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Introduction and Overview

Thank you!

For inviting me and for accepting a remote presentation

I’d love to be with you

It saved 2 tons of CO2!

What we will see

What is a protein, why is it exciting to design new ones?

What connection with CP?

How does it enable SARS-CoV2 variants exploration?

How Deep Learning can learn the rules of protein design (or Sudoku BTW)?
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Proteins? Thanks to wikipedia

Most active molecules of life

Sequence of “amino-acids”, each chosen among 20 natural ones



Why should we want to design proteins?

Eco-friendly chemical/structural nano-agents present in all living organisms

New drugs for health (human, animals, plants)

New catalysts (environment, recycling, biofuels, food and feed, cosmetics…),

Can be synthesized by inexpensive microscopic 3D-printers (bacterias, yeast, …)

Biodegradable



Protein folding and protein design

Globular proteins

Acquire their properties through their 3D structure

In solvent, the fold is defined by the protein sequence

This is what AlphaFold2 predicts

Folding

→ → Fiber



Protein folding and protein design

Globular proteins

Acquire their properties through their 3D structure

In solvent, the fold is defined by the protein sequence

This is what AlphaFold2 predicts

Inverse folding

Fiber → ︸ ︷︷ ︸
Backbone design

→ ︸ ︷︷ ︸
Sequence design



The Computational Protein Sequence Design Problem

Informal definition (globular proteins)

Produce a sequence s of n amino-acids
that spontaneously adopts a target fold.



Proteins are flexible: simplifications

The“rigid backbone, discrete rotamers”model

1 The backbone structure is fixed (rigid).
2 Sequence s is discrete, the side-chain geometries are discretized.

Rotamer libraries: Tuffery,19 Penultimate,8 Dunbrack15…

Catalog of (amino acid, side-chain conformations) pairs build from the PDB
(typically 400 or more rotamers)
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Folding

Atomic forces and entropic effects

Current “truth”: quantum mechanics but quickly intractable

Use approximate descriptions of forces (Coulomb, bonds, van derWaals,…)

Captured inside an“energy function”

Thermodynamics2

The probability of sequence s in conformation X is defined by its energy E(s, X).

p(s, X) ∝ e−E(s,X) p(s, X) = e−E(s,X)

Z
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More simplifications

Use a“pairwise decomposable energy”

1 The energy function E(s, X) is pairwise decomposable Rosetta β-nov161

2 Only an approximation of the real (intractable to compute) energy

Decomposability: precomputed energy tables ir : rotamer r at position i

E(s, X) = E∅ +

n∑
i=1

Ei(ir) +
∑
(i,j)∈I

Eij(ir, js)

We need to minimize E.

We optimize the sequence, physics will optimize the geometry in water.

Mostly solved by Monte-Carlo algorithms (Rosetta simulated annealing)7
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[DeGrado et al. 1985]

Zinc Finger

[Dehiyat & Mayo 1997]

Novel Topology
(top7)

[Kuhlman et al. 2003]

Functional Enzyme

[Rothlisberger et al. 2008]

Enzyme for Multi-Step
Reaction 

[Jiang et al. 2008]
Longer Emission Wave
Length Fluorescence

[Chica et al. 2011]

Self-Assembling
Nanocage

[Hsia et al. 2016]

Auto-Assembling
Symmetrical Protein

[Niguchi et al. 2019]
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Cost Function Network (a type of Graphical model)

Cost function network (X , E)

a sequence X of discrete variables xi , domain Di

a set E of cost functions eS (possibly infinite costs)

eS is a cost function over variables in S expressed as a table

a solution minimizes the joint cost function E =
∑

eS∈E eS (WCSP, NP-hard)

Graphical models?

Variables are vertices

Connected by an edge if they interact (participate together in a function)

Stochastic graphical models (Markov Random Fields):

p(X) ∝ e−E(X) p(X) =
e−E(X)

Z
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Exact vs. Stochastic search

Large input (> 1GB) NP-hard problem

For pratical sizes of problems, toulbar2 is able to…

provide a proven minimum energy solution17

exhaustively enumerate sequences close to it18

provide sequence libraries with guaranteed diversity14

Rosetta’s Monte Carlo Simulated Annealer increasingly fails to find the optimal sequencea

aDavid Simoncini et al. “Guaranteed Discrete Energy Optimization on Large Protein Design Problems”. In: Journal
of Chemical Theory and Computation 11.12 (2015), pp. 5980–5989. DOI: 10.1021/acs.jctc.5b00594.

https://doi.org/10.1021/acs.jctc.5b00594


Unbounded error

Taking the best solution over 1000 runs of Rosetta SA (fixbb)

Asymptotic convergence can be arbitrarily slow…



QUBO and Quantum annealing (DWave),Toulbar2 & SA1

DWave approximations kcal/mol

gap> 1.16, 90% of the time > 4.35, 50% of the time > 8.45, 10% of the time

1Vikram Khipple Mulligan et al. “Designing Peptides on a Quantum Computer”. In: bioRxiv (2019), p. 752485.



Toulbar2 vs. CPLEX, MaxHS…(real instances)

# of instances solved (X ) within a per instance cpu-time limit (Y )

“The Toulbar2 package forWCSPs significantly improved the state-of-the-art efficiency for protein design.” Com. ACM-20, B.

Donald et al.



SARS-CoV2, Spike & RBD

MRC Laboratory of Molecular Biology. Ke, Z., Briggs, J. et al. Nature (2020).



Predicting possible CoViD variants with toulbar2

Crucial step in CoViD infection (Col. C. Bahl - Boston)

The spike protein (RBD) must bind to the human ACE2 receptor

March 2020: A structure of the spike RBD bound to ACE2 is published

Predicting variants would allow for blocking polyclonal vaccines

Stable Affine



Predicting possible CoViD variants with toulbar2

What does this means in terms of energies?

RBD alone and ACE2 alone ERBD + EACE2

RBD bound to ACE2 ERBD+ACE2

Thermodynamics says (very simplified) that binding increases with

−∆E = (ERBD + EACE2)− ERBD+ACE2

Could we try to optimize binding?

This is aΣp
2 = NPNP-hard problem20

Side-chain geometry is free in water. We are playing against Physics.
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We rely on exhaustive enumeration capabilities

1 the ACE2 sequence is fixed
2 We allow only the 27 interface amino acids of RBD to mutate
3 We allow a shell of 25 amino acids around them to change geometry
4 We exhaustively enumerate low ERBD+ACE2 sequences18

Result: 91 millions sequences at less than 8 kcal/mol of optimum

Remove those that destabilize the RBD (ERBD)

Geometry is free in water: we need to solve 91 million (NP-hard) problems

Embarassingly parallel job (cluster)

4.5 millions of sequences, with 3,272 local optima

Bioinformatics: 59 clusters each with a centroid sequence
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Yeast display

Yeast Display

11/59 variants bind to
ACE2

Select 8 best, 7 purified
properly

Affinity measured by
BLI (55nM,≈WT)



Pseudo viruses vs. HEK293 human cells

Measures

Infectivity and resistance to antibodies



Deep Learning a CFN generator from examples

Why and how (M. Defresne, PhD)

Learn a (better) energy function from the structure and sequence of known proteins (PDB)

Start by learning how to play Sudoku
→We know the answer
→The position of cells influences the constraints acting on them

Existing differentiable DL Sudoku learners

Approach Architecture

RRN∗ GNN-based (NeurIPS’17)11

SATNet Weighted MaxSAT SDP Relaxation (ICML’19)21
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Discrete objects and Gradients!

Two different problems

Discrete {0,∞} costs, how could we differentiate wrt them?
→We relax the CP problem toWeighted CP (pairwise CFN)

Discrete variables: loss gradient (Hamming distanc to solution) is zero or indefinite
→We use the probabilistic interpretation of CFN to define the Loss
→Maximize the probability of observed solutions (log-likelihood)
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Log-likelihood and Pseudo-loglikelihood2

Loglikelihood: a nice constrastive but intractable loss

log-likelihood of the i.i.d. training set T:∑
s∈T

log(p(X = s))

p(X = s) = e−E(s)

Z #P-hard∑
s∈T

−E(s)︸ ︷︷ ︸
training set cost

− log(
∑

x
e−E(x))︸ ︷︷ ︸

SoftMin of all assigment costs

The PLL considers the value of Xi given all other variables values

PLL =
∑
s∈T

∑
i

log(p(Xi = si|s−i))

Tractable and asymptotically consistent estimation
2Julian Besag. “Statistical analysis of non-lattice data”. In: Journal of the Royal Statistical Society: Series D (The

Statistician) 24.3 (1975), pp. 179–195.
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How well does it work?

Complete failure, accuracy 0%!
It learns only a small subset of all constraints (row difference constraints)



Why? 3

Contraints and logical consequence

As soon as the row constraints are learned, p(Xi|X−i) is close to one

Vanishing gradients

Introducing the emmental PLL (dropout-like)

EPLL =
∑
s∈T

∑
i

log(p(si|a random subset of s−i))

3Marianne Defresne, Sophie Barbe, and Thomas Schiex. “Scalable Coupling of Deep Learning with Logical
Reasoning”. In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI’2023. 2023.
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Performances compared to other differentiable layers

Approach Characteristic Acc. Grids Trainset Train time

RRN∗ Pure DL 96.6% Hard 180,000 Hours
SATNet SDP Relaxation 99.8% Easy 9,000 Hours

EPLL Prob. loss 100% Hard 200 15 min.

EPLL properties

Solver out of the training loop

Learns all redundant constraints

Deals with many-solutions problems10

End-to-end differentiable Loss: last layer
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Visual Sudoku: learn to play and to decipher digit images

Using SATNet train and test sets

SATNet Theoretical
(no corrections)

Ours

63.2% 74.2% 94.1 ± 0.8%
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Back to Proteins

Learning the laws of protein design

Main changes:
Train set up to 10,000 variables (variable size)
Conditioned by the input structure (interatomic distances,…)

Intractable inference→ approximate CFN solver (ICML’22)6

Outperforms SOTA decomposable score functions

Rosetta1 Our

Similarity (↑) 17.9% 27.8%

1Hahnbeom Park et al. “Simultaneous Optimization of Biomolecular Energy Functions on Features from Small
Molecules and Macromolecules”. In: Journal of Chemical Theory and Computation 12.12 (2016), pp. 6201–6212
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Pure DL-based sequence design4

Using an autoregressive GNN (ProteinMPNN)

Learns P(Xi|structure, partial assignment) arbitrary order

Input: protein structure + a (potentially fully) masked sequence

Output: a distribution over amino acid types for a chosen position i

Repeated calls allow to produce a full solution

Reliably samples high quality solutions beyond pairwise

Output cannot be arbitrarily constrained nor easily enumerated

4Justas Dauparas et al. “Robust deep learning–based protein sequence design using ProteinMPNN”. In: Science
378.6615 (2022), pp. 49–56.
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Conclusion

Computational Protein Design is an exciting application domain for discrete optimization

It combines knowledge, data and user preferences/constraints on discrete objects

With ML and DL, CFNs can integrate all these information types together

Pure autoregressive GNN-based DL approaches very competitive

In a well defined domain, with correlated information & many examples
→ pure DL-based heuristic optimization works

Post-hoc criteria/constraints language is limited (unary)

No enumeration, only sampling
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Thanks

AI/toulbar2

S. de Givry (INRA)
G. Katsirelos (INRA)
M. Zytnicki (PhD, INRA)
D. Allouche (INRA)
M. Ruffini (INRA)
V. Durante (ANITI, PhD student) H.
Nguyen (PhD, INRA)
C. Brouard (ML, INRA)
M. Cooper (IRIT, Toulouse)
J. Larrosa (UPC, Spain)
F. Heras (UPC, Spain)
M. Sanchez (Spain)
E. Rollon (UPC, Spain)
P. Meseguer (CSIC, Spain)
G. Verfaillie (ONERA, ret.)
JH. Lee (CU. Hong Kong)
C. Bessiere (LIMM, Montpellier)
JP. Métivier (GREYC, Caen)
S. Loudni (GREYC, Caen)
M. Fontaine (GREYC, Caen),…

Protein Design

A. Voet (KU Leuven)
A. Olichon (INSERM)
D. Simoncini (UFT, Toulouse)
S. Barbe (INSA, Toulouse)
M. Defresne (INRAE, PhD student)
Y. Bouchiba (INSA, PhD student)
C. Dumont (INSA, Toulouse)
J. Vucinic (INRA/INSA)
S. Traoré (PhD, CEA)
C. Viricel (PhD)
K. Zhang (Riken, CBDR)
S. Tagami (Riken, CBDR)
RosettaCommons (U.Washington)
W. Sheffler (U.Washington)
V. Mulligan (Flatiron Institute, NY)
C. Bahl (IPI, Boston)
PyRosetta (U. John Hopkins)
B. Donald (U. North Carolina)
K. Roberts (U. North Carolina)
T. Simonson (Polytechnique)
J. Cortes (LAAS/CNRS),…

My apologies to those missing in these lists. Even imperfect lists seem better than no list
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