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Introduction and Overview ML\‘; INRAZ

@ Forinviting me and for accepting a remote presentation

@ |'d love to be with you
@ Itsaved 2 tons of CO5!




Introduction and Overview MA 3 INRAZ

Thank you!
@ For inviting me and for accepting a remote presentation
@ I'd love to be with you
@ ltsaved 2 tons of COs!

What we will see
@ What is a protein, why is it exciting to design new ones?
@ What connection with CP?
@ How does it enable SARS-CoV2 variants exploration?
@ How Deep Learning can learn the rules of protein design (or Sudoku BTW)?




P rOtEi n S? Thanks to wikipedia m‘a INBA%

Sequence of “amino-acids’, each chosen among 20 natural ones
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Why should we want to design proteins? MA & INRAS
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Eco-friendly chemical/structural nano-agents present in all living organisms
@ New drugs for health (human, animals, plants)
@ New catalysts (environment, recycling, biofuels, food and feed, cosmetics...),
@ Can be synthesized by inexpensive microscopic 3D-printers (bacterias, yeast, ...)

@ Biodegradable

Bioenergy

Post-oil chemicals

Plasticrecycling \y ‘% | & biomaterials
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Protein folding and protein design

@ Acquire their properties through their 3D structure
@ In solvent, the fold is defined by the protein sequence
@ This is what AlphaFold2 predicts
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Globular proteins
@ Acquire their properties through their 3D structure
@ Insolvent, the fold is defined by the protein sequence
@ This is what AlphaFold2 predicts

Inverse folding

Fiber %

Backbone design Sequence design
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The Computational Protein Sequence Design Problem MA 3 INRAZ

Produce a sequence s of n amino-acids
that spontaneously adopts a target fold.




Proteins are flexible: simplifications MA & INRAZ

@ The backbone structure is fixed (rigid).
Sequence s is discrete, the side-chain geometries are discretized.




Proteins are flexible: simplifications MA & INRAZ

@ The backbone structure is fixed (rigid).
© Sequence s is discrete, the side-chain geometries are discretized.

Catalog of (amino acid, side-chain conformations) pairs build from the PDB
(typically 400 or more rotamers)
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o Current“truth”: quantum mechanics but quickly intractable
@ Use approximate descriptions of forces (Coulomb, bonds, van der Waals, .. .)
@ Captured inside an “energy function”
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Folding

o Current“truth”: quantum mechanics but quickly intractable
@ Use approximate descriptions of forces (Coulomb, bonds, van der Waals, .. .)
@ Captured inside an “energy function”

The probability of sequence s in conformation X is defined by its energy E(s, X).

e—E(sX )
V4

p(s, X) oc e &Y p(s; X) =




More simplifications MA & INRAZ
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@ The energy function E(s, X) is pairwise decomposable Rosetta 3-nov16'

Only an approximation of the real (intractable to compute) energy
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More simplifications MA & INRAS

Use a “pairwise decomposable energy”

@ The energy function E(s, X) is pairwise decomposable Rosetta 3-nov16'
© Only an approximation of the real (intractable to compute) energy

Decomposability: precomputed energy tables ir: rotamer r at position J
n
E(S,X):Efz'i'ZEi (ir) ZEU (irsJs)
i=1 (ij)el

@ We need to minimize E.

@ We optimize the sequence, physics will optimize the geometry in water.




More simplifications MA 3 INRAZ

Use a “pairwise decomposable energy”

@ The energy function E(s, X) is pairwise decomposable Rosetta 3-nov16'
© Only an approximation of the real (intractable to compute) energy

Decomposability: precomputed energy tables ir: rotamer r at position J

E(s,X) =Ez + ZEi(ir) + Z Eij(imjs)

i=1 (ij)el

@ We need to minimize E.

@ We optimize the sequence, physics will optimize the geometry in water.

Mostly solved by Monte-Carlo algorithms (Rosetta simulated annealing)’ )




1985

1997
2003

Novel Topology
(top7)

[Kuhlman et al. 2003]

Zinc Finger

[Dehiyat & Mayo 1997]

Calmodulin-binding
peptide

[DeGrado et al. 1985]

2009

Enzyme activity

[Chen et al. 2009]

Functional Enzyme

[Rothlisberger et al. 2008]

Enzyme for Multi-Step
Reaction

[Jiang et al. 2008]

2011

2016

2019

Auto-Assembling
Symmetrical Protein

[Niguchi et al. 2019]

Self-Assembling
Nanocage

[Hsia et al. 2016]

Longer Emission Wave
Length Fluorescence

[Chica et al. 2011]

h”\ «
TouLoust @

» INRAS
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Cost Function Network (a type of Graphical model) MA & INRAZ

@ asequence X of discrete variables x;, domain D;

a set £ of cost functions es (possibly infinite costs)
es is a cost function over variables in S expressed as a table

a solution minimizes the joint cost function £ = 5, es (WCSP, NP-hard)
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Cost Function Network (a type of Graphical model) MA & INRAZ

@ asequence X of discrete variables x;, domain D;
@ aset E of cost functions es (possibly infinite costs)
@ es is a cost function over variables in S expressed as a table




Cost Function Network (a type of Graphical model)

Cost function network (X, E)
@ asequence X of discrete variables x;, domain D;
@ aset E of cost functions e
@ es is a cost function over variables in S
@ asolution minimizes the joint cost function £ = 3, es

MA & INRAS
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(possibly infinite costs)
expressed as a table
(WCSP, NP-hard)




Cost Function Network (a type of Graphical model) MA 3 INRAZ

Cost function network (X, E)
@ asequence X of discrete variables x;, domain D;

@ aset E of cost functions es (possibly infinite costs)
@ es is a cost function over variables in S expressed as a table
@ asolution minimizes the joint cost function £ = 3, es (WCSP, NP-hard)

V.

Graphical models?
@ Variables are vertices
@ Connected by an edge if they interact (participate together in a function)




Cost Function Network (a type of Graphical model) MA 3 INRAZ

Cost function network (X, E)
@ asequence X of discrete variables x;, domain D;

@ aset E of cost functions es (possibly infinite costs)
@ es is a cost function over variables in S expressed as a table
@ asolution minimizes the joint cost function £ = 3, es (WCSP, NP-hard)

V.

Graphical models?
@ Variables are vertices
@ Connected by an edge if they interact (participate together in a function)
@ Stochastic graphical models (Markov Random Fields):

p(X) o e~EX) p(X) =




Exact vs. Stochastic search MA 3 INRAZ
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Large input (> 1GB) NP-hard problem
For pratical sizes of problems, toulbar2 is able to...

SMPUTATIONAL
HEMISTRY -

@ provide a proven minimum energy solution'’
o exhaustively enumerate sequences close to it'®

@ provide sequence libraries with guaranteed diversity'*

Rosetta’s Monte Carlo Simulated Annealer increasingly fails to find the optimal sequence?

“David Simoncini et al. “Guaranteed Discrete Energy Optimization on Large Protein Design Problems”. In: Journal
of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DOI: 10.1021/acs. jctc.5b00594.



https://doi.org/10.1021/acs.jctc.5b00594

Unbounded error MA & INRAS
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Instance hardness

Taking the best solution over 1000 runs of Rosetta SA (fixbb)
Asymptotic convergence can be arbitrarily slow...

Guaranteed Discrete Energy Optimization on Large Protein Design Problems l CTC
Journal of Chemical Theory and Computation|

David Simoncinit, David Allouchet, Simon de Givry?, Géline Delmas?, Sophie Barbet8+, and Thomas Schiex™t




QUBO and Quantum annealing (DWave), Toulbar2 & SA'
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etta SA
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gap > 1.16, 90% of the time > 4.35, 50% of the time > 8.45, 10% of the time

ikram Khipple Mulligan et al. “Designing Peptides on a Quantum Computer”. In: bioRxiv (2019), p. 752485.



Toulbar2 vs. CPLEX, MaxHS....(real instances) MA & INRAS
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Computational protein design as an optimization problem #

8000
7000
6000
MaxHS
5000
4000

3000

2000

1000 ___‘,_,/ﬁ%pt /

4//r"'35bx
toulbar2

2 3 456 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

0 w
1

# of instances solved (X) within a per instance cpu-time limit (Y) J

“The Toulbar2 package for WCSPs significantly improved the state-of-the-art efficiency for protein design.” Com. ACM-20, B.

Donald et al.



SARS-CoV2, Spike & RBD MA 3 INRAG
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MRC Laboratory of Molecular Biology. Ke, Z., Briggs, J. et al. Nature (2020).



Predicting possible CoViD variants with toulbar2 MA & INRAZ

scionco for peopla,ife & earth

@ The spike protein (RBD) must bind to the human ACE2 receptor
@ March 2020: A structure of the spike RBD bound to ACE2 is published
@ Predicting variants would allow for blocking polyclonal vaccines

Stable Affine
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Predicting possible CoViD variants with toulbar2

@ RBD alone and ACE2 alone ERBD 4 FACE2
@ RBD bound to ACE2 [ERBD+ACE2
@ Thermodynamics says (very simplified) that binding increases with

—_AF = (ERBD + EACEZ) . ERBD+ACE2
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Predicting possible CoViD variants with toulbar2

@ RBD alone and ACE2 alone ERBD 4 FACE2
@ RBD bound to ACE2 [ERBD+ACE2
@ Thermodynamics says (very simplified) that binding increases with

—_AF = (ERBD + EACEZ) . ERBD+ACE2

o Thisisa Xf = NPM-hard problem?

@ Side-chain geometry is free in water. We are playing against Physics.




We rely on exhaustive enumeration capabilities MA 3 INRAZ

<
TouLous: @

@ the ACE2 sequence is fixed
Q We allow only the 27 interface amino acids of RBD to mutate

© We allow a shell of 25 amino acids around them to change geometry

ERBD+ACE 2 8

© We exhaustively enumerate low sequences’




We rely on exhaustive enumeration capabilities

@ the ACE2 sequence is fixed
@ We allow only the 27 interface amino acids of RBD to mutate

© We allow a shell of 25 amino acids around them to change geometry

ERBD+ACE2

© We exhaustively enumerate low sequences'®

MA 3 INRAZ

Result: 91 millions sequences at less than 8 kcal /mol of optimum

@ Remove those that destabilize the RBD (EEP)

@ Geometry is free in water: we need to solve 91 million (NP-hard) problems
@ Embarassingly parallel job (cluster)

@ 4.5 millions of sequences, with 3,272 local optima

@ Bioinformatics: 59 clusters each with a centroid sequence




Yeast display

Yeast Display

@ 11/59 variants bind to
ACE2

@ Select 8 best, 7 purified
properly

o Affinity measured by
BLI (55nM, ~WT)

MA & INRAS
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Measures
Infectivity and resistance to antibodies

Pseudo viruses vs. HEK293 human cells

M2

3 INRAZ

A) KDs of the indicated soluble RBDs to Fc-Ace2 and therapeutic IgGs
FcAce2  |IgG LY-CoV016 |IgG Regn10933 [1gG Regn10987]
Lstrain | 41.7 £7.40M | 203£635nM | 14.42580M 7422 1080M
Pv21 155 £ 10.5 nM n.d. n.d. 216 29 nM
PV22 18 +14.2nM n.d. nd. nd.
Pv25 nd nd nd. nd.
PV30 55.6 +7.3nM n.d. n.d. nd.
PV49 440 + 59 nM n.d. nd. nd.
PVST | 291 40nM nd. 4850 nM nd.
PV53 222 +49 nM n.d n.d. 152 +53 nM
n.d.: binding not detected
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Deep Learning a CFN generator from examples MA & INRAS
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Why and how (M. Defresne, PhD)
@ Learn a (better) energy function from the structure and sequence of known proteins (PDB)

@ Start by learning how to play Sudoku
— We know the answer
—The position of cells influences the constraints acting on them




Deep Learning a CFN generator from examples MA 3 INRAZ

Why and how (M. Defresne, PhD)
@ Learn a (better) energy function from the structure and sequence of known proteins (PDB)

@ Start by learning how to play Sudoku
— We know the answer
—The position of cells influences the constraints acting on them

Existing differentiable DL Sudoku learners

Approach  Architecture

RRN*  GNN-based (NeurlPS"17)!
SATNet Weighted MaxSAT SDP Relaxation ~ (ICML'19)?’




Discrete objects and Gradients! MA & INRAS

9 8 3 sl7felales|t]3]z2]s
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Two different problems

@ Discrete {0, 0o} costs, how could we differentiate wrt them?
— We relax the CP problem to Weighted CP (pairwise CFN)




Discrete objects and Gradients! MA & INRAZ

9 g 3 gl7 6418|1325
FE 7 tlafa]z]s|o]l7|z]s
2 E] 4 Cost HEEH BEARED
94 q EEREY EFERRREN FREERN
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Two different problems
@ Discrete {0, co} costs, how could we differentiate wrt them?
— We relax the CP problem to Weighted CP (pairwise CFN)

@ Discrete variables: loss gradient (Hamming distanc to solution) is zero or indefinite
— We use the probabilistic interpretation of CFN to define the Loss
— Maximize the probability of observed solutions (log-likelihood)




Log-likelihood and Pseudo-loglikelihood? MA & INRAG
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Loglikelihood: a nice constrastive but intractable loss
@ log-likelihood of the i.i.d. training set T

> log(p(X ='s))

seT

o pX=s)= # #P-hard

> —E(s) —log(> e ™)

seT

~
training set cost SoftMin of all assigment costs

2Julian Besag. “Statistical analysis of non-lattice data”. In: Journal of the Royal Statistical Society: Series D (The
Statistician) 24.3 (1975), pp. 179-195.



Log-likelihood and Pseudo-loglikelihood?

Loglikelihood: a nice constrastive but intractable loss
@ log-likelihood of the i.i.d. training set T

> log(p(X =)

seT

> —E(s) —log(> e ™)

seT

training set cost SoftMin of all assigment costs

MA 3 INRAZ

#P-hard

The PLL considers the value of X; given all other variables values
PLL="> " "log(p(X; = sils_i))
seT i

Tractable and asymptotically consistent estimation

2Julian Besag. “Statistical analysis of non-lattice data”.



How well does it work? MA g INRAZ

scionco or peoplo,ife & eart

It learns only a small subset of all constraints (row difference constraints) |




Why? MA & INRAS

@ Assoon as the row constraints are learned, p(X;j|X_;) is close to one

@ Vanishing gradients

3Marianne Defresne, Sophie Barbe, and Thomas Schiex. “Scalable Coupling of Deep Learning with Logical
Reasoning"”. In: Thirty-second International Joint Conference on Artificial Intelligence, [JCAI'2023. 2023.
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scionco for peopla,ife & earth

@ Assoon as the row constraints are learned, p(X;j|X_;) is close to one
@ Vanishing gradients

EPLL = Z Z log(p(sila random subset of s_;))
seT i

3Marianne Defresne, Sophie Barbe, and Thomas Schiex. “Scalable Coupling of Deep Learning with Logical
Reasoning"”. In: Thirty-second International Joint Conference on Artificial Intelligence, [JCAI'2023. 2023.



Performances compared to other differentiable layers MA & INRAS

Approach  Characteristic ~ Acc. Grids Trainset Train time
RRN*  Pure DL 96.6% Hard 180,000 Hours
SATNet SDP Relaxation 99.8% Easy 9,000 Hours

EPLL Prob. loss 100% Hard 200 15 min.




Performances compared to other differentiable layers
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Approach  Characteristic ~ Acc. Grids Trainset Train time
RRN*  Pure DL 96.6% Hard 180,000 Hours
SATNet SDP Relaxation 99.8% Easy 9,000 Hours
EPLL Prob. loss 100% Hard 200 15 min.
EPLL properties

@ Solver out of the training loop

@ Learns all redundant constraints

@ Deals with many-solutions problems'?

@ End-to-end differentiable

Loss: last layer
<
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Visual Sudoku: learn to play and to decipher digit images

Unary cost
functions
()] <7
3 l.‘ | L N t 9 -cosi(x)
OB { o ) men s
U\'J B 3 ) Probability
¥ Hle—4| 7 B:S:cwﬁocr?:t distribution
o
s
as |2 % ResMLP 9x9
t 74 Backpropagation




Visual Sudoku: learn to play and to decipher digitimages MA & INRAZ

Unary cost
functions
()] <
3 4 | LeNet 9 -cosi(x)
# 5 ! ¢ m’ PS(): imty
O—1=,[ ¢ - strb
¥ Hle—4| 7 Bfl?:?crtyi {;)r?SSt distribution
o
s
as |2 % ResMLP 9x9
AL Backpropagation

SATNet Theoretical Ours
(no corrections)

63.2 % 74.2% 94.1 £ 0.8%




Back to Proteins MA & INRAS
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Learning the laws of protein design

@ Main changes: o
@ Train set up to 10,000 variables (variable size)
o Conditioned by the input structure (interatomic distances,...)

@ Intractable inference — approximate CFN solver (ICML'22)%

"Hahnbeom Park et al.“Simultaneous Optimization of Biomolecular Energy Functions on Features from Small
Molecules and Macromolecules”. In: Journal of Chemical Theory and Computation 12.12 (2016), pp. 6201-6212



Back to Proteins MA & INRAS

Learning the laws of protein design

@ Main changes: o
@ Train set up to 10,000 variables (variable size) ’
o Conditioned by the input structure (interatomic distances,...) ‘

@ Intractable inference — approximate CFN solver (ICML'22)%

Outperforms SOTA decomposable score functions

Rosetta!  Our

Similarity () 17.9%  27.8%

"Hahnbeom Park et al.“Simultaneous Optimization of Biomolecular Energy Functions on Features from Small
Molecules and Macromolecules”.



Pure DL-based sequence design*

@ Learns P(Xj|structure, partial assignment) arbitrary order

#Justas Dauparas et al. “Robust deep learning—based protein sequence design using ProteinMPNN". In: Science
378.6615 (2022), pp. 49-56.



Pure DL-based sequence design* MA & INRAS

Using an autoregressive GNN (ProteinMPNN)
@ Learns P(Xj|structure, partial assignment) arbitrary order
@ Input: protein structure + a (potentially fully) masked sequence
@ Output: a distribution over amino acid types for a chosen position i

*Justas Dauparas et al.“Robust deep learning-based protein sequence design using ProteinMPNN’,
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Using an autoregressive GNN (ProteinMPNN)
@ Learns P(Xj|structure, partial assignment) arbitrary order
@ Input: protein structure + a (potentially fully) masked sequence
@ Output: a distribution over amino acid types for a chosen position i
@ Repeated calls allow to produce a full solution

*Justas Dauparas et al.“Robust deep learning-based protein sequence design using ProteinMPNN’,



Pure DL-based sequence design* MA 3 INRAZ

Using an autoregressive GNN (ProteinMPNN)

©

Learns P(X;|structure, partial assignment) arbitrary order
@ Input: protein structure + a (potentially fully) masked sequence

@ Output: a distribution over amino acid types for a chosen position i

@ Repeated calls allow to produce a full solution

@ Reliably samples high quality solutions beyond pairwise

*Justas Dauparas et al.“Robust deep learning-based protein sequence design using ProteinMPNN’,



Pure DL-based sequence design* MA 3 INRAZ

Using an autoregressive GNN (ProteinMPNN)

©

Learns P(X;|structure, partial assignment) arbitrary order
Input: protein structure + a (potentially fully) masked sequence
Output: a distribution over amino acid types for a chosen position i

Reliably samples high quality solutions beyond pairwise

°
o
@ Repeated calls allow to produce a full solution
°
°

Output cannot be arbitrarily constrained nor easily enumerated

*Justas Dauparas et al.“Robust deep learning-based protein sequence design using ProteinMPNN’,
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@ Computational Protein Design is an exciting application domain for discrete optimization




Conclusion MA & INRAS

@ Computational Protein Design is an exciting application domain for discrete optimization
@ It combines knowledge, data and user preferences/constraints on discrete objects




Conclusion MA 3 INRAZ

@ Computational Protein Design is an exciting application domain for discrete optimization
@ It combines knowledge, data and user preferences/constraints on discrete objects
@ With ML and DL, CFNs can integrate all these information types together




Conclusion MA 3 INRAZ

@ Computational Protein Design is an exciting application domain for discrete optimization
@ It combines knowledge, data and user preferences/constraints on discrete objects

@ With ML and DL, CFNs can integrate all these information types together

@ Pure autoregressive GNN-based DL approaches very competitive




Conclusion MA & INRAZ

TOULO

Computational Protein Design is an exciting application domain for discrete optimization
It combines knowledge, data and user preferences/constraints on discrete objects

°
°
@ With ML and DL, CFNs can integrate all these information types together
@ Pure autoregressive GNN-based DL approaches very competitive

°

In a well defined domain, with correlated information & many examples
— pure DL-based heuristic optimization works
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Conclusion MA & INRAZ

TOULO

Computational Protein Design is an exciting application domain for discrete optimization
It combines knowledge, data and user preferences/constraints on discrete objects

°
°
@ With ML and DL, CFNs can integrate all these information types together
@ Pure autoregressive GNN-based DL approaches very competitive

°

In a well defined domain, with correlated information & many examples
— pure DL-based heuristic optimization works

(*]

Post-hoc criteria/constraints language is limited (unary)

(*]

No enumeration, only sampling
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