ∈ {1, . . . ,+∞}. The addition and subtraction of costs are bounded
operations, defined as a +m b = min(a + b,m), a −m b = a − b if a < m and m
otherwise. The combined cost of a tuple τ over scope W in a WCSP P is the
sum of costs ValP (τ) = ⊕S∈W cS(τ[S]), where ⊕ is +m. τ is inconsistent if
ValP (τ) = m, and consistent otherwise. When ValP (τ) = 0, τ is completely
consistent. The solution of P is a complete tuple τ with a minimum ValP (τ).

We assume the existence of a unary cost function ci for every variable
i, and a nullary cost function, noted c∅. This constant positive cost defines a
lower bound on the cost of every solution. A WCSP P can be transformed into
an equivalent problem P ′ (ValP (t) = ValP ′(t) ∀t) with a possibly increased
lower bound c∅ on the optimal cost by using so-called equivalence-preserving
transformations (EPTs) which shift costs between cost functions. The EPTs
Shift(τS , cS′ , α) (Algorithm 1) moves an amount of cost α between a cost
function cS′ and a tuple τ over S such that S ⊂ S′. The conditions (2) and (3)
guarantee that the operation will not create any negative cost in the problem.
Shift respectively implies 3 Soft Arc Consistency operations (SAC opera-
tions [7]): Project (from cS′ to τ), Extend (from τ to cS′) and UnaryProject

(from i to c∅) when α > 0, α < 0 and α > 0, S′ = {i}, ∣S∣ = 0.

Algorithm 1: Operation for shifting costs in WCSPs

Procedure Shift(τS , cS′ , α)1

// condition: (1)S ⊂ S′, (2)cS(τ)⊕α ≥ 0, (3)cS′(τ
′
) ≥ α ∶ ∀τ ′ ∈ `(S′), τ ′[S] = τ

cS(τ)←Ð cS(τ) +m α ;2

foreach τ ′ ∈ `(S′), τ ′[S] = τ do3

cS′(τ ′)←Ð cS′(τ ′) −m α;4

Soft consistencies are techniques that aim to strengthen the lower bound c∅.
The simplest one, node consistency (NC [12]), requires that ∀i ∈ X, ∀a ∈ Di

ci(a) + c∅ < m and there exists a value a ∈ Di such that ci(a) = 0. The
arc consistencies presented below are inspired from hard arc consistency. For
simplicity, we restrict ourselves to binary WCSPs. The definitions of soft arc
consistencies in non-binary WCSPs are introduced in [7,?,?]

Definition 2 (Soft arc consistencies) Given a binary WCSP P = (X,D,C,m)
and an order < of variables.

– P is arc consistent (AC) iff ∀i ∈ X, ∀a ∈ Di and ∀cij ∈ C, there exists
b ∈Dj such that cij(a, b) = 0. b is called the support for (i, a) in cij .

4 Hiep Nguyen et al.

– P is directional arc consistent (DAC) w.r.t < iff ∀i, ∀a ∈Di, ∀cij such that
i < j, there exists a value b ∈ Dj such that cij(a, b) + cj(b) = 0. b is called
the full support for (i, a) in cij .

– P is full directional arc consistent (FDAC) w.r.t < if it is arc consistent
and directional arc consistent w.r.t to <.

– P is existential arc consistent (EAC) iff ∀i ∈X, there exists a value a ∈Di

such that ci(a) = 0 and ∀cij ∈ C, there exists b ∈ Dj such that cij(a, b) +
cj(b) = 0. Value a is called the existential arc consistent support of i.

– P is existential directional arc consistent (EDAC) w.r.t < iff it is existential
arc consistent and full directional arc consistent w.r.t <.

– Bool(P) is a CSP (X,D,C,1) such that ∃cS ∈ C iff ∃cS ∈ C, S ≠ ∅ and
cS(τ) = 1⇔ cS(τ) ≠ 0. P is virtual arc consistent (VAC) iff the AC-closure
of Bool(P) is non-empty.

A binary WCSP is AC∗, DAC∗, FDAC∗, EAC∗, EDAC∗ if it is NC and
respectively AC, DAC, FDAC, EAC, EDAC. The notions generalized arc con-
sistencies (GACs) are used in the case of non-binary WCSPs.

3 Soft high order consistencies

From soft arc consistencies, we have generalized 6 soft variants, also called 6
“softness” levels, for each hard consistency: “simple” (“non-directional”), “di-
rectional”, “full directional”, “existential”, “existential directional” and “vir-
tual”. In this section, we introduce the soft consistencies extended from hard
RPC, PIC and maxRPC. In addition to soft ACs, they guarantee the extensi-
bility of arc supports on extra third variables at a so-called “witnesses”.

Definition 3 (Witnesses) Given a value (i, a), a pair of values (ia, jb) and
a variable k linked both to i and j.
– A simple witness of (ia, jb) on k is a value c ∈ Dk such that cik(a, c) +
cjk(b, c) + cijk(a, b, c) = 0.

– A full witness of (ia, jb) on k is a value c ∈Dk such that ck(c) + cik(a, c) +
cjk(b, c) + cijk(a, b, c) = 0.

Definition 4 (Extensibility of a value on a triangle) A triangle is a
triple of variables (i, j, k), noted ∆ijk, that are linked one-by-one by binary
cost function. Given a value (i, a) and a triangle (i, j, k).
– (i, a) is simply extensible on triangle (i, j, k) if there exists a simple arc

support for (i, a) in cij which is simply extensible on k.
– (i, a) is fully extensible on triangle (i, j, k) if there exists a full arc support

for (i, a) in cij which is fully extensible on k.

Definition 5 (Extensibility of a pair of values on a variable) Given a
pair of values (ia, jb) and a variable k linked both to i and j.
– (ia, jb) is simply extensible on k if there exists a simple witness on k for it.
– (ia, jb) is fully extensible on k if there exists a full witness on k for it.

High order consistencies for Weighted CSPs 5

Definition 6 (Extendibility of a pair of values) For a pair of values
(ia, jb) and an order < on the variables. (ia, jb) is:
– simply extensible if it is simply extensible on ∀k linked to both i and j.
– fully extensible if it is fully extensible on ∀k linked to both i and j.
– directionally-fully extensible if it is fully extensible on ∀k > i, linked to

both i and j.
– semi-fully extensible if it is simply extensible on every variable k < i and is

fully extensible on every k > i such that k is linked both to i and j.

Notice that the full extensibility implies the semi-full extensibility. The
semi-full extensibility implies the directional-full and simple extensibility. Con-
versely, both directional-full and simple extensibility do not imply any other
extensibility. Consider the example in Figure 1 to better understand the dif-
ferent extensibility of pairs of values.

b

a

b

a

a c

a b c
1

i j

k1

k2

(a)

b

a

b

a

a b c

a b c
1

1

i j

k1

k2

(b)

b

a

b

a

a c

a b c

i j

k1

k2

(c)

b

a

b

a

a b c

a b c

1

i j

k1

k2

(d)

b

a

b

a

a b c

a b c

i j

k1

k2

(e)

Fig. 1 Example of different extensibilities of the pair of values (ia, ja). k1 < i < j < k2. In
WCSP(a), (ia, ja) is not simply extensible on k1. In WCSP(b), (ia, ja) is simply extensible
(on both k1, k2) but is not directionally-fully extensible (because it is not fully extensible
on k2). In WCSP(c), (ia, ja) is directionally-fully extensible w.r.t k2 but is not semi-fully
extensible (because it is not simply extensible on k1). In WCSP(d), (ia, ja) is semi-fully
extensible (fully extensible on k1 and simply extensible on k2) but is not fully extensible
(because it is not fully extensible on k1). In WCSP(e), (ia, ja) is fully extensible (on both
k1, k2).

The idea of soft RPC consistencies is to only check the extensibility for
pairs of values (ia, jb) which will make a value soft arc inconsistent if their
binary cost increases. Indeed, such pairs of values are the unique supports
for involving values in cij . If a value (i, a) has only one simple support (j, b)
in cij and this support (ia, jb) is not extensible on some third variable k,
every 3-values tuple over {i, j, k}, involving (ia, jb), has a positive combined
cost. Because (j, b) is the unique arc support of (i, a), every complete tuple
involving (i, a) has a positive cost evaluation. Thus, the unary cost ci(a) can
increase by an equivalent of transformation.

Definition 7 (Soft restricted path consistencies (Soft RPCs)) Given
a WCSP P = (X,C,D,m) and an order “<” on the variables.

– P is RPC if it is AC and ∀i ∈X,∀a ∈Di,∀cij ∈ C on which (i, a) has only
one simple arc support b ∈Dj , (ia, jb) is simply extensible.

6 Hiep Nguyen et al.

– P is directional RPC (DRPC) if it is DAC and ∀i ∈ X,∀a ∈ Di,∀cij ∈ C
such that i < j and (i, a) has only one full arc support b ∈ Dj , (ia, jb) is
directionally-fully extensible.

– P is full directional RPC (FDRPC) if it is FDAC and ∀i ∈X,∀a ∈Di,∀cij ∈
C such that (1) if i > j and (i, a) has only one simple arc support b ∈ Dj

then (ia, jb) is simply extensible, or (2) if i < j and (i, a) has only one full
arc support b ∈Dj then (ia, jb) is semi-fully extensible.

– P is existential RPC (ERPC) if ∀i ∈ X, there exists a value a ∈ Di such
that (1) ci(a) = 0, (2) ia has a full arc support in every cost function and
(3) ∀cij ∈ C on which (i, a) has only one full arc support b ∈Dj , (ia, jb) is
fully extensible. Such a value (i, a) is the ERPC support for i.

– P is existential directional RPC (FDRPC) if it is ERPC and FDRPC.
– P is virtual RPC (VRPC) if the RPC-closure of Bool(P) is non-empty.

VRPC is defined based on the classical CSP Bool(P) and the hard RPC.
The other consistencies of RPC are different each other by (1) the strength of
supports (simple or full) (2) the strength of witnesses (simply, fully, directionally-
fully, semi-fully extensible) and (3) the application area (every domain value
or one value per domain, every or in some specific cost function).

Example 1 Consider WCSPs in Figure 1.

– WCSP(a) is VRPC because the RPC closure of Bool(P) is not empty, con-
taining values (ib), (j, b), (k1, a), (k1, c), (k2, a), (k2, c). However, it is not
RPC because the unique support (ia, ja) of (i, a) on cij is not simply ex-
tensible on k1

– WCSP(b) is RPC: both (ia, ja) and (ib, jb) (respectively the unique sim-
ple arc support of (i, a), (j, a) in cij and of (i, b), (jb) in cij) are simply
extensible on k1 and k2 at simple witnesses (k1, b) and (k2, b) respectively.
However, it is not DRPC because the unique full arc support (ia, ja) of
(i, a) in cij is not fully extensible on k1 > i.

– WCSP(c) is DRPC because both (ia, ja) and (ib, jb) (respectively the
unique full arc support of (i, a) in cij and of (i, b) in cij) are fully ex-
tensible on k2 > i at (k2, b). Variable k1 < i is not interested by DRPC for
i. However, it is not FDRPC because the unique full support (ia, ja) of
value (i, a) in cij is not simply extensible on k1.

– WCSP(d) is FDRPC where the supports (ia, ja) and (ib, jb) are fully ex-
tensible on k2 at (k2, b) and simply extensible on k1 at (k1, b). At the same
time, it is ERPC where (i, b), (j, b), (k1, a), (k2, a) are ERPC supports for
variables i, j, k1 and k2.

The idea of soft path inverse consistencies is to guarantee the extensibility
of domain values on triangles of variables. For all triangles (i, j, k) sharing two
variables i, j of a cost function cij , PICs require that for each k, one of arc
supports of (i, a) in cij is extensible on k. The arc supports of (i, a) that are
extensible on different k can be different.

Definition 8 (Soft path inverse consistencies (Soft PICs)) Given a
WCSP P = (X,C,D,m) and an order “<” on the variables.

High order consistencies for Weighted CSPs 7

– P is PIC if it is AC and ∀i ∈ X,∀a ∈ Di,∀∆ijk, (i, a) is simply extensible
on ∆ijk.

– P is directional PIC (DPIC) if it is DAC and ∀i ∈ X,∀a ∈ Di,∀∆ijk such
that i < j, i < k, (i, a) is fully extensible on ∆ijk.

– P is full directional PIC (FDPIC) if it is FDAC and ∀i ∈ X,∀a ∈ Di,∀
triangle ∆ijk, (i, a) is fully extensible on ∆ijk if i < j, i < k and simply
extensible on ∆ijk otherwise.

– P is existential PIC (EPIC) if ∀i ∈X, there exists a value a ∈Di such that
(1) ci(a) = 0, (2) ia has a full arc support in every cost function and (3)
(i, a) is fully extensible on every triangle.

– P is existential directional PIC (EDPIC) if it is EPIC and FDPIC.
– P is virtual PIC (VPIC) if the PIC-closure of Bool(P) is non-empty.

b

a

c
b

a

a c

a c

i j

k1

k2

(a) not PIC

b

a

c
b

a

a c

a b c
1

i j

k1

k2

(b) PIC
not DPIC

b

a

c
b

a

a c

a c

i j

k1

k2

(c) DPIC
not FDPIC

b

a

c
b

a

a c

a c

i j

k1

k2

(d) EDPIC

Fig. 2 Example of soft PIC consistencies. k1 < i < k2 < j and ∃ cij , cik1 , cik2 , cjk1 , cjk2 .
The WCSP(a) is not PIC because value (i, b) is not simply extensible to triangle (i, j, k1).
The WCSP(b) is PIC but is not DPIC because value (i, b) is not fully extensible to triangle
(i, j, k2) with i < j, i < k2. The WCSP(c) is DPIC (because every value in Di can be fully
extended to (i, j, k2) only which is interested by DPIC for i) but it is not FDPIC (because
value (i, b) is not simply extensible to triangle (i, j, k1)). The WCSP(d) is FDPIC where
every variable is simply extensible to 2 triangles and i is fully extensible to (i, j, k2). The
WCSP(d) is also EPIC where (i, a), (j, a), (k1, a), (k2, a) are respectively EPIC supports of
i, j, k1, k2.

Stronger than PICs, soft max-restricted path consistencies (soft maxRPCs)
check the existence of an extensible arc support for each value in each binary
cost function whatever the number of arc supports the value has. In constrast
to soft PICs, maxRPCs require the extensibility of the same arc support for
each value in each binary cost function at the same time on all third variables.
If value (i, a) has no such extensible arc support in some binary cost function
cij , each support (ia, jb) of (i, a) in cij is not extensible in some extra vari-
able k, i.e. the combined cost of every tuple (ia, jb, kc) is positive. Thus, the
binary cost of every arc support of (i, a) in cij can increase by an equivalence
preserving transformation and then (i, a) will no longer be arc consistent.

Definition 9 (Soft max-restricted path consistencies (Soft maxR-
PCs)) Given a WCSP P = (X,C,D,m) and an order “<” on the variables.

8 Hiep Nguyen et al.

– P is maxRPC if it is AC and ∀i ∈X,∀a ∈Di,∀cij ∈ C there exists a simple
arc support b ∈Dj such that (ia, jb) is simply extensible.

– P is directional maxRPC (DmaxRPC) if it is DAC and ∀i ∈ X,∀a ∈ Di,
∀cij ∈ C such that i < j, there exists a full arc support b ∈ Dj such that
(ia, jb) is directionally-fully extensible.

– P is full directional maxRPC (FDRPC) if it is FDAC and for ∀i ∈D,∀a ∈
Di,∀cij ∈ C (1) if i > j, there exists a simple arc support b ∈ Dj such that
(ia, jb) is simply extensible. (2) otherwise, if i < j, there exists a full arc
support b ∈Dj such that (ia, jb) is semi-fully extensible.

– P is existential maxRPC (EmaxRPC) if ∀i ∈X, there exists a value a ∈Di

such that (1) ci(a) = 0, (2) ia has a full arc support in every cost function
and (3) ∀cij ∈ C, there exists a full arc support b ∈ Dj such that (ia, jb) is
fully extensible.

– P is existential directional maxRPC (EDmaxRPC) if it is EmaxRPC and
FDmaxRPC.

– P is virtual maxRPC (VmaxRPC) if the maxRPC-closure of Bool(P) is
non-empty

b

a

c
b

a

a c

a c

i j

k1

k2

(a) EmaxRPC
not maxRPC

b

a

c
b

a

a c

a b c
1

i j

k1

k2

(b) maxRPC
not DmaxRPC

b

a

c
b

a

a c

a b c

i j

k1

k2

(c) DmaxRPC
not FDmaxRPC

b

a

c
b

a

a c

a b c

i j

k1

k2

(d) FDRPC
EDmaxRPC

Fig. 3 Example of soft maxRPCs. k1 < i < k2 < j and ∃ cij , cik1 , cik2 , cjk1 , cjk2 . The
WCSP(a) is not maxRPC because value (i, b) has no arc support in cij (between (ib, ja)
and (ib, jc)) that is simply extensible on both k1, k2. The WCSP(b) is maxRPC but is not
DmaxRPC because value (i, b) has no full arc support in cij (between (ib, ja) and (ib, jc))
that is fully extensible to k2. The WCSP(c) is DmaxRPC (because every value in Di has
full arc support in cij , cik2 that is respectively fully extensible on k2 and j. Triangle (i, j, k1)
is not interested by DmaxRPC for i). The WCSP(c) is not FDmaxRPC because value (i, b)
has no full support in cij (between (ib, ja) and (ib, jc)) that is simply extensible on k1.
The WCSP(d) is both FDmaxRPC and EmaxRPC where (i, a), (k1, a), (j, a), (k2, a) are
respectively EPIC supports of variables i, k1, k2, j.

4 Comparison between soft domain consistencies

Enforcing soft consistencies aims to (1) increasing the lower bound c∅ (e,g,.
VAC) or (2) moving costs from cost functions of higher arity to cost functions
of lower arity. Thus, the power of virtual consistencies is evaluated by the
quality of the lower bound and the power of soft domain consistencies (which
define properties for values such as all ACs, RPCs, PICs and maxRPCs except

High order consistencies for Weighted CSPs 9

for the virtual ones) is further evaluated by the capacity of increasing unary
costs. A soft consistency A is called stronger than a soft consistency B if for
every problem which already satisfies A, the weaker consistency B cannot
improve it in terms of increasing unary costs and c∅. For a given WCSP P
and a soft consistency A, let c∅[P] denote the lower bound of P and A(P) be
the problem obtained after enforcing A in P .

Definition 10 (Strictly stronger relation) Given 2 soft consistenciesA,B.
– A is stronger than B, noted by A ≥ B, iff for every WCSP P that satisfies
A, B(P) = P .

– A is stronger than B in terms of lower bound, noted by A ≥c∅ B, iff for
every WCSP P that satisfies A, c∅[B(P)] = c∅[P]

– A is strictly stronger than B, noted A > B, iff A ≥ B and ∃ a WCSP P
such that P satisfies B and A(P) ≠ P

– A is strictly stronger than B in terms of lower bound, noted A >c∅ B, iff
A ≥c∅ B and ∃ a WCSP P such that P satisfies B and c∅[A(P)] > c∅[P]

Proposition 1 Given 2 soft consistencies A and B. If A ≥ B then A ≥c∅ B.

Proof The proof is trivial. Because A ≥ B, B(P) = P for every P that satisfies
A. So we have c∅[B(P)] = c∅[P] and thus A ≥c∅ B.

Similarly to the stronger and strictly stronger relations for hard consisten-
cies, our relations for soft consistencies also have the transitive property.

Property 1 (Transitive) Given three soft consistencies A,B,C.
a. If A ≥ B and B ≥ C then A ≥ C.
b. If A > B and B > C then A > C.
c. If A > B and B ≥c∅ C then A ≥c∅ C

Proof a. Let P be a WCSP that satisfies A. Because A ≥ B and P satisfies
A, B(P) = P , i.e., P also satisfies B. Because B ≥ C and P satisfies B,
C(P) = P . Thus, P satisfies A, C(P) = P , i.e., A ≥ C.

b. (1) Because > implies ≥, we have A ≥ B and B ≥ C. So A ≥ C from the
property (a). (2) Because A > B, there exists a WCSP P satisfying B and
A(P) ≠ P . Because P satisfies B and B ≥ C, C(P) = P , i.e., P also satisfies
C. Thus there exists P which is C and A(P) ≠ P . So A > C.

c. Because > implies ≥, we have A ≥ B. Let P be a WCSP that satisfies A,
P also satisfies B. Because B ≥c∅ C and P satisfies B, c∅[C(P)] = c∅[P].
Thus, for every WCSP which satisfies A, c∅[C(P)] = c∅[P]. i.e., A ≥c∅ C.

To show that a soft consistency A is not stronger or not stronger in terms
of lower bounds than B, it is enough to show that there exists a WCSP P
in which A holds and B does better than A. Two consistencies A and B are
incomparable iff A is not stronger than B and B is not stronger than A.

Definition 11 (Incomparable relation) Given 2 soft consistencies A,B.
– A and B are incomparable, noted A /≍ B, iff A /≥ B and B /≥ A

10 Hiep Nguyen et al.

– A and B are incomparable in terms of lower bound, noted A /≍c∅ B, if
A /≥c∅ B and A /≥c∅ B

Graph 4 summarizes the relations among soft ACs, RPCs, PICs and maxR-
PCs. In a row of the graph are 6 soft consistencies associated with a same hard
consistency and in a column are the ones at a same “softness” level. A directed
path from a consistency A to B, without or with dashed arrow, respectively
means that A > B or A >c∅ B. If there does not exist any directed path be-
tween A and B, they are incomparable. First, we consider the relation between
virtual consistencies and domain consistencies. Then, domain consistencies are
considered according to the rows and the columns of the graph.

AC DAC

FDAC EAC

EDAC
VAC

RPC DRPC

FDRPC ERPC

EDRPC
VRPC

PIC DPIC

FDPIC EPIC

EDPIC
VPIC

maxRPC DmaxRPC

FDmaxRPC EmaxRPC

EDmaxRPC
VmaxRPC

Fig. 4 Hasse diagram of relations between soft consistencies
A B ∶ A > B A B C implies A C
A B ∶ A >c∅ B A B C implies A C

Theorem 1 Given two hard consistencies A, B ∈ {AC,RPC,PIC,maxRPC}
and two virtual consistencies VA,VB respectively associated with A, B.
a. VA >c∅ A for every soft domain consistency A associated with A.

b. If A > B then
b1. VA > VB
b2. VA >c∅ B for every soft consistency B ≠ VB associated with B.

Proof a. We first prove that VA ≥c∅ A by contradiction. Suppose that there
exists a WCSP P satisfying VA and A still can increase c∅ of P from
a variable x∅. All values and tuples whose costs have been necessary for
increasing c∅ by A are also forbidden when enforcing A in the classic CSP
Bool(P). So, if we eliminate these values and tuples in the same order that
costs are moved by A in P , x∅ will be wiped-out in Bool(P). Thus P is

High order consistencies for Weighted CSPs 11

not VA and the supposition is false. This means that VA ≥c∅ A. Secondly,
Figure 12 shows a problem which satisfies every soft domain consistency
of AC, RPC, PIC, maxRPC but does the virtual ones.

b1. Firstly, we prove that V A ≥ V B. Let P be a WCSP which is VA. The A
closure of Bool(P) is not empty. Because A ≥ B, the B closure of Bool(P)
will be not empty. Thus, P also satisfies VB, i.g., VB(P) = P . Now we prove
that V A > V B, i.e., VmaxRPC > VPIC > VRPC > VAC. Figures 5, 6, 7
respectively show a WCSP which is VAC but not VRPC, VRPC but not
VPIC, VPIC but not VmaxRPC and c∅ can be increased by 1 by the
unsatisfied consistencies.

b2. We have VA > VB (Theorem 1(b1)) and V B >c∅ B (Theorem 1(a)) that
implies V B ≥c∅ B. From Property 1(c), V A ≥c∅ B. Now, we will prove
that VA >c∅ B. Because V B >c∅ B, there exists a WCSP P such that P is
B and V B can still increase the lower bound c∅[P]. This means that the
B−closure of Bool(P) is empty. Because A > B, the A−closure of Bool(P)
is also empty. Thus, c∅[VA(P)] > c∅[P] while P satisfies B.

The following theorem will show that at each “softness” level, the soft
maxRPC is strictly stronger than the soft PIC,the soft PIC is strictly stronger
than the soft RPC,and the soft RPC is strictly stronger than the soft AC.

Theorem 2 (Vertical comparison)
a. maxRPC > PIC > RPC > AC.
b. DmaxRPC > DPIC > DRPC > DAC.
c. FDmaxRPC > FDPIC > FDRPC > FDAC.
d. EmaxRPC > EPIC > ERPC > EAC.
e. EDmaxRPC > EDPIC > EDRPC > EDAC.

Proof First, we have the stronger relation ≥ between consistencies by using
their definition. At each softness level, the soft consistency of maxRPC im-
plies PIC, PIC implies RPC and RPC implies AC. Second, we prove the strictly
stronger relation between them by showing WCSPs in which the weaker con-
sistencies hold while the stronger ones do not.
a. Figure 5 shows a WCSP which satisfies AC but does not satisfy RPC.

Figure 6 shows a WCSP which satisfies RPC but does not satisfy PIC.
Figure 7 show a WCSP which satisfies PIC but does not maxRPC. Thus
maxRPC > PIC > RPC > AC.

b-e. The proof is similar to that for (a) by using Figure 5, 6 and 7.

The following theorem will show that associated with any hard consistency:
(1) the existential directional consistency is strictly stronger than both the
existential and the full directional ones, (2) the full directional consistency is
strictly stronger than both the non-directional and the directional ones, (3)
other pairs of consistencies are incomparable.

Theorem 3 (Horizontal comparison) Given 2 hard consistencies X,Y ∈
{AC, RPC, PIC, maxRPC}. Let X,DX,FDX,EX,EDX be the simple, di-
rectional, full directional, existential, existential directional consistency of X;
Y,DY,FDY be the simple, directional, full directional consistency of Y .

12 Hiep Nguyen et al.

a. (column 2-1): X /≍DY
b. (column 3-1): FDX >X,DX
c. (column 4-1,2,3): EX /≍ Y,DY,FDY
d. (column 5-3): EDX > FDX,EX

Proof a. X /≍DY : using Figures 8 and 9.
b. FDX >X,DX. The stronger relation ≥ is implied from the definition of the

consistencies. FDX >X: Figure 8 shows a problem which is maxRPC, PIC,
RPC, AC but is not FDmaxRPC, FDPIC, FDRPC, FDAC. FDX > DX:
Figure 9 shows a problem which is DmaxRPC, DPIC, DRPC, DAC but is
not FDmaxRPC, FDPIC, FDRPC, FDAC.

c. EX /≍ Y,DY,FDY : using Figures 10 and 11.
d. EDX > FDX and EDX > EX. The proof is trivial based on the defini-

tions.

For any other pair of consistencies which is not covered by three previous
theorems, the consistencies are incomparable.

– FDAC /≍ RPC,PIC,maxRPC, DRPC,DPIC,DmaxRPC: using Figures 5, 8
and 9.

– FDRPC /≍ PIC,maxRPC, DPIC,DmaxRPC: using Figures 6, 8 and 9.
– FDPIC /≍ maxRPC, DmaxRPC: using Figures 7, 8 and 9.
– EDAC /≍ (E/FD/D/-)(RPC/PIC/maxRPC): using Figures 5, 10 and 11.
– EDRPC /≍ EPIC,EmaxRPC, FDPIC,FDmaxRPC, DPIC,DmaxRPC, PIC,maxRPC:

using Figures 6, 10 and 11.
– EDPIC /≍ EmaxRPC, FDmaxRPC, DmaxRPC, maxRPC: using Figures 7, 10

and 11.
– VAC /≍c∅ (ED/E/FD/D/-)(RPC/PIC/maxRPC): using Figures 5 and 12.
– VRPC /≍c∅ (ED/E/FD/D/-)(PIC/maxRPC): using Figures 6 and 12.
– VPIC /≍c∅ (ED/E/FD/D/-)maxRPC: using Figures 7 and 12.

b

a

b

a

a b

a b

j k

l

i

AC DAC FDAC EAC EDAC VAC
RPC DRPC FDRPC ERPC EDRPC VRPC
PIC DPIC FDPIC EPIC EDPIC VPIC

maxRPC DmaxRPC FDmaxRPC EmaxRPC EDmaxRPC VmaxRPC

Fig. 5 A WCSP which satisfies all arc consistencies but does not satisfy any soft RPC
(hence does not satisfy any soft PIC, maxRPC). j < k < i < l. The problem does not satisfy
any soft RPC because of variable i (the unique support (ja, ka) of (j, a) in cjk is not simply
extensible on i and the unique support (jb, kb) of (j, b) is not simply extensible on l.)

High order consistencies for Weighted CSPs 13

c b a

c b a

a

b

a b c

a b c
j

k l

m
i

Fig. 6 A WCSP which satisfies all RPC consistencies but does not satisfy any PIC consis-
tency. i < j < k < l <m. Every value of i satisfies RPC consistencies because it has more than
2 full (hence simple) arc supports in cik, cij , cil, cim. The problem does not satisfy any PIC
consistency because of variable i (value (i, a) is not normally (hence not fully) extensible to
triangle ∆ilm while (i, b) is not simply (hence not fully) extensible to triangle ∆ijk)

RPC DRPC FDRPC ERPC EDRPC VRPC
PIC DPIC FDPIC EPIC EDPIC VPIC

maxRPC DmaxRPC FDmaxRPC EmaxRPC EDmaxRPC VmaxRPC

a

b

c

b

a

a b

a b

a

b

c

a b

a b

ij1
j2

j3

j4
j5

j6

Fig. 7 A WCSP which satisfies all PIC consistencies but does not satisfy any maxRPC
consistency. i < j1 < j2 < j3 < j4 < j5 < j6. There are only zero unary costs in this problem,
thus simple and full supports (or witnesses) are identical. The problem is EDPIC since both
(i, a), (i, b) can be fully extended to all 4 triangles. However, the problem does not satisfy
any maxRPC consistency because of variable i (no arc support of value (i, a) in cij1 can
simultaneously be extended on ∆ij1j2 and ∆ij1j3 . This is the same for value (i, b) in cij4).

RPC DRPC FDRPC ERPC EDRPC VRPC
PIC PIC FDPIC EPIC EDPIC VPIC

maxRPC DmaxRPC FDmaxRPC EmaxRPC EDmaxRPC VmaxRPC

a

b

a

b

a b

i j

k 1
AC DAC FDAC - EDAC

RPC DRPC FDRPC - EDRPC
PIC DPIC FDPIC - EDPIC

maxRPC DmaxRPC FDmaxRPC - EDmaxRPC

Fig. 8 A WCSP which is non-directional consistent but is directional inconsistent. i < j < k.
The problem is not DAC because value (i, a) has no full arc support in cik. Therefore, it does
not satisfy FDAC, EDAC, FDRPC, EDRPC, FDPIC, EDPIC, FDmaxRPC, EDmaxRPC.
However, the problem is maxRPC (hence PIC, RPC) because it is AC and every domain
value is normally extensible to the triangle.

14 Hiep Nguyen et al.

a

b

a

b

a b

i j

k
AC DAC FDAC - EDAC

RPC DRPC FDRPC - EDRPC
PIC DPIC FDPIC - EDPIC

maxRPC DmaxRPC FDmaxRPC - EDmaxRPC

Fig. 9 A WCSP which is directional consistent (i > j > k) but is non-directional inconsis-
tent. The problem is not AC because (i, a) has no arc support in cij . However, the problem
is DAC because every value of j and k has full arc support in cji, cki. Moreover, the problem
is DmaxRPC (hence DPIC, DRPC) because every value of j and k can be fully extended
on the triangle (in the triangle ∆ijk, only the smallest variable k and cki, ckj are interested
by high order directional consistencies).

b

a

a b

a b

b

a
1 1

i

j
k l AC DAC FDAC EAC EDAC

RPC DRPC FDRPC ERPC EDRPC
PIC DPIC FDPIC EPIC EDPIC

maxRPC DmaxRPC FDmaxRPC EmaxRPC EDmaxRPC

Fig. 10 A WCSP which is full directional consistent but is existential inconsistent (l < j <
k < i). The problem is not EAC (hence not ERPC, EPIC, EmaxRPC) because of value i
(ia has no full support in cij while ib has no full support in cil). However, the problem is
FDmaxRPC (hence FDPIC, FDRPC) because it is FDAC and every value of i, k can be
normally extended to both 2 triangles and every value of j, l can be fully extended to ∆jik
and ∆lik respectively.

a

b

a

b

a b

i j

k
AC DAC FDAC EAC EDAC

RPC DRPC FDRPC ERPC EDRPC
PIC DPIC FDPIC EPIC EDPIC

maxRPC DmaxRPC FDmaxRPC EmaxRPC EDmaxRPC

Fig. 11 A WCSP which is existential consistent but is full directional inconsistent. i > j > k.
The problem is not AC (hence is not RPC, PIC, maxRPC) because of value (i, a) (has no arc
support in cij) and is not DAC (hence is not DRPC, DPIC, DmaxRPC) because of value
(j, b) (has no full arc support in cij). However, the problem is EmaxRPC (hence EPIC,
ERPC, EAC) where (i, b), (j, a), (k, a) are respectively EmaxRPC supports of i, j, k.

5 Algorithms

In this section, we introduce the algorithm enforcing EDPIC, EDmaxRPC.
EDRPC has not been implemented because of the costly maintainance of the
number of arc supports per value in each cost function. Arc supports can be
iteratively created and broken during moving costs between cost functions of
different arities.

High order consistencies for Weighted CSPs 15

a

b

a

b

a

b

a

b

a b

i j k l

m

1 1

Fig. 12 A WCSP which is existential directional but is not virtual consistent l < i < j <
k < m. The problem is not VAC (hence not VRPC, VPIC, VmaxRPC) because AC makes
Bool(P) wiped-out at j or k. Conversly, the problem is EDmaxRPC where variables j,m, l
are FDmaxRPC in ∆ijm and ib, ja, ka, lb,ma are EmaxRPC supports of variables.

AC DAC FDAC EAC EDAC VAC
RPC DRPC FDRPC ERPC EDRPC VRPC
PIC DPIC FDPIC EPIC EDPIC VPIC

maxRPC DmaxRPC FDmaxRPC EmaxRPC EDmaxRPC VmaxRPC

The common idea for enforcing for values of i in cij supports which are
extensible on k is to move costs of triangles ∆ijk (consisting of binary, ternary
and possibly unary costs) to inconsistent values of i. The notation∆ijk(a, b, c) =
cij(a, b) + cjk(b, c) + cik(a, c) + cijk(a, b, c) denotes such combined cost, that
is the sum of binary and ternary costs involved in tuple (ia, jb, kc), where
cijk(a, b, c) = 0 if cijk does not exist. Algorithm 2 present all the basic opera-
tions for moving costs inside triangles that will be used in our algorithm.
– Extend2To3(i, a, j, b, cijk, α) extends a cost of α from a pair of values

(ia, jb) to a ternary cost function cijk.
– Project3To2(cijk, i, a, j, b, α) projects a cost of α from cijk on a pair (ia, jb).
– Project3To1(cijk, i, a, α) projects a cost of α from cijk on a value (i, a).
– Extend1To2(i, a, cij , α) extends a cost of α from a value (i, a) to cij .
– Project2To1(cij , i, a, α) projects a cost of α from cij on a value (i, a)

The queues P,S,T store variables or cost functions which have had some
change in value domain or in cost. They will be used for the propagation of
changes in our enforcing algorithm.

– Q stores variables i such that some value of Di has been deleted (Procedure
PruneV ar, line 24).

– P stores variables i such that some value of Di has increased its cost from
0 (Procedure Project3To1 at line 10 and Project2To1 at line 15).

– With the same content as P (Procedure Project3To1 at line 11 and Proce-
dure Project2To1 at line 16), S is an auxiliary queue for efficiently building
the propagation queue R which contains variables that need to be checked
for the existential consistency. These are all variables of S and their neigh-
bors because: (1) for i ∈ S, the value in Di that has increased its unary
cost may be the existential support of i and (2) the existential support of
neighboring variables j may be fully supported by this value.

– T contains binary costs functions cij that have been modified (because of
an unary cost extension in Procedure Extend1To2, line 4) for which i, j
and their common neighbors may have lost simple support/witness and
need to be revised.

16 Hiep Nguyen et al.

Algorithm 2: Elementary operations

Procedure Extend1To2(i, a, cij , α)1

// precondition: ci(a) ≥ α2

foreach b ∈ Dj do cij(a, b) ∶= cij(a, b) + α ci(a) ∶= ci(a) − α;3

T ← T ∪ {cij};4

Procedure Extend2To3(i, a, j, b, cijk, α)5

// precondition: cij(a, b) ≥ α
foreach c ∈ Dk do cijk(a, b, c) ∶= cijk(a, b, c) + α cij(a, b) ∶= cij(a, b) − α6

Procedure Project3To1(cijk, i, a,α)7

// precondition: ∀b ∈ Dj , c ∈ Dk, cijk(a, b, c) ≥ α8

foreach b ∈ Dj , c ∈ Dk do cijk(a, b, c) ∶= cijk(a, b, c) − α if ci(a) = 0 ∧ α > 0 then9

P ∶= P ∪ {i};10

S ∶= S ∪ {i};11

ci(a) ∶= ci(a) + α;12

Procedure Project2To1(cij , i, a,α)13

// precondition: ∀b ∈ Dj , cij(a, b) ≥ α
foreach b ∈ Dj do cij(a, b) ∶= cij(a, b) − α if ci(a) = 0 ∧ α > 0 then14

P ∶= P ∪ {i};15

S ∶= S ∪ {i};16

ci(a) ∶= ci(a) + α;17

Procedure isSmallest(i,∆ijk)18

if i < j and i < k then return true else return false;19

Procedure PruneVar(i)20

foreach a ∈ Di do21

if ci(a) + c∅ ≥m then22

Di ∶= Di − {a};23

Q ∶= Q ∪ {i};24

5.1 Enforcing PICs

5.1.1 Enforcing PIC supports

Simple PIC supports are enforced by Procedure findPICSupport in Algo-
rithm 3. To create a simple PIC support for a value ia on ∆ijk, binary and
ternary costs involved in ∆ijk are moved to ia in such a way that there is
a tuple (ia, jb, kc) whose ternary and binary costs decrease to 0. The order
for moving costs is presented in Figure 13. Firstly, binary costs cij , cik, cjk
are extended on ternary cost function cijk by the procedure Extend2To3 (line
10−10). Then, ternary costs cijk are projected on ia by Procedure Project3To1
(line 10). The maximum possible cost projected on each value a ∈ Di, stored
in Pi[a], is computed based on the available binary and ternary costs (line 3).
Binary cost extensions Eij ,Eik,Ejk are computed based on Pi[a], the ternary
and binary costs on two other sides of the triangle (line 5−9). Each extension
is strong enough in the sense that a stronger extension cannot lead to a projec-
tion on ia greater than Pi[a]. This extension is also minimum in the sense that

High order consistencies for Weighted CSPs 17

a weaker extension would result in negative costs. The last condition guaran-
tees that for each binary cost extension Eij(a, b),Eik(a, c) or Ejk(b, c), there
exists a value kc, jb or ia for the remaining variable such that the final resulting
ternary cost cijk(a, b, c)+Eij(a, b)+Eik(a, c)+Ejk(b, c)−Pi[a] = 0. Therefore,
binary cost extensions on ternary functions do not lead to the loss of ternary
AC supports. Moreover, binary cost extensions do not lead to the loss of PIC
supports because PIC supports involve only zero binary costs which cannot
be used for extension.

Fig. 13 The order of cost movements for enforcing simple or full PIC supports, where
unary cost extensions are not included in the enforcement of simple PIC supports. The
flows indicate the direction of cost movements and the numbers under the flows indicate the
order in which the corresponding cost movements are performed

Full PIC supports are enforced by Procedure findFullPICSupport in Al-
gorithm 3 in a way similar to Procedure findPICSupport. The difference is
that unary costs of j, k are extended on binary functions cij and cik respec-
tively, by the procedure Extend1To2, in order to create full PIC supports with
zero unary costs (line 18, 18). After that, binary and ternary costs are moved
to ia in the same way as for enforcing simple PIC supports (line 18). The or-
der in which costs are moved to enforce full PIC supports is also described in
Figure 13. The unary costs of j, k are taken into account for the computation
of Pi[a] as well as for the computation of unary cost extensions Ej ,Ek (line
13,15,17). Similarly to binary cost extensions, unary cost extensions are strong
enough to lead a cost projection Pi[a] without creating negative costs. This
condition ensures that for any unary cost extension Ej[b],Ek[c], there exists a
value a ∈Di such that the final resulting binary costs cij(a, b)+Ej(b)−Eij(a, b)
and cik(a, c)+Ek(c)−Eik(a, c) are equal to 0. Therefore, unary cost extensions
on binary functions cannot lead to the loss of binary AC supports. However,
unary cost extensions on binary functions can lead to the loss of simple PIC
supports, thus modified binary functions are stored in the list T in order to
recall to enforce PIC supports for related values later.

Example 2 Consider the WCSP(a) in Figure 14. It has 4 variables i < j < k < l
and 5 binary cost functions cij , cik, cil, cjk, cjl. Binary costs are represented by
edges (red continuous line) and ternary costs are represented by hyper edges
(blue dashed lines for cijk and green dashed lines for cijl). The absence of (hy-
per)edges indicates a zero cost. The initial problem is FDAC but not FDPIC
because value (i, a) is not fully extensible on ∆ijk. Now, consider enforcing

18 Hiep Nguyen et al.

Algorithm 3: Algorithms enforcing PIC supports

Procedure findPICSupport(i,∆ijk)1

foreach a ∈ Di do2

Pi[a]← minb∈Dj ,c∈Dk
∆ijk(a, b, c);3

foreach a ∈ Di, b ∈ Dj do4

Eij[a, b]← maxc∈Dk
{Pi[a] − cijk(a, b, c) − cik(a, c) − cjk(b, c)};5

foreach a ∈ Di, c ∈ Dk do6

Eik[a, c]← maxb∈Dj
{Pi[a] − cijk(a, b, c) − cjk(b, c) −Eij(a, b)};7

foreach b ∈ Dj , c ∈ Dk do8

Ejk[b, c]← maxa∈Di
{Pi[a] − cijk(a, b, c) −Eij(a, b) −Eik(a, c)};9

foreach a ∈ Di, b ∈ Dj do Extend2To3(i, a, j, b, cijk,Eij[a, b]) foreach10

a ∈ Di, c ∈ Dk do Extend2To3(i, a, k, c, cijk,Eik[a, c]) foreach b ∈ Dj , c ∈ Dk do
Extend2To3(j, b, k, c, cijk,Ejk[b, c]) foreach a ∈ Di do
Project3To1(cijk, i, a, Pi[a]) ProjectUnary(i);

Procedure findFullPICSupport(i,∆ijk)11

foreach a ∈ Di do12

Pi[a]← minb∈Dj ,c∈Dk
∆ijk(a, b, c) + cj(b) + ck(c);13

foreach b ∈ Dj do14

Ej[b]← maxa∈Di,c∈Dk
{Pi[a] −∆ijk(a, b, c) − ck(c);15

foreach c ∈ Dk do16

Ek[c]← maxa∈Di,b∈Dj
{Pi[a] − cijk(a, b, c) −Ej[b];17

foreach b ∈ Dj do Extend1To2(j, b, cji,Ej[b]) foreach c ∈ Dk do18

Extend1To2(k, c, cki,Ek[c]) findPICSupport(i,∆ijk);

Procedure findEPICSupport(i)19

α←mina∈Di
{ci(a)+∑∆ijk,i>j or i>k minb∈Dj ,c∈Dk

{∆ijk(a, b, c)+ cj(b)+ ck(c)}};20

if α > 0 then21

foreach ∆ijk do22

if ¬isSmallest(i,∆ijk) then findFullPICSupport(i,∆ijk)23

R ∶= R ∪⋃∆ijk
{j, k};

UnaryProject(i, α);24

full PIC supports for the values of i. Procedure findFullPICSupport(i, j, k)
computes the amounts of cost for projections/extensions: Pi[a] = Ej[b] = 1.
Other projection/extension costs are zero. After extending a cost of 1 from
(j, b) on cij , it will call Procedure findPICSupport(i, j, k) and compute the
amounts of cost projections/extensions as following:

Pi[a] = Eij[a, b] = Eik[a, a] = Ejk[a, b] = 1.

The resulting problem, presented in the sub-figure 14(d) is still not FDPIC
because value (i, b) cannot be fully extended on triangle ∆ijl. Then Procedure
findFullPICSupport(i, j, l) computes the following projection/extension costs:

Pi[b] = Eij[b, b] = Eil[b, a] = Ejl[a, b] = 1.

The final problem, presented in the sub-figure 14(g) is FDPIC. Unlike
enforcing hard PIC, enforcing simple and full PIC supports can create new

High order consistencies for Weighted CSPs 19

ternary functions, e.g., cijk, cijl. Whenever a binary cost need to be extended
to a ternary cost function that does not exist, the ternary cost function will
be created and initialized with an empty cost for every tuple.

Fig. 14 Cost evolution in a WCSP during the enforcement of full PIC supports (a) original
problem with 5 binary cost functions cij , cik, cil, cjk, cjl, i < j < k < l}. It is FDAC but not
FDPIC because of variable i where (i, a) and (i, b) cannot fully extended on ∆ijk and ∆ijl
respectively. (b) extending a cost of 1 from jb on cij with Ej[b] = 1. (c) extending a cost
of 1 from (ia, jb), (ia, ka) and (ja, kb) on cijk with Eij[a, b] = Eik[a, a] = Ejk[a, b] = 1.
(d) projecting a cost of 1 from cijk on ia with Pi[a] = 1. (e) extending a cost of 1 from
(ib, jb), (ib, la) and (ja, lb) on cijk with Eij[b, b] = Eil[b, a] = Ejl[a, b] = 1. (f) projecting a
cost of 1 from cijk on ib with Pi[b] = 1 and then enforcing NC by projecting a cost of 1 from
ci on c∅. The resulting problem is FDPIC.

5.1.2 Enforcing EDPIC

EDPIC is enforced by Procedure enforceEDPIC in Algorithm 4. The main
idea is to simply enforce EPIC, DPIC and PIC simultaneously. Procedure
enforceEDPIC consists of four inner-while loops and one for-loop to enforce
respectively EPIC, DPIC, PIC and NC.

The first while-loop (line 5-7) aims to enforce EPIC. It firstly put in
R all variables that need to be checked for EPIC based on the auxiliary
queue S (line 4). EPIC supports of variables i ∈ R are enforced by Proce-
dure findEPICSupport (line 7). When enforcing the existential support for
i, EPIC is only responsible for triangles on which i is not the smallest because
DPIC takes care of the remaining ones. That’s why the property of EPIC is
only checked for such triangles (Algorithm 3, line 20). If i has no fully sup-
ported value (i.e., α > 0) such a value can be created by enforcing full PIC
supports for every value of i on every triangle in which i is not the smallest
variable (Algorithm 3, line 23). The EPIC supports of variables neighbor to i

20 Hiep Nguyen et al.

can also be destroyed (due to new values of non-zero cost made by the enforce-
ment of full PIC supports on i) and thus are pushed back to R to be checked
for EPIC later (Algorithm 3, line 23).

DPIC is enforced by the second while-loop at line 8. For a variable j ∈ P ,
only variables that are linked to j by a triangle (line 10) and are the smallest
variable of the triangle (line 11, 11) are considered for checking for DPIC.

PIC is enforced by two while-loops at lines 12 and 16. For a variable j ∈ Q,
every neighboring variable of i is checked for PIC. For each cij ∈ T , i, j and all
variables connected to both i and j are checked for PIC. Simple PIC supports
are enforced in the reverse direction of the DAC order, i.e. in triangles in which
the considered variables are not the smallest (line 15 − 15, 19− 19).

From Algorithm 4 enforcing EPIC, we can obtain algorithms for enforc-
ing other PICs by appropriately keeping the inner while-loops: the first loop
(lines 4− 7) for EPIC, the second one at line 8 for DPIC, the third one at
line 12 for PIC, and both the second and the third ones for FDPIC.

Algorithm 4: Algorithm enforcing EDPIC

Procedure enforceEDPIC1

S = P = Q = X; T ← ∅;2

while Q ≠ ∅ or P ≠ ∅ or S ≠ ∅ or T ≠ ∅ do3

R ← S ∪⋃i∈S,∆ijk
{j, k};4

while R ≠ ∅ do5

i← R.pop();6

findEPICSupport(i);7

while P ≠ ∅ do8

j ← P .pop();9

foreach ∆ijk do10

if isSmallest(i,∆ijk) then findFullPICSupport(i,∆ijk) if11

isSmallest(k,∆ijk) then findFullPICSupport(k,∆ijk)

while Q ≠ ∅ do12

j ← Q.pop();13

foreach ∆ijk do14

if ¬isSmallest(i,∆ijk) then findPICSupport(i,∆ijk) if15

¬isSmallest(k,∆ijk) then findPICSupport(k,∆ijk)

while T ≠ ∅ do16

cij ← T .pop();17

foreach ∆ijk do18

if ¬isSmallest(i,∆ijk) then findPICSupport(i,∆ijk) if19

¬isSmallest(j,∆ijk) then findPICSupport(j,∆ijk) if
¬isSmallest(k,∆ijk) then findPICSupport(k,∆ijk)

foreach i ∈ X do PruneVar(i)20

5.2 Enforcing maxRPCs

In contrast to PICs that are enforced on triangles sharing a variable, maxRPCs
are enforced on triangles sharing two variables of a binary cost function. The

High order consistencies for Weighted CSPs 21

extensible arc support of a value (i, a) in a binary cost function cij is stored
in maxRPCSupport(i, a, j) and the witness for this support on a variable k is
stored in maxRPCWitness(i, a, j, k). In our algorithm enforcing EDmaxRPC,
we use a parameter “level=0” to indicate the semi-fully extensible arc sup-
ports (used by FDmaxRPC) and “level=1” the fully extensible ones (used by
EmaxRPC). We will use these functions below:

– Λijk(a, b, c) = cik(a, c) + cjk(b, c) + cijk(a, b, c): denotes the incompletely
combined cost of tuple (a, b, c), similar to∆ijk(a, b, c) but excludes cij(a, b).

– ⋏kij(a, b) =minc∈Dk
Λijk(a, b, c): denotes the minimum among the incom-

pletely combined cost of tuples involving two values (ia, jb). This is the
maximum cost that can be projected on the pair of values (ia, jb) from two
sides cik, cjk of the triangle ∆ijk

– ⋏̈
k

ij(a, b, level) = [minc∈Dk
{Λijk(a, b, c) + ck(c)} (level = 1) ∨ (i < k)

minc∈Dk
{Λijk(a, b, c)} (level = 0)]: is

the same as ⋏kij(a, b) but takes into account the unary cost ck of witnesses
in the case of (1) fully extensible arc supports (level=1) or (2) semi-fully
extensible arc supports on triangles w.r.t DAC order (i < k)

– �ij(a, b) = ∑k{⋏kij(a, b)}: means the maximum sum of costs that can be
projected on the pair of values (ia, jb) from all triangles ∆ijk sharing i, j.

– �̈ij(a, b, level) = ∑k{⋏̈
k

ij(a, b, level)}: is the same as�ij(a, b) but takes into
account the unary costs of witnesses ck according to the condition (“level”

and the order between i and k) indicated in the definition of ⋏̈
k

ij .

Associated to the above functions are functions arg⋏, arg⋏̈, arg� and arg�̈
where the two first ones return the witness and the two last ones returns the
array of witnesses on the third variables at which the given pair of values can
be extended with a minimum extra cost.

5.2.1 Enforcing maxRPC supports and witnesses

Simple maxRPC support for a value (i, a) on cij is enforced by Procedure
findmaxRPCSupport in Algorithm 5. The main idea to move costs from 2
sides cik, cjk of all triangles ∆ijk to cij via cijk (line 22 − 22) and finally
project costs from cij to (i, a) (line 23) in such a way that there exists a value
b ∈ Dj and a value c ∈ Dk for each triangle ∆ijk such that the binary and
ternary costs involved in the tuple (ia, jb, kc) decrease to 0. The cost that
pairs of values (ia, jb), ∀b ∈ Dj , can receive at most (computed by Procedure

�ij) plus their available binary cost will define the maximum cost Pi that can
be projected to (i, a) (line 12). This allows to compute the real cost Pij[a, b]
that each triangle ∆ijk provides to (ia, jb) for such a projection to be achieved
on ia. It is the minimum of what is needed for this pair of values Pi − cij(a, b)
and what can be provided for it by ∆ijk (line 17). This condition guarantees
that cij has enough costs to make a unary cost projection Pi on ia without

22 Hiep Nguyen et al.

resulting in negative costs. Moreover, if more costs are projected on cij , this
cannot lead to a unary cost projection greater than Pi. In order to project a
cost of Pij[a, b] from cijk to (ia, jb) (line 22), each side (ia, kc) and (jb, kc)
has to extend an amount of cost Eik[a, c] and Ejk[b, c] to cijk (line 22, 22).
These binary cost extensions Eik[a, c], Ejk[b, c] are also the minimum of the
available cost cik(a, c), cjk(b, c) that (ia, kc), (jb, kc) have and the cost that
they need to provide to cijk (line 19, 21).

Full maxRPC support at two levels (fully extensible for EmaxRPC and
semi-fully extensible for FDmaxRPC) is enforced by findFullmaxRPCSupport
in Algorithm 5. The idea for enforcing a full maxRPC support for value (i, a) in
a cost function cij is to extend unary costs from j to cij (line 5) and from third
variables k to cik (line 9). Then, costs are moved in the same way as enforcing
simple maxRPC support in Procedure findmaxRPCSupport (line 10). The
maximum cost Pi that can be projected on ia is recomputed by taking into
account the unary cost cj of supporting values and the unary costs ck of wit-
nessing values via �̈ (line 2). In order to archive this unary projection, each
value jb, kc needs to extend respectively on cij and cik a amount of cost Ej ,
Ek (line 4 and 8). The order in which costs are moved when enforcing full
maxRPC supports is described in Figure 15.

Fig. 15 The order of cost movements for enforcing simple full maxRPC supports where
unary cost extensions are not included in the enforcement of simple PIC supports.

Example 3 Consider the WCSP(a) in Figure 16. It is FDPIC but not FD-
maxRPC because ia has no full AC support in cij which can be can be
extended on both ∆ijk and ∆ijl: (ia, ja) can be extended on ∆ijl but not
on ∆ijk while (ia, jc) can be extended on ∆ijk but ∆ijl. The positive pro-
jection/extension costs computed by the procedure findfullmaxRPC(i, a, j)
are: Pi = 2,Ej[b] = 1. The procedure extends a cost of 1 from jb on cij and
then calls findmaxRPC(i, a, j) which computes the following positive pro-
jections/extension costs: Pi = Ejk[a, b] = Pij[a, a] = Ejl[c, b] = Ejl[c, b] =
Pij[a, a] = 2. The final problem presented in the sub-figure (g) is FDmaxRPC.

Let j be a variable that has had a change in the domain Dj or in unary
cost cj (increasing from 0). The former case can break the witness for the
simple or semi-full supports of variable i neighbor to j in some cij , while the

High order consistencies for Weighted CSPs 23

Algorithm 5: Algorithms enforcing maxRPC supports

Procedure findFullmaxRPCSupport(i, a, j,level)1

// condition: i < j or level = 1

Pi ← minb∈Dj
{cj[b] + cij(a, b) + �̈ij(a, b)};2

foreach b ∈ Dj do3

Ej ← Pi − �̈ij(a, b) − cij(a, b);4

Extend1To2(j, b, cij ,Ej);5

foreach ∆ijk s.t (level = 1 and ¬isSmallest(i,∆ijk)) or (level=0 and i < k) do6

foreach c ∈ Dk do7

Ek ←min(ck[c],maxb∈Dj
{Pi −∆ijk(a, b, c)});8

Extend1To2(k, c, cik,Ek);9

findmaxRPCSupport(i, a, j);10

Procedure findmaxRPCSupport(i, a, j)11

Pi ← minb∈Dj
{cij(a, b) +�ij(a, b)} ;12

b∗ ← argminb∈Dj
{cij(a, b) +�ij(a, b)};13

if Pi = 0 then return14

foreach ∆ijk do15

foreach b ∈ Dj do16

Pij[a, b]←min{Pi − cij(a, b), ⋏kij(a, b)} ;17

foreach c ∈ Dk do18

Eik[a, c]←min{cik(a, c), max
b∈Dj

{Pi − cijk(a, b, c)− cij(a, b)− cjk(, b, c)}} ;
19

foreach b ∈ Dj , c ∈ Dk do20

Ejk[b, c]←min{cjk(b, c), Pi − cijk(a, b, c) − cij(a, b) −Eik[a, c]} ;21

foreach b ∈ Dj , c ∈ Dk do Extend2To3(j, b, k, c, cijk,Ejk[b, c]) foreach22

c ∈ Dk do Extend2To3(i, a, k, c, cijk,Eik[a, c]) foreach b ∈ Dj do
Project3To2(cijk, i, a, j, b, Pij[a, b])

Project2To1(cij(a, b), i, a, Pi);23

ProjectUnary(i);24

maxRPCSupport[i, a, j]← b∗;25

foreach ∆ijk do maxRPCWitness[i, a, j, k]← argmin�ij(a, b∗)[k]26

Procedure FindEmaxRPCSupport(i)27

α←mina∈Di
{ci(a) +∑cij minb∈Dj

{cij(a, b) + �̈ij(a, b, fullLevel)}};28

if α > 0 then29

foreach cij do30

foreach a ∈ Di do31

findFullmaxRPCSupport(i, a, j, fullLevel);32

R ← R ∪⋃cij {j};33

UnaryProject(i, α) ;34

last case can break the witness for the semi-full and full supports. The check
and search for new witnesses is performed by Algorithm 6.

Procedure findWitness remove(i, k, j) handles the case of domain reduc-
tion in Dj . For any value (i, a), it checks the availability of its current (simple
or semi-full) support in cik (line 16). In the case that the current support is

24 Hiep Nguyen et al.

Fig. 16 Cost evolution during enforcing full maxRPC supports in a WCSP (a) original
problem with 5 binary cost functions cij , cik, cil, cjk, cjl and 2 ternary functions cijk, cijl,
i < {j, k, l}. It is FDPIC but not FDmaxRPC due to ia (no full maxRPC support in cij) (b)
extending a cost of 1 from jb on cij with Ej[b] = 1 (c) extending a cost of 2 from (ja, kb)
on cijk with Ejk[a, b] = 2 (d) projecting a cost of 2 from cijk on (ia, ja) with Pij[a, a] = 2
(e) extending a cost of 2 from (jc, lb) on cijk with Ejl[c, b] = 2 (f) projecting a cost of
2 from cijk on (ia, jc) with Pij[a, a] = 2 (g) projecting a cost of 2 from cij on ia with
Pi = 2 and then making NC by projecting a cost of 2 from i to c∅. The resulting problem is
FDmaxRPC.

still available, if the current witness on Dk for this support is no longer avail-
able (line 18) and there does not exist any witness (line 19), another simple
or full support needs to be searched for ia according to i > k (line 23) or
i < k respectively (line 23), This is the same as the case of loss of the current
maxRPC support (line 7).

Procedure findWitness project(i, k, j) handles the case that some unary
costs cj have increased from 0. This procedure is responsible for the semi-full
supports because it is only called in the while-loop enforcing DmaxRPC at
line 7 of Algorithm 7. It is different from findWitness remove by the fact
that unary costs are taken into account when checking the availability of the
current supports and witnesses (line 5, 7) and the existance of another witness
for replacing the current unavailable one (⋏̈ instead of ⋏, line 8).

5.2.2 Enforcing EDmaxRPC

EDmaxRPC is enforced by Procedure enforceEDmaxRPC in Algorithm 7.
It consists of 4 inner-while loops that handle the same propagation queues
S,P,Q,T used in the EDPIC enforcement algorithm.

High order consistencies for Weighted CSPs 25

Algorithm 6: Algorithms enforcing maxRPC witnesses

Procedure findWitness project(i, k, j)1

// evoked by a cost projection on a value of zero cost in Dj, used to

search for a full witness in Dj for the full supports of values of

i in cik such that i < j, i < k
foreach a ∈ Di do2

s← maxRPCsupport[i, a, k];3

need ← false; // need to search for a new full support from scratch4

if s ∈ Dk and ck(s) + cik(a, s) = 0 then5

w ← maxRPCWitness[i, a, k, j];6

if w ∉ Dj or cj(w) > 0 or ∆ikj(a, s,w) > 0 then7

if ⋏̈jik(a, s,wit, semiLevel) = 0 then8

maxRPCWitness[i, a, k, j]← wit;9

else need ← true10

else need ← true if need=true then11

findFullmaxRPCSupport(i, a, k,semiLevel)

Procedure findWitness remove(i, k, j)12

// evoked by the reduction of domain Dj, used to search for a witness

in Dj for the support of values of i in cik such that i > j or i > k
foreach a ∈ Di do13

s← maxRPCSupport[i, a, k];14

need ← true; // need to search for a new simple support from scratch15

if s ∈ Dk and cik(a, s) = 0 and (i > k or ck(s) = 0) then16

w ← maxRPCWitness[i, a, k, j];17

if w ∉ Dj or ∆ikj(a, s,w) > 0 then18

if ⋏jik(a, s) = 0 then19

maxRPCWitness[i, a, k, j]← arg⋏jik(a, s);20

need ← false;21

if need=true then22

if i > k then findmaxRPCSupport(i, a, k); else23

findFullmaxRPCSupport(i, a, k,semiLevel);

The loop line 11 enforces maxRPC by propagating domain reductions of j
stored in the queue Q. For any neighboring value (i, a) of j, the deleted values
in Dj could have been: (1) the simple maxRPC support for (i, a) when i > j;
(2) the simple witness for the simple maxRPC supports of ia in some cik when
i > k; and (3) the simple witness for semi-full maxRPC supports of ia in cik
(of course i < k) when i > j. The deleted values in Dj could not have been
the full supports and witnesses because they must have a possitive cost (m)
to be removed. The loop must to check and search for (1) a simple maxRPC
(line 14-15) and (2) a simple witness (line 16-16).

The loop at line 7 enforces DmaxRPC by propagating the increase from 0
of unary cost cj stored in P . The variables i neighbor to and smaller than j
(line 9) can have lost full supports in cij and thus new full supports need to
be searched for values of i (line 10). Moreover, the full supports in cik, i < k

26 Hiep Nguyen et al.

(line 10) can have lost full witnesses on j if i < j (line 9) and thus need to be
searched for new witnesses (line 10).

The loop at line 4 enforces EmaxRPC by processing the propagation queue
R containing variables that need to be checked for EmaxRPC. The construc-
tion of R from the auxiliary queue S (line 3) has been explained in the case of
enforcing EDPIC. The search for a EmaxRPC support for a variable i is done
by Procedure findEmaxRPCSupport(i) in Algorithm 5. It first checks the
EmaxRPC property at line 28. If there does not exist any EmaxRPC support
(line 29), the procedure will search for a full maxRPC support for any value
of i in any cost function cij by calling to findFullmaxRPCSupport with the
option level=fullLevel. It has to take care of the triangles ∆ijk in which i is
not the smallest variable, because DmaxRPC takes care of the remaining case
(The condition at line 6 of Procedure findFullmaxRPCSupport).

The loop at line 17 enforces maxRPC by propagating the change in binary
costs cij (caused by unary cost extensions from the greater variable between i
and j on cij) stored in queue T . Let i∗ and j∗ be respectively the greater and
the smaller variable between i and j. The modification cij :
– cannot break the full or semi-full maxRPC supports of the smaller variable
j∗ because its value have been supported by values of zero cost.

– can break the simple maxRPC supports for the values of the greater vari-
able i∗ and thus new supports need to be searched for such values (line 20).

– can break the witnesses for maxRPC supports in cik (line 22, 24) or in cjk
(line 23, 25).

6 Experimentation

We have built 3 usecases for high order consistencies (HOCs), denoted by:
– HOCs1: uses HOCs for preprocessing and EDAC for search
– HOCs2: uses resHOCs, a restriction of HOCs, for preprocessing and EDAC

for search
– HOCs3: uses resHOCs for both preprocessing and search.

The restricted resHOCs are defined by limiting the number of triangles
to be checked for the consistencies. The purpose is to have consistencies
weaker but cheaper than HOCs and still stronger than ACs. Let c, c∗ and
c′ = min{c, c∗} respectively be the number of triangles that a WCSP have, can
use at most and uses by HOCr. If c ≤ c∗, c′ = c and all triangles will be used
by resHOCs. Otherwise, c′ = c∗ and only the c∗ strongest triangles are used
by resHOCs, where triangles are evaluated and classified according to the sum
of the mean cost of three involving binary cost functions. The mean cost of
a binary cost function cij is computed by (∑a∈Di,b∈Dj

cij(a, b))/(∣Di∣ × ∣Dj ∣).
In our experimentation, we have chosen c∗ = n(n − 1)(n − 2)/6.104 by basing
on the fact that HOCs seem to be overload when used for preprocessing the
benchmarks having more than n(n − 1)(n − 2)/6.104 triangles, i.e. having a
triangle density larger than 10−4. The graph density of a problem is defined as

High order consistencies for Weighted CSPs 27

Algorithm 7: Algorithm enforcing EDmaxRPC

Procedure enforceEDmaxRPC1

while S ≠ ∅ or P ≠ ∅ Q ≠ ∅ or T ≠ ∅ do2

R ← S ∪⋃i∈S,cij {j};3

while R ≠ ∅ do4

j ← R;5

findEmaxRPCSupport(j);6

while P ≠ ∅ do7

j ← P ;8

foreach cij , i < j do9

foreach a ∈ Di do findFullmaxRPCSupport(i, a, j,semiLevel)10

foreach ∆ikj , i < k do findWitness project(i, k, j)

while Q ≠ ∅ do11

j ← Q;12

foreach cij do13

if i > j then14

foreach a ∈ Di do findmaxRPCSupport(i, a, j)15

foreach ∆ikj s.t. i > j or i > k do findWitness remove(i, k, j)16

while T ≠ ∅ do17

cij ← T ; i∗ ←max{i, j}; j∗ ←min{i, j};18

foreach a ∈ Di∗ do19

findmaxRPCSupport(i∗, a, j∗);20

foreach ∆ijk do21

findWitness remove(i, k, j);22

findWitness remove(k, i, j);23

findWitness remove(j, k, i);24

findWitness remove(k, j, i);25

the ratio of its number of triangles over the number of triangles in a complete
graph. Notice that c∗ < 10 is considered too small to make a difference between
resHOCs and EDAC. In this case, resHOCs will be replaced by EDAC and c′

is set to 0.
In order to evaluate the practical interest of establishing HOCs and their

variants, we compared them to the default local consistency enforced in toulbar2:
EDAC. Indeed, EDAC is still the state-of-the-art for WCSP solving (VAC be-
ing mostly useful for some very hard or specific problems). We use a large set
of benchmarks, as described in Table 1, which has been used in the experimen-
tation of EDAC in [2] for comparing the performance of the toulbar2 solver
with other solvers. This set consists of groups of benchmarks as follows:

– WCSP: contains cost function networks extracted from the Cost Function
Library1, including Combinatorial Auctions [14], Radio Link Frequency
Assignment problems [5], Mendelian error correction problems on com-
plex pedigree [15], Computational Protein Design problems [1] and SPOT5
satellite scheduling problems [3].

1
https://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/?root=costfunctionlib

28 Hiep Nguyen et al.

Categories #inst n d e r c c′ dens
CVPR 1453
ChineseChars 100 9147 2 276677 2 86557 86557 1,14E-06
ColorSeg 21 108910 9 474745 2 131805 32998 2,73E-09
GeomSurf-3 300 505 3 2140 3 8 8 4,46E-07
GeomSurf-7 300 505 7 2140 3 1366 1265 0,00018
InPainting 4 14400 4 57121 2 17732 17732 3,56E-08
Matching 4 19 19 166 2 701 0 0,679
MatchingSte 2 138407 18 414477 2 8 8 2,70E-14
ObjectSeg 5 68160 6 203947 2 31 31 5,91E-13
PhotoMont 2 469856 6 1408134 2 521 521 4,03E-14
SceneDecp 715 183 8 672 2 48 42 4,80E-05
MaxCSP 503
BlackHole 37 114 27 657 2 5375 38 0,01
Coloring 22 120 4 1323 2 1227 277 0,024
Composed 80 58 10 517 2 791 0 0,079
EHI 200 306 7 4549 2 13604 475 0,0029
Geometric 100 50 20 471 2 1694 0 0,086
Langford 4 25 22 352 2 2722 0 0,736
QCP 60 159 7 1384 2 2671 108 0,0057
MaxSAT 427
Haplotyping 100 150428 2 534105 483 61646 61646 2,39E-10
MaxClique 62 484 2 50093 2 1070886 2019 0,079
MIPLib 12 10523 2 45991 20 104 104 5,92E-07
PackupWei 99 9492 2 23731 61 9236 9236 6,87E-07
PlanWithPre 29 14991 2 111259 64 8026 8026 1,76E-06
TimeTabling 25 128243 2 785222 21 40052 40052 1,58E-09
Upgrad 100 18169 2 105097 77 1884 1884 1,88E-09
UAI 211
Grid 21 3143 2 9379 2 2 2 3,74E-08
ImageAlign 10 191 70 1819 2 6218 37 0,0058
Linkage 22 917 5 1560 4 13 13 2,23E-07
ObjDetect 37 60 17 1830 2 34220 0 1
ProteinFold 21 486 267 2291 2 4698 273 0,52
Segment 100 229 12 851 2 315 185 0,00016
WCSP 226
Auction 170 140 2 3593 2 47707 57 0,0869
CELAR 16 126 44 641 2 837 46 0,228
Pedigree 10 1758 11 3247 3 70 70 3,96E-06
ProteinDsn 10 13 123 97 2 311 0 0,966
SPOT5 20 385 4 6603 3 35976 2900 0,0055

Table 1 The set of benchmarks where each line corresponds to a category of benchmarks
(#inst: number of instances, n: mean number of variables, d: mean domain size, e: mean
number of cost functions, r: mean arity of cost functions, c: mean number of triangles, c′:
mean number of triangles used by restricted HOCs at the root of the search tree, and dens:
mean triangle density.)

– MaxCSP: contains unsatisfiable binary CSP problems with constraints de-
fined in extension, including BlackHole, Langford, Quasi-group completion
problem,graph coloring, random composed, and random Geometric.

High order consistencies for Weighted CSPs 29

– UAI: consists of Markov Random Field problems that are collected from
the Probabilistic Inference Challenge 20112 and Genetic Linkage Analysis
problems[10].

– MaxSAT: contains Max-SAT problems that are collected from the Max-
SAT Evaluation3,

– CVPR: contains MRF instances from the Computer Vision and Pattern
Recognition (CVPR) OpenGM2 benchmark4

Number of solved instances Table 2 reports the number of instances per cat-
egory of benchmarks that are solved by each consistency (EDAC and HOCs
implemented in three usecases). The block of 3 green lines shows that in gen-
eral

– HOCs2 (resHOCs used for preprocessing) have the best behavior: solve
up to 1,02% more instances than EDAC, 4,69% than HOCs1 and 4,02%
HOCs3.

– HOCs3 (resHOCs used for both preprocessing and search) are better than
HOCs1 (HOCs used for preprocessing) but both solve less instances than
EDAC by a factor up to 2,97% and 4,19% respectively.

For all usecases, HOCs1 (especially EDmaxRPC when used for prepro-
cessing) are better than EDAC on ChineseChars and GeomSurf7. (1) While
EDAC cannot solve any ChineseChars instance (the same for all the other
solvers reported in [2] as well as VAC) every HOC can solve a certain number
of instances (at least 8 by PIC and at most 16 by EDmaxRPC). (2) Sim-
ilarly to ChineseChars, HOCs1 solve up to 5% instances more than EDAC
on CVPR/GeomSurf-7. The advantage of HOCs on these problems are more
clearly shown in Table 3: many instances cannot be solved in 1 hour by
EDAC but can be solved by HOCs in less than 100s The restricted versions
(HOCs2,HOCs3) slightly decrease the efficiency of HOCs (HOCs1) on these
problems.

However, HOCs1 are worse than EDAC especially on Geometric, Max-
Clique, PackupWei, ProteinFold, Auction and CELAR, on which the number
of instances solved by HOCs1 decreases by a factor up to 5,5%, 64%, 11,5%,
47%, 25% and 75%. Except for PackupWei, these problems are characterized
by a very large mean triangle density, that is respectively 0.086, 0.079, 0.52,
0.0869 and 0.228. For these problems, the restricted versions can significantly
improve the efficiency of HOCs and give results comparable to EDAC, thanks
to the reduction in the number of instances . On the overall set of benchmarks,
the usage of restricted HOCs for both preprcessing and search (HOCs3) are
less efficient than the usage for only preprocessing (HOCs2).

2
http://www.cs.huji.ac.il/project/PASCAL/realBoard.php

3
http://maxsat.ia.udl.cat:81/13/benchmarks/

4
http://hci.iwr.uni-heidelberg.de/opengm2

30 Hiep Nguyen et al.

Table 2: The number of instances per category solved in less than 1200 seconds
(1 hour for CVPR group). Each block of either one or three lines corresponds
to a category of benchmarks whose the name and size are given in the two first
columns. The number of instances per category solved by EDAC and HOCs
are respectively given in the 3rd and the 8 last columns. Three lines of the
combined blocks correspond respectively to three usecases: HOCs1, HOCs2 and
HOCs3. The blocks of a singleton line with name in bold mean that resHOCs
are replaced by EDAC and their two usecases (HOCs2, HOCs3) give the same
result as EDAC. The remaining blocks of a singleton line mean that HOCs1,
HOCs2 and HOCs3 give the same result as EDAC.

Problems inst E
D

A
C

P
IC

D
P

IC

F
D

P
IC

E
D

P
IC

m
a
x
R

P
C

D
m

a
x
R

P
C

F
d

m
a
x
R

P
C

E
d

m
a
x
R

P
C

summary 2820 2053 1972 1980 1979 1979 1967 1982 1980 1981
2051 2055 2060 2058 2059 2069 2072 2074
2013 2031 2030 2018 1993 2010 1992 1998

ChineseChars 100 0 8 8 10 10 10 9 10 16
9 7 9 10 14 10 13 15
9 9 10 10 11 10 12 11

GeomSurf-7 300 281 280 287 285 288 281 292 292 295
280 284 288 290 280 292 292 294
278 283 289 287 273 285 281 282

Coloring 22 17 18 18 17 17 18 18 18 18
17 17 17 17 17 17 17 17
17 17 16 16 17 16 16 16

Geometric 100 91 88 87 87 86 87 87 86 86
92 91 92 92 92 93 91 92
90 90 90 86 87 87 88 86

QCP 60 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14
14 14 14 14 13 13 13 14

Haplotyping 100 1 1 1 1 1 1 2 2 1
1 1 1 1 2 2 2 2
1 1 1 1 1 1 1 1

MaxClique 62 33 15 14 15 14 13 12 14 13
28 29 30 29 29 29 30 30
24 27 24 26 23 23 22 22

MIPLib 12 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2

PackupWei 99 52 48 47 47 47 47 46 47 47
48 46 48 47 48 47 47 47
41 39 42 40 41 39 40 40

Upgrad 100 100 100 100 100 98 100 100 99 98
96 100 96 92 97 99 98 97
92 100 94 92 89 96 93 91

ImageAlignment 10 10 7 9 7 7 6 7 5 5
10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10

Linkage 22 13 13 13 13 14 14 13 15 15
14 13 14 14 14 14 15 15
11 10 11 10 9 10 10 9

ProteinFold 21 19 10 10 10 10 10 10 10 10
Continued on next page

High order consistencies for Weighted CSPs 31

Table 2 – Continued from previous page

Problems inst E
D

A
C

P
IC

D
P

IC

F
D

P
IC

E
D

P
IC

m
a
x
R

P
C

D
m

a
x
R

P
C

F
d

m
a
x
R

P
C

E
d

m
a
x
R

P
C

20 20 20 20 20 20 20 20
20 20 20 20 20 20 19 20

Segment 100 100 100 100 100 100 100 100 100 100
99 100 100 100 99 99 100 100
98 100 99 98 98 100 98 98

Auction 170 166 126 128 130 129 125 129 129 125
167 167 166 167 167 167 167 165
154 156 156 154 147 146 146 144

CELAR 16 12 4 4 3 3 3 3 3 3
12 12 11 11 12 12 12 12
11 12 11 11 11 11 11 11

Matching 4 4 4 4 4 4 2 4 0 0
ProteinDsn 10 9 5 5 5 5 5 5 5 4
Composed 80 80 80 80 80 80 80 80 80 80
Langford 4 2 2 2 2 2 2 2 2 2
ObjDetect 37 0 0 0 0 0 0 0 0 0
ColorSeg 21 0 0 0 0 0 0 0 0 0
GeomSurf-3 300 300 300 300 300 300 300 300 300 300
InPainting 4 1 1 1 1 1 1 1 1 1
MatchingSte 2 0 0 0 0 0 0 0 0 0
ObjectSeg 5 0 0 0 0 0 0 0 0 0
PhotoMont 2 0 0 0 0 0 0 0 0 0
SceneDecp 715 715 715 715 715 715 715 715 715 715
BlackHole 37 10 10 10 10 10 10 10 10 10
EHI 200 0 0 0 0 0 0 0 0 0
PlanWithPre 29 6 6 6 6 6 6 6 6 6
TimeTabling 25 0 0 0 0 0 0 0 0 0
Grid 21 0 0 0 0 0 0 0 0 0
Pedigree 10 10 10 10 10 10 10 10 10 10
SPOT5 20 4 4 4 4 5 4 4 4 4

Number of backtracks Figure 17 presents the mean number of backtracks, com-
puted on the overall set of benchmarks, that EDAC and HOCs implemented
in 3 usescases need for the search. It shows that the number of backtracks
is consistent with the strength of the consistencies. For 3 usescasess, HOCs
use less backtracks than EDAC where HOCs1 (HOCs for preprcessing) are
the best. Compared to EDAC, (1) HOCs1 reduce 35% in the number of back-
tracks (2) The restricted versions HOCs2 (restrcited HOCs for preprcessing)
only can slightly decrease the number of backtracks because of their reduced
strength, where on many categories of benchmarks they are replaced by or
become similar to EDAC with a significantly reduced number of triangles (3)
The restricted versions HOCs3 (restrcited HOCs for both preprcessing and
search) use a number of backtracks smaller than HOCs2 (thanks to the pro-
cess of triangles of variables during search) but larger than HOCs1 (because
of their significant reduced strength).

32 Hiep Nguyen et al.

Solving time Figure 18 presents the accumulated solving time of HOCs in
three usecases. Each sub-figure corresponds to a consistency and each line
corresponds to an usecase. We observe that (1) HOCs2 are the fastest and
HOCs3 are the slowest. (2) The difference in solving time of 3 usecases are
consistent with the strength of consistencies. Precisely, compared to HOCs1:
– the total average time of HOCs2 decreases by a factor going from 1.4 to

2.1 (for resPICs) or from from 1.7 to 3.1 (resMaxRPCs).
– the total average time of HOC3 increases (except for PIC, DPIC, FD-

PIC, FDmaxRPC which create very large speed-ups on hard instances
ChineseChars).

Fig. 17 The mean number of backtracks, computed on the overall set of benchmarks, that
are used by EDAC and HOCs in three usecases

In summary, ChineseChars and GeomSurf7 are two favorables cases for
the usage of HOCs. On these problems, (1) HOCs when used for preprcessing
can solve more instances in less time than EDAC and their restricted versions
slightly reduction the advantage of HOCs. However, on the problems having
large triangle density, HOCs becomes significantly slower and thus solve less
instances than EDAC. In this cases, the retricted versions when used for prepr-
cessing allow to improve the results. We should not use the restricted HOCs
for preprcessing and search that always behave worse than the usage for only
preprcessing, on the overall set of benchmarks.

7 Conclusion

In this paper, we have proposed a group of high order consistencies that are an
extension of hard RPC, PIC and maxRPC to WCSPs. The new consistencies
are strictly stronger than EDAC in the sense that they provide lower bounds
much better than EDAC. This improvement in lower bound is important for

High order consistencies for Weighted CSPs 33

Problem E
D

A
C

P
IC

D
P

IC

F
D

P
IC

E
D

P
IC

m
a
x
R

P
C

D
m

a
x
R

P
C

F
d

m
a
x
R

P
C

E
d

m
a
x
R

P
C

ChineseChars
TST 0012 88 103 - 195 575 34 41 21 119 27 44
TST 0020 96 94 - - 2647 249 260 363 1709 158 158
TST 0024 88 126 - - - - - - - - 662
TST 0027 88 109 - - - - - - - - 865
TST 0041 88 96 - - - 3149 1569 269 - 760 114
TST 0047 112 121 - 215 83 23 49 18 26 28 64
TST 0052 96 107 - 1230 3564 1842 154 77 690 183 46
TST 0059 104 73 - 130 93 37 32 11 28 20 33
TST 0067 96 121 - 201 590 117 143 47 151 41 76
TST 0070 88 96 - 460 2194 392 158 56 210 99 73
TST 0084 120 115 - - - - - - - - 416
TST 0087 88 124 - - - - - - - - 1910
TST 0089 72 92 - - - - - - - - 1148
TST 0099 72 105 - 502 2012 112 101 30 347 65 75
TST 0100 80 102 - 1199 - 591 532 227 1577 402 78

GeomSurf-7
gm113 1487 - 349 254 486 678 166 95 138
gm125 - - 1877 2938 - - 344 274 2516
gm126 - - 2135 - - - 1196 119 201
gm144 - - - - 2806 - 2770 1461 1481
gm157 - - 1914 2173 - - 403 438 262
gm169 - - - - 3146 - 2108 2971 962
gm179 - 1431 366 806 137 - 74 72 67
gm186 - - - - 1674 - 951 842 223
gm187 - - 2206 365 281 - 685 600 182
gm189 - - - - - - - - 2961
gm223 - - 2383 - 922 - 477 426 1473
gm246 - - - - - - - - 1744
gm256 - - - - - - - - 2291
gm25 1490 - 1387 - 653 2880 279 171 395
gm269 - - - 1656 452 - 1046 2948 1182
gm275 - - - - - - 1180 2664 568

Table 3 The solving time (in seconds) for a subset of benchmarks. This subset contains
only ChineseChars and GeomSurf-7 instances which respectively can and cannot be solved
by one of consistencies in 1 hour. “−” means that the problem cannot be solved. Best results
are in bold.

accelerating the search, that is shown by the experimental results. High or-
der consistencies, especially EDmaxRPC, are efficient on grid graphs such as
ChineseChars, GeomSurf-7 in the sense that they solve more instances in less
time than EDAC. However, high order consistencies have not a good behavior
on graphs having a large triangle density.

We also have proposed a restrcited version of high order consistencies. The
best approach for solving WCSPs seems to be to use this restricted version
for pre-processing, not for search. By limiting the number of triangles to be
processed, the restricted versions still have a good behavior on favorable prob-

34 Hiep Nguyen et al.

Fig. 18 Accumulated mean solving time taken by HOCs in three usecases. Each sub-figure
corresponds to a high order consistency and the three lines in it correspond to three usecases:
HOCs1 (usecase1), HOCs1(usecase2) and HOCs1(usecase3). Axis X represents the categories
and Axis Y represents the solving time (in seconds) that is accumulated on each category
of benchmarks. For each consistency (i.e., each sub-figure), categories of benchmarks are
arranged w.r.t the solving time of usecase1.

lems while providing a result better than the original ones and comparable to
EDAC on unfavorable cases.

High order consistencies for Weighted CSPs 35

References

1. Allouche, D., Bessiere, C., .Boizumault, P., Givry, S., Gutierrez, P., Loudni, S., Metivier,
J., Schiex, T.: Decomposing global cost functions. In: Proc. of AAAI (2012)

2. Allouche, D., de Givry, S., Hurley, B., Katsirelos, G., O’Sullivan, B., Schiex, T.: Une
comparaison de logiciels d’optimisation sur une large collection de modles graphiques.
In: Proc. of JFPC-14 (2014)

3. Bensana, E., Lemâıtre, M., Verfaillie, G.: Earth observation satellite management. Con-
straints 4(3), 293–299 (1999)

4. Berlandier, P.: Improving domain filtering using restricted path consistency. In: Pro-
ceedings IEEE Conference on Artificial Intelligenece and Applications (CAIA’95) (1995)

5. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency
assignment. Constraints Journal 4, 79–89 (1999)

6. Cooper, M.C.: High-order consistency in Valued Constraint Satisfaction. Constraints
10, 283–305 (2005)

7. Cooper, M.C., Schiex, T.: Arc consistency for soft constraints 154(1-2), 199–227 (2004)
8. Debruyne, R., Bessière, C.: From restricted path consistency to max-restricted path

consistency. In: Proc. of CP’97, no. 1330 in LNCS, pp. 312–326. Springer-Verlag, Linz,
Austria (1997)

9. Dehani, D., Lecoutre, C., Roussel, O.: Extension des cohrences wcsps aux tuples. In:
Proc. of JFPC-13 (2013)

10. Favier, A., de Givry, S., Legarra, A., Schiex, T.: Pairwise decomposition for combina-
torial optimization in graphical models. In: Proc. of IJCAI’11. Barcelona, Spain (2011)

11. Freuder, E.C.: A sufficient condition for backtrack-bounded search. Journal of the ACM
32(14), 755–761 (1985)

12. Larrosa, J.: On arc and node consistency in weighted CSP. In: Proc. AAAI’02, pp.
48–53. Edmondton, (CA) (2002)

13. Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: getting
closer to full arc consistency in weighted CSPs. pp. 84–89 (2005)

14. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving.
Artif. Intell. 172(2-3), 204–233 (2008)

15. Sánchez, M., de Givry, S., Schiex, T.: Mendelian error detection in complex pedigrees
using weighted constraint satisfaction techniques. Constraints 13(1-2), 130–154 (2008)

16. Schiex, T.: Arc consistency for soft constraints. In: Principles and Practice of Constraint
Programming - CP 2000, LNCS, vol. 1894, pp. 411–424. Singapore (2000)

17. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard and
easy problems. pp. 631–637 (1995)

