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Abstract

Following recent discoveries about the important roles of non-coding
RNAs (ncRNAs) in the cellular machinery, there is now great interest in
identifying new occurrences of ncRNAs in available genomic sequences.

In this paper, we show how the problem of finding new occurrences
of characterized ncRNAs can be modeled as the problem of finding all
locally-optimal solutions of a weighted constraint network using dedicated
weighted global constraints, encapsulating pattern-matching algorithms
and data structures.

This is embodied in DARN!, a software tool for ncRNA localization,
which, compared to existing pattern-matching based tools, offers addi-
tional expressivity (such as enabling RNA-RNA interactions to be de-
scribed) and improved specificity (through the exploitation of scores and
local optimality) without compromises in CPU efficiency. This is demon-
strated on the actual search for tRNAs and H/ACA sRNA on different
genomes.

1 Introduction

Identifying the gene catalogue contained in complete genome sequences is a
difficult task in genome sequencing projects. Until now, efforts in the automatic
identification of genes were essentially focused on locating protein. In addition to
proteins, non-coding RNA (ncRNA) genes are functionally important and their
role, in controlling a growing list of processes in the cell, is now well established.
More than 503 families are known and listed in the RFAM database (http:
//www.sanger.ac.uk/Software/Rfam/, [8]). Since 2000, the increasing number
and importance of ncRNAs has led to new interest in their computer-based
identification as we learn more about them. However, the features used for
finding protein genes are essentially ineffective for identifying ncRNA genes.
We previously proposed a formulation of the ncRNA localization problem in the
context of constraint networks [16] which offers a way of representing and solving
the problem of searching for occurrences of ncRNA potentially in interaction
with other molecules.
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In this paper we propose extending the model and the algorithms with the
aim of providing biologists with improved means of exploring candidate solu-
tions. We extend the previous developments in the context of weighted con-
straint networks in order to rank the potentially large number of solutions, as
well as introducing the notion of the locally-optimal solution in order to remove
redundant solutions. The tool which was implemented, DARN! —which means
Détection d’ARN, or “RNA localization” in French—, is used to search for new
members of the H/ACA box sRNA family in a recently sequenced genome,
Thermococcus kodakarensis.

The rest of the paper is organized as follows. Section 2 gives the biological
background useful for understanding the remainder of the paper. Section 3 gives
a short overview of the formalisms and tools used so far to answer the question
of ncRNA localization. Section 4 presents the weighted CSP framework, how
ncRNA localization can be modeled within this framework, and the weighted
constraints of the tool. Section 5 presents the underlying algorithms of the
weighted constraints, a new way of selecting only the most promising candidates,
and several additional mechanisms, which make it possible to handle very large
sequences. Section 6 gives the results of our tool applied to the search for
tRNAs and sRNAs on different genomes. Finally, Section 7 concludes the paper
by discussing future developments.

2 Biological background

A ncRNA gene is a functional molecule composed of smaller molecules, called
nucleotides or bases for simplification, linked together by covalent bonds. There
are four types of these nucleotides, commonly identified by a single letter: A for
adenosine, G for guanosine, U for uridine and C for cytidine. Thus, an RNA is
represented as a word built from the four letters A, U, G and C. This sequence (cf.
figure 1(a)) defines what is called the primary structure of the RNA molecule.
Note that N is traditionally used to denote an arbitrary nucleotide (A, U, G or
C).

RNA molecules are single-stranded molecules that have the ability to fold
back on themselves by developing interactions between bases, forming pairs. The
most frequently interacting pairs are the so-called Watson-Crick pairs where
a G interacts with a C, or a U interacts with an A. These pairs are formed
from so-called complementary bases, G–C pairs being stronger (or more stable)
than A–U ones. Less frequently, one may also observe so-called wobble pairs
where a G interacts with a U. A sequence of such interactions forms a structure
called a helix (cf. figure 1(b)). Helices are a fundamental structural element in
ncRNA genes and are the basis for more complex structures such as hairpins (a
helix with a loop, cf. 1(c)), pseudo-knots (cf. 1(d)), kissing hairpins (cf. 1(e)),
etc. Helices can also appear between two different interacting RNA molecules,
forming in this case a duplex.

The set of interactions is often displayed by a graph where vertices represent
bases and edges represent either covalent bonds linking successive nucleotides
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Figure 1: Some elements of structure. N stands for any nucleotide.

or interacting base pairs. This representation is usually called the molecule’s
secondary structure.

The actual spatial organization of the entire nucleotide chain at the atomic
level, called the tertiary structure, is the relevant level of organization for biolog-
ical function. The tertiary structure is essential for the function of the ncRNA,
and we call a family the set of ncRNAs that have a common biological function.
However, due to the difficulty of determining tertiary ncRNA structures, the
secondary structure is commonly used as a simplified model for most analyses.
In this paper, we define the signature of a gene family as the set of conserved
elements either in the sequence or the secondary structure, including possible
duplexes with other ncRNA molecules.

To define the signature of a family, a traditional approach is to rely on an
alignment of the sequences of the family’s different ncRNA sequences. The align-
ment brings to light conserved motifs and the common structural characteristics
that form the family signature.

To make things more concrete, we will use the H/ACA box sRNA gene fam-
ily as an example throughout the paper. H/ACA box sRNAs have a specific
structure, and interact with other specific ncRNA genes (ribosomal RNAs) in
order to chemically modify specific bases in their sequence. To target precisely
the bases which should be modified, a duplex between the H/ACA box sRNA
gene and the ribosomal RNA is formed. Traditionally, the sequence that con-
tains the modified ncRNA is called the target sequence, whereas the other one
is called the main sequence.

In the group of Archaeal organisms, H/ACA box sRNAs contain one or more
hairpins connected by single-stranded regions. Each hairpin exhibits similar
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characteristics that we have identified by aligning hairpins contained in known
H/ACA box sRNA genes for Pyrococcus furiosus, Pyrococcus abyssi, Pyrococ-

cus horikoshii, Methanococcus jannaschii and Archaeoglobus fulgidus genomes.
Figure 2(a) shows the alignment of different sRNAs of this family for different
organisms (due to lack of space, only some sRNAs are shown). The different
conserved features in this RNA family can be extracted from this alignment.

First, three conserved motifs (or subsequences) can be identified: a conserved
GA (between positions x7 and x8), a conserved {A,G}UGA motif (between posi-
tions x9 and x10) and a final conserved ACA motif (between positions x17 and
x18). Next, the presence of a succession of complementary bases in the regions
delimited by x1 and x2 on one side, and x15 and x16 on the other side indicates
a conserved helix, involving around seven base pairs. These two interacting
regions also have a high ratio of G and C bases, which is usual in helices, for
stability reasons. A similar high percentage of G and C bases appears in the
regions delimited by x5 and x6, and by x11 and x12 respectively. Finally, the
RNA is known to interact with a target sequence through two regions identified
here by positions x3 and x4, and by positions x13 and x14 respectively. These
two regions form a duplex with the target sequence. The corresponding regions
in the target sequence are identified by positions y6 and y5, and by y2 and y1

respectively. These two regions delimit a two-base long region with a U at the
second position, represented here by the conserved UN motif. All these regions
appear in a given order and not too far away from each other (the most variable
length appearing between x8 and x9).

Clearly, the signature of a family can be expressed as a collection of proper-
ties that must be satisfied by a set of regions occurring on a sequence.

Figure 2(b) shows the corresponding secondary structure for a solution ap-
pearing in the genome of P. abyssi, together with the duplex formed with the
target sequence.

Given the signature of a family, the problem we are interested in involves
searching for new members of a gene family in existing genomes, where these
members are in fact the set of regions appearing in the genome which satisfy the
signature properties. Genomic sequences are themselves long texts composed of
nucleotides A, C, G and T, the latter corresponding to U in ncRNA genes. They
can be thousand of bases long for the simplest organisms up to several hundred
million bases for the more complex ones.

3 Searching ncRNA genes in genomic sequences

To be able to solve the problem of searching for occurrences of a gene signature
in a genomic sequence, one must first decide how to formally represent such a
signature. Among the proposed formalisms, one of the most famous ones uses
probabilistic information in a stochastic context-free grammar that describes the
structures [7] and searches for them using dynamic programming based parsers
[15]. However, some complex ncRNA families cannot be described within this
formalism and [17] showed that only NP-hard formalisms may correctly describe
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Figure 2: Different representations of the H/ACA box sRNA family.
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them. Also, such models usually involve a very large number of probabilistic
parameters which may require a large amount of the family’s known RNA genes
to be correctly estimated. This may also lead to a lack of generality in the
model estimated, which may be specific to some organisms only.

Another approach defines a signature as a set of interrelated motifs. Oc-
currences of the signature are sought using pattern-matching techniques and
an exhaustive tree search. Such programs include RnaMot [9], RnaBob [6],
PatScan [5], Palingol [3] and RnaMotif [12]. Although these programs allow
pseudo-knots to be represented, they have very variable efficiencies. This fa-
vors a CSP model of the problem and such work was done in [16] where the
combinatorial aspects are clearly separated from the pattern-matching aspects.
A signature is modeled as a weighted constraint network. This model captures
the combinatorial features of the problem while the weighted constraints use
pattern-matching techniques to enhance their efficiency. This combination of-
fers an elegant and simple way of describing several ncRNAs in interaction and
a general-purpose efficient algorithm to search for all their occurrences.

In practice, the ncRNA localization problem has two main characteristics
that should be addressed carefully. The first one is that the size of the se-
quences is usually as large as several hundred million nucleotides. This means
that extra care should be taken with the time and space complexities of the
algorithms. Second, some queries, depending on the specificity of the signature,
give hundreds of thousands of solutions and, in practice, it is impossible for
the user to exploit this huge number of solutions. Obviously, by looking more
carefully at the solutions, some are better than others and it would be useful to
give only the best ones to the user. This is why, in this paper, we have used the
weighted CSP formalism —an extension of the CSP framework— to solve the
ncRNA detection problem. With far fewer parameters than stochastic context-
free grammars, weighted CSP formalism seems to have enough expressive power
to properly and efficiently characterize ncRNA families.

4 Formalization

4.1 Weighted CSPs

A WCSP [10] is a tuple P = 〈X ,D, C, k〉, where:

• X = {x1, . . . , xn} is a set of n variables,

• D = {D(x1), . . . , D(xn)} is the set of the finite domains for each variable
and the size of the largest one is d,

• C is the set of e cost functions, where a cost function c is a function that
involves a set of variables var(c) = xi1 × xi2 × . . . × xir

, and associates
an integer called cost or penalty with every assignment of these variables.
In other words, it is a function from D(xi1 ) × D(xi2 ) × . . . × D(xir

) to
E = [0..k] ⊆ N,
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• k is the highest possible cost, representing an inconsistency.

Moreover, we assume the existence of a unary cost function c : D(xi)→ E,
denoted ci, for every variable xi (if no such cost function exists, we define
∀vi ∈ D(xi), ci(vi) = 0). We also define a new cost function, c∅ ∈ E, which
does not involve any variable, and is a constant cost payed by all assignments
of the variables.

The projection of a complete assignment (i.e. an assignment involving all
the variables) t = (x1 ← v1, . . . , xn ← vn) on X = (xi1 , . . . , xim

) is the partial
assignment t[X ] = (xi1 ← vi1 , . . . , xim

← vim
). Given a cost function c and an

assignment t, c(t[var(c)]) = k means that the cost function forbids the corre-
sponding assignment. A cost of 0 means that the assignment is fully accepted
by the cost function. Another cost means that the assignment is permitted by
the cost function, although not preferred. The cost of a complete assignment
t = (x1 ← v1, . . . , xn ← vn), denoted V(t), is the sum over all the cost functions:

V(t) =
⊕

c∈C

c(t[var(c)])

where ⊕ is the bounded sum: ∀(a, b) ∈ E2, a⊕ b = min{a + b, k}. A solution is
a complete assignment, whose cost is less that k.

Note that, if all the costs yielded by a cost function are in {0, k}, then every
assignment of the variables involved is either fully accepted or forbidden, so it
can be considered as a hard constraint. Similarly, if k = 1, then WCSP reduces
to classic CSP.

4.2 Model

In order to find ncRNAs, we can build a weighted constraint network that scans a
new genome, and detects the regions of the genome where the signature elements
are present and correctly positioned. So, the model used is the following:

• variables of the weighted CSP are the positions of the signature elements
in the main or target sequences;

• the size of the domains are thus the size of the sequences;

• cost functions enforce the presence of the signature elements, between the
positions taken by the variables involved.

When the signature has been specified using cost functions (like in fig-
ure 2(c)), a sequence (or two sequences, if there is a target sequence) is provided.
Each solution is the set of positions, where each position correctly delimits a
bound of an signature element, as described in figure 2(b). A solution is thus a
potential biological candidate. Of course, all the solutions to the problem (and
not only the solution with minimum cost) should be given.

Several weighted global constraints are provided in order to model the signa-
ture elements. Each cost function requires a set of parameters, which describe
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inherent properties (such as the number of nucleotides in a helix). The variables
involved in a cost function give the bounds of the signature element. The cost
incurred by the cost function represents a penalty, if the region delimited by the
variables does not perfectly match the structural element.

The available soft global cost functions are:

• pattern[word, errors](xi, xj). For example, we can see that H/ACA box
sRNAs usually end with the nucleotides ACA. The fact that some words
should be found in any H/ACA box sRNA can be enforced by the cost
function pattern. This cost function makes sure that the word word starts
at position xi and ends at xj . The cost computed by this cost function is
the Levenshtein distance, i.e. the minimum number of insertions / dele-
tions / substitutions that should be applied to the word word, in order to
get the subsequence between the positions xi and xj . This cost should not
be greater than errors. The parameter word can be given using the four nu-
cleotides A, C, G and U (or T), but also using ambiguous nucleotides. For
example, R stands for A or G, and N stands for any nucleotide, following
IUPAC notations.
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• helix[stem min, stem max, loop min, loop max, errors, indels, wobble]
(xi, xj , xk, xl). It can also be noted that every H/ACA box sRNA contains
a helix, and that its size ranges from 8 to 10 nucleotides, with a few
possible mismatches. This may be modeled by the cost function helix.
This cost function states that the nucleotides between the positions xi and
xj should be able to interact with the nucleotides between positions xk

and xl. The size of the helix should not be less than stem min and not
more than stem max. The size of the loop should range from loop max to
loop min. The cost incurred by this cost function is the Hamming distance
between the two strands of the helix, which is the minimum number of
substitutions that should be applied to one strand, in order to have a
perfect match between the two strands. It should not be greater than
errors. Two flags can also be set: if indels is set to true, then the given
cost is the Levenshtein distance between the two strands (instead of the
Hamming distance). If wobble is set to true, then G–U interactions are
also accepted.

• spacer[dist1, dist2, dist3, dist4, min cost, max cost](xi, xj). In the sRNAs,
the number of nucleotides between the first and the second word seems
to range from 3 to 21 nucleotides. The distance between two different
elements of a structure is usually called a spacer, possibly modeled by the
cost function spacer, which gives the relative distance between positions
xi and xj . The cost incurred by this cost function is a stepwise linear
function, described in figure 4(b). If xj − xi is less than dist1 or greater
than dist4, then the cost function is inconsistent.

• duplex[errors, wobble](xi, xj , yk, yl). The whole region known as duplex

interacts with another given RNA called the target sequence. So, the
duplex cost function states that a duplex exists between positions xi and
xj in the main sequence, and yk, yl in the target sequence. The cost of
this cost function is the Levenshtein distance between the two strands.
This cost should not be greater than errors. The wobble parameter has
the usual meaning.

• composition[nucleotides, relation, threshold1, threshold2, min cost,
max cost](xi, xj). Looking more carefully at the helix, we can see that
the number of nucleotides G and C is much higher than the number of
nucleotides A and U. This bias towards the nucleotides G and C, linked to
the molecule’s stability can be modeled by the composition cost function.
This cost function ensures that the percentage of the two nucleotides spec-
ified in nucleotides is greater or less (depending on the value of relation)
than a given threshold. The value of nucleotides is usually GC or AU. The
cost profile of this cost function is described in figure 4(a), where relation is
≥. In this example, if the percentage of nucleotides is less than threshold1,
then the cost function is inconsistent.

• Two last cost functions have been implemented: helix2, which adds a
penalty to shorter helices, and hairpin, which can be useful for describing
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hairpins accurately. Since they are quite similar to helix, we will not
describe them any further.

5 WCSP algorithms

5.1 Algorithms for global cost functions

Notations. To accurately describe the algorithms used in our tool, we will first
introduce some notations:

• The domain of each variable xi (resp. yi) is a set of possible positions in
the main sequence (resp. target sequence). Thus, we can define the lower

bound, lbi, of this domain, and the upper bound, ubi.

• The main sequence can be considered as a vector of nucleotides. We
will denote this sequence S, and S[a] the a-th nucleotide of the sequence.
S[a..b] will represent the subsequence of S composed of the nucleotides
S[a], S[a + 1], . . . , S[b]. The target sequence is denoted T .

In order to solve the problem of ncRNA localization using a weighted con-
straint network, we implemented a depth-first branch-and-bound algorithm us-
ing binary branching. But since the size of the domain can be as large as several
million nucleotides, extra care should be taken about time and space complex-
ities while solving the problem. Thus, at each node of the exploration tree, we
maintain weighted bound arc consistency (BAC*, cf. [18]), or weighted bound
arc consistency with ∅ inverse consistency (BAC* with ∅IC) for spacer cost
functions.

BAC* is an extension of 2B-consistency [11] for weighted CSP. It basically
propagates costs from binary cost functions (or any cost function with arity
higher than 1) to unary cost functions, so that only the unary costs of the
bounds of the domain increase. ∅IC also performs propagations from binary
cost functions to c∅. An example of the enforcement of BAC* is given in figure 5.
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Figure 5(a) describes a simple WCSP instance, containing two variables (x1

and x2), a binary cost function c12 (the binary cost of a pair is written on the
edge that joins them; if none is given, it is zero) and two unary cost functions
(the cost is written in the circle). Obviously, for any assignment of x2, assigning
x1 to lb1 will give a cost of at least 1. BAC* makes this observation more explicit
by projecting a cost of 1 from the binary cost functions to the unary cost (the
result is shown in figure 5(b)). This operation can be broken down into three
elementary ones: finding the minimum cost of the binary cost function, when
x1 = lb1; subtracting this cost amount from the binary costs; adding this cost
to the unary cost function. As a result of this projection, there exists a value
w in the domain of x2 where c12(lb1, w) = 0. Since this value w is called the
support of lb1 the previous projection is usually implemented in a procedure
called getSupport, and, in fact, enforcing BAC* on a WCSP instance ultimately
reduces to finding supports.

Note that in BAC*, supports for values which are not bounds of the domain
are not sought. This property makes BAC* well-suited to the RNA localization
problem: as it saves time and space, it can be enforced on very large instances
of the problem, whereas the state-of-the-art local property AC* makes the pro-
gram abort for memory reasons when the sequence is greater than a few dozen
thousand of nucleotides [18] (remember that a chromosome may contain millions
of nucleotides).

We will now describe the function getSupport, which finds the supports for
BAC*, for each cost function. However, due to lack of space, we will only give
details of the pattern cost function.

The pattern cost function For the pattern cost function, the support of,
say, lbi, is the position vj that minimizes the Levenshtein distance between
word and all the subsequences of S that start at lbi, and end at vj . Finding
this position vi is a typical approximate string matching problem. From the
many possible ways of solving it, we chose the following one, described in detail
in [13].

We first select the nucleotide S[lbi] at position lbi, and generate all the pos-
sible matches of this 1-letter word with word. Then, we take the next nucleotide
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S[lbi + 1], and generate all the possible matches of S[lbi..lbi + 1] with word, us-
ing the matches found between S[lbi] and word. We continue selecting a letter,
and generating the possible matches, until the position of the selected letter is
greater than ubj. At this time, all the work is done, and the support of lbi is
the lowest score given by a match, where the last selected letter was not before
the position lbj (since lbj is the first position where the pattern may end).

At first glance, it seems that the number of generated matches may expo-
nentially grow. However, it is possible to use a dynamic programming algorithm
that keeps the time and space complexities reasonably low. So we used a vector
vector of |word|+1 integers, ranging from 0 to |word|. During the search for the
support, for example when the letter S[a] is selected, each cell vector[b] stores
the number of errors for the best match between word[1..b] and S[lbi..a].

The detailed description of getSupport is as follows. The main loop at line 2

reads the nucleotides S[a], a ∈ [lbi..ubj ] of interest in the sequence. The inner
loop at line 5 updates the vector data structure, and computes the set of possible
best matches between word and S[lbi..a]. If the condition 12 is true, this means
that the selected letter S[a] is in the domain of xj , and thus the subsequence
can end here. So, we have to store the current score (given by vector[|word|]),
since a can be a support of lbi. The function finally returns the support of lbi,
as well as the minimum cost incurred by the cost function.

The update of vector, computed on line 11, works as follows. Let us suppose
we select a letter S[a]. vector[b] may be (1) the best match between S[lbi..a]
and word[1..b − 1] with an insertion of the nucleotide word[b], or (2) the best
match between S[lbi..a − 1] and word[1..b] with an insertion of the nucleotide
S[a], or (3) the best match between S[lbi..a − 1] and word[1..b − 1] plus the
cost of matching S[a] and word[b]. In our implementation, the cost the match
between S[a] and word[b] is computed line 6. The best match between a suffix
of S[lbi..a] and word[1..b−1] is stored in vector[b−1] (cf. line 7), the best match
between a suffix of S[lbi..a − 1] and word[1..b] is stored in vector[b], just after
S[a − 1] has been selected (cf. line 8), and the best match between a suffix of
S[lbi..a− 1] and word[1..b− 1] is stored in vector[b− 1] just before S[a− 1] has
been selected (cf. line 9). This latter value is rewritten during the induction
process, and a new variable, prev is needed, that stores vector[b−1], just before
its update (on lines 3 and 10).

This induction process has two base cases. The first one deals with the values
of vector, when no nucleotide in S has been selected. In this case, vector[b] is
the cost of matching word[1..b] with a 0-letter word, so vector[b] gets the value
b (line 1). The second base case deals with the values of vector[0] during the
run of an algorithm. When the letter S[a] is selected, vector[0] is the cost of
matching S[lbi..a] with a 0-letter word, so vector[0] gets the value a − lbi + 1
(line 4).

In our implementation, we used two vectors. The first one reads the sequence
and the word from left to right, and thus updates the supports of the bounds
of xi. The second one reads the sequence and the word from right to left, and
updates the supports of the bounds of xj .
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Function getSupport(lbi): (position × cost)

Input : a bound of xi

Output: the support of this bound
minCost← k ; support← −1 ;
foreach b ∈ [0..|word|] do vector[b]← b ;1

foreach a ∈ [lbi..ubj ] do2

prev ← vector[0] ;3

vector[0]← a− lbi + 1 ;4

foreach b ∈ [1..|word|] do5

match←

{

0 if S[a] = word[b],

1 otherwise.
;

6

val1 ← vector[b − 1] + 1 ;7

val2 ← vector[b] + 1 ;8

val3 ← prev + match ;9

prev ← vector[b] ;10

vector[b]← min{val1, val2, val3} ;11

if ((a ≥ lbj) ∧ (vector[|word|] < minCost) then12

minCost← vector[|word|] ;
support← a ;

return (support, minCost) ;

The helix cost function We shall suppose here that we are also looking for
the support of lbi, the lower bound of xi. The algorithm first locates all possible
positions of the three other variables, given current domains and the stem min,
stem max, loop min and loop max parameters. For each possible position of the
variables, it computes the cost of the cost function. Notice here that the time
complexity of the function getSupport heavily relies on the parameters of the
cost function, since the number of possible positions of the variables increases
if the differences stem max− stem min and loop max− loop min grow.

The cost incurred by the cost function can be computed by two different
algorithms, depending on the value of indels. If insertions and deletions are not
allowed, then the cost is the Hamming distance, which can be computed very
easily in time and space linear to stem max: if the strands do not have the same
size, then the helix is not accepted; otherwise, we take the leftmost nucleotide
of the first strand, and the rightmost nucleotide of the second strand, if they
do not match, then the score increases by one, and we repeat the same test by
reading the first strand from left to right, and the second strand from right to
left.

If insertions and deletions are allowed, we use an alternative form of the
Needleman-Wunsch algorithm [14] where only the bands around the diagonal
are explored in the dynamic programming matrix. This optimization comes
from the observation that a cell which is on the diagonal can represent the
score of an alignment which contains only substitutions (and no insertion nor
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deletion), whereas a cell which is not on the diagonal cannot. Thus, a cell which
is on the i-th diagonal contains at least i deletions or insertions, and yields a cost
of at least i. Since the maximum allowed number of errors is errors, then only
the 2× errors + 1 bands around the diagonal should be filled. This Needleman-
Wunsch-like algorithm takes time and space proportional to stem max× errors,
and the function getSupport runs in time proportional to errors, loop max and
stem max2.

The spacer cost function Since this cost function is a piecewise linear func-
tion, BAC* and ∅IC can be enforced in time proportional to d. This is a direct
consequence of the corollary 1 in [18].

The duplex cost function The simple algorithm used for helix would be
impractical here, since we may have no bound on the positions of the variables
in the target sequence. To avoid this, we designed a new algorithm, that can
get the supports more efficiently.

No propagation occurs until the variables xi and xj are assigned. When both
variables have been assigned, then the problem reduces to finding a subsequence
in the target sequence that matches the subsequence in the main sequence be-
tween positions xi and xj , which is very similar to the pattern cost function.
In order to accelerate the search in the potentially long target sequence, we used
an enhanced suffix array [1], that stores the set of all the suffixes of the target
sequence, lexicographically ordered. Equipped with some additional informa-
tion, the enhanced suffix array can be used like a suffix tree (and thus, provided
that no error is allowed, a word can be found in time proportional to the size of
this word, whatever the size of the sequence). Using the array structure, it can
be encoded in less space than a suffix tree, and yields less cache misses.

To find the best matches in the suffix array, we also developed an original
depth-first branch-and-bound algorithm on the enhanced suffix array that makes
it possible to explore only the most promising regions of the target sequence.
As a result, the time complexity of the cost function is independent of the size
of the target sequence, although exponential to the size of the subsequence of
the target sequence, and the number of allowed errors [19].

The composition cost function The composition cost function remains
idle until one variable is assigned. If xj is assigned, then scanning the nu-
cleotides between lbi and xj to find whether xj actually is a support of lbi is
straightforward.

5.2 Removing non-locally optimal solutions

For one biological candidate, several equivalent solutions may exist and are
predicted by our approach. If an ncRNA occurrence is found at a given position
in the sequence, it is easy to see that several other solutions obtained by slight
modifications of the position of a structural element may also exist. To avoid
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reporting all these phantom solutions, we introduced an additional mechanism
that removes all the unwanted solutions. This is an important mechanism, since
the number of irrelevant solutions may grow exponentially when the number of
variables increases. To do so, we defined the dominance between solutions. We
say that a solution A dominates the solution B if:

• A and B overlap on the main sequence, and V(A) < V(B), or

• A and B overlap on the main sequence, and V(A) = V(B), and A is the
leftmost solution.

In other words, a solution A dominates B if they overlap and the cost of A is
less than the cost of B; if the costs are the same, the leftmost solution is chosen
for domination. A locally-optimal solution is a solution that is not dominated
by any other other solution. Only these solutions are displayed to the user. This
mechanism proved to be efficient and only gives the relevant solutions.

To compute the set of locally-optimal solutions, we have to check whether
each newly found solution A is dominated, and whether any already found
solution Bi is dominated by A. Since both problem are quite similar, we will
only give details of how to detect whether a newly found solution is dominated.

In order to be sure that A is locally-optimal, we have to compare its cost
with all the already known solutions Bi that may overlap with it. Thus, we have
to store all the dominated and non-dominated solutions found so far. Moreover,
we have to scan all the stored solutions that may overlap with A as quickly as
possible. To do this, we implemented a two-dimensional linked list Lij . This list
stores the start positions Li.start of all the solutions. Then, each element Li

points to another list, that stores the end positions Lij .end and the costs Lij .cost

of the solutions that start at position Li.start. To speed up the search, we added
some extra information in each Li cell of the list: Li.end← maxj{Lij.end}.

The algorithm isDominated describes how to find whether A is dominated.
It is used in DARN! as soon as the solution A is found. The line 13 scans all
the start positions of the already stored solutions. Since the elements of L are
sorted by the increasing value of Li.start, and the sequence is scanned from
left to right, the last Li elements are the only ones to store solutions that may
overlap with A. This is why L is scanned by the decreasing value of Li.start,
and, if the difference between Li.start and the beginning of A is larger than
an a priori upper bound of the size of the largest possible ncRNA (stored in
MaxRnaSize), the algorithm returns (line 14). Then, we test whether A may
overlap with a solution stored in the list Li (line 15). If it does, then we look for
the solutions that A overlaps with (lines 16 and 17). Finally, we test whether
the already found solutions dominate A (line 18).

Note that this data structure does not reduce the space complexity of the
storage of the solutions, but it makes it possible to find whether a recently
found solution is dominated in reasonable time, and whether already found
solutions are dominated by a recently found solution. Moreover, this mechanism
is used to prune the branch-and-bound tree. DARN! stores the cost and the
positions of every dominated and non-dominated solution found so far. During
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Function isDominated(A)

Input : a recently found solution A

Output: true if A is dominated, false otherwise
for i← |L| down to 1 do13

if (A.start− Li.start > MaxRnaSize) then14

return false ;

if ([Li.start..Li.end] ∩ [A.start..A.end] 6= ∅) then15

for j ← 1 to |Li| do16

if ([Li.start..Lij .end] ∩ [A.start..A.end] 6= ∅) then17

if ((Lij .cost < A.cost) ∨ ((Lij .cost = A.cost) ∧ (Li.start ≤18

A.start))) then
return true ;

return false ;

the exploration of the branch-and-bound tree, DARN! checks whether a solution
has been found in the scanned region. If this the case, then the value k is set
to c + 1, where c is the cost of the solution already found in the region. This
feature saves much time in practice.

5.3 Additional WCSP mechanisms

State-of-the-art weighted constraint solvers always implement several mecha-
nisms that speed up the search during the exploration. Although implementing
all of them is out of the scope of our work, we tried to implement the most
promising ones.

An initial well-known mechanism implemented in many solvers is the fail-first
dynamic ordering of the variables. Our heuristics work as follows. A high score is
given to the cost functions that are unlikely to be satisfied (for instance, patterns
with long words and few errors, long helices, etc.), whereas time-consuming cost
functions, which are easily satisfied are given a negative score (the duplex cost
function is a good example). Then, we give to each variable the sum of the score
of the cost functions in which it is involved. At each node of the tree, the variable
with the highest score is chosen for assignment. This favors the rapid search for
anchors that heavily discriminate a signature, and dramatically speeds up the
exploration.

A final useful mechanism is the use of prioritized queues to propagate events.
For example, every cost function is divided into its crisp and soft parts, and the
crisp part is always handled first. Then, we observed that pattern and spacer

cost functions should be checked before helix cost functions, since the latter
kind of cost function takes much longer to be propagated. This is why the set
of cost functions is split into simple and complicated cost functions, and simple
cost functions are handled first. Finally, the cause of the event is also taken into
consideration: assignments are handled before lower or upper bound updates.
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6 Results

The aim of the first set of experiments was to test whether our tool was com-
petitive with respect to the ncRNA localization tools that are specific to a given
ncRNA family. Since it is dedicated to a ncRNA family, this kind of tool can
usually describe a signature in great detail. Here we would like to know if it
is possible to make a signature that could be as detailed as the ones embedded
into specific localization tools.

A typical benchmark for the ncRNA localization problem is the transfer
RNA (tRNA) localization. This ncRNA has a very characteristic structure,
members of this family are usually known, and there exists a very well-known
program called tRNAscan-SE [7] that specifically finds the tRNAs in different
genomes. This tool has been trained to localize tRNAs in many genomes, using
the stochastic context-free grammar formalism. We compared DARN! with
tRNAscan-SE on the genomic sequences of the yeast [4] provided by RFAM [8],
which is the reference database for ncRNAs. This database has collected all the
tRNAs that are located on chromosome 3 (containing 316,613 nucleotides) and
on the first 165,534 nucleotides of chromosome 16 of the yeast genome.

We made a signature so that it could match as closely as possible the align-
ment of the tRNA of the yeast. This is a major difference with tRNAscan-SE,
since the latter can localize tRNAs in many other genomes, whereas our de-
scriptor is tuned to the yeast genome. As described in figure 6, we modeled it
using sixteen variables, four helix cost functions, two pattern cost functions
and six spacer cost functions. The descriptor is available on the web site at
http://carlit.toulouse.inra.fr/Darn/index.php.

The results of the comparison, performed on a 2.4 GHz computer with 8 GB
RAM running Linux, are displayed in table 1. Three main observations can be
made. First, DARN! was not slower than the state-of-the-art tool. This indi-
cates that our approach is competitive with respect to the other tools. Second,
all the solutions given by DARN! were also given by tRNAscan-SE. However,
since the solutions given by DARN! are exactly the ones recorded in RFAM,
the two remaining solutions on chromosome 3 predicted by tRNAscan-SE are
very likely to be false positive candidates (i.e. regions that were not actually tR-
NAs), whereas DARN! only gave the correct regions. This may show that our
tool accepts quite accurate descriptions of ncRNA families. Third, the number
of dominated solutions found by DARN! on chromosome 16 is almost as large as
the number of non-dominated solutions. It tends to show that the mechanism is
crucial, and since all the non-dominated solutions are the tRNAs that we were
looking for, it also seems accurate.

Concerning H/ACA sRNAs, several studies have recently identified new
members of this family in Archaea. In order to test the ability of a constraint
network to model interactions between different molecules, we performed in [16]
a first computational screen of Archaea M. jannaschii, P. abyssi, P. furiosus

and P. horikoshii genomes for H/ACA box sRNAs. Results showed the model’s
value in finding and annotating orphan sRNAs as well as the significance of a
weighted model in order to make it easier to analyze a potentially very large
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Figure 6: A tRNA signature with cost functions. Integer intervals near full lines
give the allowed size of the spacer. Intervals near dotted squares give the sizes
of the helices or the sizes of their loops. Italic numbers inside these squares are
the number of possible errors in the helices. Only one error is allowed overall.

chromosome 3
time # solutions # dominated solutions specificity

DARN! 0.8 s. 8 4 100%
tRNAscan-SE 1.3 s. 10 - 80%

chromosome 16, first 165,534 nucleotides
time # solutions # dominated solutions specificity

DARN! 0.5 s. 5 4 100%
tRNAscan-SE 0.7 s. 5 - 100%

Table 1: Comparison between DARN! and tRNAscan-SE.
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T. kodakarensis (> 20 million nucleotides)
Time: 65s

Number of solutions: 6941
Number of non-dominated solutions: 22

H/ACA gene (#hairpins) DARN! (cost) BLAST
H/ACA-1 (1) yes (0) yes
H/ACA-2 (2) yes (0, 1) no
H/ACA-3 (1) yes (0) yes
H/ACA-4 (2) yes (0, 1) yes
H/ACA-5 (3) yes (0, 0, 2) yes
H/ACA-6 (1) yes (0) yes

Table 2: H/ACA candidate genes in T. kodakarensis. In the first column,
H/ACA sRNA genes are numbered as in [16]. In brackets, #hairpins gives
the number of hairpins in the gene. The second column gives results using
DARN!. The costs of solutions for each hairpin of the ncRNA gene are given in
brackets. The third column gives results using BlastN [2], a standard software
for comparing genes on the basis of their sequence only, with default parameter
values.

number of solutions. Another possible improvement was the elimination of the
redundant solutions. These latter developments, implemented in DARN! gave
promising results on H/ACA sRNA gene finding.

The descriptor used for these experiments is given in figure 7. The weighted
framework made it possible to give a penalty to degenerated words (GA and
ACA) on the one hand, and to favor a high GC content on the other hand. The
maximum score was set to 2 so that DARN! gives all the known ncRNAs, with
the least number of unknown solutions possible.

All the H/ACA sRNA genes similar to known Archaeal H/ACA sRNAs,
representing ten hairpins, were found by using DARN! (cf. results in table 2).
For a total of twenty-two solutions, ten of them represented hairpins present
in at least one of the H/ACA sRNA known in other species. Nine solutions
were found with a cost of 0. Among these nine solutions, two were dissimilar to
known H/ACA sRNA genes and could represent new H/ACA sRNA candidates.
Six solutions were found with a cost of 1. Among these six solutions, two
represented hairpins present in H/ACA-2 and H/ACA-4. The other solutions of
cost 1 were dissimilar to known H/ACA sRNA genes and could represent new
H/ACA sRNA candidates. The remaining seven solutions had a cost of 2. One
of them represented one of the three hairpins present in H/ACA-5. The other
ones were not similar to known H/ACA sRNA genes and could also represent
new H/ACA sRNA candidates.
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TOP_VALUE = 3

VARIABLES X_VAR = 1...18, Y_VAR = 1...6

HARD_PART

PATTERN[word="RA",err=0](X7,X8)

PATTERN[word="RUGA",err=0](X9,X10)

PATTERN[word="ANA",err=0](X17,X18)

PATTERN[word="UN",err=0](Y3,Y4)

HELIX[stem=7..10,loop=30..65,err=1](X1,X2,X15,X16)

DUPLEX[err=1](X3,X4,Y1,Y2)

DUPLEX[err=1](X13,X14,Y5,Y6)

COMPOSITION[nucleotides="GC",threshold>=75%](X1,X2)

COMPOSITION[nucleotides="GC",threshold>=70%](X5,X6)

COMPOSITION[nucleotides="GC",threshold>=65%](X11,X12)

SPACER[lenmin=0,lenmax=8](X2,X3)

SPACER[lenmin=3,lenmax=6](X3,X4)

SPACER[lenmin=1,lenmax=1](X4,X5)

SPACER[lenmin=6,lenmax=8](X5,X6)

SPACER[lenmin=1,lenmax=1](X6,X7)

SPACER[lenmin=3,lenmax=30](X8,X9)

SPACER[lenmin=1,lenmax=1](X10,X11)

SPACER[lenmin=4,lenmax=8](X10,X12)

SPACER[lenmin=1,lenmax=1](X12,X13)

SPACER[lenmin=3,lenmax=6](X13,X14)

SPACER[lenmin=0,lenmax=8](X14,X15)

SPACER[lenmin=0,lenmax=1](X16,X17)

SPACER[lenmin=3,lenmax=6](Y1,Y2)

SPACER[lenmin=1,lenmax=1](Y2,Y3)

SPACER[lenmin=1,lenmax=1](Y4,Y5)

SPACER[lenmin=3,lenmax=6](Y5,Y6)

SPACER[lenmin=10,lenmax=12](Y1,Y6)

SOFT_PART

PATTERN[word="GA",err=1](X7,X8)

PATTERN[word="ACA",err=1](X17,X18)

COMPOSITION[nucleotides="GC",threshold>=75..100%,costs=0..2](X1,X2)

COMPOSITION[nucleotides="GC",threshold>=70..100%,costs=0..2](X5,X6)

COMPOSITION[nucleotides="GC",threshold>=65..100%,costs=0..2](X11,X12)

Figure 7: Descriptor of the H/ACA sRNA. TOP VALUE is the value k. Cost
functions and hard constraints are described separately.
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7 Conclusions and future work

We have presented a new tool called DARN!, that can find new occurrences of
characterized non-coding RNAs. This tool efficiently combines weighted CSP
techniques with pattern-matching algorithms and data structures. It also of-
fers a large diversity of components that can be useful for recognizing even
complicated non-coding RNAs: several helices, patterns, spacers, composition
in nucleotides, and, most importantly, duplexes, which model the ability of a
non-coding RNA to interact with another RNA sequence.

Results on the tRNA indicated that the weighted CSP framework is able to
give quite accurate signatures, even compared to specific ncRNA localization
tools, and results on the H/ACA box sRNA suggest that the tool could be very
useful for discovering new ncRNAs. Another useful mechanism, the selection of
locally-optimal solutions, improves the tool’s specificity even further.

Work is underway to design a method that would automatically infer the
signature, given an alignment, and find the best costs for the cost functions.
Finally, we will also implement several new cost functions that would make it
possible to describe ncRNA families even more accurately: repetitions, duplex
with one among several sequences, etc.
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