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Abstract

This (not so) short text presents some results I’m aware of in the field of soft constraint network pro-
cessing. Given the short format of the school, it does not try to give an exhaustive picture of the current
state of the field (although many references have been included). It was simply not possible.

After a short introduction with motivations, the first section gives some chosen examples of existing
soft constraint frameworks, starting from my favorite generic framework (valued constraint network) and
relating it to other more or less general frameworks including constrained optimization.

Then, we introduce fundamental operations on soft constraints (aka cost functions) and show how these
fundamental operations can be used to process and solve soft constraint networks by systematic (branch
and bound) or local search, by complete or incomplete inference and finally using hybrid methods. Some
polynomial classes for soft constraints are given.

Some existing applications, resources and solvers for soft constraints are finally outlined. Note also
that another overview on the area appeared in [P. Meseguer et al., 2003].

Very likely, this text will contain errors for which you can directly blame me. Thanks for telling me.
Thanks to one of the students, Sergio Mascetti, for pointing out some mistakes that appeared in a

previous version of these notes and in the slides.



Chapter 1

Soft constraint processing

Introduction
The classical constraint network framework is essentially oriented towards satisfaction of all constraints.
The initial credo of the constraint satisfaction problem is that finding an optimal solution is rarely useful,
it suffices to find a satisfactory one. Modeling a problem consists just in identifying decision variables,
associated domains and a list of constraints that states the properties that are needed to define a “satis-
factory” object. In time tabling for example, this includes collecting physical constraints representing for
example the fact that a person cannot be at two different locations at the same time (or a room occupied
by two simultaneous courses) but also the fact that some powerful professor prefers to avoid courses on
Friday afternoon. Despite the unavoidable difficulties of NP-hard problem solving, this approach has been
very successful in practice in several domains. However, in some cases, the problem defined in this way
is overconstrained: there is no “satisfactory” solution. In this case, several phases of model refinement
may be needed to heuristically relax some constraints. This process, when it is feasible, is extremely time
consuming and rarely formalized.

As the time-tabling example shows, overconstrained problems often appear when constraints are used
to formalize desired properties rather than real constraints that cannot be violated. Such desired properties
are not faithfully represented by constraints but should rather be considered as “soft constraints” whose
violation should be avoided as far as possible.

This initial motivation has lead to the design of several extensions of the classical constraint network
model allowing to state beforehand how constraints should be relaxed in case of overconstrainedness. Actu-
ally, it appears that these frameworks are also very adequate to capture constrained optimization problems
(where the usual set of constraints is completed with a specific criteria to optimize). In practice, even
in consistent pure decision problems, users will easily tell you that they prefer some solutions and soft
constraints can often capture such preferences.

When shifting from classical to soft constraint networks, two problems must be solved: how should I
modify the classical CN framework to enable the expression of soft constraints, and then how can I tackle
the resulting optimization problem.

Even if the first true soft constraint paper (which explicitly extends classical constraint networks) I am
aware of was written by [Rosenfeld et al., 1976], the field became really active in the nineties. Since, a lot
of successful exploration has been done to the point were a large subset of the classical constraint network
toolbox (theorems, properties, polynomial classes, algorithms, solvers) have been extended (or shown not
to extend) to cost functions. But there are still large unexplored areas and a lot of work remains to be done.

1.1 Notations
The document essentially uses basic mathematical notions and notations. A k-tuple is a sequence of k
objects denoted (v1, ..., vk). The ith element of a tuple t is denoted t[i]. The Cartesian product of sets
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A1, . . . , Ak, denoted as A1 · · · Ak or
∏k

i=1 Ai is the set of all k-tuples (v1, . . . , vk) such that vi ∈ Ai for
all integers i ∈ [1, k].

A variable represents an unknown element of its domain, assumed to be a finite set of values here.
Given a sequence of variables S = (x1, . . . , xk) and their domains D1, . . . , Dk, a relation R on S is a
subset of D1 · · · Dk also denoted `(S). A value a in Di is often denoted (i, a). The relation has scope
S, arity |S|. When needed, we put an explicit emphasis on the scope of a relation tS ∈ RS which is an
assignment of S. For S′ ⊆ S, tS [S′] is used to denote the projection of tS on S′ which is the subtuple of
t obtained by removing values for variables not in S′. Given a tuple t on S, xi 6∈ S and a ∈ Di, the tuple
t · (i, a) is the tuple over S ∪ {xi} such that t · (i, a)[S] = t and t · (i, a)[{xi}] = a.

Given a relation RS and a set S′ ⊂ S of variables, projecting RS on S′ produces a new relation RS′ =
RS [S′] and t′ ∈ RS′ iff ∃t ∈ RS , t[S′] = t′. Given two tuples tS and tT such that tS [S ∩ T ] = tT [S ∩ T ],
their join tS on tT is a tuple tS∪T such that tS∪T [S] = tS and tS∪T [T ] = tT . Given two relations RS and
RT , their join RS on RT is a new relation RS∪T formed by all possible joins of tuples of RS with tuples
of RT .

DEFINITION 1 A classical constraint network (CN) (X, D,C) is defined by:

• a set of variables X = {x1, . . . , xn}

• a set of domains D = {D1, . . . , Dn}

• a set of e constraints C.

A constraint c ∈ C is a relation on a sequence of variables S, denoted cS . |S| is the arity of cS .
cS ⊂

∏
xj∈S Dj specifies the allowed assignments for the variables of S.

1.2 Soft constraint networks
In this section, I introduce one generic soft constraint framework called valued constraint networks [Schiex
et al., 1995]. I’m obviously biased in this choice by the fact that I have worked using this framework during
the last decade. Writing about soft constraints is much easier for me using this framework. To compensate
for this bias, I will try to relate this as clearly as possible to some existing alternate frameworks.

1.2.1 Valued constraint networks
In classical CN, each constraint specifies which tuple is authorized or not. Soft constraints aim at more
flexibility: we want to be able, for each constraint, to specify to what extent one specific tuple violates (or
satisfies) the constraint. It is therefore natural to transform constraints which are relations characterizing
each tuple as either forbidden or authorized in classical CN into cost functions mapping each tuple to a
specific level of violation. We therefore need a set E of such violation levels. This already give us a vague
idea of what a soft constraint network could be:

DEFINITION 2 A soft constraint network is a tuple 〈X, D,C〉 where:

• X = {x1, . . . , xn} is a finite set of n variables.

• D = {D1, . . . , Dn} is the collection of the domains of the variables in X such that Di is the domain
of xi.

• C is a finite set of e soft constraints. A soft constraint f ∈ C is a function fS on a set of variables
S ⊆ X . S is the scope of the constraint. fS maps tuples over S to elements of a specific set E, that
is fS :

∏
xi∈S Di → E.
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Now, obviously we want to try to violate constraints as little as possible. We shall therefore assume that
the set E is ordered by the order 4v . Also, considering that we want to extend classical networks, we must
assume that the set contains two specific elements representing the complete violation (for forbidden tuples)
and the absence of violation (for authorized ones). These two elements are denoted > and ⊥ respectively.
Obviously a complete violation is stronger than any other level in E so > should be maximum in E.
Conversely, the absence of violation is the smallest possible violation and ⊥ should be minimum.

Now, if we are given a complete assignment t of X , then we will collect a set of levels: one level for
each constraint fS applied to t[S]. To minimize some “overall” level of violation, we must specify how
such levels combine together. We assume that some binary, closed, commutative, associative operator ⊕
can be used to combine all the levels into a global overall level. Associativity and commutativity are needed
to capture the fact that the overall level just depends on the set of levels and not in a specific way used to
combine them. The assumption of a closed operator is comfortable (and done without loss of generality,
we may extend E if needed).

Since> is associated to absolutely forbidden tuples, such that the use of a single such tuple is unaccept-
able, > must be an annihilator for ⊕ (a⊕> = >). Conversely, the absence of violation represented by ⊥
must not contribute in any way to the overall violation level and⊥ should be an identity for⊕ (a⊕⊥ = a).

A solution of our soft constraint network is a complete assignment t such that its overall level

level(t) =
⊕

fS∈C

f(t[S]) 6= >

An optimal solution t is a solution such that level(t) is in some sense minimal: there is no other solution
with a lower level. Because constraint network are essentially used for design or decision problems where
one wants to identify and use one solution, we further assume that the set E is totally ordered. This is a
strong assumption, often realistic in practice.

Obviously, if some constraint f can be violated to level a or b with a 4v b then, all other things being
equal, the solution using the level a cannot be worse than the solution using b: the operator ⊕ must be
monotonic ((a 4 b)→

(
(a⊕ c) 4v (b⊕ c)

)
).

A totally ordered set E and equipped with such an operator is called a valuation structure [Schiex et al.,
1995].

DEFINITION 3 A valuation structure is a tuple 〈E,⊕,4v〉 such that:

• E is a set, whose elements are called valuations, totally ordered by 4v , with a maximum element
> ∈ E and a minimum element ⊥ ∈ E;

• E is closed under a binary operation ⊕ that satisfies:

– ∀a, b ∈ E, (a⊕ b) = (b⊕ a). (commutativity)

– ∀a, b, c ∈ E, (a⊕ (b⊕ c)) = ((a⊕ b)⊕ c). (associativity)

– ∀a, b, c ∈ E, (a 4v b)→
(
(a⊕ c) 4v (b⊕ c)

)
. (monotonicity)

– ∀a ∈ E, (a⊕⊥) = a. (neutral element)

– ∀a ∈ E, (a⊕>) = >. (annihilator)

From an algebraic point of view, this structure can be described as a positive totally ordered commu-
tative monoid, a structure also known as a positive tomonoid [Evans et al., 2001]. When E is restricted to
[0, 1], this is also known, in uncertain reasoning, as a triangular co-norm [Klement et al., 2000].

It should be noted that the annihilator property is not actually needed because it is a consequence of the
other properties.

EXERCICE 1 Show this.

A soft constraint network equipped with a valuation structure S is called a valued network:
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Figure 1.1: An example of soft CN with levels in N ∪∞

DEFINITION 4 A valued constraint network 〈X, D,C, S〉, where S is a valuation structure〈E,⊕,4v〉 is a
soft constraint network using the valuation structure set E as the levels set.

Binary soft constraint networks can all be described using a variant of the so-called microstructural
graph in classical CN (a multipartite graph):

• each value a ∈ Di is represented by a vertex (i, a).

• for a ∈ Di, b ∈ Dj s.t. fij ∈ C, an edge connects the vertex (i, a) and (j, b) with weight fij(a, b)

• unary constraints (if any) are represented as vertex labels.

When complete violation and complete satisfaction are defined, these graphs can be simplified as follows:
edges with a level representing the absence of violation (identity) are omitted and levels which represent
a complete violation (annihilator) are omitted (not the edge). This is incompatible with the usual classical
CN representation (edge = allowed) but very comfortable.

We often assume when dealing with soft CN, that there is one unary cost function for every variable
xi. For simplicity it is denoted fi instead of f{xi}. This is done without loss of generality since one can
use a function mapping all values to ⊥ without changing the problem. Similarly, binary cost functions are
denoted fij . We further assume the existence of a cost function with an empty scope (a constant) f∅. One
should note that this gives an obvious lower bound on the level of an optimal solution of the network. If
you don’t like it, set it to f∅() = ⊥.

1.2.2 Specific instances
By specifying the valuation structure used, many previously defined soft constraint frameworks can be
defined:

• Classical CN: use E = {t, f} to denote respectively an authorized or unauthorized tuple. t = ⊥ 4v

f = >. ⊕ is ∧.

• Conjunctive fuzzy CN [Rosenfeld et al., 1976]: use E = [0, 1] to denote membership degrees of
a tuple to a fuzzy relation. ⊥ = 1 4v 0 = >. The operator ⊕ is min in the sense of the usual
order on [0, 1] (i.e. max for the 4v order). An optimal solution is a solution such that the minimum
(usual order) membership degree used is maximum (usual order). Reversing the E scale gives the
dual max-min optimization problem of Possibilistic CN [Schiex, 1992].

EXERCICE 2 Consider you have an oracle that can solve classical CSP. Show that a conjunctive
fuzzy constraint network P = 〈X, D,C〉 can be solved using log2(n) calls to the oracle where n is
the number of different levels used in the fuzzy network.

Hint: Consider the classical constraint network Pα = 〈X, D,Cα〉 with the same variables and
domains as P and such that for each fuzzy constraint f ∈ C, Cα contains a corresponding hard
constraint cα whose relation contains only the tuples with satisfy c with a membership degree higher
or equal to α (using the usual order over [0, 1])
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CSP E 4v > ⊥ ⊕
classical {t,f} t 4v f f t ∧
additive [0, k] ≤ k(∞) 0 +
fuzzy [0, 1] ≥ 0 1 min
possibilistic [0, 1] ≤ 1 0 max
lexicographic [0, 1]∗ ≤∗ > ∅ ∪
probabilistic [0, 1] ≤ 1 0 1− (1− a)(1− b)

Table 1.1: A table of some specific instances

This simple decomposition process can actually be used to extend most results on classical constraint
networks to conjunctive fuzzy constraint network as long as these results rely on a property preserved
by this slicing approach.

• weighted CN [Shapiro and Haralick, 1981, Larrosa, 2002]: if we assume that some fixed (not
necessarily finite) integer cost k is considered as unacceptable, then we have E = {0, . . . , k}.
⊥ = 0 4v k = >. ⊕ = +. If k = 1 we have a classical CN. If all constraints use only levels
0 and 1 and k =∞ then the problem is the Max-CSP problem [Freuder and Wallace, 1992].

EXERCICE 3 Consider the micro-structure in the Figure 1.1 seen as a weighted CN with k = 4.
Compute the level of assignments (a, a, b, b), (a, a, a, a) and (b, a, b, a).

• lexicographic CN [Fargier et al., 1993]: used to refine fuzzy CN. Elements of the set E are either
multisets1 of elements of [0, 1] or a specific element>. The operation⊕ is multi-set union, extended
to handle > as an annihilator (the empty multi-set is the identity). The strict order ≺v is the lexico-
graphic order induced by the usual order > on multisets and extended to give> its role of maximum
element: let F and F ′, 2 multisets and a and a′ the smallest numbers in F and F ′, F ≺v F ′ iff either
a > a′ or (a = a′ and E−{a} ≺v E′−{a}). The recursion ends on ∅. The lexicographic ordering
is total.

A fuzzy CN can be transformed in lexicographic CN by just replacing every membership degree in
]0, 1] used by a multi-set containing just this element and replacing 0 by >.

EXERCICE 4 Show that an optimal solution of the lexicographic CN is always optimal in the fuzzy
CN and that the converse is false.

• probabilistic CN: used to model problem with constraints of uncertain existence. E = [0, 1], > =
0 < 1 = ⊥. a⊕ b = 1− (1− a) (1− b).

• Bayesian nets: use E = [0, 1], > = 0 < 1 = ⊥ and ⊕ = ×. Each conditional probability table in a
Bayesian net is a cost function. Finding an optimal solution is the MPE (MAXIMUM PROBABILITY
EXPLANATION) problem. Not all such soft CN are correct Bayesian nets (defining a joint probability
distribution).

EXERCICE 5 Show that any lexicographic CN can be transformed in an equivalent weighted CN (define
equivalent). Similarly for a Bayesian net using a weighted CN over R..

EXERCICE 6 Consider the following dinner problem. I’m trying to decide what I will have for dinner with
my friends. The main dish will be either fish or meat. The drink may be either water, Barollo or Greco di
Tufo. Use you own preferences for the dish, the drink and the combination using first fuzzy CN and then
weighted CN. What are the optimal solutions?

Note finally that multiple criteria are just multiple valuation structures that can easily be handled sepa-
rately since they are independent. So, a multiple criteria soft CN is just a multiple VCSP.

1In a multiset, one element may be repeated.
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1.2.3 Operations on cost functions
We can extend the usual operations and notions on classical constraints to cost functions. We consider
three types of operations:

DEFINITION 5 (ASSIGNMENT/CONDITIONING) Consider a cost function fS with scope S. Let xi ∈ S
and a ∈ Di. The assignment a to xi in fS yields the soft constraint fS−xi = fS [xi = a] that maps any
tuple t of `(S − xi) to fS(t · (i, a)).

Assigning a variable in a cost function gives a revised cost function that takes into account the fact that
we know the value of the assigned variable.

DEFINITION 6 (COMBINATION/JOIN) Consider two cost functions fS and fS′ . The combination or join
of the two cost functions with an operator ⊕ is a soft constraint gS∪S′ = fS ⊕ fS′ such that for any tuple
t ∈ `(S ∪ S′), (fS ⊕ fS′)(t) = fS(t[S]) ⊕ fS′(t[S′]). Obviously a solution of a soft CN (X, D,C, S) is
therefore a tuple t such that (

⊕
f∈C f)(t) 6= >.

The combination of two cost functions merges the information of the two cost functions into one. Note
that given a soft CN P = 〈X, D,C, S〉, then by definition the level of a complete tuple t is equal to the
combination of all soft constraints in C applied to t: A soft CN represents the combination of its cost
functions.

DEFINITION 7 (PROJECTION/ELIMINATION) Consider a cost function fS and xi ∈ S, projecting out or
eliminating xi from fS yields a cost function fS−xi = fS [S−xi] (also noted fS [−xi]) that maps any tuple
t ∈ `(S − xi) to mina∈Di f(t · (i, a)).

For S′ ⊂ S, projecting out S′ from fS (or equivalently projecting fS on S − S′) yields a cost function
fS−S′ = fS [S − S′] that maps any tuple t ∈ `(S − S′) to mint′∈`(S′) f(t · t′).

For a given tuple t ∈ `(S − S′), every tuple t′ ∈ `(S′) such that the minimum of f(t · t′) is reached is
called a support of t on fS .

Note that more generally, we can project out or eliminate using any specific AC (associative, commu-
tative) binary operator on levels. Elimination allows to synthetize all the information available on a set of
variables. This process is optimal in the sense that no stronger synthesis can be done (see below).

Elimination is intrinsically computationally expensive. Eliminating one variable requires O(d) oper-
ations for every element in the output and producing a complete table output is in O(dn). Eliminating k
variables requires O(dk) operations per element in the output and the overall complexity is again O(dn)
for a complete table output. Space complexity is O(dn−k).

PROPERTY 1 Given a soft CN 〈X, D,C, S〉, (
⊕

fS∈C fS)[∅] is the level of the network.

DEFINITION 8 A cost function fS is said to be stronger than a cost function gS′ (denoted fS ≥ gS′ ) iff
∀t ∈ `(S ∪ S′), fS(t[S]) <v gS′(t[S′]). We also say that fS is tighter than gS′ or that fS implies gS′ .

If gS′ is the strongest function with scope S′ implied by fS we say that gS′ is a strong implication
(strongly implied by) of fs.

If both fS ≥ gS′ and fS ≤ gS′ then the two constraints are said equivalent.

These definitions properly extend the classical notion of logical implication, induced or redundant
constraint and equivalence in classical CN: in the classical case, if fS is satisfied, then necessarily a weaker
gS′ is satisfied too (it is redundant). The notion of strong implication is loosely related to the notions of
prime implicates in propositional logic.

Using combination, these notions of strength and equivalence can be extended to arbitrary set of cost
functions and constraint networks.

EXERCICE 7 Show that the combination of two cost functions is always stronger than each of the con-
straints. Show that projecting out one variable from a cost function yields a weaker (or implied) soft
constraint. Show that any stronger constraint would not be implied anymore.
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Given a valuation structure 〈E,⊕,4v〉, we will say that S is idempotent iff⊕ is idempotent (a⊕a = a).
The only idempotent operator in valuation structures is max.

EXERCICE 8 Show this.

EXERCICE 9 Consider an idempotent soft constraint network P = (X, D,C, S) and fS , S ⊂ X an
arbitrary cost function which is weaker than the constraint network P . Show that (X, D,C ∪ {fS}) is
equivalent to P .

EXERCICE 10 Consider an arbitrary non-idempotent structure S, exhibit a network and a constraint im-
plied by this network such that adding this constraint to the network yields a non equivalent network.

When ⊕ is strictly monotonic (∀a, b, c ∈ E, (a ≺v c), (b 6= >) then (a ⊕ b) ≺v (c ⊕ b)), then S will
be said strictly monotonic. If we consider two complete assignments t and t′ such that for all fS ∈ C,
fS(t) 4v fS(t′) 6= > and for some gT ∈ C, gT (t) ≺v gT (t′), strict monotonicity guarantees that t will
be preferred to t′ i.e, level(t) ≺v level(t′). This is therefore an attractive property from a rationality point
of view. Note that strict monotonicity is incompatible with idempotency as soon as |E| > 2 (see [Schiex
et al., 1995]).

EXERCICE 11 Show this.

1.2.4 Related frameworks
The design of a generic framework to capture specific instances of soft constraint frameworks was mo-
tivated by the desire to avoid repeated algorithmic work and also to understand why some problems (eg.
weighted CN) are harder to solver than others (eg. classical or fuzzy). It is a matter of compromise between
generality (maximize the number of framework covered) and specificity (stronger properties means more
theorems, properties and algorithms).

Other frameworks have been defined with different compromises. The most famous one is the semiring
network.

1.2.4.1 Semiring constraint networks

A semiring network is a soft constraint network that uses a c-semiring as the set of levels instead of a
valuation structure. The main difference lies in the ability to deal with partially ordered set of levels (lattice
based order). A second less important difference is that levels are considered as satisfaction levels (to
maximize) rather than violation levels (to minimize).

DEFINITION 9 S = 〈E,+s,×s,0,1〉 is a c-semiring defined by:

• A set E of satisfaction degrees.

• An operator +s defines a partial order 4s on the set E: a 4s b iff a +s b = b (ACI: associative,
commutative, idempotent).

• a maximum element 1 and a minimum element 0. Implies that 1 is an annihilator for +s, 0 a neutral
element.

• an AC (associative, commutative) operator ×s combines sat. degrees. 0 is an annihilator for ×s.

• (a×s c) +s (b×s c) = (a +s b)×s c (distributivity).

This is more precisely an Abelian (or commutative) unitary semiring with the extra assumption of the
existence maximum element and of the idempotency of +s to capture lattice based ordering. One can show
that c-semirings are strictly more general than valued networks because of this. Because of this additional
ability, the central problem is to find undominated solutions (such that there is no better solution in the
sense of +s).

However, there is the following general result:
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EXERCICE 12 Show that any valued CN can be transformed in an equivalent totally ordered semiring CN
and vice versa.

EXERCICE 13 Think of one c-semiring that is partially ordered. Show that it is a c-semiring. Build a small
network using this c-semiring, list non dominated solutions. Compute the overall level of satisfaction of
the network.

1.2.4.2 Constrained optimization

Most constraint solvers offer primitives for optimizing a specific integer variable. Since the central problem
of soft constraint networks is to find an assignment that optimizes the specific criteria defined by the overall
violation, it is natural to consider the expression of soft constraint networks as classical networks with a
specific variable representing the optimized criteria.

Consider a valued constraint network 〈X, D,C, S〉; beyond the original problem variables in X , we
introduce one new variable xS for each constraint fS ∈ C. These extra variables have domain E (the set
of possible valuations). Each constraint fS ∈ C is transformed in a classical constraint cS′ whose scope
S′ = S ∪ {xS}. The set of authorized tuples of cS′ is obtained by taking every tuple t ∈ `(S) extended
to S′ by computing the associated semiring value fS(t). Finally, one extra variable xc is introduced that
represents the criteria. It is connected with all the xS variables using one constraint specifying that ⊕xS =
xc. It is easy to check that for any assignment t of X , the only possible value for xc is the overall level of
the assignment t. Maximizing it will lead to an optimal solution. This trick has been first proposed in a
simplified form by [Petit et al., 2000]. It is used to model MAXSAT problems as pseudo-boolean problems
in [de Givry et al., 2003].

This model has the advantage of offering a direct use of existing constraint propagation algorithms
and makes the criteria optimized available as a variable which means that it is easy to impose constraints
between criteria. But the ’reified’ constraints defined, with increased arities will affect variable elimination
algorithms (while it keeps the same good properties on valued CN as we will see). Actually, most efficient
algorithms for general valued networks (such as those that maintain some form of local consistency) prop-
agate cost increases per value. It does not seem possible to represent such fine-grained information in the
previous model. Ideally, some way of integrating both models elegantly has to be found.

Note that conversely, any constraint satisfaction problem with a criteria can obviously be represented
as a soft constraint problem: hard constraints are kept and the criteria can be transformed in a combination
of soft and hard constraints which involve the variables influencing the criteria (possibly using the above
trick to get constraints of lower arities).

1.2.4.3 Others

Many other generic or specific frameworks have been defined. One can cite hierarchical constraint logic
programming (HCLP) [Borning et al., 1989, Wilson and Borning, 1993], Partial CSP [Freuder, 1989,
Freuder and Wallace, 1992] and general fuzzy constraint networks [Ruttkay, 1994] using arbitrary tri-
angular norm for the combination operator. Although one can show that specific subclasses (or instances)
of these frameworks are effectively covered by valued or semiring networks, we can only invite the reader
to refer to the cited papers for more information.

EXERCICE 14 (FOR HOME) After reading [Wilson and Borning, 1993], show that any HCSP using a
global comparator with a specific form (whose generality will be maximized) can be transformed in an
equivalent valued network.

EXERCICE 15 (OPEN) Then, establish a connection between locally or regionally better defined HCSP
and semiring constraint networks (not advised unless you are strongly motivated, likely no strong result
can be found here).

Finally, as the satisfiability problem in propositional logic (SAT) is a subproblem of the constraint
satisfaction problem, the problem MAXSAT [Papadimitriou, 1994] is clearly a subproblem of the weighted
constraint satisfaction problem. This problem is known to be MAXSNP-complete and so without any
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polynomial time approximation scheme. This results directly applies to weighted CN and general valued
CN optimisation problem.

1.3 Search algorithms
Many queries can be associated with a soft CN:

• compute the cost of an optimal (non dominated) solution;

• find one/all optimal (non dominated) solutions;

• find a sufficiently good solution (cost less than k);

• prove that a given value/tuple is not used in any (optimal) solution;

• transform a soft CN into an equivalent but simpler soft CN. . .

Here we consider algorithms that essentially look for one optimal solution or hopefully good solu-
tion. An algorithm that guarantedly produces an optimal solution is said complete. We start by a class of
complete algorithms.

1.3.1 Branch and bound
A first simple approach to solving soft CN is to used a branch and bound algorithm instead of a backtrack
algorithm. The algorithm explores a tree of soft CN. The root is our initial problem P = (X, D,C, S).
Imagine we already know a solution of level α, then we are only interested in solutions with a strictly lower
level: α is an upper bound on the level of an optimal solution. We can truncate the set E by replacing all
valuations larger than α by α in the network, in E and in the map of ⊕. If we set > = α in the valuation
structure, we obtain a valuation structure.

The sons of a given node is obtained by choosing one variable xi of the problem and assigning it one
value of its domain. In the obtained subproblem, all the constraints involving xi have their scope reduced
using the assignment operator. Eventually, some scopes will become empty and contribute to the value of
f∅. Each node n in the tree is associated with a tuple defined by the sequence of assignments done (on
so-called past variables) and by the associated reduced problem with a specific f∅.

The branch and bound algorithm avoids a complete tree exploration by exploiting a local lower bound
lb(n) on the level of an optimal solution of the root problem that can be found under the current node n by
extending the current tuple t to a complete tuple. This is a crucial component of branch and bound: one
aims at an easily computed but strong lower bound (as large as possible). In our case, the current value of
f∅ offers a trivial lower bound. Stronger lower bounds will be considered later.

At a given node n, if lb(n) is larger than or equal to the upper bound> then there is no point in exploring
the subtree: all complete assignments will have a value larger or equal to the upper bound. Conversely,
in a depth first search of the tree, if a complete assignment is reached, it is a new solution with an overall
level equal to the current f∅ and strictly lower than the know upper bound α: we can again truncate the
valuation structure by setting > to this new value, using the level of the new solution as a new stronger
upper bound.

Such a branch and bound algorithm for arbitrary valued networks was initially presented in [Schiex
et al., 1995] and is closely related to the branch and bound procedure for MaxCSP introduced by [Freuder
and Wallace, 1992]. The two objects > and f∅ provide an elegant way of representing the usual upper and
lower bounds of a minimizing branch and bound. This nice representation has been proposed by [Larrosa,
2002]. Other branching or exploration strategies are obviously possible. The procedure depends also on
variable and value ordering heuristics, as in classical CN. The same general principles apply. See [de Givry
et al., 2003] for more information on heuristics.

EXERCICE 16 Apply this algorithm on the MaxCSP defined by the inconsistent three queens problem.
Describe the current problem at each node.
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Algorithm 1: Branch and bound

Function DFBB((X, D,C))
if X = ∅ then > = f∅;
else

xj := selectVar(X);
foreach a ∈ di do
∀f ∈ C s.t. xj ∈ S, f ← f [xj = a];
if f∅ 4v > then DFBB(X − xi, D −Di, C)

The lower bound f∅ used in this algorithm can be replaced by any other available lower bound. The his-
tory of soft constraint algorithms is extremely rich in proposals for this bound. A first simple improvement
can be obtained by taking into in account the fact that before being reduced to empty scope constraints,
assigned constraints will first reduce to unary constraints. Since every variable in the reduced problem
must be assigned, for each variable xi ∈ X we will have to account at least for an extra mina∈Di fi(a). So
a better lower bound is defined by lbfc(X, D,C) = f∅ ⊕

⊕
xi∈X mina∈Di fi(a). This is related to an ex-

tension of forward checking called Partial Forward checking (PFC) [Freuder and Wallace, 1992] extended
to arbitrary valued CN in [Schiex et al., 1995].

EXERCICE 17 Apply this algorithm on the MaxCSP defined by the inconsistent three queens problem.
Describe the current problem at each node.

Several stronger lower bounds, some of them being NP-hard to compute, have been proposed since
in [Schiex et al., 1995, Wallace, 1995, Larrosa and Meseguer, 1999, Larrosa, 2002, Meseguer et al., 2001,
Affane and Bennaceur, 1998, Régin et al., 2001], most often for weighted CN. All these lower bounds
try to take into account the constraints of arity above one in the current subproblem. Many of these have
never been tested in practice and other are clearly subsumed by lower bounds directly induced by local
consistency enforcing (which will be later introduced). Most of these lower bounds are defined on weighted
CN. On idempotent networks, stronger lower bounds are easily produced (see [Rosenfeld et al., 1976, Snow
and Freuder, 1990, Schiex, 1992]).

1.3.2 Russian Doll Search
One class of NP-hard yet effective lower bounds has been introduced in the Russian Doll Search algo-
rithm [Verfaillie et al., 1996]. We assume that we have a binary valued CN. At any point in the tree, the
subproblem to solve can be decomposed in two parts: one part is a set C1 of unary constraint plus the
empty scope constraint produced by constraint assignments, the rest C2 is composed of binary constraints
involving only variables in X , the set of currently unassigned variables. A lower bound on the first set of
constraints is easily obtained by the lbfc lower bound. But all other constraints, which are original con-
straints of the problem, are ignored... A simple way to improve our bound is to effectively solve the CN
defined by this second set of constraints. If level(X, D,C2) denotes the level of an optimal solution of the
problem (X, D,C2), then obviously lbrds(X, D,C) = level(X, D,C2) ⊕ lbfc(X, D,C1) is probably a
much stronger lower bound. In order to compute level(X, D,C2), we will inductively use a branch and
bound using the lbrds lower bound!

But how solving such a subproblem at each node may speed up the search? The essential idea is to use
a fixed variable ordering x1, . . . xn for variable assignment (using always the same variable at the same
depth). In this case, at fixed depth l, the subproblem Pl = (X, D,C2) to solve will be always the same
and defined only by the set of unassigned variables {xl, ..., xn} and all the relevant binary constraints.
It therefore suffices to solve only n such subproblems: we first solve the problem defined just by the
set of variables {xn}. This one is trivial and allows to compute level(Pn). We then solve increasingly
large problems involving one extra variable at each step. Because all the subproblems needed to compute
lbrds at a given iteration have already been solved on previous iterations, we can directly use them in the
current branch and bound iteration. We have to solve n problems of increasing size and the last one is
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our original complete problem. Despite the increased number of searches, the stronger lower bound may
strongly speed up the search by several orders of magnitude. See [Verfaillie et al., 1996] with experiments
on satellite scheduling problems. Several extra tricks can be used to speed up the search by exploiting
the information returned by previous iterations (solutions...). This algorithm has been later sophisticated
by [Meseguer and Sanchez, 2001, Meseguer et al., 2002]. In the specific case where all constraints but
unary constraints are hard, the algorithm has a nice and efficient constraint programming formulation
known as lightRDS [Benoist and Lemaı̂tre, 2003].

EXERCICE 18 Show that despite the repeated number of searches, a ratio of the number of the nodes
explored in the worst case situation for n searches vs. the worst case for a single one is not very large.

1.3.3 Local search
Local search techniques are widely applicable combinatorial optimization methods. The general idea of
local search is to start from a potential solution t, and to try to locally modify t into t′, close to t but
potentially better and repeat until satisfied.

Compared to the previous methods, their main characteristics is that they are not complete (cannot offer
a guarantee to reach an optimum). Applied to a pure satisfaction problem, these methods still have the nice
property that when a solution is found, it is known to be “optimal” but for soft constraint, the optimization
task requires to both find an optimum (in the FNP-complete class of problems) and to prove that no better
solution exists (a co-FNP problem for which no short certificate exists under the usual assumption that
P is not NP). Nevertheless, these methods have often good results and are reasonably easy to implement
which makes them attractive when complete methods are unable to tackle difficult problems (there are
other alternatives in this case, among which relaxed version of complete search can also be considered, see
for example [de Givry and Jeannin, 2004]).

We don’t intend to give here a course on local search. There are so many different approaches that a
simple course on the topic would require a lot of time. Just to cite a few, consider methods like simulated
annealing, Tabu search, variable and large neighborhood search, greedy random adaptative search, genetic
algorithms, ant colony and bee swarm optimization, Go with the winners... There are both very good
books [Aarts and Lenstra, 1997] and very good background papers [Blum and Roli, 2003] on this topic.

So we just highlight the essential principles and indicate how it can be used to solve soft constraint
problems and simply combined with complete search methods.

In constraint networks, local search methods explore the space of complete assignments (potential
solutions) by incrementally modifying one or several potential solutions (which may sometimes be set
of complete tuples represented concisely for example by a partial tuple [Pralet and Verfaillie, 2004]). We
restrict ourselves to the simple case where the algorithm maintains a current complete tuple t of the soft CN
(X, D,C, S). A move is an elementary operation that returns a neighbour of t′ and the set of all neighbors
of t is its neighborhood. A trial is a succession of moves and a local search a succession of trials. The
criteria to optimize (minimize here) is its level and the general idea is to favor moves that will decrease the
level of the tuple, yet avoiding to get stuck in local minima.

A traditional move in constraint networks is to pick a variable and to change the assignment of the
variable in the tuple t (or of several variables if large neighborhoods are considered). A general schema
for local search capturing a reasonable percentage of the existing methods is given in Algorithm 2. The
schema is parametrized by the number of allowed moves and trial (Max-trials, Max-Moves) and by three
procedures that will generate the first putative solution (NewSolution), generate a possible move from t
(ChooseNeighbor (t)) and decide if the move is executed based on the change of the criteria it induces
(Accept? (δ)). A basic method, greedy search, is defined by:

• ChooseNeighbor (x): choose randomly a best neighbor (greedy).

• Accept? (δ) : true (We always accept)

which get rapidly stuck in local minima but is greatly improved using random moves with a fixed small
probability.

Local search methods being brute force methods, special care must be taken to make the space explo-
ration as efficient as possible:
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Algorithm 2: A local search schema
LocalSearch ();
x∗ ← NewSolution ();
for t = 1 to Max-Trials do

x← NewSolution ();
for m = 1 to Max-Moves do

x′ ← ChooseNeighbor (x);
δ ← (ϕ(x′)− ϕ(x));
if ϕ(x′) < ϕ(x∗) then

x∗ ← x′;
if Accept? (δ) then

x← x′;

return Nothing better than (x∗, ϕ(x∗))

• a solution should be simple to represent (here a tuple)

• the application of a move should be typically constant time

• the change in the criteria after a move should be incrementally computed from the previous one
(constant time).

Specific languages have been designed to facilitate this [Laurent Michel and Van Hentenryck, 2000].
There is a very large bibliography on application of local search to various combinatorial problems some
of which being direct instances of soft (often weighted) constraint networks. We just give here some
references directly related with soft constraints [Lau and Tsang, 2001, Galinier and Hao, 1997, Loudni and
Boizumault, 2003].

There are many different way to integrate local search with complete branch and bound based search.
The most simple (and yet effective) method is to use local search techniques to provide the initial upper
bound for optimization. But many other combination exists: complete methods can be used to explore large
neighborhoods more efficiently [Loudni and Boizumault, 2003], can be used as guide during tree search...

1.3.4 Experimenting with soft CN
As in the classical CN case, benchmarking is one possible way to validate the efficiency of a new solving
algorithm. Benchmarking can be done on several types of problems: (often simplified) real problems,
academic problems and random problems. In this section, we just consider random networks, but see 1.6.1
for resources on other types of problems.

Existing random models for soft CN are essentially classical SAT or classical CN generators. Be-
cause the generators are naturally capable of generating unsatisfiable instances, it suffices to generate such
problems and solve the MaxCSP/MaxSAT problem where the aim is to find an assignment that minimizes
the number of violated constraints/clauses. It is therefore usual to generate problems far from the phase
transition region induced by these generators.

The usual observation is that there is no phase transition in MaxSAT/MaxCSP random problems. In-
deed, as far as the problem is inconsistent, a complete solver has to solve both an NP problem (finding
an optimal solution) and a co-NP problem (proving optimality) and will therefore always work around
some phase transition for a pure decision problem (is there an assignment that violates less than k con-
straints/clauses). Problems are therefore increasingly difficult as the size of the problem grows.

However, some side issues may blur this figure:

• bounded arity SAT generators: since 3SAT is NP-complete, a lot of effort has been spent on 3SAT
problems. In soft CN, even Max-2SAT is NP-complete so we can even consider 2SAT problems.
Usually, for a fixed number of variables, the number of clauses is increasingly augmented. But
many generators avoid generating duplicate clauses. With n variables, this means that the number

12



0

5000

10000

15000

20000

0 20 40 60 80 100

nu
m

be
r 

of
 n

od
es

constraint tightness

n = 30, d = 10, c = 50%

satisfaction

Figure 1.2: Classical CSP phase transition

0

20000

40000

60000

80000

0 20 40 60 80 100

nu
m

be
r 

of
 n

od
es

constraint tightness

n = 15, d = 5, c = 50%

satisfaction
optimization

Figure 1.3: Finding an optimal solution

0

100000

200000

300000

400000

0 5 10 15 20 25 30 35 40

nu
m

be
r 

of
 n

od
es

alpha

n = 15, d = 10, c = t = 70%

optimum

Figure 1.4: Is there an assignment that violates less then k constraints

13



of clauses is bounded and that ultimately when we increase the number of clauses, the problem will
be trivial and formed of all possible k-clauses on n variables. These problems are usually trivially
solved as far as a non stupid bounds are used. Therefore, the complexity seems to lower on very tight
problems but this depends on the algorithm.

It is therefore a good idea to use generators that allows for duplicate clauses. Note also that dupli-
cate (weighted) clauses MaxSAT is FPNP -complete whereas without repeated clauses, it is only in
FPNP [log n] [Papadimitriou, 1994].

• random binary CN: here, for a fixed number of variables n and a fixed number of values d, one may
explore either the constraint tightness or the constraint density parameters. If the constraint tightness
is used, then ultimately, all constraints will be hard constraints forbidding everything and any non
trivial lower bound will detect this immediately. This is different with constraint density (a complete
problem will be very hard usually).

So one should not restrict experimental studies to only constraint tightness.

This has lead to the observation of (spurious ?) phase transitions in MaxCSP Larrosa and Meseguer
[1996].

1.4 Inference algorithms
In propositional logic or classical CN, inference algorithms are in charge of producing formulas which are
logical consequences (if the inference system is sound) of a set of formulas. It is said complete if it can
produce arbitrary logical consequences. In a weaker form of completeness, one siply ask for the ability to
detect inconsistent set of clauses/constraints by the production of the empty clause/constraint.

Using cost functions, what we may aim at is the production of cost functions which are “implied” by a
soft constraint network (see 1.2.3). Among these, the strongest zero-arity constraint implied by a soft CN
is specifically interesting since it gives the level of the network. We consider that an inference mechanism
is complete for valued CN when it is capable of producing this constraint. This is a very weak requirement
and stronger definitions can certainly be considered.

1.4.1 Complete inference
In this section we consider inference systems which are based on variable elimination. This very general
technique has been extensively used in several domains (for linear equations, relational databases and cost
function processing among others) and it is a complete inference mechanism according to our definition.
This is a quite old result actually for weighted CN since it already appears in [Bertelé and Brioshi, 1972]
where elimination algorithms are introduced as non serial dynamic programming algorithms.

The algorithms described by Bertelé and Brioshi [1972] generalize corresponding variable (bucket)
elimination algorithms for classic CN. This generalization from clauses/constraints to cost functions is
actually straightforward and purely operational: by replacing the projection and join/combination operators
used in the bucket elimination algorithm by their extended version for soft constraints, one obtains an
algorithm that directly applies to soft CN and more. We therefore just introduce the basic algorithm and
give some examples. We often use the historical denomination used in the seminal book of [Bertelé and
Brioshi, 1972].

1.4.1.1 Variable elimination

Consider an arbitrary valued CN (actually, this approach can also be used for a class of problems that
properly includes c-semiring structures: it also includes counting problems, see [Shenoy, 1991]).

Consider the cost function defined by ⊕fS∈KxfS of all constraints in Kx and project out x from it
getting fx = (⊕fS∈KxfS)[−x].
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PROPERTY 2 The constraint fx = (⊕fS∈Kx
fS)[−x] is implied by (⊕fS∈Kx

fS). Furthermore, for any
assignment t of the variable in Lx, there is an assignment t′ extending t on x such that:

(⊕fS∈Kx
fS)[−x](t) = (⊕fS∈Kx

fS)(t′)

Such tuples t′ are called the supports of the tuple t.

This follows from the definition of projection.
Now, if we remove all the cost functions in Kx from the network, remove variable x from X and

instead put back the new cost function (of scope Lx) fx = (⊕fS∈Kx
fS)[−x], we get a network with the

same optimal cost (by the property above).
We can do this repeatedly. This is variable elimination. At the end we get a zero-arity constraint whose

level is the level of the network (by induction).

EXERCICE 19 Apply this to the inconsistent three queens problem. Pay attention to keep all the intermedi-
ate cost functions. Now, trace back all the supports inductively from the final zero arity constraint to collect
all the optimal solutions.

Defined for arbitrary graphical models, this algorithm is also known as bucket elimination [Dechter,
1997].

• fix a variable ordering x1, . . . , xn

• one bucket per variable, from last to first: contains all constraints involving the variable (not already
in a another bucket).

• process from last to first:

1. join all constraints Kx in the bucket

2. eliminate the current variable by projecting it out.

3. put the projection in the first bucket that contains one variable of Lx.

What is the complexity of this process?

• Time complexity: dominated by the time to compute the largest on K. Exponential in |L|+ 1 for the
largest L.

• Space complexity: dominated by the space to store the largest projection (on K)[L]. Exponential in
|L| for the same L.

Can we influence this maximum |L| by the order used to eliminate variables? Yes, and this depends
intimately on the structure of the graph of the problem (binary networks). These results have also been
extended to hypergraphs.

EXERCICE 20 Consider the graph in Figure 1.5. What is the maximum size of the set L over the complete
elimination for orders A,C, B, F,D,G and A,F, D, C,B,G?

This leads to the definition of width, induced graph and induced width.

DEFINITION 10 For a graph G = (V,E) and an order of vertices d, the width of a vertex is the number
of connected predecessors (parents) in the graph. The width of the ordered graph is the maximum width of
a vertex. Finally, the width of the graph is equal to its minimum width over all possible vertex ordering.

EXERCICE 21 Compute this on the previous graph using order A,C, B, F,D,G and A,F, D, C,B,G.
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The induced graph simulate the elimination algorithm: when we eliminate we induce a new constraint
that is added to the problem. We represent this constraint using a clique added to the graph. Therefore,
by processing vertices from the last to the first, we connect all the parents of a vertex together (this is the
current set L).

The width on an induced graph is equal to the set of the largest L we will deal during elimination (also
known as the k-tree number, max-clique size−1, tree width. . . ). the bad news is that finding a min-induced
width ordering is NP-hard.

EXERCICE 22 Use this elimination algorithm on a linear network (a network forming a line). What com-
plexity do you get starting from an extremity? Now what can you get on a tree ?

To better understand how a graph with treewidth k looks, there is a simple characterization of them
as partial k-trees. This does not help finding the right k but gives a feeling of how a graph with limited
induced width looks like:

DEFINITION 11 A k tree is inductively defined as a k-clique, or by the addition of a new vertex to a k-tree,
connecting it to all vertices of a k-clique in it.

EXERCICE 23 Draw a 2-tree, a 3-tree.

Notes This class of algorithms has been repeatedly rediscovered, improved, refined. It is especially
applicable to all graphical models which are frameworks with variables, domains and local functions.
CN, soft CN, Bayesian nets... are examples of graphical models. These algorithms can solve decision,
optimization and counting problems. Some references in this area are [Bertelé and Brioshi, 1972, C. Beeri
et al., 1983, S.L. Lauritzen and D.J. Spiegelhalter, 1988, Pearl, 1988, Dechter and Pearl, 1989, Shenoy,
1991, Dechter, 1999, Bistarelli et al., 1997]. A very nice example of a purely academic use of variable
elimination appears in [Larrosa and Morancho, 2003].

Instead of eliminating just one variable after the other, it is also possible to eliminate several variable
in a row. This is called block by block elimination in [Bertelé and Brioshi, 1972] and is related to cluster
tree elimination algorithms [Dechter, 1999]. This can improve the spatial complexity.

A related class of work combines the exploitation of the graph structure (a tree-decomposition of the
graph) similarly to the variable elimination algorithm, the use of tree-search to solve each combined con-
straint in this decomposition together with local strong bounds as above. The first reference in the area
is probably [Freuder and Quinn, 1985] pseudo-tree search algorithm which is defined only on classical
CN (but is easily extended to valued CN) and was actually used in conjunction with Russian Dolls Search
in [Javier Larrosa et al., 2002]. It was first considered in its general form for discrete integration tasks in
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Bayesian nets by [Adnan Darwiche, 2001] and then considered with additional propagation as the Back-
track Tree Decomposition for optimization by [Terrioux and Jégou, 2003].

1.4.2 Incomplete inference
When the graph structure is not ideal for complete inference (too space or time consuming), we may try
to limit ourselves to some less ambitious (having only a lower bound on the optimum) but more tractable
problem. We call this incomplete inference.

1.4.2.1 Mini-buckets

Since the computation of the combination of all constraints in Kx is very expensive, one can instead of
computing

fx = (⊕fS∈KxfS)[−x]

partition the set Kx in several subsets Ki
x and just compute a family of cost functions

fx
i = (⊕fS∈Ki

x
fS)[−x]

If the number of variables involved in each “mini-bucket” is small, the combination and the projection
are efficient and generate only small arity cost functions. Then, we can perform variable elimination using
the family fx

i instead of fx (after removing x and the constraints in Kx we just put the fx
i back). Since:⊕

fx
i ≤ fx

because taking the minimum at the latest is always better, the problem obtained has a level which is
less than (or equal to) the level of the original problem. Doing this repeatedly will inductively produce a
lower bound available as the final f∅ [Dechter, 1997]. If k is the maximum number of variables in every
bucket then this algorithm is in time O(e.dk) and space O(e.dk−1). For k = 2 on binary constraints, this
is related to directional arc consistency enforcing (see next section).

1.4.2.2 Soft local consistency

In classical CSP, local consistency properties are essential components of the toolbox for solving CN. A
local consistency property is defined as a relaxation of consistency which can be checked in polynomial
time. It is accompanied by corresponding “filtering” or “enforcing” algorithms that compute, usually in
polynomial time, and from any given CN, an equivalent network that satisfies the property. Probably the
most famous local consistency level is the so-called arc consistency level. The essential use of such filtering
algorithms lies in the fact that if this equivalent problem (called the locally consistent closure) is empty,
then the initial problem is obviously inconsistent too.

The same motivation exists for extending local consistency to soft constraints: the hope that the equiva-
lent locally consistent problem may provide a better lower bound on the level of consistency of the network
than the initial value of f∅ (or lbfc).

In the sequel we consider binary soft constraint networks 〈X, D,C, S〉. This restriction is done only
for the sake of simplicity since most results have been originally presented for arbitrary arities.

A first operational approach A first approach to extend local consistency is operational: by directly
extending the fundamental operations that underlie local consistency to soft constraints, one may hope to
obtain properties and algorithms that will apply to soft networks (as in the variable elimination case).

DEFINITION 12 Consider a classical network (X, D,C), variable xi ∈ X is said to be arc-consistent
relative to a constraint cij iff for every value a in Di there exists a pair (a, b) ∈ cij such that b ∈ Dj .
b is said to be a support of a on cij . A variable xi is arc-consistent when it is arc-consistent w.r.t. all
binary constraints involving it. The network (X, D,C) itself is arc-consistent when all its variables are
arc-consistent.
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In other words, a variable xi is arc consistent (AC) w.r.t. cij when Di ⊂ (cij on Dj)[xi]: all the
information provided by one binary constraint cij and the domains of the other variable involved xj does
not provide any new information on xi domain. This definition only uses constraint composition (Join
that corresponds to combination ⊕), projection and constraint ordering by inclusion which we all already
extended to soft constraints. We can therefore consider a first possible definition of arc consistency for soft
CN as follows:

DEFINITION 13 Given a soft constraint network P = 〈X, D,C, S〉, a variable xi ∈ X is arc-consistent
w.r.t. a constraint fij iff for every value ai ∈ Di, fi ≥ (fij ⊕ fj)[xi]. P is arc-consistent when all its
variables are arc-consistent w.r.t. to all the binary constraints which involve it.

It is natural to consider an associated arc-consistency enforcing algorithm that should transform an
original soft network P in an equivalent network (in the sense of≥, see 1.2.3) which is also arc-consistent.
This algorithm works by considering all variables xi that violate the arc-consistency condition (fi < (fij⊕
fj)[xi]). In this case, one simply enforces fi ← fi ⊕ (fij ⊕ fj)[xi] as the Revise procedure does in
the classical case. Note that this can only increase the levels of values in fi (and thus the lower bound
lbfc). This is done iteratively until quiescence (if any). A naive version of the algorithm is presented in
Algorithm 3. The boolean Q is used to represent quiescence.

Algorithm 3: Enforcing arc consistency in soft idempotent constraint network
Q← false;
while Q do

Q← true;
foreach xi ∈ X do

foreach fij ∈ C do
f ← fi ⊕ (fij ⊕ fj)[xi];
if f 6= fi then

fi ← f ;
Q← false;

This definition and the associated enforcing procedure have been initially formulated in a more general
settings, for arbitrary local consistencies (not only arc or k) in [Bistarelli et al., 1995, 1997] with the
following positive result:

THEOREM 1 If×s is idempotent then the algorithm terminates and yields a unique equivalent arc-consistent
soft network.

By uniqueness we mean that the network obtained at the end is unique and independent of the order of
processing of variables/constraints in Algorithm 3. The condition of idempotency is sufficient but can be
slightly relaxed for termination. However, it is a necessary condition to guarantee equivalence.

EXERCICE 24 Show that the constraint (fS ⊕xj∈S,j 6=i fj)[xi] is implied by the network. Consider a
non-idempotent structure and show that just one iteration can strictly increase the level of some complete
assignments.

Note the these results apply without any assumption of total order and therefore, beyond fuzzy con-
straint networks (which is the only totally ordered idempotent c-semiring), they apply to all partially
ordered c-semiring structures such as multi-criteria optimization with only idempotent criteria or, more
significantly, to set lattices based criteria. However, a lot of real problems do not rely on idempotent op-
erators which suffer from insufficient discrimination and rather rely on frameworks such as weighted or
lexicographic constraint networks.
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1.4.2.3 Dealing with more operators

It is easy to see that local consistency defined as above cannot work in non idempotent networks because
adding some implied constraint may increase the level of some complete assignments (equivalence is lost).

How can we avoid this increase and preserve equivalence ? To achieve this, we need to be able to
compensate for the increase of level at the unary level by a corresponding decrease at the binary level. We
therefore require a new operation in order to be able to “subtract” some level from an higher level. This
was first considered by [Schiex, 2000]:

DEFINITION 14 In a valuation structure S = 〈E,⊕,4v〉, if α, β ∈ E, α 4v β and there exists a valuation
γ ∈ E such that α⊕ γ = β, then γ is known as a difference of β and α.

The valuation structure S is fair if for any pair of valuations α, β ∈ E, with α 4v β, there exists a
maximum difference of β and α. This unique maximum difference of β and α is denoted by β 	 α.

Several examples of fair and unfair structures are given in [Cooper and Schiex, 2004] but all the usual in-
stances of totally ordered c-semiring are fair or can be plunged in a fair equivalent structure. For example, in
fuzzy networks using s = min, the difference is also min since if α <s β, then min(alpha,min(α, β)) =
β. In weighted networks where s is the bounded addition defined by α+kβ = min(k, a+b), the difference
is −k defined by:

α−k β =
{

α− β : α 6= k
k : α = k

This allows us to define a new fundamental operation on cost functions called extraction:

DEFINITION 15 Let fS and fS′ be two cost functions such that fS′ < fS , the extraction of fS′ from
fS is the cost function gS∪S′ = fS 	 fS′ such that for any tuple t ∈ `(S ∪ S′), (fS 	 fS′)(t) =
fS(t[S])	 afS′(t[S′]).

Note that fS′ ⊕ (fS 	 fS′) is equivalent to fS : it is now possible to add an implied constraint to a
network and then extract it from its source to preserve equivalence. We have all the elements to define local
consistencies on fair structures. This has been done for arbitrary arity constraints in [Schiex, 2000, Cooper
and Schiex, 2004] and for k consistency in general in [Martin Cooper, 2005]2. For simplicity, because it is
a frequently used case in practical problem, which is very general and because the bibliography contains
many results defined on this case and whose extension to the general case requires more thinking, we
restrict ourselves in the rest of the section to weighted CN3

Our first (doomed to fail) tentative is to reuse the previous definition of AC and just be smarter when
we enforce it by compensating for the combination of any new implied constraint by extracting it first from
its source (which must be made explicit). Consider the network in Figure 1.6(a) using an infinite upper
bound. It has two variables x and y with two values a and b. There is one binary constraint fxy and one
non trivial unary constraint.

Following our previous operational method we can combine fxy and fx and project on y. We get a non
trivial cost function that maps b to 1. So we first replace fxy by fxy ⊕ fx and clear fx (making the source
of the projection explicit), then replace fy by fy ⊕ (fxy ⊕ fx)[y] (combine the implied constraint) then
to compensate we extract it from its source. We get a network which is symmetrical w.r.t. to the initial
network. Obviously, we are therefore entitled to apply the same process symmetrically again and again:
our algorithm does not terminate. This has been first considered in [Schiex, 2000] and later called Full
Arc Consistency [Simon de Givry et al., 2005]. It is a nice property but obviously not a terminating local
consistency. To enforce termination, two methods have been tried and combined:

• by forbidding any extraction that would lower some unary function cost. Termination is guaranteed
by the fact that these costs can only increase. This has lead to a working definition of AC.

2Note that these papers use two operations called “Project” (which combine projection and extraction) and “Extend” (which
combines combination and extraction) instead of just using extraction and are more involved because they aim at maximum generality
(and are effectively able to tackle arbitrary fair valued CN).

3Weighted CN have no idempotent elements (such that a ⊕ a = a) beyond k = > and 0 = ⊥. This simplifies a lot the general
AC enforcing algorithms and the definition of associated properties which include additional properties to ensure that idempotent
elements are propagated enough to ensure equivalence with AC on classical and fuzzy cases.
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• by imposing an order on variables and allowing extraction of cost from unary function costs only in
one direction. This has lead to Directional AC.

Merging both gives Full Directional AC.
Consider the weighted network in Figure 1.7(a) using an upper bound k = 4 (the set of costs is

[0, . . . , 4], with ⊥ = 0 and > = 4). It has three variables X = {x, y, z} with values a, b. There are
2 binary constraints fxz, fyz and two non trivial unary constraints fx and fz . One optimal solution is eg.
x = y = z = b, with cost 2.

Node consistency Consider variable z. We can project the unary constraint fz on the empty scope. We
get a non trivial constraint that has constant cost 1. Thus we can replace the initial f∅ equal to 0 with a new
non trivial constraint f∅ ⊕ fz[∅]. To compensate for this, we also extract it from its source and replace fz

by fz 	 fz[∅]. We just enforced node consistency and got an equivalent network 1.7(b). The network has
a better obvious lower bound f∅. It is node consistent [Larrosa, 2002].

DEFINITION 16 (NODE CONSISTENCY) Value (i, a) is node consistent (NC) if f∅ ⊕ fi(a) < k = >.
Variable i is NC if: i) all its values are NC and ii) there exists a value a ∈ Di such that fi(a) = 0. Value
a is a support for the variable i. P is NC if every variable is NC.

Node consistency characterizes a network where all unary information has been transmitted at the 0-ary
level (ii) and all available information at the 0-ary level that could be transmitted back to the unary level
w/o loss of information at the 0-ary level has effectively been transmitted (i).
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EXERCICE 25 Comparer the lower bound f∅ obtained after enforcing NC and the lower bound lbfc com-
puted on the initial network.Show that the former is never lower than than the latter and sometimes strictly
better on weighted CN.

Consider now the remaining network, if we project out variable z from the cost function fyz , we get a
non trivial unary cost function on y which is equal to 1 on value a. We can replace fy with fy ⊕ fyz[y]
and replace fyz with fyz 	 fyz[y]. We just enforced a bit of arc consistency and got an equivalent network
(c) with a better unary constraint. We can repeat this using fxz[z] and get another network (d) still more
explicit. This network is arc consistent [Schiex, 2000, Larrosa, 2002, Cooper and Schiex, 2004].

DEFINITION 17 (ARC CONSISTENCY) Value a ∈ Di is arc consistent (AC) with respect to constraint fij

if there is a value b ∈ Dj such that fij(a, b) = 0. Value b is called a support of the value (i, a). Variable
xi is AC if all its values are AC wrt. every binary constraint affecting i. P is AC if every variable is AC
and NC.

Consider now the cost functions fyz and fz together. If we project fyz ⊕ fz to y we get a non trivial
constraint on y that maps b to 1. So we can, 1) replace fyz by fyz ⊕ fz , replace fz by fz 	 fz and replace
fy by fy ⊕ (fyz ⊕ fz)[z]. This gives the network e) which is not node consistent on y. We project and
extract from fy to f∅. The lower bound is again increased. Note that value a of x can also be deleted
(back-propagation from cost to values) because fx(a)⊕ f∅ = 4 = >. This gives the network f).

Here we have combined the information of one unary constraint fz together with one binary con-
straint fyz to another unary constraint. This more powerful propagation is called directional arc consis-
tency [Cooper, 2003, Larrosa and Schiex, 2003, Cooper and Schiex, 2004]. It assumes that variables are
ordered (to avoid termination problems as seen above). Here we assume the order w, y, z.

DEFINITION 18 (DIRECTIONAL ARC CONSISTENCY) Value a ∈ Di is directional arc consistent (DAC)
wrt. constraint fij , j > i, if there is a value b ∈ Dj such that fij(a, b) ⊕ fj(b) = 0. Value b is called a
full support of a. Variable xi is DAC if all its values are DAC with respect to every fij , j > i. P is DAC if
every variable is DAC and NC.

However, our last problem is DAC but not AC because some costs were transferred from fz to fyz but
can be brought back to fz by projection and extraction from fyz . We get a problem which is equivalent and
both DAC and AC. It said to be fully directional AC [Cooper, 2003, Larrosa and Schiex, 2003, Cooper and
Schiex, 2004].

EXERCICE 26 Consider a binary weighted CN using a given order of variables. Give an algorithm to
enforce DAC on this network along with its spatial and temporal complexities. Imagine that the same
network is processed by mini-buckets of size 2. How do the lower bounds induced by each approach
compare? Is there any advantage to either approach?

DEFINITION 19 (FULL DIRECTIONAL ARC CONSISTENCY) P is fully directional arc consistent (FDAC)
if it is DAC and AC.

It is amazing to see that if > = k = 1 (classical case), AC and FDAC are equivalent to classical AC,
while DAC is equivalent to classical DAC.

Algorithms for enforcing these properties all work using the same schema: they identify one variable
that violate the property and enforce the property in this case using the operations outlined in the example
(combining projection, combination and extraction). Practical en theoretical efficiency is reached using
dedicated data-structures, as in the classical case (ag. in the AC 2001 algorithm). See [Larrosa, 2002, de
Givry et al., 2003, Larrosa and Schiex, 2003, Simon de Givry et al., 2005] for details. Algorithms have all
polynomial time complexities on binary networks:

• NC: O(nd)

• AC: O(n2d3) AC > NC
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• DAC: O(ed2) DAC > NC

• FDAC: O(end3) FDAC > AC,FDAC > DAC

Spatial complexity is kept in O(ed) using a simple trick (see [Cooper and Schiex, 2004]). This trick
allows to keep the complexity linear in d on large arity cost functions (represented as analytical formulae
for example). See exercice below.

EXERCICE 27 Consider the extraction of several unary cost functions fi1 , . . . , fim from a cost function of
scope S, |S| = r and all xik

∈ S. What are the temporal and spatial complexities of a such a sequence
of operations ? How can we get get an algorithm with a spatial complexity which is only linear in r and
which yet gives efficient access to the modified cost function fS 	m

j=1 fij ? Is it possible for arbitrary fair
valued?

EXERCICE 28 One usual property of local consistencies is that they deliver a unique result, independently
of the order of the enforcing operations. Give a small weighted network that shows that this property is not
true anymore for weighted CN and arc consistency as defined above.

Still stronger forms have been defined: cyclic consistency [Cooper, 2004] works on all triangle of
constraints on a triplet of variables. It extract from the triangle combination all that can be extracted to
f∅ without creating ternary constraints. This is untested in practice. Introduced more recently, existential
arc consistency (EAC [Simon de Givry et al., 2005]) does a similar work on all stars (using all binary
constraints involving a common variable). In practice, the local consistency enforced is EAC+DAC+AC,
called EDAC.

EXERCICE 29 It is interesting to compare simple soft arc consistency as defined above with hyper arc-
consistency enforced on the classical CN model for soft constraints proposed by Petit et al. [2000].

Propose a small weighted constraint network with an associated upper bound k such that enforcing
hyper arc consistency on the reified version presented in section 1.2.4.2 cannot detect infeasibility but arc
consistency as defined above on the original network can. Propose an additional exercice to conclude the
comparison and solve it.

EXERCICE 30 The variable elimination algorithm follows a combine/project/forget algorithm. Is it possi-
ble to build a combine/project/extract version of variable elimination? Compare with the original version
in terms of services offered, spatial and temporal complexity.

EXERCICE 31 SAT being a specific case of CSP, weighted MaxSAT is a specific case of weighted CN.
Consider two weighted 2-clauses with a common variable but with a different sign. Apply one of the above
local consistency to this and give the resulting set of clauses. Compare with resolution in classical logic
(see [Larrosa and Heras, 2005]). Propositional logic with weights is also called “penalty logic” [Pinkas,
1991] and is used for non-monotonic reasoning and has been related to uncertain reasoning in [Dupin de
Saint Cyr et al., 1994].

Notes The first contribution in this area extended arc consistency, the most usual local consistency prop-
erty, to fuzzy constraint networks [Rosenfeld et al., 1976]. The property and associated polynomial time
algorithm proposed in this paper have been refined and reformulated in [Snow and Freuder, 1990, Schiex,
1992]. We remind the reader of the very strong relation between fuzzy constraint networks and classical
constraint networks which shows that the extension to the fuzzy networks case can always be done with an
O(log(l)) multiplication in complexity (where l is the number of levels used in the network).

1.4.2.4 Soft global constraints

One important class of consistency enforcing algorithms in classical networks is the class of so-called
global constraints (see the associated notes on global constraints by J-C. Régin). Several usual global con-
straints and their associated algorithms have been extended to handle soft constraints. All these proposals
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have been made using the approach of [Petit et al., 2000] where a cost function fS is represented as an hard
constraint with an extra variable xS representing the cost of the assignment of the other variables in S (see
section 1.2.4.2).

A global soft constraint is defined by three components: the precise semantics of the constraint, the
level of consistency enforced on this constraint and an algorithm to enforce it. For example, one first soft
global constraint extends the classical all-different constraint. Two semantics have been considered for a
soft version: for a given assignment of the variables involved in a soft all-different, the associated level
can be either the number of variables whose value must be changed to satisfy the all-different constraint
or the number of pairs of variables that have identical values (number of binary constraints violated in the
primal graph version). The level of consistency enforced is classical generalized arc-consistency also called
hyper-arc consistency. Enforcing algorithms based on flow/matching algorithms offer efficient enforcing
algorithms for these two semantics [Petit et al., 2001, van Hoeve, 2004].

Before this, [Baptiste et al., 1998] first proposed a soft global constraint handling a variant of the
One-Machine scheduling problem. Following this first proposal, a few extra soft global constraints have
been proposed. Besides the previous soft all-different constraint, soft versions of the global cardinality
constraint (useful for example in personnel rostering problems) and of the regular constraint (to capture
regular language membership with errors) have also been proposed by [van Hoeve et al., 2004].

The problem of just computing the cost of an assignment for a single soft global constraint has been
considered in [Beldiceanu and Petit, 2004]. For some semantics, this problem may naturally be NP-hard
but all global constraints defined through specific graph properties can be computed in polynomial time.

1.4.3 Polynomial classes
The previous section on variable elimination shows that all structural classes of classical CN extend im-
mediately to arbitrary valued CN. Actually, many existing works such as [Shenoy, 1991, Bistarelli et al.,
1995, Dechter, 1999] show that these structural properties can be exploited in many cases and not only for
optimization (but also eg. for discrete integration). So, a semiring CN with a graph which can be covered
by a k-tree can be solved in time polynomial in k. Specifically, tree-structured CN can be solved efficiently.

EXERCICE 32 Show that a tree structured weighted CN can be solved optimally by DAC enforcing. What
variable order should be used ? Prove that you get at the end a compact representation of all solutions
along with their costs.

Note that there is a huge bibliography on this topic including extensions to hypergraphs Gottlob et al.
[2000], Cohen et al. [205].

1.4.3.1 Fuzzy networks

The idempotent valued case (i.e. fuzzy constraint networks) is specific again because of its close relation-
ship with classical CSP. Consider the Exercice 2. Consider a classic CN polynomial class and replace the
oracle for CSP by a polynomial time oracle for this class. For some polynomial class (eg. CSP with 2
values only), this is a direct extension.

EXERCICE 33 Consider the polynomial class of temporal CN. What condition can be imposed on the cost
functions of a fuzzy temporal CN so that the polynomial class extends? Can you lift any other class this
way ?

See [Khatib et al., 2001, Rossi et al., 2001, 2002a,b] for more details on the fuzzy TCSP.

1.4.3.2 Weighted CN

Because even the simple MAX-2SAT is NP-complete one may wonder if there is any tractable language
for valued constraint network. A tractable language would be a set of functions that that any any network
that uses only these functions can be solved in polynomial time.
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In the simple MAX-2SAT case, even the simple language where only exclusive or constraints are
used is NP-complete. Tractable languages for weighted MaxSat with finite costs have been completely
characterized by [Creignou, 2001].

The simple MAXCSP problem offers the ability to mix finite costs and inifinite costs (hard constraints)
and also larger possible domains and therefore additional complexity. In the case of Max-CSP, the language
of soft binary equality:

feq(x, y) =
{

0 x = y
1 otherwise

is NP-hard.

EXERCICE 34 Give a polynomial reduction from the MINIMUM 3-TERMINAL CUT.

MIN. 3-TERMINAL CUT: an undirected (weighted) graph G = (V,E). Three distinguished vertices
{v1, v2, v3}. Is there a set of edges of minimum weight whose removal disconnects each pair of terminals?

Amazingly there is a non trivial and not completely unpractical polynomial time language for cost
functions (that applies to a subset of fair valued CN, at least strictly idempotent one). We just introduce the
notion of generalized interval functions [David Cohen et al., 2004].

DEFINITION 20 Imagine that domain D ordered. A binary cost function D2 → E is a generalized interval
function on D if it has the following form:

cρ
[a,b](x, y) =

{
0 : (x < a) ∨ (y > b)
ρ : otherwise

Such functions have cost 0 = ⊥ everywhere but on a rectangular region in the corner of their cost matrix
and are, in their hard version, a specific case of connected row-convex constraints.

It has been shown by [David Cohen et al., 2004] that the language of GI functions is tractable. The
tractability proof is elegant and relies on a nice transformation to a graph problem.

Consider P = 〈X, D,C〉 a maxCSP with Di = {1, . . . ,M}. Then build the graph G = (V,E) with:

• V = {S, T} ∪ {xid | xi ∈ X, d ∈ D{1, . . . ,M}}.

• for each xi ∈ X , an edge from S to xiM weight∞

• for each xi ∈ X , an edge from xi0 to T , weight∞

• for each xid ∈ V, d ∈ [1,M − 2], an edge from xid to xid+1 with weight∞.

• for each constraint cρ
[a,b](xi, xj) an edge from xjb to xia−1 with weight ρ (c-edges).

Consider the following problem with variables X = {x, y, z}, having domains all equal to {1, 2, 3, 4}
and a set of cost functions C = {c3

[3,4](y, x), c7
[1,3](z, y), c2

[4,3](y, z), c∞[2,4](z, z)}, then the graph obtained
is:

x4 x3 x2 x1 x0

y4 y3 y2 y1 y0

z4 z3 z2 z1 z0

3

72

S T

8
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DEFINITION 21 A minimal S − T cut that contains only c-edges is a proper cut

In the graph, this is {〈y3, z0〉}, {〈x4, y2〉, 〈z3, y3〉.

THEOREM 2 For each minimal proper cut of weight Φ, there is an assignment of cost Φ and vice-versa.

Here: {〈y3, z0〉} has weight 7, {〈x4, y2〉, 〈z3, y3〉} has weight 5. Both are minimal.

EXERCICE 35 Prove the theorem.

Using any algorithm for minimum weighted cut therefore solves the problem. This class has been extended
using a decomposition of submodular functions to GI functions by the same authors to the general class of
submodular functions.

DEFINITION 22 A function such ∀x, y, u, v, u ≤ x, v ≤ y, we have:

c(u, v) + c(x, y) ≤ c(u, y) + c(x, v)

is called a submodular function.

A submodular function cost matrix decomposes in a sum of GI functions. This class is relatively rich
in practice. Here are examples of such functions:

ax + by + c,
√

x2 + y2, ||x− y|r(r ≥ 1),max(x, y, 0)r(r ≥ 1)

This class is actually maximal (no other function can be added to the language without making it NP-
complete). An (unimplemented) algorithm in O(n3d3) can solve submodular networks. Several related
results appear in [Cohen et al., 2003, 2004a, David Cohen et al., 2004, Cohen et al., 2004b].

1.5 Combining search and inference

1.5.1 Direct combination
As section 1.4 has shown, variable (or bucket) elimination is computationally and space efficient when the
variable to eliminate is only connected to few other variables or when it is assigned. Once the variable is
eliminated, we get a network with the same optimal cost, less variables and constraints and no backtracking.
Conversely, Branch and bound explores the domain of every variable with limited space complexity but
with the requirement of backtracking until a provably optimal solution is found. This gives a natural
way to combine both approaches: if some variable in the network has small degree, eliminate it. Each
elimination may reduce the degree of other variables and enable further eliminations. Otherwise branch
on a well-chosen variable. Once assigned, the variable becomes easy to eliminate and may enable further
eliminations.

1.5.2 Exploiting stronger bounds
1.5.2.1 Local consistency based bounds

We have seen that local consistency enforcing, by increasing the value of f∅, can provide increased lower
bounds for a given problem. We can just inject these lower bounds in the branch and bound algorithm by
maintaining some form of local consistency on the subproblem associated with each node. The value of
f∅ after enforcing should give an improved lower bound.

Maintaining AC on fuzzy networks has been first considered in [Schiex, 1992].For weighted network,
more choices are now possible: the level of local consistency enforced (NC, AC, DAC, FDAC, EDAC =
EAC+FDAC) this gives various quality of lower bounds. See [Larrosa, 2002, Larrosa and Schiex, 2003,
Simon de Givry et al., 2005]. In

All these local consistencies have been implemented and are part of an efficient experimental tool
applicable to weighted CN and weighted SAT called toolbar (see section 1.6.1). In the current situation,
the strongest (EDAC) local consistency seems to provide the best results, especially on hard problems.
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1.5.2.2 Mini-buckets based bounds

Similarly, the bounds induced by mini-buckets can be injected inside a tree-search algorithm. However,
computing mini-buckets is exponential in the mini-bucket parameter. To avoid repeated evaluation of the
lower bound induced by mini-buckets on the subproblem associated with each node of the search tree, and
similarly to what was done in the Russian Dolls Search algorithm, it is possible to avoid this by assuming
that a fixed variable ordering is used (this is a very costly assumption in practice).

Consider a valued CN 〈X, D,C, S〉 and assume the variable ordering x1, . . . , xn} is used to assign
variables in a Branch and bound search. Before starting branch and bound we process the soft network
using mini-buckets. We process each variable in an order opposite to the assignment order. When pro-
cessing variable xj , we will build a family of cost functions of bounded maximum arity f

xj

i . Note that by
definition:

• f
xj

i can only involve variables before xj in the assignment ordering.

• f
xj

i has been built by combining together functions whose scope contains only variables which are
after xj (including it) in the assignment order.

The extra functions are not included in the original problem but memorized for later use during branch and
bound.

Consider now a node of the search, assigning variables x1 to xp. We now for sure that the f∅ produced
by assigning cost functions is a lower bound that is obtained using only cost functions whose scope is
included in {x1, . . . , xp}. Consider now the extra f

xj

i produced by mini-buckets such that 1) xj > xp in
the assignment order and 2) their scope is included in {x1, . . . , xp}.

Because of 2) we can easily compute their value since the variables in their scope are assigned. Because
of 1) we know that they form a lower bound which is independent of f∅ and thus can be combined with it.
This defines a new lower bound which is better than f∅ alone and a branch and bound algorithm denoted
as BBMB(i) where i is the parameter that bounds the maximum number of variables used together to
produce the mini-buckets.

The larger i, the stronger the bound will be but the more expensive to compute it is. Finding the best or
even a good i is important and not obvious (no heuristics procedure for this are known).

This scheme was first presented in [Kalev Kask and Rina Dechter, 1999] and has later been enhanced
in [Dechter et al., 2001]. Algorithms based on local consistency maintenance seem still quite competitive
and do not require any parameter tuning.

1.6 Using soft constraints

1.6.1 Existing solvers and resources
Many classical CN solvers include optimization primitives that allows a first approach to soft constraints us-
ing the approach of [Petit et al., 2000]. However, and except for specific cases such as described in [Benoist
and Lemaı̂tre, 2003], enforcing AC on this representation is weaker than working on non reified soft con-
straints directly using local consistencies.

A large subset of the algorithms presented in this document (including bucket elimination, maintaining
AC, DAC, FDAC and EDAC) is available in the open source collaboratively developed C solver toolbar.
It is capable of reading weighted CN and weighted SAT (CNF) problems. Bayesian nets support for
MPE (Maximum Probability Explanation) will soon be available. From our current knowledge, it seems
to be among the fastest general weighted MaxCSP/MaxSAT solver available. It cen be downloaded at
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro. A similar tool (although apprently less opti-
mized for the moment) is developed in the laboratory of R. Dechter by R. Matescu (you have to contact
Radu for getting the C++ sources but Windows binaries are available on http://www.ics.uci.edu/ radum/)).

But many other solvers have also been built in the last decades, including local search solvers. A Wiki
web site of cost function optimizers is available at http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/AlgorithmS.
If your solver is not there, please add it (the passwork is bia31). There are also many pure MaxSAT and
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pseudo boolean solvers for SAT which have been made available recently. See [de Givry et al., 2003, Han-
tao Zhang et al., 2003, H. Shen and H. Zhang, 2004, Xing and Zhang, 2005, Simon de Givry et al., 2005,
Larrosa and Heras, 2005] for example.

See also:

• Con’Flex: Conjunctive fuzzy CSP system with integer, symbolic and numerical constraints
(www.inra.fr/bia/T/conflex).

• clp(FD,S): semi-ring CLP. (pauillac.inria.fr/˜georget/clp_fds/clp_fds.html).

• LVCSP: Common-Lisp library for Valued CSP with an emphasis on strictly monotonic operators
(ftp.cert.fr/pub/lemaitre/LVCSP).

• Choco: a claire library for CSP. Existing layers above Choco implements Weighted Max-CSP algo-
rithms (choco.sourceforge.net).

(although some of these links may be a bit outdated now).
A reasonable large collection of benchmarks for weighted CN and weighted SAT has been built over the

last years and is available at http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS in a standardized
format. This format is read directly by some other solvers including local search solvers such as incop.

1.6.2 Some applications
Several problems can be directly translated in soft CN. First many usual and central problems in complex-
ity theory such MaxSAT, MaxOnes, Min Vertex Cover, MaxCut, Min-Ones, MinCOL... These academic
problems have sometimes almost direct applications in various areas (eg. Min Vertex Cover is related to
two-level logic minimization in electronic design automation, MinCol is a simplified version of overcon-
strained frequency assignment...).

Many real problem such as personal rostering, timetabling, frequency assignment problems, satellite
scheduling, RNA gene finding, pedigree error detection are better represented using soft CN. Some prob-
lems modelled using soft constraints are described in the following papers [Cabon et al., 1999, Bensana
et al., 1999, Gaspin, 2001, Bistarelli et al., 2001, Steven Prestwitch et al., 2003, Loudni and Boizumault,
2003, John Slaney et al., 2004, de Givry et al., 2005, Gaspin et al., 2005].

Soft constraints can be used at different levels: for modelling the problem, using soft constraints as
guide to find good solutions rapidly, for directly solving problem modeled.

I just present here one famous application in the area, the frequency assignment problem defined by the
CELAR (Centre d’ lectronique de l’Armement). This problem is defined in detail in Cabon et al. [1999]
and an excellent web site is http://fap.zib.de where the different flavors of the problem are presented.

1.6.3 Frequency assignment
A set of wireless communication connections must be assigned frequencies such that for every connection
data transmission between the transmitter and receiver is possible. The frequencies should be selected
from a given set that may depend on the location (in practice, much traffic is bidirectional, so that in fact
two frequencies must be chosen, one for each direction but this is often ignored by choosing two non
intersecting domains of frequency for forward and backward communication).

The frequencies assigned to two connections may incur interference resulting in a loss of quality of the
signal. Two conditions must be fulfilled in order to have interference of two signals:

• The two frequencies must be close on the electromagnetic band (Doppler effects).

• The connections must be geographically close to each other. The signals that may interfere should
have a similar level of energy at the position where they might disturb each other.

When the second condition is satisfied, and depending on an physical wave propagation model, a sufficient
distance in the frequency spectral has to be imposed. Because the frequency resource is not infinite, some
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Figure 1.8: Frequency assignment

frequencies have to be reallocated and the problem of finding an assignment that satisfies all distance
constraints is already NP-hard.

Often, one also want to minimize some criteria. Minimizing the maximum frequency used allows to
use a small portion of an available spectrum. Minimizing the number of different frequencies used allows
to rapidly find an available frequency for a new link. When no solution exists that satisfy all distance
constraint, the criteria is usually changed to minimize interference. In the CELAR case, the aim is to
minimize a weighted sum of violated distance constraints.

The problem is easy to model using one variable per link whose domain is the set of available fre-
quencies for the link. Constraints of the form |fi − fj | > εij are used to specify the minimum distance
between geographically close links. If the problem is overconstrained, these hard constraints are made soft:
a satisfactory assignment has ⊥ = 0 cost and otherwise a fixed pij cost. The aim is then to minimize the
sum of all costs emitted which is a clear instance of weighted MaxCSP.

Note that minimizing the maximum frequency used is a min-max fuzzy constraint network using only
unary soft constraints. Minimizing the number of frequency used is best modeled using a soft global
constraint.

The problems have been tackled using many different combinatorial optimization techniques over time.
Several are still open. All min-max problem have been solved using constraint network technology. The
first overconstrained instance has been closed using a combination of graph partitioning and Russian Dolls
Search Cabon et al. [1999]. The graph of the corresponding instance is visible in the Figure 1.9. This very
specific structure is an excellent support to dynamic programming (variable elimination) algorithms and
other instances have been later closed using such techniques in Koster [1999].

Conclusion
Soft constraint technology has made incredible progress in the last decade. Even if there are still many
theoretical and algorithmic progress to do (still stronger lower bounds seems needed), we do have enough
to start building solid soft constraint systems. The toolbar system is one step in this direction. One
more compulsory step is a form of integration of the algorithms and properties developed here and avail-
able classical constraint technology. This integration is in some sense already done in the “constrained
optimization” approach of Petit et al. [2000] but the integration of recent algorithms is not easy nor elegant
in this framework. More integrative solutions have to be found.

To deal with many more practical problems, several issues will have to be addressed in this framework
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Figure 1.9: Frequency assignment graph structure of CELAR instance 6

(large domains...) and many of the approaches that have been tried on classical CN beed to be extended
to soft CN. This includes areas like symmetries, quantified formulae, heavy tail behavior, backdoors and
backbones, global constraints. . .

.1 Team exercice
There is no available definition or implementation of DAC/FDAC for non binary constraints. Consider
possible definitions, design algorithms enforcing these, study their space and time complexity. Then
try to rapidly evaluate what this can bring in practice compared to enforcing AC/DAC/FDAC on bi-
nary constraints only (waiting till assigned constraints bexome binary): implement a constraint network
reader that can read the basic format of the SoftCSP benchamrk site (http://carlit.toulouse.inra.fr/cgi-
bin/awki.cgi/BenchmarkS) and implement the algorithms above. Design a simple experimental protocol
to compare the n-ary to the binary version (used in toolbar).

This could lead to a collaborative “workshop” paper (or more according to results).
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