# Coupling CP with Deep Learning for Molecular Design and SARS-CoV2 variants exploration 

Thomas Schiex

August 292023
CP2023, Toronto, Canada

Thank you!

- For inviting me and for accepting a remote presentation
- I'd love to be with you
- It saved 2 tons of $\mathrm{CO}_{2}$ !

What we will see

- What is a protein, why is it exciting to design new ones?
- What connection with CP?
- How does it enable SARS-CoV2 variants exploration?
- How Deep Learning can learn the rules of protein design (or Sudoku BTW)?


## Thank you!

- For inviting me and for accepting a remote presentation
- I'd love to be with you
- It saved 2 tons of $\mathrm{CO}_{2}$ !


## What we will see

- What is a protein, why is it exciting to design new ones?
- What connection with CP?
- How does it enable SARS-CoV2 variants exploration?
- How Deep Learning can learn the rules of protein design (or Sudoku BTW)?


## Most active molecules of life

Sequence of "amino-acids", each chosen among 20 natural ones


## Eco-friendly chemical/structural nano-agents present in all living organisms

- New drugs for health (human, animals, plants)
- New catalysts (environment, recycling, biofuels, food and feed, cosmetics...),
- Can be synthesized by inexpensive microscopic 3D-printers (bacterias, yeast, ...)
- Biodegradable


Globular proteins

- Acquire their properties through their 3D structure
- In solvent, the fold is defined by the protein sequence
- This is what AlphaFold2 predicts


## Folding


$\longrightarrow \quad$ Fiber

Globular proteins

- Acquire their properties through their 3D structure
- In solvent, the fold is defined by the protein sequence
- This is what AlphaFold2 predicts


## Inverse folding

Fiber


Informal definition
Produce a sequence $s$ of $n$ amino-acids
that spontaneously adopts a target fold.

The "rigid backbone, discrete rotamers" model

- The backbone structure is fixed (rigid).
(3) Sequence s is discrete, the side-chain geometries are discretized.

```
Rotamer libraries:Tuffery,}\mp@subsup{}{}{19}\mathrm{ Penultimate,, Dunbrack
Catalog of (amino acid, side-chain conformations) pairs build from the PDB
(typically 400 or more rotamers)
```

The "rigid backbone, discrete rotamers" model
( The backbone structure is fixed (rigid).
(2) Sequence $s$ is discrete, the side-chain geometries are discretized.

Rotamer libraries: Tuffery, ${ }^{19}$ Penultimate, ${ }^{8}$ Dunbrack ${ }^{15}$..
Catalog of (amino acid, side-chain conformations) pairs build from the PDB (typically 400 or more rotamers)


Atomic forces and entropic effects

- Current "truth": quantum mechanics but quickly intractable
- Use approximate descriptions of forces (Coulomb, bonds, van der Waals,...)
- Captured inside an "energy function"
$\square$
The probability of sequence s in conformation $X$ is defined by its energy $E(s, X)$.

Atomic forces and entropic effects

- Current"truth": quantum mechanics but quickly intractable
- Use approximate descriptions of forces (Coulomb, bonds, van der Waals, ...)
- Captured inside an "energy function"


## Thermodynamics ${ }^{2}$

The probability of sequence s in conformation $X$ is defined by its energy $E(\mathrm{~s}, X)$.

$$
p(\mathbf{s}, X) \propto e^{-E(\mathbf{s}, X)} \quad p(\mathbf{s}, X)=\frac{e^{-E(\mathbf{s}, X)}}{Z}
$$

Use a "pairwise decomposable energy"

- The energy function $E(\mathrm{~s}, X)$ is pairwise decomposable

Rosetta $\beta$-nov16 ${ }^{1}$
(3) Only an approximation of the real (intractable to compute) energy


Mostly solved by Monte-Carlo algorithms (Rosetta simulated annealing) ${ }^{7}$

Use a "pairwise decomposable energy"

- The energy function $E(\mathrm{~s}, X)$ is pairwise decomposable

Rosetta $\beta$-nov16 ${ }^{1}$
(2) Only an approximation of the real (intractable to compute) energy

Decomposability: precomputed energy tables $\quad i_{r}$ : rotamer $r$ at position

- We need to minimize $E$.
- We ontimize the sequence, physics will optimize the geometry in water.

Mostly solved by Monte-Carlo algorithms (Rosetta simulated annealing) ${ }^{7}$

Use a "pairwise decomposable energy"

- The energy function $E(\mathrm{~s}, X)$ is pairwise decomposable

Rosetta $\beta$-nov16 ${ }^{1}$
(2) Only an approximation of the real (intractable to compute) energy

Decomposability: precomputed energy tables
$i_{r}$ : rotamer $r$ at position $i$

$$
E(\mathbf{s}, X)=E_{\varnothing}+\sum_{i=1}^{n} E_{i}\left(i_{r}\right)+\sum_{(i, j) \in I} E_{i j}\left(i_{r}, j_{s}\right)
$$

- We need to minimize $E$.
- We optimize the sequence, physics will optimize the geometry in water.

Use a "pairwise decomposable energy"

- The energy function $E(\mathrm{~s}, X)$ is pairwise decomposable

Rosetta $\beta$-nov16 ${ }^{1}$
(2) Only an approximation of the real (intractable to compute) energy

## Decomposability: precomputed energy tables

$i_{r}$ : rotamer $r$ at position $i$

$$
E(\mathbf{s}, X)=E_{\varnothing}+\sum_{i=1}^{n} E_{i}\left(i_{r}\right)+\sum_{(i, j) \in I} E_{i j}\left(i_{r}, j_{s}\right)
$$

- We need to minimize $E$.
- We optimize the sequence, physics will optimize the geometry in water.

Mostly solved by Monte-Carlo algorithms (Rosetta simulated annealing) ${ }^{7}$


Cost function network ( $X, E$ )

- a sequence $X$ of discrete variables $x_{i}$, domain $D_{i}$
- a set $E$ of cost functions $e_{S}$
(possibly infinite costs)
- $e_{S}$ is a cost function over variables in $S$ expressed as a table
- a solution minimizes the joint cost function $E=\sum_{e_{S} \in E}$ es

Cost function network (X,E)

- a sequence $X$ of discrete variables $x_{i}$, domain $D_{i}$
- a set $E$ of cost functions $e_{S}$
- $e_{S}$ is a cost function over variables in $S$
(possibly infinite costs)
expressed as a table
(WCSP, NP-hard)

Cost function network ( $X, E$ )

- a sequence $X$ of discrete variables $x_{i}$, domain $D_{i}$
- a set $E$ of cost functions $e_{s}$
- $e_{S}$ is a cost function over variables in $S$
(possibly infinite costs) expressed as a table
- a solution minimizes the joint cost function $E=\sum_{e_{s} \in E} e_{s}$

Cost function network ( $X, E$ )

- a sequence $X$ of discrete variables $x_{i}$, domain $D_{i}$
- a set $E$ of cost functions $e_{s}$
- $e_{S}$ is a cost function over variables in $S$
- a solution minimizes the joint cost function $E=\sum_{e_{S} \in E} e_{S}$
(possibly infinite costs) expressed as a table (WCSP, NP-hard)

Cost function network ( $X, E$ )

- a sequence $X$ of discrete variables $x_{i}$, domain $D_{i}$
- a set $E$ of cost functions es
- $e_{S}$ is a cost function over variables in $S$
- a solution minimizes the joint cost function $E=\sum_{e_{S} \in E} e_{S}$
(possibly infinite costs) expressed as a table (WCSP, NP-hard)


## Graphical models?

- Variables are vertices
- Connected by an edge if they interact (participate together in a function)
- Stochastic graphical models (Markov Random Fields):

Cost function network ( $X, E$ )

- a sequence $X$ of discrete variables $x_{i}$, domain $D_{i}$
- a set $E$ of cost functions $e_{s}$
- $e_{S}$ is a cost function over variables in $S$
- a solution minimizes the joint cost function $E=\sum_{e_{S} \in E} e_{S}$
(possibly infinite costs) expressed as a table (WCSP, NP-hard)


## Graphical models?

- Variables are vertices
- Connected by an edge if they interact (participate together in a function)
- Stochastic graphical models (Markov Random Fields):

$$
p(X) \propto e^{-E(\mathbf{X})} \quad p(X)=\frac{e^{-E(X)}}{Z}
$$

Large input (> 1GB)
NP-hard problem
For pratical sizes of problems, toulbar2 is able to...

- provide a proven minimum energy solution ${ }^{17}$
- exhaustively enumerate sequences close to it ${ }^{18}$
- provide sequence libraries with guaranteed diversity ${ }^{14}$

Rosetta's Monte Carlo Simulated Annealer increasingly fails to find the optimal sequence ${ }^{a}$

[^0]

Taking the best solution over 1000 runs of Rosetta SA (fixbb)
Asymptotic convergence can be arbitrarily slow...
Guaranteed Discrete Energy Optimization on Large Protein Design Problems
David Simoncini ${ }^{\dagger}$, David Allouche ${ }^{\dagger}$, Simon de Givry ${ }^{\dagger}$, Céline Delmas ${ }^{\dagger}$, Sophie Barbe ${ }^{\ddagger \S}{ }^{\perp}$, and Thomas Schiex ${ }^{* \dagger}$

## QUBO and Quantum annealing (DWave),Toulbar2 \& SA ${ }^{1}$



DWave approximations

$$
\text { gap }>1.16,90 \% \text { of the time }>4.35,50 \% \text { of the time }>8.45,10 \% \text { of the time }
$$

[^1]
\# of instances solved $(X)$ within a per instance cpu-time limit ( $Y$ )
"The Toulbar2 package for WCSPs significantly improved the state-of-the-art efficiency for protein design." Com. ACM-20, B. Donald et al.


MRC Laboratory of Molecular Biology. Ke, Z., Briggs, J. et al. Nature (2020).

Crucial step in CoViD infection
(Col. C. Bahl - Boston)

- The spike protein (RBD) must bind to the human ACE2 receptor
- March 2020: A structure of the spike RBD bound to ACE2 is published
- Predicting variants would allow for blocking polyclonal vaccines


Stable


Affine

What does this means in terms of energies?

- RBD alone and ACE2 alone
- RBD bound to ACE2

$$
\begin{array}{r}
E^{R B D}+E^{A C E 2} \\
E^{R B D+A C E 2}
\end{array}
$$

- Thermodynamics says (very simplified) that binding increases with

$$
-\Delta E=\left(E^{R B D}+E^{A C E 2}\right)-E^{R B D+A C E 2}
$$

Could we try to optimize binding?

- This is a $\Sigma_{2}^{p}=N P^{N P}$-hard problem ${ }^{20}$
- Side-chain geometry is free in water. We are playing against Physics.

What does this means in terms of energies?

- RBD alone and ACE2 alone
- RBD bound to ACE2

$$
\begin{array}{r}
E^{R B D}+E^{A C E 2} \\
E^{R B D+A C E 2}
\end{array}
$$

- Thermodynamics says (very simplified) that binding increases with

$$
-\Delta E=\left(E^{R B D}+E^{A C E 2}\right)-E^{R B D+A C E 2}
$$

## Could we try to optimize binding?

- This is a $\Sigma_{2}^{p}=N P^{N P}$-hard problem ${ }^{20}$
- Side-chain geometry is free in water. We are playing against Physics.
- the ACE2 sequence is fixed
(2) We allow only the 27 interface amino acids of RBD to mutate
(3) We allow a shell of 25 amino acids around them to change geometry
( ( We exhaustively enumerate low $E^{R B D+A C E 2}$ sequences ${ }^{18}$

```
Result: 91 millions sequences at less than \(8 \mathrm{kcal} / \mathrm{mol}\) of optimum
- Remove those that destabilize the RBD ( \(E^{R B D}\) )
- Geometry is free in water: we need to solve 91 million (NP-hard) problems
- Embarassingly parallel job (cluster)
- 4.5 millions of sequences, with 3,272 local optima
- Bioinformatics: 59 clusters each with a centroid sequence
```

- the ACE2 sequence is fixed
(2) We allow only the 27 interface amino acids of RBD to mutate
(3) We allow a shell of 25 amino acids around them to change geometry
(9) We exhaustively enumerate low $E^{\text {RBD }+A C E 2}$ sequences ${ }^{18}$


## Result: 91 millions sequences at less than $8 \mathrm{kcal} / \mathrm{mol}$ of optimum

- Remove those that destabilize the RBD ( $\left.E^{\text {RBD }}\right)$
- Geometry is free in water: we need to solve 91 million (NP-hard) problems
- Embarassingly parallel job (cluster)
- 4.5 millions of sequences, with 3,272 local optima
- Bioinformatics: 59 clusters each with a centroid sequence


## Yeast display

## NA \& INRAC



## Measures

## Infectivity and resistance to antibodies

A) KDs of the indicated soluble RBDs to Fc-Ace2 and therapeutic IgGs

|  | Fc-Ace2 | lgG LY-CoV016 | IgG Regn10933 | IgG Regn10987 |
| :---: | :---: | :---: | :---: | :---: |
| L strain | $41.7 \pm 7.4 \mathrm{nM}$ | $203 \pm 63.5 \mathrm{nM}$ | $14.4 \pm 5.8 \mathrm{nM}$ | $74.2 \pm 10.8 \mathrm{nM}$ |
| PV21 | $155 \pm 10.5 \mathrm{nM}$ | n.d. | n.d. | $216 \pm 29 \mathrm{nM}$ |
| PV22 | $118 \pm 14.2 \mathrm{nM}$ | n.d. | n.d. | n.d. |
| PV25 | n.d. | n.d. | n.d. | n.d. |
| PV30 | $55.6 \pm 7.3 \mathrm{nM}$ | n.d. | n.d. | n.d. |
| PV49 | $440 \pm 59 \mathrm{nM}$ | n.d. | n.d. | n.d. |
| PV51 | $291 \pm 40 \mathrm{nM}$ | n.d. | 4850 nM | n.d. |
| PV53 | $222 \pm 49 \mathrm{nM}$ | n.d. | n.d. | $152 \pm 53 \mathrm{nM}$ |

n.d.: binding not detected
B)



Why and how
(M. Defresne, PhD)

- Learn a (better) energy function from the structure and sequence of known proteins (PDB)
- Start by learning how to play Sudoku
$\rightarrow$ We know the answer
$\rightarrow$ The position of cells influences the constraints acting on them

Existing differentiable DL Sudoku learners


## Why and how

- Learn a (better) energy function from the structure and sequence of known proteins (PDB)
- Start by learning how to play Sudoku
$\rightarrow$ We know the answer
$\rightarrow$ The position of cells influences the constraints acting on them


## Existing differentiable DL Sudoku learners

| Approach | Architecture |  |
| ---: | :--- | :--- |
| RRN* | GNN-based | $\left(\right.$ NeurlPS'17) $^{11}$ |
| SATNet | Weighted MaxSAT SDP Relaxation | $\left(\right.$ ICML'19) $^{21}$ |



## Two different problems

- Discrete $\{0, \infty\}$ costs, how could we differentiate wrt them?
$\rightarrow$ We relax the CP problem to Weighted CP (pairwise CFN)
- Discrete variables: loss gradient (Hamming distanc to solution) is zero or indefinite $\rightarrow$ We use the probabilistic interpretation of CFN to define the Loss $\rightarrow$ Maximize the probability of observed solutions (log-likelihood)



## Two different problems

- Discrete $\{0, \infty\}$ costs, how could we differentiate wrt them?
$\rightarrow$ We relax the CP problem to Weighted CP (pairwise CFN)
- Discrete variables: loss gradient (Hamming distanc to solution) is zero or indefinite
$\rightarrow$ We use the probabilistic interpretation of CFN to define the Loss
$\rightarrow$ Maximize the probability of observed solutions (log-likelihood)

Loglikelihood: a nice constrastive but intractable loss

- log-likelihood of the i.i.d. training set $\mathbf{T}$ :

$$
\sum_{\mathbf{s} \in \mathbf{T}} \log (p(X=\mathbf{s}))
$$

- $p(X=\mathbf{s})=\frac{e^{-E(\mathbf{s})}}{Z}$


[^2]Loglikelihood: a nice constrastive but intractable loss

- log-likelihood of the i.i.d. training set $\mathbf{T}$ :

$$
\sum_{\mathbf{s} \in \mathbf{T}} \log (p(X=\mathbf{s}))
$$

- $p(X=\mathbf{s})=\frac{e^{-E(s)}}{Z}$

$$
\underbrace{\sum_{\mathbf{s} \in \mathbf{T}}-E(s)}_{\text {training set cost }} \underbrace{-\log \left(\sum_{\mathbf{x}} e^{-E(\mathrm{x})}\right)}_{\mathbf{x}}
$$

The PLL considers the value of $X_{i}$ given all other variables values

$$
P L L=\sum_{\mathbf{s} \in \mathbf{T}} \sum_{i} \log \left(p\left(X_{i}=s_{i} \mid s_{-i}\right)\right)
$$

Tractable and asymptotically consistent estimation

[^3]Complete failure, accuracy 0\%!
It learns only a small subset of all constraints (row difference constraints)

## Contraints and logical consequence

- As soon as the row constraints are learned, $p\left(X_{i} \mid X_{-i}\right)$ is close to one
- Vanishing gradients

Introducing the emmental PLL


[^4]Contraints and logical consequence

- As soon as the row constraints are learned, $p\left(X_{i} \mid X_{-i}\right)$ is close to one
- Vanishing gradients


## Introducing the emmental PLL

$$
E P L L=\sum_{\mathbf{s} \in \mathbf{T}} \sum_{i} \log \left(p\left(s_{i} \mid \text { a random subset of } s_{-i}\right)\right)
$$

[^5]| Approach | Characteristic | Acc. | Grids | Trainset | Train time |
| ---: | :--- | :--- | :--- | :--- | ---: |
| RRN* | Pure DL | $96.6 \%$ | Hard | 180,000 | Hours |
| SATNet | SDP Relaxation | $99.8 \%$ | Easy | 9,000 | Hours |
| EPLL | Prob. loss | $\mathbf{1 0 0 \%}$ | Hard | $\mathbf{2 0 0}$ | 15 min. |

- Solver out of the training loop
- Learns all redundant constraints
- Deals with many-solutions problems ${ }^{10}$
- End-to-end differentiable

| Approach | Characteristic | Acc. | Grids | Trainset | Train time |
| ---: | :--- | :--- | :--- | :--- | ---: |
| RRN* | Pure DL | $96.6 \%$ | Hard | 180,000 | Hours |
| SATNet | SDP Relaxation | $99.8 \%$ | Easy | 9,000 | Hours |
| EPLL | Prob. loss | $\mathbf{1 0 0 \%}$ | Hard | $\mathbf{2 0 0}$ | 15 min. |

## EPLL properties

- Solver out of the training loop
- Learns all redundant constraints
- Deals with many-solutions problems ${ }^{10}$
- End-to-end differentiable

Unary cost
functions


Using SATNet train and test sets

| SATNet | Theoretical <br> (no corrections) | Ours |
| :---: | :---: | :---: | :---: |
| $63.2 \%$ | $74.2 \%$ | $94.1 \pm 0.8 \%$ |

Visual Sudoku: learn to play and to decipher digit images

Unary cost
functions


Using SATNet train and test sets

| SATNet | Theoretical <br> (no corrections) | Ours |
| :---: | :---: | :---: |
| $63.2 \%$ | $74.2 \%$ | $\mathbf{9 4 . 1} \pm 0.8 \%$ |

## Learning the laws of protein design

- Main changes:
- Train set up to 10,000 variables (variable size)
- Conditioned by the input structure (interatomic distances, ...)


## ,

intractable inference $\rightarrow$ approximate CFN solver (ICML'22) ${ }^{6}$

| Qutperforms SOTA decomposable score functions |
| :--- |
|  |
|  |
| Rosetta ${ }^{1}$ |
| Similarity ( $\uparrow$ Our |

[^6]
## Learning the laws of protein design

- Main changes:
- Train set up to 10,000 variables (variable size)
- Conditioned by the input structure (interatomic distances, ...)

- Intractable inference $\rightarrow$ approximate CFN solver (ICML'22) ${ }^{6}$

Outperforms SOTA decomposable score functions

|  | Rosetta $^{1}$ | Our |
| :---: | :---: | :---: |
| Similarity ( $\uparrow$ ) | $17.9 \%$ | $\mathbf{2 7 . 8 \%}$ |

[^7]Using an autoregressive GNN (ProteinMPNN)

- Learns $P\left(X_{i} \mid\right.$ structure, partial assignment $)$
arbitrary order
- Input: protein structure + a (potentially fully) masked sequence
- Output: a distribution over amino acid types for a chosen position $i$
- Repeated calls allow to produce a full solution
- Reliably samples high quality solutions
- Output cannot be arbitrarily constrained nor easily enumerated

[^8]Using an autoregressive GNN (ProteinMPNN)

- Learns $P\left(X_{i} \mid\right.$ structure, partial assignment)
arbitrary order
- Input: protein structure +a (potentially fully) masked sequence
- Output: a distribution over amino acid types for a chosen position $i$
- Repeated calls allow to produce a full solution
- Reliably samples high quality solutions
- Output cannot be arbitrarily constrained nor easily enumerated

[^9]Using an autoregressive GNN (ProteinMPNN)

- Learns $P\left(X_{i} \mid\right.$ structure, partial assignment)
arbitrary order
- Input: protein structure +a (potentially fully) masked sequence
- Output: a distribution over amino acid types for a chosen position $i$
- Repeated calls allow to produce a full solution
- Reliably samples high quality solutions
- Output cannot be arbitrarily constrained nor easily enumerated

[^10]Using an autoregressive GNN (ProteinMPNN)

- Learns $P\left(X_{i} \mid\right.$ structure, partial assignment)
arbitrary order
- Input: protein structure +a (potentially fully) masked sequence
- Output: a distribution over amino acid types for a chosen position $i$
- Repeated calls allow to produce a full solution
- Reliably samples high quality solutions beyond pairwise
- Output cannot be arbitrarily constrained nor easily enumerated

[^11]Using an autoregressive GNN (ProteinMPNN)

- Learns $P\left(X_{i} \mid\right.$ structure, partial assignment)
arbitrary order
- Input: protein structure +a (potentially fully) masked sequence
- Output: a distribution over amino acid types for a chosen position $i$
- Repeated calls allow to produce a full solution
- Reliably samples high quality solutions beyond pairwise
- Output cannot be arbitrarily constrained nor easily enumerated

[^12]- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information \& many examples $\rightarrow$ pure DL-based heuristic optimization works
- Post-hoc criteria/constraints lanquage is limited (una y)
- No enumeration, only sampling
- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information \& many examples $\rightarrow$ pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration only samnling
- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information \& many examples $\rightarrow$ pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling
- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information \& many examples $\rightarrow$ pure DL-based heuristic optimization works

Post-hoc criteria/constraints language is limited (unary)

- No enumeration, only sampling
- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information \& many examples
$\rightarrow$ pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling
- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information \& many examples
$\rightarrow$ pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling
- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information \& many examples
$\rightarrow$ pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling


## Al/toulbar2

```
S. de Givry (INRA)
G. Katsirelos (INRA)
M. Zytnicki (PhD, INRA)
D. Allouche (INRA)
M. Ruffini (INRA)
V. Durante (ANITI, PhD student) H.
Nguyen (PhD, INRA)
C. Brouard (ML, INRA)
M. Cooper (IRIT, Toulouse)
J. Larrosa (UPC, Spain)
F. Heras (UPC, Spain)
M. Sanchez (Spain)
E. Rollon (UPC, Spain)
P. Meseguer (CSIC, Spain)
G. Verfaillie (ONERA, ret.)
JH. Lee (CU. Hong Kong)
C. Bessiere (LIMM, Montpellier)
JP. Métivier (GREYC, Caen)
S. Loudni (GREYC, Caen)
M. Fontaine (GREYC, Caen),...
```


## Protein Design

```
A. Voet (KU Leuven)
A. Olichon (INSERM)
D. Simoncini (UFT, Toulouse)
S. Barbe (INSA, Toulouse)
M. Defresne (INRAE, PhD student)
Y. Bouchiba (INSA, PhD student)
C. Dumont (INSA, Toulouse)
J. Vucinic (INRA/INSA)
S. Traoré (PhD, CEA)
C. Viricel (PhD)
K. Zhang (Riken, CBDR)
S. Tagami (Riken, CBDR)
RosettaCommons (U. Washington)
W. Sheffler (U. Washington)
V. Mulligan (Flatiron Institute, NY)
C. Bahl (IPI, Boston)
PyRosetta (U. John Hopkins)
B. Donald (U. North Carolina)
K. Roberts (U. North Carolina)
T. Simonson (Polytechnique)
J. Cortes (LAAS/CNRS),...
```

[1] Rebecca F Alford et al. "The Rosetta all-atom energy function for macromolecular modeling and design". In: Journal of chemical theory and computation 13.6 (2017), pp. 3031-3048.
[2] C. Anfinsen. "Principles that govern the folding of protein chains". In: Science 181.4096 (1973), pp. 223-253.
[3] Julian Besag."Statistical analysis of non-lattice data". In: Journal of the Royal Statistical Society: Series D (The Statistician) 24.3 (1975), pp. 179-195.
[4] Justas Dauparas et al. "Robust deep learning-based protein sequence design using ProteinMPNN". In: Science 378.6615 (2022), pp. 49-56.
[5] Marianne Defresne, Sophie Barbe, and Thomas Schiex. "Scalable Coupling of Deep Learning with Logical Reasoning". In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI'2023. 2023.
[6] Valentin Durante, George Katsirelos, and Thomas Schiex. "Efficient low rank convex bounds for pairwise discrete Graphical Models". In: Thirty-ninth International Conference on Machine Learning. July 2022.
[7] Andrew Leaver-Fay et al. "ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules.". In: Methods Enzymol. 487 (2011), pp. 545-574. ISSN: 1557-7988.
[8] S C Lovell et al. "The penultimate rotamer library.". In: Proteins 40.3 (Aug. 2000), pp. 389-408. ISSN: 0887-3585. URL: http://www.ncbi.nlm.nih.gov/pubmed/10861930.
[9] Vikram Khipple Mulligan et al. "Designing Peptides on a Quantum Computer". In: bioRxiv (2019), p. 752485.
[10] Yatin Nandwani et al. "Neural Learning of One-of-Many Solutions for Combinatorial Problems in Structured Output Spaces". In: International Conference on Learning Representations, ICLR'21. 2021. URL:
https://openreview.net/forum?id=ATp1nW2FuZL.
[11] Rasmus Palm, Ulrich Paquet, and Ole Winther. "Recurrent Relational Networks". In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018.
[12] Hahnbeom Park et al. "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: Journal of Chemical Theory and Computation 12.12 (2016), pp. 6201-6212.
[13] N. Pierce et al. "Conformational splitting: A more powerful criterion for dead-end elimination". In: Journal of computational chemistry 21.11 (2000), pp. 999-1009.
[14] Manon Ruffini et al. "Guaranteed Diversity and Optimality in Cost Function Network Based Computational Protein Design Methods". In: Algorithms 14.6 (2021), p. 168.
[15] Maxim V Shapovalov and Roland L Dunbrack. "A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions". In: Structure 19.6 (2011), pp. 844-858.
[16] David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DOI: 10.1021/acs . jctc.5b00594.
[17] Seydou Traoré et al. "A New Framework for Computational Protein Design through Cost Function Network Optimization". In: Bioinformatics 29.17 (2013), pp. 2129-2136.
[18] Seydou Traoré et al. "Fast search algorithms for computational protein design". In: Journal of Computational Chemistry 37.12 (2016), pp. 1048-1058. ISSN: 1096-987X. DOI: 10.1002/j cc.24290. URL: http://dx.doi.org/10.1002/jcc.24290.
[19] PTuffery et al. "A new approach to the rapid determination of protein side chain conformations". In: Journal of Biomolecular structure and dynamics 8.6 (1991), pp. 1267-1289.
[21] Po-Wei Wang et al. "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver". In: Proceedings of the 36th International Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 6545-6554.


[^0]:    ${ }^{a}$ David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DOI: 10.1021/acs . jctc . 5b00594.

[^1]:    ${ }^{1}$ Vikram Khipple Mulligan et al. "Designing Peptides on a Quantum Computer". In: bioRxiv (2019), p. 752485.

[^2]:    ${ }^{2}$ Julian Besag. "Statistical analysis of non-lattice data". In: Journal of the Royal Statistical Society: Series D (The Statistician) 24.3 (1975), pp. 179-195.

[^3]:    ${ }^{2}$ Julian Besag. "Statistical analysis of non-lattice data". In: Journal of the Royal Statistical Society: Series D (The Statistician) 24.3 (1975), pp. 179-195.

[^4]:    ${ }^{3}$ Marianne Defresne, Sophie Barbe, and Thomas Schiex. "Scalable Coupling of Deep Learning with Logical Reasoning". In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI'2023. 2023.

[^5]:    ${ }^{3}$ Marianne Defresne, Sophie Barbe, and Thomas Schiex. "Scalable Coupling of Deep Learning with Logical Reasoning". In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI'2023. 2023.

[^6]:    ${ }^{1}$ Hahnbeom Park et al. "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: Journal of Chemical Theory and Computation 12.12 (2016), pp. 6201-6212

[^7]:    ${ }^{1}$ Hahnbeom Park et al. "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: Journal of Chemical Theory and Computation 12.12 (2016), pp. 6201-6212

[^8]:    ${ }^{4}$ Justas Dauparas et al. "Robust deep learning-based protein sequence design using ProteinMPNN". In: Science 378.6615 (2022), pp. 49-56.

[^9]:    ${ }^{4}$ Justas Dauparas et al. "Robust deep learning-based protein sequence design using ProteinMPNN". In: Science 378.6615 (2022), pp. 49-56.

[^10]:    ${ }^{4}$ Justas Dauparas et al. "Robust deep learning-based protein sequence design using ProteinMPNN". In: Science 378.6615 (2022), pp. 49-56.

[^11]:    ${ }^{4}$ Justas Dauparas et al. "Robust deep learning-based protein sequence design using ProteinMPNN". In: Science 378.6615 (2022), pp. 49-56.

[^12]:    ${ }^{4}$ Justas Dauparas et al. "Robust deep learning-based protein sequence design using ProteinMPNN". In: Science 378.6615 (2022), pp. 49-56.

