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What is a protein ? (Kudos to wikipedia)

Amino acids, proteins

Proteins are linear chains of amino-acids (20 natural AAs).

All AAs share a common “core” and have a variable
side-chain.

Side-chains are
flexible (ARG)



Protein Design

Why ?

Proteins have various functions in the cell: catalysis, signaling,
recognition, regulation. . .

Efficient, biodegrable, 106 to 1020 speedups

Some reactions / ligands miss enzymes / partners.

Nano-technologies (shape more than function).

Medecine, cosmetics, food, bio-energies. . .



Protein Design

Protein function linked to its 3D shape through its amino acid
composition.

Protein design’s aim

Identify sequences that have a suitable
function (shape).

Issue

There are 20n proteins of length n.
Impossible to synthesize and test all of
them.



The CPD problem - stability variant

Preparation

A backbone is chosen/built from a known protein/structure
(or de novo).

Positions are set as mutable, flexible or rigid

The aim is to find an AA sequence that folds, stably, in the
backbone.

Issues

CPD is a sort of inverse of folding.

But folding is far from being a solved problem



Successes of Protein Design



The (basic) CPD problem: search space

Rigid backbone variant

1 Assume a rigid protein backbone.

2 Choose 1 AA among possible ones
at each mutable position.

3 Spatial conformation discretized in
rotamers.

4 Statistically frequent orientations.

5 Several 100’s rotamers per position.

Search Space

1 Fully discrete description, defined by a choice of rotamer (AA
× conformation) for each position.

2 Search space can be ≈ 250n



Stable = minimum energy (GMEC, NP-hard [PW02])

Energy: interactions between atoms.

Electrostatic, van der Waals (Amber)

Dihedral torsion angles, Implicit Solvation (EEF1)

“Statistical terms” (Talaris)

Cutoff functions

Pairwise decomposable energy

backbone/backbone (constant)

backbone/rotamer (depends on rotamer)

rotamer/rotamer (depends on pairs of rotamers)

E (c) = E∅ +
n∑

i=1

E (ir ) +
∑
i<j

E (ir , js)



Dedicated CPD Methods

Dominance / Dead End Elimination [Des+92]

E (ia) +
n∑
j 6=i

min
c

E (ia, jc) > E (ib) +
n∑
j 6=i

E max
b

E (ib, jc)

Strengthened by [Gol94]

E (ia)− E (ib) +
n∑
j 6=i

min
c

[
E (ia, jc)− E (ib, jc)

]
> 0

Many further enhancements (splitting, pairs...). Polynomial time
pre-processing.

In CSP/SAT [Coo97; NR00; LRD12]

Known as “(soft) substituability” in CSP and Dominating 1-clause
rule in MaxSAT.



DEE + A∗

polytime DEE, GMEC NP-hard

DEE cannot reduce all domains to singletons

Followed by A∗ best-first search using the following lower
bound (admissible heuristics) [GLD08]:

d∑
i=1

E (ir ) +
d∑

j=i+1

E (ir , js)︸ ︷︷ ︸
Assigned

+
∑n

j=d+1

[
min
s

(E (js) +
d∑

i=1

E (ir , js)︸ ︷︷ ︸
Forward checking

+
n∑

k=j+1

min
u

E (js , ku)︸ ︷︷ ︸
DAC counts

)
]

Lower bound

Same as a lower bound introduced in AI (WCSP) in
1994 [Wal95].

Obsolete.

T. Schiex. “Arc consistency for soft constraints”. In: Principles and Practice of Constraint Programming - CP
2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411–424



Solving the Fixed Backbone CPD problem

Our targets

Identify a most efficient model/solving technique for solving
the rigid backbone/rotamer based/pairwise energy CPD
problem.

Do one of the first large spectrum comparison of NP-complete
optimization techniques (AI: CSP, CP, SAT, MRF and OR:
ILP, QP, QPBO) on one well defined and important
optimization problem.

Learn from it.



Cost Function Networks (aka WCSP or MRF)

Cost Function Network (X ,D,E )

1 X = (1, . . . , n), n variables (indices).

2 D = (D1, . . . ,Dn), n domains

3 C set of non negative integer cost functions cS .

4 cS : DS =
∏

Di ,i∈S → {0, . . . , k}

min
t∈DX

E (t) =
∑
cS∈C

cS(t[S ])

k is an intolerable cost. May be finite or not.

Cost functions defined as tables, analytic formulas or
predicates (global cost functions).

Bounded addition, subtraction. c∅ is a lower bound.



Solving techniques (CFN solver: toulbar2)

Inspired by Constraint Satisfaction

1 Backtrack becomes Branch and Bound (Depth First)

2 Local consistency reformulates the problem in a more explicit
equivalent problem (Equivalence Preserving Transformation).

3 Provides non naive c∅ (lb), incremental.

Many additional techniques

1 Dynamic variable/value ordering, learning heuristics

2 On the fly variable elimination,

3 Tree-decomposition for Branch and Bound (BTD). . .

Won the UAI 2010 and 2014 approximate inference challenges
(2nd in 2012).



Equivalence Preserving Transformation

Arc EPT

A cost function cS , here cij .

EPT Project ({ij}, {i}, a, α) shifts cost α between ci (ia) and
the cost function cij .

projection (α ≥ 0), extension (α < 0).

Precondition: −ci (ia) ≤ α ≤ mint′∈D ij ,t′[i ]=ia cij(t
′);

Procedure Project({i , j}, {i}, a, α)
ci (ia)← ci (ia)⊕ α;
foreach (t ′ ∈ D ij such that t ′[i ] = ia) do

cij(t
′)← cij(t

′)	 α;
end

⊕ is m−bounded addition. Pseudo-inverse 	 (you can take
whatever you want from k).



Example

Project({1, 2}, {1}, b, 1) Project({1, 2}, {2}, a, 1)
← →

→ ←
Project({1, 2}, {1}, b,−1) Project({1, 2}, {2}, a,−1)

⇓ Project ({1},∅, [], 1)

c∅ = 1

Non confluent (multi fix-point). Not all as good in term of lb.
With integer costs, finding the best fix-point is NP-hard [CS04].



Local consistencies

Polynomial time filtering

Node consistency: at the variable level. Moves cost to c∅,
upper bounding (ci (a) + c∅ = k).

Arc consistency, directional AC, Full directional AC, EDAC,
VAC, OSAC (Optimal Soft Arc Consistency).

VAC and OSAC solve submodular subproblems.

T. Schiex. “Arc consistency for soft constraints”. In: Principles and Practice of Constraint Programming - CP
2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411–424

M. Cooper et al. “Soft arc consistency revisited”. In: Artificial Intelligence 174 (2010), pp. 449–478

Universally used principle

Also underlies Weighted MaxSAT “resolution” and Markov
Random Field “reparametrization by Message Passing” (TRW-S,
MPLP, SRMP,. . . ).

J. Larrosa and F. Heras. “Resolution in Max-SAT and its relation to local consistency in weighted CSPs”. In:

Proc. of the 19th IJCAI. Edinburgh, Scotland, 2005, pp. 193–198

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009



Optimal Soft Arc Consistency

OSAC

An LP that identifies a set of EPTs (rational costs) that maximizes
the lower bound. After propagation of hard (k) costs using Arc
Consistency.

maximize
∑

i ui where

ui : amount of cost projected from ci to c∅

pSia : amount of cost projected from cS to ia

∀i ∈ X ,∀a ∈ di , ci (a)− ui +
∑

(cS∈C),(i∈S)

pSi ,a ≥ 0

∀cS ∈ C , |S | > 1,∀t ∈ `(S) cS(t)−
∑
i∈S

pSi ,t[{i}] ≥ 0

M C. Cooper, S. de Givry, and T. Schiex. “Optimal soft arc consistency”. In: Proc. of IJCAI’2007. Hyderabad,
India, Jan. 2007, pp. 68–73
M.I. Schlesinger. “Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of
two-dimensional visual signals in noisy conditions)”. In: Kibernetika 4 (1976), pp. 113–130

M. Cooper et al. “Soft arc consistency revisited”. In: Artificial Intelligence 174 (2010), pp. 449–478



ILP models

ILP for WCSP/CPD/MRF

1 Koster’s ILP model for WCSP [KHK99]. Used for CPD
in [KCS05]. Is the “local polytope” of MRF [Wer07]

2 One 0/1 variable per value and per pair (relaxable for pairs).

min
∑

i ,r E (ir ).di ,r +
∑

i ,r ,j ,s E (ir , js).pi ,r ,j ,s

s.t.
∑

r di ,r = 1 (∀i)∑
s pi ,r ,j ,s = di ,r (∀i , r , j)

Relaxation = dual of OSAC LP

1 Arc consistencies: limited Block Coordinate Descent
algorithms for the dual of this specific (?) LP

2 Any LP can be reduced to it in linear time [PW15].



As quadratic 0/1 programs

QP - Cplex

min
∑
i ,r

E (ir ).dir +
∑
i,r,j,s
j>i

E (ir , js).dir .djs

s.t.
∑
r

dir =1 (∀i)

dir ∈ {0, 1} (∀i , r)

QPBO - MaxCut (BiqMac/SDP bound): Big M

min
∑
i ,r

(E (ir )− N).dir +
∑
i,r,j,s
j>i

(E (ir , js)− N).dir .djs +
∑
i,r,s
s>r

M.dir .dis



MRF methods

daoopt [OD12]

1 won the UAI (PIC) approximate inference challenge in 2012.

2 lower bound based on “Mini-buckets” (dynamic programming
with bounded width).

3 tree-decomposition used in AND/OR search

MPLP [SCL12]

1 Dual relaxed solution (lower bound) provided by BCD
optimization.

2 Strengthens the Dual by including empty ternary cost
functions.

3 Heuristics for Primal.

4 Iterative, no search.



Partial Weighted maxSAT

PW MaxSAT

Boolean variables, litteral: variable or its negation

Weighted clauses: disjunction of litterals.

criteria: sum of weight of violated clauses.

B&B - Core solvers: MiniMaxSat [HLO08],akMaxSat [Kue10]
- bincd [HMM11],wpm1/2 [ABL09; ABL10],MaxHS [DB13]

Direct encoding

dia : use ia

∀ir , is , ir 6= is , (¬dir ∨ ¬dis ) (AMO)

∀i , (
∨

r dir ) (ALO)

(¬dir ,E (ir ) and (¬dir ∨ ¬djs ,E (ir , js))



Tuple encoding

Property [Bac07]

In CSP, Unit Propagation on this encoding enforces AC on the
CSP. Close to the ILP model.

Direct encoding

dia + AMO + ALO.

pir js : pair ia, js is used.

∀ir , js : (dir ∨ ¬pir js ) and (djs ∨ ¬pir js ).

∀ir , j(¬dir ∨
∨

s pir js )

idem for E (ir ), ∀ir , js(¬pir js ,E (ir , js))



Pure CP - Soft as Hard model [PRB00]

General idea

1 add one “cost” variable to every cost function to make a
ternary constraint.

2 use a global “Sum” constraint on these new cost variables.

Can be expressed in MiniZinc [Mar+08]

1 GeCode (http://www.gecode.org/),

2 Mistral (Python numberjack interface,
http://numberjack.ucc.ie/),

3 Opturion/CPX http://www.opturion.com/cpx.html

http://www.gecode.org/
http://numberjack.ucc.ie/
http://www.opturion.com/cpx.html


A realistic benchmark: 35+12 designs tested

The designs

1 Extracted from the litterature,

2 Good resolution of the PDB structures,

3 Structure preparation,

4 Domains assigned based on accessibility,

5 Amber + EEF1 + No cutoff (almost complete graphs)

6 Variable search space size, from 1026 to 10249



Results - 9000 seconds



From failures. . .

Analysis

1 QP by Cplex: dense model, but weak and somewhat
expensive lb (very large node file, large gaps).

2 SDP based QPO: probably tight lower bound, but far too
expensive (few nodes explored after several hours). biqmac
library of MaxCut beasley instances size 100: solved in 1” by
tb2, 1’ by biqmac.

3 MaxSAT, direct: branch and bound solvers very fast (36k
nodes/sec, 100 times faster than tb2). found incumbent
solutions but never started the optimality proof. Weak lb
(root = 25% of optimum, tb2 always > 97%).

4 MaxSAT, tuple: b&b,strong lower bound (should be similar
to VAC for core based solvers). Still weaker than tb2 and very
slow (2 nodes before timeout at best for akmaxsat). No
incumbent. Core based better (maxHS, good lb).



... to Successes

Analysis

1 Daoopt: almost complete graphs. Not ideal for tree
decomposition based methods.

2 DEE/A*: surprisingly good given the lower bound used. Very
strong preprocessing.

3 ILP - Cplex: LP bound similar to OSAC (dual). tb2 has
upper bounding. Similar number of nodes but tb2 much faster
(ILP: 1 to 40 nodes / minutes, tb2: 1 to 40 thousand).

4 MPLP: no branching but able to solve few more problems
than CPLEX.

A Lesson for (AI) Optimization

The lower bounding/search efforts compromise is not understood,
nor exploited. But may be crucial.



Enumerating all suboptimal solutions on 35 designs

All within 2 kcal/mol of GMEC, 100 h, tb2 and DEE/A*

Enumeration feasible for 1 design only (DEE/A*)

Enumeration finished for all solved designs (CFN).

More than 1 billion sequence-conformations for one design.

May be useful for partition function estimation [Vir+15].
Additional progresses since.



Final note and Acknowledgments

This is all for a rigid backbone. Modern CPD increasingly uses
“flexible” representations (eg. with a backbone ensemble).

Thanks to. . .

Bruce Donald and Kyle Roberts (Duke Univ.) for the open
source software Osprey and helping us with it.

Hugo Bazille (ENS/INRIA): for testing ASP on the CP2012
instances.

Questions ?
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Daniel Pruša and Tomáš Werner. “How Hard Is the LP
Relaxation of the Potts Min-Sum Labeling Problem?”
In: Energy Minimization Methods in Computer Vision
and Pattern Recognition. Springer. 2015, pp. 57–70.

T. Schiex. “Arc consistency for soft constraints”. In:
Principles and Practice of Constraint Programming -
CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000,
pp. 411–424.

http://www.ncbi.nlm.nih.gov/pubmed/12468711


References IX

M.I. Schlesinger. “Sintaksicheskiy analiz dvumernykh
zritelnikh signalov v usloviyakh pomekh (Syntactic
analysis of two-dimensional visual signals in noisy
conditions)”. In: Kibernetika 4 (1976), pp. 113–130.

David Sontag, Do Kook Choe, and Yitao Li.
“Efficiently Searching for Frustrated Cycles in MAP
Inference”. In: Proceedings of the Twenty-Eighth
Conference on Uncertainty in Artificial Intelligence
(UAI-12). Corvallis, Oregon: AUAI Press, 2012,
pp. 795–804.

C. Viricel et al. “Approximate Counting with
Deterministic Guarantees for Affinity Computations”.
In: Proc. of Modeling, Computation and Optimization
in Information Systems and Management Sciences -
MCO’15. Metz, France, May 2015.



References X

R. Wallace. “Directed Arc Consistency Preprocessing”.
In: Selected papers from the ECAI-94 Workshop on

Constraint Processing. Ed. by M. Meyer. LNCS 923.
Berlin: Springer, 1995, pp. 121–137.

T. Werner. “A Linear Programming Approach to
Max-sum Problem: A Review.” In: IEEE Trans. on
Pattern Recognition and Machine Intelligence 29.7
(July 2007), pp. 1165–1179. url:
http://dx.doi.org/10.1109/TPAMI.2007.1036.

http://dx.doi.org/10.1109/TPAMI.2007.1036

