

Coupling CP with Deep Learning for Molecular Design and SARS-CoV2 variants exploration

Thomas Schiex

August 29 2023 CP2023, Toronto, Canada

Thank you!

- For inviting me and for accepting a remote presentation
- I'd love to be with you
- It saved 2 tons of CO₂!

What we will see

- What is a protein, why is it exciting to design new ones?
- What connection with CP?
- How does it enable SARS-CoV2 variants exploration?
- How Deep Learning can learn the rules of protein design (or Sudoku BTW)?

Thank you!

- For inviting me and for accepting a remote presentation
- I'd love to be with you
- It saved 2 tons of CO₂!

What we will see

- What is a protein, why is it exciting to design new ones?
- What connection with CP?
- How does it enable SARS-CoV2 variants exploration?
- How Deep Learning can learn the rules of protein design (or Sudoku BTW)?

Thanks to wikipedia

Most active molecules of life

Sequence of "amino-acids", each chosen among $20\ {\rm natural}$ ones

Why should we want to design proteins?

Eco-friendly chemical/structural nano-agents present in all living organisms

- New drugs for health (human, animals, plants)
- New catalysts (environment, recycling, biofuels, food and feed, cosmetics...),
- Can be synthesized by inexpensive microscopic 3D-printers (bacterias, yeast, ...)
- Biodegradable

Protein folding and protein design

Globular proteins

- Acquire their properties through their 3D structure
- In solvent, the fold is defined by the protein sequence
- This is what AlphaFold2 predicts

Protein folding and protein design

Globular proteins

- Acquire their properties through their 3D structure
- In solvent, the fold is defined by the protein sequence
- This is what AlphaFold2 predicts

The Computational Protein Sequence Design Problem

Informal definition

(globular proteins)

Produce a sequence *s* of *n* amino-acids that spontaneously adopts a target fold.

The "rigid backbone, discrete rotamers" model

- The backbone structure is fixed (rigid).
 - Sequence s is discrete, the side-chain geometries are discretized.

Rotamer libraries: Tuffery,¹⁹ Penultimate,⁸ Dunbrack¹⁵...

Catalog of (amino acid, side-chain conformations) pairs build from the PDB (typically 400 or more rotamers)

The "rigid backbone, discrete rotamers" model

- The backbone structure is fixed (rigid).
- 2 Sequence s is discrete, the side-chain geometries are discretized.

Rotamer libraries: Tuffery,¹⁹ Penultimate,⁸ Dunbrack¹⁵...

Catalog of (amino acid, side-chain conformations) pairs build from the PDB (typically 400 or more rotamers)

Folding

Atomic forces and entropic effects

- Current "truth": quantum mechanics but quickly intractable
- Use approximate descriptions of forces (Coulomb, bonds, van der Waals,...)
- Captured inside an "energy function"

Thermodynamics²

The probability of sequence s in conformation X is defined by its energy E(s, X).

$$p(\mathbf{s}, X) \propto e^{-E(\mathbf{s}, X)}$$
 $p(\mathbf{s}, X) = \frac{e^{-E(\mathbf{s}, X)}}{Z}$

Folding

Atomic forces and entropic effects

- Current "truth": quantum mechanics but quickly intractable
- Use approximate descriptions of forces (Coulomb, bonds, van der Waals,...)
- Captured inside an "energy function"

Thermodynamics²

The probability of sequence s in conformation X is defined by its energy E(s, X).

$$p(\mathbf{s}, X) \propto e^{-E(\mathbf{s}, X)}$$
 $p(\mathbf{s}, X) = \frac{e^{-E(\mathbf{s}, X)}}{Z}$

Use a "pairwise decomposable energy" The energy function $E(\mathbf{s}, X)$ is pairwise decomposable Rosetta β -nov16¹

• We need to minimize *E*.

• We optimize the sequence, physics will optimize the geometry in water.

Use a "pairwise decomposable energy" The energy function $E(\mathbf{s}, X)$ is pairwise decomposable Rosetta β -nov16¹ Only an approximation of the real (intractable to compute) energy

• We need to minimize *E*.

• We optimize the sequence, physics will optimize the geometry in water.

Use a "pairwise decomposable energy"• The energy function $E(\mathbf{s}, X)$ is pairwise decomposableRosetta β -nov161• Only an approximation of the real (intractable to compute) energy

Decomposability: precomputed energy tables

*i*_{*r*}: rotamer *r* at position *i*

$$\mathsf{E}(\mathbf{s}, \mathsf{X}) = \mathsf{E}_{\varnothing} + \sum_{i=1}^{n} \mathsf{E}_{i}(i_{r}) + \sum_{(i,j) \in I} \mathsf{E}_{ij}(i_{r}, j_{s})$$

- We need to minimize *E*.
- We optimize the sequence, physics will optimize the geometry in water.

Use a "pairwise decomposable energy" The energy function E(s, X) is pairwise decomposable Rosetta β-nov16¹ Only an approximation of the real (intractable to compute) energy

Decomposability: precomputed energy tables

*i*_{*r*}: rotamer *r* at position *i*

$$E(\mathbf{s}, X) = E_{\varnothing} + \sum_{i=1}^{n} E_i(i_r) + \sum_{(i,j) \in I} E_{ij}(i_r, j_s)$$

• We need to minimize *E*.

• We optimize the sequence, physics will optimize the geometry in water.

Cost Function Network (a type of Graphical model)

Cost function network (X, E)

- a sequence X of discrete variables x_i, domain D_i
- a set *E* of cost functions *e*₅
- *e*_S is a cost function over variables in *S*
- a solution minimizes the **joint cost function** $E = \sum_{e \in E} e_{e}$

(possibly infinite costs)

expressed as a table

(WCSP, NP-hard)

- Variables are vertices
- Connected by an edge if they interact (participate together in a function)
- Stochastic graphical models (Markov Random Fields):

$$p(X) \propto e^{-E(X)}$$
 $p(X) = \frac{e^{-E(X)}}{Z}$

Cost Function Network (a type of Graphical model)

Cost function network (X, E)

- a sequence X of discrete variables x_i, domain D_i
- a set *E* of cost functions *e*_S
- *e*_S is a cost function over variables in S
- a solution minimizes the **joint cost function** $E = \sum_{e \in E} e_{e}$

(possibly infinite costs)

expressed as a table (WCSP, NP-hard)

- Variables are vertices
- Connected by an edge if they interact (participate together in a function)
- Stochastic graphical models (Markov Random Fields):

$$p(X) \propto e^{-E(X)}$$
 $p(X) = \frac{e^{-E(X)}}{Z}$

Cost Function Network (a type of Graphical model)

Cost function network (X, E)

- a sequence X of discrete variables x_i, domain D_i
- a set *E* of cost functions *e*_S
- *e*_S is a cost function over variables in *S*
- a solution minimizes the joint cost function $E = \sum_{e_s \in E} e_s$

(possibly infinite costs) expressed as a table

- Variables are vertices
- Connected by an edge if they interact (participate together in a function)
- Stochastic graphical models (Markov Random Fields):

$$p(X) \propto e^{-E(X)}$$
 $p(X) = \frac{e^{-E(X)}}{Z}$

Cost function network (X, E)

- a sequence X of discrete variables x_i, domain D_i
- a set *E* of cost functions *e*_S
- *e*_S is a cost function over variables in *S*
- a solution minimizes the **joint cost function** $E = \sum_{e_s \in E} e_s$

(possibly infinite costs)

expressed as a table

(WCSP, NP-hard)

- Variables are vertices
- Connected by an edge if they interact (participate together in a function)
- Stochastic graphical models (Markov Random Fields):

$$p(X) \propto e^{-E(X)}$$
 $p(X) = \frac{e^{-E(X)}}{Z}$

Cost function network (X, E)

- a sequence X of discrete variables x_i, domain D_i
- a set *E* of cost functions *e*_S
- *e*_S is a cost function over variables in *S*
- a solution minimizes the joint cost function $E = \sum_{e_S \in E} e_S$

(possibly infinite costs)

expressed as a table

(WCSP, NP-hard)

- Variables are vertices
- Connected by an edge if they interact (participate together in a function)
- Stochastic graphical models (Markov Random Fields):

$$p(X) \propto e^{-E(X)}$$
 $p(X) = rac{e^{-E(X)}}{Z}$

Cost function network (X, E)

- a sequence X of discrete variables x_i, domain D_i
- a set *E* of cost functions *e*_S
- *e*_S is a cost function over variables in *S*
- a solution minimizes the joint cost function $E = \sum_{e_S \in E} e_S$

(possibly infinite costs)

expressed as a table

(WCSP, NP-hard)

- Variables are vertices
- Connected by an edge if they interact (participate together in a function)
- Stochastic graphical models (Markov Random Fields):

$$p(X) \propto e^{-E(X)}$$
 $p(X) = \frac{e^{-E(X)}}{Z}$

Exact vs. Stochastic search

Large input (> 1GB)

For pratical sizes of problems, toulbar2 is able to...

- provide a proven minimum energy solution¹⁷
- exhaustively enumerate sequences close to it¹⁸
- provide sequence libraries with guaranteed diversity¹⁴

Rosetta's Monte Carlo Simulated Annealer increasingly fails to find the optimal sequence^a

^{*a*}David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: *Journal of Chemical Theory and Computation* 11.12 (2015), pp. 5980–5989. DOI: 10.1021/acs.jctc.5b00594.

NP-hard problem

Unbounded error

Taking the best solution over 1000 runs of Rosetta SA (fixbb)

Asymptotic convergence can be arbitrarily slow...

Guaranteed Discrete Energy Optimization on Large Protein Design Problems

David Simoncini[†], David Allouche[†], Simon de Givry[†], Céline Delmas[†], Sophie Barbe[‡]§⊥, and Thomas Schiex^{*†}

QUBO and Quantum annealing (DWave), Toulbar2 & SA¹

DWave approximationskcal/molgap > 1.16, 90% of the time> 4.35, 50% of the time> 8.45, 10% of the time

¹Vikram Khipple Mulligan et al. "Designing Peptides on a Quantum Computer". In: *bioRxiv* (2019), p. 752485.

of instances solved (X) within a per instance cpu-time limit (Y)

"The Toulbar2 package for WCSPs significantly improved the state-of-the-art efficiency for protein design." Com. ACM-20, B. Donald et al.

SARS-CoV2, Spike & RBD

MRC Laboratory of Molecular Biology. Ke, Z., Briggs, J. et al. Nature (2020).

(Col. C. Bahl - Boston)

Crucial step in CoViD infection

- The spike protein (RBD) must bind to the human ACE2 receptor
- March 2020: A structure of the spike RBD bound to ACE2 is published
- Predicting variants would allow for blocking polyclonal vaccines

Predicting possible CoViD variants with toulbar2

Could we try to optimize binding?

- This is a $\Sigma_2^p = NP^{NP}$ -hard problem²⁰
- Side-chain geometry is free in water. We are playing against Physics.

Predicting possible CoViD variants with toulbar2

/hat does this means in terms of energies?	
 RBD alone and ACE2 alone 	$E^{RBD} + E^{ACE2}$
RBD bound to ACE2	E ^{RBD+ACE2}
 Thermodynamics says (very simplified) that binding increases with 	
$-\Delta \mathbf{E} = (\mathbf{E}^{\mathbf{R}\mathbf{B}\mathbf{D}} + \mathbf{E}^{\mathbf{A}\mathbf{C}\mathbf{E}2}) - \mathbf{E}^{\mathbf{R}\mathbf{B}\mathbf{D} + \mathbf{A}\mathbf{C}\mathbf{E}2}$	

Could we try to optimize binding?

- This is a $\Sigma_2^{p} = NP^{NP}$ -hard problem²⁰
- Side-chain geometry is free in water. We are playing against Physics.

- the ACE2 sequence is fixed
- We allow only the 27 interface amino acids of RBD to mutate
- We allow a shell of 25 amino acids around them to change geometry
- We exhaustively enumerate low *E*^{*RBD*+*ACE*² sequences¹⁸}

Result: 91 millions sequences at less than 8 kcal/mol of optimum

- Remove those that destabilize the RBD (E^{RBD})
- Geometry is free in water: we need to solve 91 million (NP-hard) problems
- Embarassingly parallel job (cluster)
- 4.5 millions of sequences, with 3,272 local optima
- Bioinformatics: 59 clusters each with a centroid sequence

- the ACE2 sequence is fixed
- We allow only the 27 interface amino acids of RBD to mutate
- We allow a shell of 25 amino acids around them to change geometry
- We exhaustively enumerate low *E*^{*RBD*+*ACE*² sequences¹⁸}

Result: 91 millions sequences at less than 8 kcal/mol of optimum

- Remove those that destabilize the RBD (*E*^{RBD})
- Geometry is free in water: we need to solve 91 million (NP-hard) problems
- Embarassingly parallel job (cluster)
- 4.5 millions of sequences, with 3,272 local optima
- Bioinformatics: 59 clusters each with a centroid sequence

Yeast display

A) B) Potential & active variants (PV) **PV37** Potential variants (PV) V49 I strain variant (I) anti-hs PV3 FC-02 anti-Mvc PV44 Agal PV16 Yeast cell surface PV52 C) 100 Normalized binding (%) 50

Potential variants (PV)

Yeast Display

- 11/59 variants bind to ACE2
- Select 8 best, 7 purified properly
- Affinity measured by BLI (55nM, ≈WT)

Pseudo viruses vs. HEK293 human cells

Measures

Infectivity and resistance to antibodies

A) KDs of the indicated soluble RBDs to Fc-Ace2 and therapeutic IgGs

	Fc-Ace2	IgG LY-CoV016	IgG Regn10933	IgG Regn10987
L strain	41.7 ± 7.4 nM	203 ± 63.5 nM	$14.4 \pm 5.8 \text{ nM}$	74.2 ± 10.8 nM
PV21	$155\pm10.5~\text{nM}$	n.d.	n.d.	216 ± 29 nM
PV22	118 ± 14.2 nM	n.d.	n.d.	n.d.
PV25	n.d.	n.d.	n.d.	n.d.
PV30	55.6 ± 7.3 nM	n.d.	n.d.	n.d.
PV49	440 ± 59 nM	n.d.	n.d.	n.d.
PV51	291 ± 40 nM	n.d.	4850 nM	n.d.
PV53	222 ± 49 nM	n.d.	n.d.	152 ± 53 nM

n.d.: binding not detected

Why and how			(M. Defresne, PhD)			
Learn a (b)	oetter) energy	y function from	the structure and sequence of known proteins (PDB)			
• Start by learning how to play Sudoku \rightarrow We know the answer \rightarrow The position of cells influences the constraints acting on them						
Existing differentiable DL Sudoku learners						
	Approach	Architecture				
	RRN*	GNN-based	(NeurlPS'17) ¹¹			

SATNet Weighted MaxSAT SDP Relaxation (ICML'19)²¹

Discrete objects and Gradients!

Two different problems

- Discrete $\{0, \infty\}$ costs, how could we differentiate wrt them? \rightarrow We relax the CP problem to Weighted CP (pairwise CFN)
- Discrete variables: loss gradient (Hamming distanc to solution) is zero or indefinite
 → We use the probabilistic interpretation of CFN to define the Loss
 → Maximize the probability of observed solutions (log-likelihood)

Discrete objects and Gradients!

Two different problems

- Discrete $\{0,\infty\}$ costs, how could we differentiate wrt them?
 - \rightarrow We relax the CP problem to Weighted CP (pairwise CFN)
- Discrete variables: loss gradient (Hamming distanc to solution) is zero or indefinite
 - \rightarrow We use the probabilistic interpretation of CFN to define the Loss
 - ightarrow Maximize the probability of observed solutions (log-likelihood)

Log-likelihood and Pseudo-loglikelihood²

Loglikelihood: a nice constrastive but intractable loss

• log-likelihood of the i.i.d. training set T:

•
$$p(X = \mathbf{s}) = \frac{e^{-E(\mathbf{s})}}{Z}$$
 #P-hard

$$\sum_{\substack{\mathbf{s} \in \mathbf{T} \\ \text{training set cost SoftMin of all assignent costs}}} -\log(\sum_{\mathbf{x}} e^{-E(\mathbf{x})})$$

The PLL considers the value of X_i given all other variables values

$$PLL = \sum_{s \in T} \sum_{i} \log(p(X_i = s_i | s_{-i}))$$

Tractable and asymptotically consistent estimation

² Julian Besag. "Statistical analysis of non-lattice data". In: *Journal of the Royal Statistical Society: Series D (The Statistician)* 24.3 (1975), pp. 179–195.

Log-likelihood and Pseudo-loglikelihood²

Loglikelihood: a nice constrastive but intractable loss

• log-likelihood of the i.i.d. training set T:

$$\sum_{s \in T} \log(p(X = s))$$
• $p(X = s) = \frac{e^{-E(s)}}{Z}$

$$= \sum_{\substack{s \in T \\ \text{training set cost SoftMin of all assignment costs}}} p(X = s)$$
#P-hard

The PLL considers the value of X_i given all other variables values

$$PLL = \sum_{s \in \mathbf{T}} \sum_{i} \log(p(X_i = s_i | s_{-i}))$$

Tractable and asymptotically consistent estimation

² Julian Besag. "Statistical analysis of non-lattice data". In: *Journal of the Royal Statistical Society: Series D (The Statistician)* 24.3 (1975), pp. 179–195.

Complete failure, accuracy 0%!

It learns only a small subset of all constraints (row difference constraints)

Contraints and logical consequence

- As soon as the row constraints are learned, $p(X_i|X_{-i})$ is close to one
- Vanishing gradients

Introducing the emmental PLL

 $EPLL = \sum_{s \in T} \sum_{i} \log(p(s_i | a \text{ random subset of } s_{-i}))$

³Marianne Defresne, Sophie Barbe, and Thomas Schiex. "Scalable Coupling of Deep Learning with Logical Reasoning". In: *Thirty-second International Joint Conference on Artificial Intelligence, IJCAI'2023*. 2023.

Contraints and logical consequence

- As soon as the row constraints are learned, $p(X_i|X_{-i})$ is close to one
- Vanishing gradients

Introducing the emmental PLL (dropout-like) $EPLL = \sum_{s \in \mathbf{T}} \sum_{i} \log(p(s_i | a \text{ random subset of } s_{-i}))$

³Marianne Defresne, Sophie Barbe, and Thomas Schiex. "Scalable Coupling of Deep Learning with Logical Reasoning". In: *Thirty-second International Joint Conference on Artificial Intelligence, IJCAI* 2023. 2023.

Approach	Characteristic	Acc.	Grids	Trainset	Train time
RRN* SATNet	Pure DL SDP Relaxation	96.6% 99.8%	Hard Easy	180,000 9,000	Hours Hours
EPLL	Prob. loss	100%	Hard	200	15 min.

EPLL properties

- Solver out of the training loop
- Learns all redundant constraints
- Deals with many-solutions problems¹⁰
- End-to-end differentiable

Loss: last layer

Approach	Characteristic	Acc.	Grids	Trainset	Train time
RRN* SATNet	Pure DL SDP Relaxation	96.6% 99.8%	Hard Easy	180,000 9,000	Hours Hours
EPLL	Prob. loss	100%	Hard	200	15 min.

EPLL properties

- Solver out of the training loop
- Learns all redundant constraints
- Deals with many-solutions problems¹⁰
- End-to-end differentiable

Loss: last layer

Visual Sudoku: learn to play and to decipher digit images

SATNet	Theoretical (no corrections)	Ours
63.2 %	74.2%	$94.1\pm0.8\%$
	n and test sets SATNet 63.2 %	n and test sets SATNet Theoretical (no corrections) 63.2 % 74.2%

Visual Sudoku: learn to play and to decipher digit images

Using SATNet train and test sets

	SATNet	Theoretical (no corrections)	Ours
$63.2\% 74.2\% 94.1 \pm 0.8\%$	63.2 %	74.2%	$94.1 \pm 0.8\%$

Back to Proteins

Learning the laws of protein design

• Main changes:

- Train set up to 10,000 variables (variable size)
- Conditioned by the input structure (interatomic distances,...)
- Intractable inference \rightarrow approximate CFN solver (ICML'22)⁶

	Rosetta ¹	Our
 Similarity (†)	17.9%	27.8%

¹Hahnbeom Park et al. "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: *Journal of Chemical Theory and Computation* 12.12 (2016), pp. 6201–6212

Back to Proteins

Learning the laws of protein design

• Main changes:

- Train set up to 10,000 variables (variable size)
- Conditioned by the input structure (interatomic distances,...)
- Intractable inference \rightarrow approximate CFN solver (ICML'22)⁶

Outperforms SOTA decompos	able score func	tions	
		Rosetta ¹	Our
	Similarity (↑)	17.9%	27.8%

¹Hahnbeom Park et al. "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: *Journal of Chemical Theory and Computation* 12.12 (2016), pp. 6201–6212

Using an autoregressive GNN (ProteinMPNN)

- Learns $P(X_i | \text{structure, partial assignment})$
- Input: protein structure + a (potentially fully) masked sequence
- Output: a distribution over amino acid types for a chosen position *i*
- Repeated calls allow to produce a full solution
- Reliably samples high quality solutions
- Output cannot be arbitrarily constrained nor easily enumerated

⁴Justas Dauparas et al. "Robust deep learning–based protein sequence design using ProteinMPNN". In: Science 378.6615 (2022), pp. 49–56.

arbitrary order

beyond pairwise

Using an autoregressive GNN (ProteinMPNN)	
 Learns P(X_i structure, partial assignment) 	arbitrary order
Input: protein structure + a (potentially fully) masked sequence	
• Output: a distribution over amino acid types for a chosen position <i>i</i>	
Repeated calls allow to produce a full solution	
 Reliably samples high quality solutions 	beyond pairwise
 Output cannot be arbitrarily constrained nor easily enumerated 	

⁴Justas Dauparas et al. "Robust deep learning-based protein sequence design using ProteinMPNN". In: *Science* 378.6615 (2022), pp. 49–56.

Using an autoregressive GNN (ProteinMPNN)	
 Learns P(X_i structure, partial assignment) 	arbitrary order
Input: protein structure + a (potentially fully) masked sequence	
 Output: a distribution over amino acid types for a chosen position i 	
Repeated calls allow to produce a full solution	
 Reliably samples high quality solutions 	beyond pairwise
 Output cannot be arbitrarily constrained nor easily enumerated 	

⁴Justas Dauparas et al. "Robust deep learning-based protein sequence design using ProteinMPNN". In: *Science* 378.6615 (2022), pp. 49–56.

Using an autoregressive GNN (ProteinMPNN)	
 Learns P(X_i structure, partial assignment) 	arbitrary order
Input: protein structure + a (potentially fully) masked sequence	
 Output: a distribution over amino acid types for a chosen position i 	
 Repeated calls allow to produce a full solution 	
 Reliably samples high quality solutions 	beyond pairwise
• Output cannot be arbitrarily constrained nor easily enumerated	

⁴Justas Dauparas et al. "Robust deep learning-based protein sequence design using ProteinMPNN". In: *Science* 378.6615 (2022), pp. 49–56.

Using an autoregressive GNN (ProteinMPNN)	
 Learns P(X_i structure, partial assignment) 	arbitrary order
Input: protein structure + a (potentially fully) masked sequence	
 Output: a distribution over amino acid types for a chosen position i 	
 Repeated calls allow to produce a full solution 	
 Reliably samples high quality solutions 	beyond pairwise
• Output cannot be arbitrarily constrained nor easily enumerated	

⁴Justas Dauparas et al. "Robust deep learning-based protein sequence design using ProteinMPNN". In: *Science* 378.6615 (2022), pp. 49–56.

Conclusion

• Computational Protein Design is an exciting application domain for discrete optimization

- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information & many examples → pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling

- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information & many examples
 → pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling

- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information & many examples
 → pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling

- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information & many examples → pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling

- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information & many examples
 → pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling

- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information & many examples
 → pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling

- Computational Protein Design is an exciting application domain for discrete optimization
- It combines knowledge, data and user preferences/constraints on discrete objects
- With ML and DL, CFNs can integrate all these information types together
- Pure autoregressive GNN-based DL approaches very competitive
- In a well defined domain, with correlated information & many examples
 → pure DL-based heuristic optimization works
- Post-hoc criteria/constraints language is limited (unary)
- No enumeration, only sampling

Thanks

Al/toulbar2

S. de Givry (INRA) G. Katsirelos (INRA) M. Zytnicki (PhD, INRA) D. Allouche (INRA) M. Ruffini (INRA) V. Durante (ANITI, PhD student) H. Nguyen (PhD, INRA) C. Brouard (ML, INRA) M. Cooper (IRIT, Toulouse) J. Larrosa (UPC, Spain) F. Heras (UPC, Spain) M. Sanchez (Spain) E. Rollon (UPC, Spain) P. Meseguer (CSIC, Spain) G. Verfaillie (ONERA, ret.) JH. Lee (CU. Hong Kong) C. Bessiere (LIMM, Montpellier) JP. Métivier (GREYC, Caen) S. Loudni (GREYC, Caen) M. Fontaine (GREYC, Caen),...

Protein Design

A. Voet (KU Leuven) A. Olichon (INSERM) D. Simoncini (UFT, Toulouse) S. Barbe (INSA, Toulouse) M. Defresne (INRAE, PhD student) Y. Bouchiba (INSA, PhD student) C. Dumont (INSA, Toulouse) J. Vucinic (INRA/INSA) S. Traoré (PhD, CEA) C. Viricel (PhD) K. Zhang (Riken, CBDR) S. Tagami (Riken, CBDR) RosettaCommons (U. Washington) W. Sheffler (U. Washington) V. Mulligan (Flatiron Institute, NY) C. Bahl (IPI, Boston) PyRosetta (U. John Hopkins) B. Donald (U. North Carolina) K. Roberts (U. North Carolina) T. Simonson (Polytechnique) J. Cortes (LAAS/CNRS),...

References I

- Rebecca F Alford et al. "The Rosetta all-atom energy function for macromolecular modeling and design". In: Journal of chemical theory and computation 13.6 (2017), pp. 3031–3048.
- [2] C. Anfinsen. "Principles that govern the folding of protein chains". In: Science 181.4096 (1973), pp. 223–253.
- Julian Besag. "Statistical analysis of non-lattice data". In: Journal of the Royal Statistical Society: Series D (The Statistician) 24.3 (1975), pp. 179–195.
- [4] Justas Dauparas et al. "Robust deep learning–based protein sequence design using ProteinMPNN". In: Science 378.6615 (2022), pp. 49–56.
- [5] Marianne Defresne, Sophie Barbe, and Thomas Schiex. "Scalable Coupling of Deep Learning with Logical Reasoning". In: Thirty-second International Joint Conference on Artificial Intelligence, IJCAI'2023. 2023.
- [6] Valentin Durante, George Katsirelos, and Thomas Schiex. "Efficient low rank convex bounds for pairwise discrete Graphical Models". In: Thirty-ninth International Conference on Machine Learning. July 2022.
- [7] Andrew Leaver-Fay et al. "ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules.". In: Methods Enzymol. 487 (2011), pp. 545–574. ISSN: 1557-7988.
- [8] S C Lovell et al. "The penultimate rotamer library". In: Proteins 40.3 (Aug. 2000), pp. 389–408. ISSN: 0887-3585. URL: http://www.ncbi.nlm.nih.gov/pubmed/10861930.
- [9] Vikram Khipple Mulligan et al. "Designing Peptides on a Quantum Computer". In: *bioRxiv* (2019), p. 752485.
- [10] Yatin Nandwani et al. "Neural Learning of One-of-Many Solutions for Combinatorial Problems in Structured Output Spaces". In: International Conference on Learning Representations, ICLR'21. 2021. URL: https://openreview.net/forum?id=ATp1nW2FuZL.

References II

- [11] Rasmus Palm, Ulrich Paquet, and Ole Winther. "Recurrent Relational Networks". In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018.
- [12] Hahnbeom Park et al. "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: Journal of Chemical Theory and Computation 12.12 (2016), pp. 6201–6212.
- [13] N. Pierce et al. "Conformational splitting: A more powerful criterion for dead-end elimination". In: Journal of computational chemistry 21.11 (2000), pp. 999–1009.
- [14] Manon Ruffini et al. "Guaranteed Diversity and Optimality in Cost Function Network Based Computational Protein Design Methods". In: Algorithms 14.6 (2021), p. 168.
- [15] Maxim V Shapovalov and Roland L Dunbrack. "A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions". In: *Structure* 19.6 (2011), pp. 844–858.
- [16] David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980–5989. DOI: 10.1021/acs.jctc.5b00594.
- [17] Seydou Traoré et al. "A New Framework for Computational Protein Design through Cost Function Network Optimization". In: Bioinformatics 29.17 (2013), pp. 2129–2136.
- [18] Seydou Traoré et al. "Fast search algorithms for computational protein design". In: Journal of Computational Chemistry 37.12 (2016), pp. 1048–1058. ISSN: 1096-987X. DOI: 10.1002/jcc.24290. URL: http://dx.doi.org/10.1002/jcc.24290.
- [19] P Tuffery et al. "A new approach to the rapid determination of protein side chain conformations". In: Journal of Biomolecular structure and dynamics 8.6 (1991), pp. 1267–1289.
- [20] Jelena Vucinic et al. "Positive multistate protein design". In: *Bioinformatics* 36.1 (2020), pp. 122–130.

[21] Po-Wei Wang et al. "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver". In: Proceedings of the 36th International Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 6545–6554.