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ABSTRACT
Motivation: Genome maps are fundamental to the study of an orga-
nism and essential in the process of genome sequencing which in
turn provides the ultimate map of the genome. The increased number
of genomes being sequenced offers new opportunities for the map-
ping of closely related organisms. We propose here an algorithmic
formalization of a genome comparison approach to marker ordering.
Results: In order to integrate a comparative mapping approach in
the algorithmic process of map construction and selection, we pro-
pose to extend the usual statistical model describing the experimental
data, here radiation hybrids (RH) data, in a statistical framework that
models additionally the evolutionary relationships between a propo-
sed map and a reference map: an existing map of the corresponding
orthologous genes or markers in a closely related organism. This has
concretely the effect of exploiting, in the process of map selection,
the information of marker adjacencies in the related genome when
the information provided by the experimental data is not conclusive
for the purpose of ordering. In order to compute efficiently the map,
we proceed to a reduction of the maximum likelihood estimation to
the Traveling Salesman Problem. Experiments on simulated RH data
sets as well as on a real RH data set from the canine RH project show
that maps produced using the likelihood defined by the new model are
significantly better than maps built using the traditional RH model.
Availability: The comparative mapping approach is available in the
last version of (de Givry et al., 2004), a free1 mapping software in C++,
including LKH (Helsgaun, 2000) for maximum likelihood computation.

1 INTRODUCTION
Since the discovery of the molecular basis of genes, the time devo-
ted to mapping has dramatically increased, reaching its apogee with
the advent of whole genome sequence projects. Although the com-
plete sequence provides the ultimate map of a genome, the problem
of constructing a map from experimental data remains an active
area of research (Bøet al., 2002; Crane and Crane, 2004; Mester
et al., 2003; Wuet al., 2003). Maps are key to the study of orga-
nisms that are not planned to be sequenced in the near future. In
addition, the availability of detailed maps offers great advantage in
the process of whole genome sequencing (Havlaket al., 2004). The
production of whole genome sequences therefore doesn’t dismiss
the need for gene mapping. It suggests however alternative mapping

∗to whom correspondence should be addressed
†Both authors contributed equally to this work
1 The LKH part is free for academic use only.

strategies. Having in hand the exhaustive gene catalog of a com-
pletely sequenced genome, makes it possible to take advantage of
the conservation of chromosome segments with a related genome of
interest. This approach, also called comparative mapping, has been
extensively used for many years as a guideline for the construction
of maps in animals as well as in plants (Bowerset al., 2005; O’Brien
et al., 1990). The comparative mapping strategy is also of great
value in the context of whole genome sequence assembly (Havlak
et al., 2004; Popet al., 2004).

We propose here a novel approach to gene mapping, in the context
of radiation hybrid (RH) mapping, provided that a closely related
completely sequenced genome is available. Unlike the traditional
approach, the map of the reference organism is used at the very first
step of marker ordering for the construction and evaluation of the
candidate maps. Although devised in the context of RH mapping,
we believe that the proposed method applies equally to other map-
ping strategies such as genetic mapping. Sections 2 and 3 describe
a new statistical model that takes into account both the experimen-
tal RH data and the order in a related organism. Section 4 deals
with the algorithmic aspects of searching the space of all possible
maps, trying to find the best one according to the predefined cri-
terion, without evaluating then!

2
possible marker orders. Finally,

the interest of this approach is evaluated on both simulated and real
data, showing a significant improvement in map quality over the
traditional approach.

2 THE STATISTICAL MODEL
Our presentation is restricted to the case of radiation hybrid map-
ping which can be described by a simple statistical model (Boehnke
et al., 1991). In order to focus our presentation on the new compa-
rative approach for marker ordering, the RH mapping technique and
the associated statistical model are described in details in the appen-
dix of this paper. We implicitly develop our comparative approach
principle in the particular case of haploid error-free data due to
the approximation using 2-point likelihood (see below and appen-
dix). The comparative principle is however not closely interlinked
to the 2-point likelihood approach and could be extended to other
approaches of RH mapping (see discussion).

We noteA the reference organism andB the organism of inte-
rest. ForB an RH data setX for n markers is available. We make
the assumption that there is a one-to-one correspondence between
the markers inB and their orthologs inA. The complete genome
sequence ofA provides a mapπA of these markers inA. Our aim
is to build a map, identified by a marker permutationπ, for then
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markers of organismB. Let P (X|π, θ) denote the likelihood of the
data for a given orderπ and a set of parameters (nuisance parameters
such as the retention fraction and breakage frequencies for radiation
hybrids). In the traditional maximum likelihood approach, the like-
lihood associated with each order is the maximum over all possible
values ofθ:

L(π|X) = max
θ

P (X|π, θ) (1)

and the candidate map is the orderπ that maximizes this likelihood.
Although the situation is generally complicated by the fact that the
estimation ofθ depends on the particular choice ofπ, we will consi-
der an approximation of this likelihood, using the product of 2-point
maximum likelihoods strictly equivalent to the likelihood only for
haploid error-free data, which breaks this dependencies betweenθ
andπ (see appendix and Agarwalaet al., 2000 for a detailed des-
cription of 2-point likelihoods and a discussion of the relevance of
such an approximation).

Using this approximation, we can consider the likelihood of the
data as depending solely onπ:

L(π|X) = Pθ(X|π) (2)

and proceed to the Bayesian inversion

Pθ(π|X) =
Pθ(X|π)P (π)∑
π Pθ(X|π)P (π)

∝ Pθ(X|π)P (π) (3)

In this framework, the information provided by the existing map
πA for the corresponding orthologous genes inA can be incorpo-
rated by defining a non-uniform prior distribution on the possible
orders for the map inB. We suppose that the probability of an order
is a function of its evolutionary distance to the reference map, mea-
sured with the number ofbreakpointsbetween the proposed order
π and the reference orderπA. This distance, denoted ask, is the
number of adjacent markers inπ which are not adjacent inπA.

As the choice of a particular orderπ implies a unique break-
point distance with the reference map, the previous equation can
be written as

Pθ(π|X) ∝ Pθ(X|π)P (π|k)P (k) (4)

wherek is the number of breakpoints. Assuming a Poisson prior for
the law of breakpointsP (k) = Pλ(k), the only expression which
is not yet determined isP (π|k), the likelihood of a given order for
a fixed number of breakpoints. For a given breakpoint distance, we
assume that all the orders are equally probable and hence follow a
uniform distribution. The likelihood takes the following form:

P (π|k) =
1

On(k)
(5)

whereOn(k) denotes the number of different orders having exactly
k breakpoints with the identity permutation of sizen. We show in
the next section how to compute this number. Forn = 100 markers
for example, we haveOn(k) = 1, 293, 79349, 19071365, · · · for
k = 0, 1, 2, 3, · · · . Intuitively, this new objective function states that
the risk of making an additional breakpoint to the reference order is
taken if the gain in likelihood of the data balances the risk of jum-
ping from a search space of sizeOn(k) to a search space of size
On(k + 1) (and fromk to k + 1 in the Poisson law). In the sequel,

we noteLc the likelihood including the comparative information
defined by (4) andL the usual likelihood (2). Finding the map
maximizing L will be termed simple 2-point RH approach while
searching for the one maximizingLc will be termed comparative
2-point approach.

3 NUMBER OF ORDERS AT A GIVEN
BREAKPOINT DISTANCE

We describe first the case of single chromosome genomes and then
extend our results to the case of multiple chromosomes. Since com-
plete map reversals define the same order, a permutation and its
complete reversal will be considered equivalent in the sequel.

3.1 Single chromosome genomes
We assume that the reference orderπA is the identity permutation.
Consider an arbitrary permutationπ. We define asegmentin this
permutation as a maximal set of markers in the permutation that con-
tains no breakpoint withπA. The single order exempt of breakpoints
with πA is πA itself. With a fixed breakpoint, the two resulting
segments can be ordered in 3 different ways:

1 · · · j | n · · · j+1 j · · · 1 | n · · · j+1 n · · · j+1 | 1 · · · j

In the general case we proceed by induction onn, the size of the
permutations andk the number of breakpoints. When a segment is
reduced to a single marker, the marker is said to be isolated. When
adding the new markern in an existing configuration, 3 possible
outcomes must be considered

(0) 0 breakpoint is created whenn is inserted before or after
markern− 1, at the border of a segment;

(1) 1 breakpoint is created whenn is inserted (i) inside a segment
next to markern − 1, (ii) at the position of an existing break-
point or (iii) at one of the two ends (borders) of the permutation
except next ton − 1;

(2) 2 breakpoints are created whenn is inserted anywhere inside
in a segment, except next ton − 1.

Note that the knowledge of the position ofn − 1, isolated or not,
in a central position or at one of the two extremities, is the only
relevant information needed prior to the introduction ofn. Consider
the set of all permutations withk breakpoints with the reference
order. In order to compute the cardinality of this set, we define a
partition into four components according to the position of marker
n (see figure 1):

• Ib
n(k): permutations withn isolated at one of the two extremi-

ties of the permutation

• Ic
n(k): permutations withn isolated but in a central position

(anywhere except at the extremities)

• Sb
n(k): permutations withn at one of the extremities of the

permutation and at the border of a segment

• Sc
n(k): permutations withn on the border of a segment but in

a central position

Using the same notation for a set and its cardinality, letOb
n(k) =

Ib
n(k) + Sb

n(k) andOc
n(k) = Ic

n(k) + Sc
n(k). We haveOn(k) =

Ob
n(k) + Oc

n(k). The following induction relations enable to
compute the number of permutations sharing a fixed number of
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1 2 · · · j | n−3 · · · j+1 | n−1 n−2 ∈ Sc
n−1(2)

n | 1 2 · · · j | n−3 · · · j+1 | n−1 n−2 ∈ Ib
n(3)

1 2 · · · j | n | n−3 · · · j+1 | n−1 n−2 ∈ Ic
n(3)

1 | n | 2 · · · j | n−3 · · · j+1 | n−1 n−2 ∈ Ic
n(4)

1 2 · · · j | n−3 · · · j+1 | n−1 n | n−2 ∈ Sc
n(3)

1 2 · · · j | n−3 · · · j+1 | n n−1 n−2 ∈ Sc
n(2)

Fig. 1. An example of initial permutation withn − 1 elements followed
by 5 different possibilities of inserting markern illustrating the setsIb

n(k),
Ic
n(k) andSc

n(k). The only set not shown,Sb
n(k), can be illustrated by

simply reverting the rightmost segment of the last permutation. Breakpoints
are represented as vertical bars.

breakpoints with the identity permutation:

Ib
n(k) = Ob

n−1(k − 1) + 2Oc
n−1(k − 1)

Ic
n(k) = (k − 1)On−1(k − 1) + (n − k)On−1(k − 2)

−Sc
n(k − 1)

Sb
n(k) = Ob

n−1(k)

Sc
n(k) = Ib

n−1(k) + 2Ic
n−1(k) + Sc

n−1(k)

+Sb
n−1(k − 1) + Sc

n−1(k − 1)

A configuration withn isolated at one border can only be obtained
through the operation described in (1)(iii) leading to the induction
relation forIb

n(k). The other relations can be derived by a similar
analysis. Setting all quantities to 0 fork < 0 and using initial values
of Ib

2(0) = Ic
2(0) = Sc

2(0) = 0, Sb
2(0) = 1, a simple dynamic

programming procedure can compute allOn(k) values forn ≤ N
andk ≤ N − 1 in quadratic time.

3.2 Multiple chromosome genomes
Generalization to multiple chromosomes implies to distinguish obli-
gate breakpoints created by the concatenation of markers from
different chromosomes from other breakpoints. If the chromosome
maps of the reference organism are arbitrarily concatenated before
the numbering process, some adjacencies in this new reference
map must be considered as breakpoints. Letn1, . . . , nr denote the
number of markers on the chromosomes1, . . . , r of the reference
organismA involved in a single linkage group of the genome of
interestB. In the induction process, when incorporating the first
marker from a new chromosome in the permutation, i.e of the type∑j

i=1 ni +1 for j = 1, . . . , r−1, one has to ensure that an additio-
nal breakpoint is always created. The number of permutations at a
given breakpoint distancek whenn spans then1+ · · ·+nr markers
uses the same induction relations as defined in 3.1 with the follo-
wing modifications for the particular cases wheren =

∑j
i=1 ni +1

(j = 1, . . . , r − 1):
Ib

n(k) = 2On−1(k − 1)
Ic

n(k) = (k − 1)On−1(k − 1) + (n − k)On−1(k − 2)

Sb
n(k) = Sc

n(k) = 0

4 MAXIMUM LIKELIHOOD COMPUTATION
REDUCED TO SOLVING A TSP

In order to compute efficiently the maximum likelihood estimation
of π under the model defined by (4) we reduce the corresponding

optimization problem to the Traveling Salesman Problem (TSP).
The principle of this reduction is to write the likelihood of an order
as a weighted path visiting all the markers in that order. Practically,
this entails constructing a distance measure on the set of markers.
We consider the log-likelihood

log Pθ(π|X) = log Pθ(X|π) + log [P (π|k)Pλ(k)] + C

and follow the approach of Agarwalaet al., 2000 for the first term:

log Pθ(X|π) = log[tx1 × tx1,x2 × · · · × txn−1,xn × txn ]

wheretxi,xi+1 is the contribution of the radiation hybrid data asso-
ciated with marker interval[xi, xi+1] to the likelihood of the map
defined byπ (see appendix and Agarwalaet al., 2000). Due to the
exponential nature ofOn(k), the additive contribution of each inter-
val for the breakpoint counterpart of the likelihood is obtained by a
linear regressiony = a + bk on the datay = log [P (π|k)Pλ(k)]
(k = 0, . . . , n−1) using the exact computation ofP (π|k) given by
the recurrence formula2 of section 3 and a predefined parameterλ
for the Poisson law. Setting

wx,y = log tx,y + b × 1x|y (6)

with

1x|y =

{
0 if x andy are adjacent in the reference order
1 otherwise

fully defines the TSP reduction

log P (π|X) =

n∑
i=0

wxi,xi+1

with wx0,x1 = log tx1 + a andwxn,xn+1 = log txn .
Solving the resulting TSP instances can be done in several ways

using either complete methods such as branch and cut or heuristic
methods. We have tried both state-of-the-art complete and/or heu-
ristic methods available in CONCORDE (Applegateet al., 1998)
and LKH (Helsgaun, 2000). The likelihood computation has been
implemented above the CARTHAGÈNE (de Givryet al., 2004) C++
and LKH (Helsgaun, 2000) C libraries.

For the purpose of comparing the performance of the comparative
2-point and the simple 2-point approaches, all the TSP instances in
the sequel are resolved using the LKH heuristic of Helsgaun, 2000.

5 SIMULATED RADIATION HYBRID DATA SETS
The following protocol is used to generate RH data sets and refe-
rence orders.N markers are randomly distributed according to the
uniform distribution on a chromosome of sizeS Ray giving rise to
the target map or true order. The inter-marker expected breakage
frequenciesθi,i+1 = 1 − e−δi,i+1 corresponding to the inter-
marker distanceδi,i+1 are subsequently used to generate random
RH data sets forI individuals according to the haploid equal reten-
tion model (Boehnkeet al., 1991) with the retention fractionr, a
false positive/negative error rateperror and a proportion of mis-
sing datapmiss. Finally, a reference order is generated by applying

2 This computation can be easily precomputed once for different number of
markers and the results made available as a table.
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a sequence of rearrangement events (reversal, transposition, inver-
ted transposition) on the true order with an expected number of
events, orevolutionary distance, set toE (Moret et al., 2001).
Note that an inversion creates 2 breakpoints while the two other
rearrangements produce 3 breakpoints so that the expected number
of breakpoints is8

3
× E if the 3 rearrangements are equiproba-

ble. In addition, a parameterH controls the proportion of known
orthologous relationships which are randomly selected among the
N possible ones. Whenever a markerx has no identified ortholog,
1x|y is set to 1 in (6) mimicking therefore a breakpoint. In the expe-
riments, we tried the following values for the generator parameters:
N = 100, S ∈ [4, 40], I = 40, r = 37%, pmiss = 3%, perror =
3%, E ∈ {2, 4, 8}, H ∈ [0, 100]. Each reported experimental result
is a mean over 100 randomly generated RH data sets and reference
orders by following the previous protocol with a fixed value of the
parameters.

In order to assess the effectiveness of our comparative map-
ping approach, two performance metrics were used to evaluate the
accuracy of the proposed maps: (a) proportion of the correctly
reconstructed maps, (b) the longest increasing subsequence (LIS).
Since, in our simulations, the true order is represented by the iden-
tity permutation, the longest increasing subsequence of a candidate
order indeed measures how accurate the candidate map is. Let
π = (π1 . . . πn), the longest increasing subsequence is the lar-
gest subset(πi1 , . . . πir ) such thatπi1 < · · · < πir . We note
LIS(π) = r the size of this set. LIS computation is folklore in
algorithmic and has already been used for the evaluation of mapping
strategies (Bøet al., 2002).

6 SIMULATION RESULTS
The robustness of our approach was studied with respect to 3 dif-
ferent factors: the influence of the evolutionary distance with the
reference genome, the influence of chromosome size (or marker
density), and the proportion of known orthology relationships within
the dataset.

As expected, the availability of a complete map for a closely
related organism significantly improves mapping efficiency, the
improvement being dependent on the evolutionary distance between
the two maps (figure 2). In these experiments, for S=15 Ray for
example, the true order was never found by the simple 2-point
RH mapping approach while the comparative 2-point RH mapping
recovered the true order from 16 up to 65 times depending on the
evolutionary distance. The proportion of correctly reconstructed
order is however too crude for a metric: as the number of mar-
ker increases, the probability of recovering the true order decreases
rapidly (see Ben-Dor and Chor, 1997 for a formal analysis of this
behavior). The LIS criterion in contrast, by measuring the size of
the largest subset correctly ordered in the proposed map, enables
to quantify the distance to the true map. Comparison using this cri-
teria, shown in figure 3, confirms the benefit of the comparative
mapping approach. Less than 10% of the markers were wrongly
positioned when the chromosome size belongs to the interval[5, 15]
Ray in the case of comparative 2-point RH mapping with a medium-
size evolutionary distanceE = 4. On the contrary, simple 2-point
RH approach got 33% of incorrectly positioned markers at its best
(S = 10 Ray).

As shown in both figures, there is a clear influence of marker den-
sity on the mapping accuracy. Indeed, the linkage between markers
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Fig. 2. Effect of marker density (chromosome size) and evolutionary
distance on the percentage of true order found. Simulated radiation hybrid
data sets with 100 markers randomly distributed on a single chromosome the
size of which varies from 4 Ray to 40 Ray. For the comparative approach, the
reference order of 100 orthologous markers is at an evolutionnary distance
of respectively 2, 4 and 8 (see text).

 0

 20

 40

 60

 80

 100

 5  10  15  20  25  30  35  40

L
I
S
 
c
r
i
t
e
r
i
o
n

Chromosome size (Ray)

Simulation with 100 markers and 100% orthology

comparative 2-point (2 rearrangements)
comparative 2-point (4 rearrangements)
comparative 2-point (8 rearrangements)

simple 2-point RH model

Fig. 3. Effect of marker density (chromosome size) in terms of the longest
increasing subsequence (LIS) criterion.

is respectively loose and tight for large and small chromosomes.
In both extreme cases, the RH data set is not very informative for
the purpose of ordering and the reference order provides therefore a
valuable information. The robustness of the comparative approach
to marker densities, due to the fact that the evolutionary breakpoints
are independent from the number of markers, is of great value when
the objective is to produce dense maps.

In our experiments, the expected number of breakpoints between
the true order and the reference order, orλ, was set to1 in the Pois-
son priorPλ(k). This value is generally unknown for the mapping
process. However, no clear improvement in terms of both crite-
ria was observed when using for each instance the exact number
of breakpoints, available in the context of simulation (results not
shown).

Finally, we studied the impact of diminishing the proportion of
known orthologous relationships. Figure 4 shows the results for
the LIS criterion on a10 Ray chromosome withH ∈ [0, 100].
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WhenH = 0, the method reduces to a simple 2-point RH map-
ping approach. WhenH was greater than40 − 50%, we observed
a clear improvement in terms of map quality for the comparative 2-
point mapping approach compared to the simple 2-point RH model.
Below this threshold, the knowledge of a partial reference order
can be counterproductive, especially if the evolutionary distance is
high. An explanation for this negative result, in the case ofE = 8
andH = 30, is the fact that the number of breakpoints was close
to the number of orthologous relationships (in the experiments,
E = 8 corresponds to18.74 breakpoints for 100 markers and still
11.27 breakpoints forH = 30 orthologous markers) and the TSP
reduction provided a coarse approximation because of the arbitrary
weightwx,y assigned in the absence of orthologs (see section 5).

7 EXPERIMENTS WITH A DOG RADIATION
HYBRID DATA SET

In order to test the efficiency of our method on a real example, we
applied this comparative approach to the construction of a RH map
of a whole canine chromosome (CFA2 - figure 5) using a set of 426
markers typed on the RHDF9000 dog radiation hybrid panel (Hitte
et al., 2005). The human genome sequence was used as a reference
map. As the RH markers consisted essentially in gene-based frag-
ments, the corresponding orthologous position was determined for
all 426 markers using a simple reciprocal best hit principle with
the human gene catalog (Kirknesset al., 2003). The 426 markers
cover the entire canine chromosome 2 (87 Mb) corresponding to
a marker every 200kb on average. We constructed RH maps of
CFA2 using both the simple 2-point RH method and the compara-
tive 2-point approach. The comparative mapping approach showed
a clear improvement over the simple 2-point method in that the pro-
posed map was in better agreement with the dog genome sequence
(Lindblad-Tohet al., 2005) than the map built using the simple 2-
point RH mapping approach. An illustration of this improvement is
given in figure 5.

8 DISCUSSION
As frequently pointed out (Agarwalaet al., 2000; Ben-Dor and
Chor, 1997; Ben-Doret al., 2000), and illustrated in the previous
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Fig. 5. Consensus maps of 426 markers for Dog Chromosome 02 found by
(from left to right) simple 2-point RH mapping (A), sequence assembly (B),
comparative 2-point RH mapping (C), and following the Human genome (4
segments,100% orthology) order (D). LIS criteria are:LIS(A) = 212 and
LIS(C) = 317. Computing maps A and C took less than 10 seconds each
on a Pentium IV 2 GHz.

sections, the major impediments to producing dense high-quality
RH maps are the panel resolution power and experimental data qua-
lity and not computation. The traditional avenue to overcome this
problem is the construction of framework maps: only a subset of
markers is ordered with the counterpart that the proposed order is
significantly better (usually in a ratio of 1000:1 of the likelihood)
than all other orders with the same markers. Unfortunately this has
a cost as the remaining unplaced markers (typically 50 to 80% of
initial dataset) are then positioned into bins of confindence leading
to a placement map which may encounter many discrepancies with
the true order. We propose here a novel approach that defines a new
objective function which takes into account the information provi-
ded by a closely related completely sequenced genome: a genome
for which an exhaustive map is available. The efficiency of the
method is clearly dependent on the evolutionary distance between
the reference genome and the genome one wishes to map but also
on the quality of orthologous relationships. The proposed objective
function performs significantly better than the simple 2-point like-
lihood on both simulated and real data for the range of parameters
typically observed for the mammalian species (relative low number
of breakpoints and ability to detect orthology relationships). While
the experiments are here restricted to the comparison with the simple
2-point approach of RH mapping, our purpose was to demonstrate
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the benefits of incorporating comparative mapping information in an
existing statistical framework, principle which should be applicable
to other RH mapping strategies.

We would like to emphasize that the comparative approach could
also be of interest within a species, in the context of genetic map-
ping, when a map of the markers already exists and one wishes
to incorporate this prior knowledge into the statistical model while
studying additional experimental data set corresponding to another
breed or cultivar for example.

Future directions should address the case of multiple closely
related sequenced genomes.

APPENDIX
A radiation hybrid experiment can be rapidly sketched as follows:
cells from the organism under study are irradiated. The radiation
breaks the chromosomes at random locations into separate frag-
ments. A random subset of the fragments is then rescued by fusing
the irradiated cells with normal rodent cells, a process that produces
a collection of hybrid cells. The resulting clone may contain none,
one or many chromosome fragments. This clone is then tested for
the presence or absence of each of the markers. This process is per-
formed a large number of times producing a radiated hybrid panel,
previously called RH data set in Section 2.

More formally, givenN markers andI hybrid cells, a panel is
a collection ofI vectors of identical sizeN , containing boolean
values0 for the absence of a marker and1 for its presence.

The radiation breakage frequencies between two markers, esti-
mated from their co-occurrence pattern in a panel of radiated hybrid
cells (possible configuration patterns are(11), (10), (01), or (00)
in vectors), provides, in a similar manner to the recombination frac-
tion in genetic mapping, a measure of the distance separating the
markers. The distance unit is theRay, corresponding to a segment
length where one break is expected. Letr denote the retention frac-
tion andθ the breakage probability between markersy andz. The
conditional probabilities of the status Z of marker z, knowing the
status Y of marker y, is given by the following formulas (Boehnke
et al., 1991):

P (Z = 1 |Y = 1) = p1|1 = (1− θ) + θr
P (Z = 1 |Y = 0) = p1|0 = θr
P (Z = 0 |Y = 1) = p0|1 = θ(1− r)
P (Z = 0 |Y = 0) = p0|0 = (1− θ) + θ(1− r)

Let p1 = r andp0 = 1 − r. The probability of observing a hybrid
with markery present and markerz absent is for examplep1p0|1
and, by a simple refactorization, the likelihood for the dataY andZ
associated to a panel of hybrids takes the following form

L(Y, Z|θ) = L(Y |θ)L(Z|Y, θ) (1)

with L(Y |θ) = pn0.
0 pn1.

1 and the 2-point likelihood

L(Z|Y, θ) = pn11
1|1 pn10

1|0 pn01
0|1 pn00

0|0

whereθ is the extended set of parameters(θ, r) andnij the car-
dinality of the different configurations outlined above withni. the
marginal cardinalityni0 + ni1.

The maximum likelihood estimate ofr is simply the ratio of the
total number of 1s to the total number of 1s and 0s (the number of1

in the panel divided byI×N ). The maximum likelihood estimate of
the breakage frequencyθ can be derived analytically from (1) (see
for example Agarwalaet al., 2000 for a detailed description).

The natural mathematical framework for radiation hybrid map-
ping depicts the succession of loci on a chromosome as successive
steps of a Markov chain. The likelihood of a hybrid for a given order
π = (x1 · · ·xn) is the probability to observe the dataX under the
associated Markov model

L(X|θ, π) = P (X1|θ1)
∏

P (Xi|Xi−1, θi) (2)

Considering simultaneously all the hybrids, the likelihood can be
rewritten in the following form

L(X|θ, π) = L(X1|θ1)
∏

L(Xi|Xi−1, θi) (3)

whereθi is the set of parameters restricted to the interval between
two consecutive markers. In particular, the maximization over the
parametersθ on one side and the order parameterπ can be con-
ducted independently. We callLθ(Xi|Xi−1) the 2-point maximum
likelihoods :

Lθ(Xi|Xi−1) = max
θi

L(Xi|Xi−1, θi)

This value can be computed using the maximum likelihood esti-
mation procedure ofr andθ described above. The likelihood of an
orderπ can be computed directly from these maximum likelihoods:

Lθ(X|π) = Lθ(X0)
∏

Lθ(Xi|Xi−1) (4)

A reduction to a symmetric TSP implies a symmetric treatment of
the different loci, dropping the reference toθ for simplicity, we note

tx =
√

L(X) andtx,y =
L(X, Y )

txty

In a straightforward manner

tx1

(∏
txi,xi−1

)
txn = tx1

(∏ L(Xi|Xi−1)txi−1

txi

)
txn

= L(X1)
∏

L(Xi|Xi−1)

therefore

L(X|π) = tx1 × tx0,x1 × · · · × txn−2,xn−1 × txn (5)

and the TSP reduction is completed (see Ben-Doret al., 2000;
Agarwalaet al., 2000 for analytical formulas).

In general however, the correct Markov formalization implies
some hidden properties (model including the diploid nature of the
genome or typing errors) and equality (4) no longer holds. It has
been argued that the product of 2-point maximum likelihoods provi-
des however a good approximation of the likelihood (Ben-Doret al.,
2000; Agarwalaet al., 2000).
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