
Numbers and logic together in CP:
A Practical View of Cost Function
Networks
CP’2020 tutorial

S. de Givry1 & T. Schiex1

1 Université Fédérale de Toulouse, ANITI, INRAE MIAT, UR 875, Toulouse, France

This is not a virtual tutorial

September 2020

What is a (discrete) graphical model?

Informally (see also [CGS20])

A description of a multivariate function as the combination of a set of simple functions

1 51

What for?

Concisely describing and analyzing complex systems

Concise: we use a set of small functions

Complex: the joint function results from the interaction of several small functions

Example

A digital circuit value of the output

A Sudoku grid solution or not

A schedule or a time-table feasibility, acceptability

A pedigree with genotypes [SGS08] Mendel consistency, probability

A frequency assignment [Cab+99] interference amount

A 3D molecule [All+14] energy, stability

2 51

What for?

Concisely describing and analyzing complex systems

Concise: we use a set of small functions

Complex: the joint function results from the interaction of several small functions

Example

A digital circuit value of the output

A Sudoku grid solution or not

A schedule or a time-table feasibility, acceptability

A pedigree with genotypes [SGS08] Mendel consistency, probability

A frequency assignment [Cab+99] interference amount

A 3D molecule [All+14] energy, stability

2 51

What for?

Concisely describing and analyzing complex systems

Concise: we use a set of small functions

Complex: the joint function results from the interaction of several small functions

Example

A digital circuit value of the output

A Sudoku grid solution or not

A schedule or a time-table feasibility, acceptability

A pedigree with genotypes [SGS08] Mendel consistency, probability

A frequency assignment [Cab+99] interference amount

A 3D molecule [All+14] energy, stability

2 51

What for?

Concisely describing and analyzing complex systems

Concise: we use a set of small functions

Complex: the joint function results from the interaction of several small functions

Example

A digital circuit value of the output

A Sudoku grid solution or not

A schedule or a time-table feasibility, acceptability

A pedigree with genotypes [SGS08] Mendel consistency, probability

A frequency assignment [Cab+99] interference amount

A 3D molecule [All+14] energy, stability

2 51

What for?

Concisely describing and analyzing complex systems

Concise: we use a set of small functions

Complex: the joint function results from the interaction of several small functions

Example

A digital circuit value of the output

A Sudoku grid solution or not

A schedule or a time-table feasibility, acceptability

A pedigree with genotypes [SGS08] Mendel consistency, probability

A frequency assignment [Cab+99] interference amount

A 3D molecule [All+14] energy, stability

2 51

What for?

Concisely describing and analyzing complex systems

Concise: we use a set of small functions

Complex: the joint function results from the interaction of several small functions

Example

A digital circuit value of the output

A Sudoku grid solution or not

A schedule or a time-table feasibility, acceptability

A pedigree with genotypes [SGS08] Mendel consistency, probability

A frequency assignment [Cab+99] interference amount

A 3D molecule [All+14] energy, stability

2 51

What for?

Concisely describing and analyzing complex systems

Concise: we use a set of small functions

Complex: the joint function results from the interaction of several small functions

Example

A digital circuit value of the output

A Sudoku grid solution or not

A schedule or a time-table feasibility, acceptability

A pedigree with genotypes [SGS08] Mendel consistency, probability

A frequency assignment [Cab+99] interference amount

A 3D molecule [All+14] energy, stability

2 51

Notations

Variables: X ,Y ,Z , . . ., possibly indexed as Xi

Domains: DX for variable X , or Di for variable Xi

Unknown values: u, v,w, x, y, z . . .
Sequence of variables: X,Y ,Z , . . .

Sequence of possible values: u, v,w,x,y, z . . .

Domain of a sequence of variables X : DX (Cartesian product of the domains)

u ∈ DX is an assignment of X (a value for each variable in X)

u[Y]: projection of u on Y (the sequence of values of Y in u)

3 51

Notations

Variables: X ,Y ,Z , . . ., possibly indexed as Xi

Domains: DX for variable X , or Di for variable Xi

Unknown values: u, v,w, x, y, z . . .
Sequence of variables: X,Y ,Z , . . .

Sequence of possible values: u, v,w,x,y, z . . .

Domain of a sequence of variables X : DX (Cartesian product of the domains)

u ∈ DX is an assignment of X (a value for each variable in X)

u[Y]: projection of u on Y (the sequence of values of Y in u)

3 51

Notations

Variables: X ,Y ,Z , . . ., possibly indexed as Xi

Domains: DX for variable X , or Di for variable Xi

Unknown values: u, v,w, x, y, z . . .
Sequence of variables: X,Y ,Z , . . .

Sequence of possible values: u, v,w,x,y, z . . .

Domain of a sequence of variables X : DX (Cartesian product of the domains)

u ∈ DX is an assignment of X (a value for each variable in X)

u[Y]: projection of u on Y (the sequence of values of Y in u)

3 51

Notations

Variables: X ,Y ,Z , . . ., possibly indexed as Xi

Domains: DX for variable X , or Di for variable Xi

Unknown values: u, v,w, x, y, z . . .
Sequence of variables: X,Y ,Z , . . .

Sequence of possible values: u, v,w,x,y, z . . .

Domain of a sequence of variables X : DX (Cartesian product of the domains)

u ∈ DX is an assignment of X (a value for each variable in X)

u[Y]: projection of u on Y (the sequence of values of Y in u)

3 51

Notations

Variables: X ,Y ,Z , . . ., possibly indexed as Xi

Domains: DX for variable X , or Di for variable Xi

Unknown values: u, v,w, x, y, z . . .
Sequence of variables: X,Y ,Z , . . .

Sequence of possible values: u, v,w,x,y, z . . .

Domain of a sequence of variables X : DX (Cartesian product of the domains)

u ∈ DX is an assignment of X (a value for each variable in X)

u[Y]: projection of u on Y (the sequence of values of Y in u)

3 51

Notations

Variables: X ,Y ,Z , . . ., possibly indexed as Xi

Domains: DX for variable X , or Di for variable Xi

Unknown values: u, v,w, x, y, z . . .
Sequence of variables: X,Y ,Z , . . .

Sequence of possible values: u, v,w,x,y, z . . .

Domain of a sequence of variables X : DX (Cartesian product of the domains)

u ∈ DX is an assignment of X (a value for each variable in X)

u[Y]: projection of u on Y (the sequence of values of Y in u)

3 51

Notations

Variables: X ,Y ,Z , . . ., possibly indexed as Xi

Domains: DX for variable X , or Di for variable Xi

Unknown values: u, v,w, x, y, z . . .
Sequence of variables: X,Y ,Z , . . .

Sequence of possible values: u, v,w,x,y, z . . .

Domain of a sequence of variables X : DX (Cartesian product of the domains)

u ∈ DX is an assignment of X (a value for each variable in X)

u[Y]: projection of u on Y (the sequence of values of Y in u)

3 51

Notations

Variables: X ,Y ,Z , . . ., possibly indexed as Xi

Domains: DX for variable X , or Di for variable Xi

Unknown values: u, v,w, x, y, z . . .
Sequence of variables: X,Y ,Z , . . .

Sequence of possible values: u, v,w,x,y, z . . .

Domain of a sequence of variables X : DX (Cartesian product of the domains)

u ∈ DX is an assignment of X (a value for each variable in X)

u[Y]: projection of u on Y (the sequence of values of Y in u)

3 51

A definition parameterized by set B and operator
⊕

Definition (Graphical Model (GM [Bis06; KF09]))

A GMM = 〈V ,Φ〉 is defined by:

a sequence of variables V n
each X ∈ V has finite domain DX max size d
a set Φ of functions (or factors) e
Each function ϕS ∈ Φ is a function from DS → B scope S , arity |S|

Definition (M joint function)

ΦM(v) =
⊕
ϕS∈Φ

ϕS(v[S])

4 51

A definition parameterized by set B and operator
⊕

Definition (Graphical Model (GM [Bis06; KF09]))

A GMM = 〈V ,Φ〉 is defined by:

a sequence of variables V n
each X ∈ V has finite domain DX max size d
a set Φ of functions (or factors) e
Each function ϕS ∈ Φ is a function from DS → B scope S , arity |S|

Definition (M joint function)

ΦM(v) =
⊕
ϕS∈Φ

ϕS(v[S])

4 51

A definition parameterized by set B and operator
⊕

Definition (Graphical Model (GM [Bis06; KF09]))

A GMM = 〈V ,Φ〉 is defined by:

a sequence of variables V n
each X ∈ V has finite domain DX max size d
a set Φ of functions (or factors) e
Each function ϕS ∈ Φ is a function from DS → B scope S , arity |S|

Definition (M joint function)

ΦM(v) =
⊕
ϕS∈Φ

ϕS(v[S])

4 51

A definition parameterized by set B and operator
⊕

Definition (Graphical Model (GM [Bis06; KF09]))

A GMM = 〈V ,Φ〉 is defined by:

a sequence of variables V n
each X ∈ V has finite domain DX max size d
a set Φ of functions (or factors) e
Each function ϕS ∈ Φ is a function from DS → B scope S , arity |S|

Definition (M joint function)

ΦM(v) =
⊕
ϕS∈Φ

ϕS(v[S])

4 51

A definition parameterized by set B and operator
⊕

Definition (Graphical Model (GM [Bis06; KF09]))

A GMM = 〈V ,Φ〉 is defined by:

a sequence of variables V n
each X ∈ V has finite domain DX max size d
a set Φ of functions (or factors) e
Each function ϕS ∈ Φ is a function from DS → B scope S , arity |S|

Definition (M joint function)

ΦM(v) =
⊕
ϕS∈Φ

ϕS(v[S])

4 51

For computers, language matters…

How are functions ϕS ∈ Φ represented?

Default: as tensors over B (multidimensional tables)

Boolean vars: (B-weighted) clauses (disjunction of variables or their negation)

Arithmetic, polynomes [BH02]

Predicates (All-Different [Rég94; LL12],…)

5 51

For computers, language matters…

How are functions ϕS ∈ Φ represented?

Default: as tensors over B (multidimensional tables)

Boolean vars: (B-weighted) clauses (disjunction of variables or their negation)

Arithmetic, polynomes [BH02]

Predicates (All-Different [Rég94; LL12],…)

5 51

For computers, language matters…

How are functions ϕS ∈ Φ represented?

Default: as tensors over B (multidimensional tables)

Boolean vars: (B-weighted) clauses (disjunction of variables or their negation)

Arithmetic, polynomes [BH02]

Predicates (All-Different [Rég94; LL12],…)

5 51

For computers, language matters…

How are functions ϕS ∈ Φ represented?

Default: as tensors over B (multidimensional tables)

Boolean vars: (B-weighted) clauses (disjunction of variables or their negation)

Arithmetic, polynomes [BH02]

Predicates (All-Different [Rég94; LL12],…)

5 51

Boolean Logic

Constraint networks [RBW06]/SAT [BHM09] B = B = {t, f },⊕ = ∧

a sequence of domain variables V
a set Φ of e Boolean functions (or constraints)

Each function ϕS ∈ Φ is a function from DS → {t, f }

M defines a joint Boolean feasibility/consistency function

ΦM =
∧

ϕS∈Φ
ϕS

6 51

Boolean Logic

Constraint networks [RBW06]/SAT [BHM09] B = B = {t, f },⊕ = ∧

a sequence of domain variables V
a set Φ of e Boolean functions (or constraints)

Each function ϕS ∈ Φ is a function from DS → {t, f }

M defines a joint Boolean feasibility/consistency function

ΦM =
∧

ϕS∈Φ
ϕS

6 51

Stochastic Graphical Model [KF09; Bis06]

Markov Random Fields: B = R+,⊕ = ×

a set V of domain variables

a set Φ of potential functions

ϕS ∈ Φ :
∏

X∈S
DX → R+

M: induces a probability distribution

ΦM =
∏

ϕS∈Φ
ϕS PM ∝ ΦM

7 51

Stochastic Graphical Model [KF09; Bis06]

Markov Random Fields: B = R+,⊕ = ×

a set V of domain variables

a set Φ of potential functions

ϕS ∈ Φ :
∏

X∈S
DX → R+

M: induces a probability distribution

ΦM =
∏

ϕS∈Φ
ϕS PM ∝ ΦM

7 51

Numbers with Boolean Logic

Cost Function NetworksM [FW92; SFV95; CS04] B = Nk
,⊕ = +k

a sequence of domain variables V
a set Φ of e numerical functions

Each function ϕS ∈ Φ is a function from DS → Nk

Nk
: elements of N ∪ {∞} bounded by k k finite or not

+k is the k-bounded addition α+k β = min(α+ β, k)

M defines a joint (bounded) integer function

ΦM =
∑
ϕS∈Φ

k
ϕS

8 51

Numbers with Boolean Logic

Cost Function NetworksM [FW92; SFV95; CS04] B = Nk
,⊕ = +k

a sequence of domain variables V
a set Φ of e numerical functions

Each function ϕS ∈ Φ is a function from DS → Nk

Nk
: elements of N ∪ {∞} bounded by k k finite or not

+k is the k-bounded addition α+k β = min(α+ β, k)

M defines a joint (bounded) integer function

ΦM =
∑
ϕS∈Φ

k
ϕS

8 51

Cost Function Networks: normal form

CFN “normal form” Used inside the solver

Have a constant function ϕ∅

Have all their unary functions ϕi ,Xi ∈ V ϕi(u) = k means u deleted

All functions have different scopes

Main properties

ϕ∅ is a lower bound of the joint function ΦM

k = 1: Constraint networks and SAT, +k is ∧

9 51

Example: Min-CUT with hard edges

Graph G = (V ,E) with edge weight function w

A Boolean variable Xi per vertex i ∈ V
A cost function per edge e = (i, j) ∈ E : ϕij = w(i, j)× 1[xi 6= xj]

Hard edges: constraints with costs 0 or∞ (when xi 6= xj)

A simple graph

vertices {1, 2, 3, 4}
cut weight 1

edge (1, 2) hard

10 51

Example: Min-CUT with hard edges

Graph G = (V ,E) with edge weight function w

A Boolean variable Xi per vertex i ∈ V
A cost function per edge e = (i, j) ∈ E : ϕij = w(i, j)× 1[xi 6= xj]

Hard edges: constraints with costs 0 or∞ (when xi 6= xj)

A simple graph

vertices {1, 2, 3, 4}
cut weight 1

edge (1, 2) hard

1 2

3

1 1

hard

41

10 51

Example: Min-CUT with hard edges

Graph G = (V ,E) with edge weight function w

A Boolean variable Xi per vertex i ∈ V
A cost function per edge e = (i, j) ∈ E : ϕij = w(i, j)× 1[xi 6= xj]

Hard edges: constraints with costs 0 or∞ (when xi 6= xj)

A simple graph

vertices {1, 2, 3, 4}
cut weight 1

edge (1, 2) hard

1
1

1
1

∞
∞

x1 x2

x3 x4
1

1

10 51

toulbar2 input file https://github.com/toulbar2/toulbar2

Min-CUT on 4 variables with hard edge

{
problem :{name: "MinCut", mustbe: "<100.0"},

variables: {x1: ["l"], x2: ["l","r"], x3: ["l","r"], x4: ["r"]}
functions: {

cut12: {scope: ["x1","x2"], costs: [0.0, 100.0, 100.0, 0.0]},
cut13: {scope: ["x1","x3"], costs: [0.0,1.0,1.0,0.0]},
cut23: {scope: ["x2","x3"], costs: [0.0,1.0,1.0,0.0]},
cut34: {scope: ["x3","x4"], costs: [0.0,1.0,1.0,0.0]}

}

11 51

Equivalence, relaxation

Definition (Functions and graphical models equivalence)

Two functions (or GMs) are equivalent iff they are always equal

Definition (Relaxation of a function or graphical model)

A function (or GM) ϕ is a relaxation of ϕ′ iff ϕ ≤ ϕ′

For B = B, t < f
(ϕ relaxation of ϕ′)⇔ (ϕ′ |= ϕ)

12 51

Equivalence, relaxation

Definition (Functions and graphical models equivalence)

Two functions (or GMs) are equivalent iff they are always equal

Definition (Relaxation of a function or graphical model)

A function (or GM) ϕ is a relaxation of ϕ′ iff ϕ ≤ ϕ′

For B = B, t < f
(ϕ relaxation of ϕ′)⇔ (ϕ′ |= ϕ)

12 51

Equivalence, relaxation

Definition (Functions and graphical models equivalence)

Two functions (or GMs) are equivalent iff they are always equal

Definition (Relaxation of a function or graphical model)

A function (or GM) ϕ is a relaxation of ϕ′ iff ϕ ≤ ϕ′

For B = B, t < f
(ϕ relaxation of ϕ′)⇔ (ϕ′ |= ϕ)

12 51

Presentation Outline

1 Optimization

2 Algorithms

3 All Toulbar2 bells and whistles

4 Learning CFN from data

13 51

Optimization

Minimization queries

B = {t ≡ 0, f ≡ 1},⊕ = +1 = ∧, clauses the SAT Problem

B = {t ≡ 0, f ≡ 1},⊕ = +1 = ∧, tensors the Constraint Satisfaction Problem

B = Nk
,⊕ = +k , tensors the Weighted Constraint Satisfaction Problem

We always use +k

14 51

Optimization

Minimization queries

B = {t ≡ 0, f ≡ 1},⊕ = +1 = ∧, clauses the SAT Problem

B = {t ≡ 0, f ≡ 1},⊕ = +1 = ∧, tensors the Constraint Satisfaction Problem

B = Nk
,⊕ = +k , tensors the Weighted Constraint Satisfaction Problem

We always use +k

14 51

Binary WCSP as 01LP (optimization only)

The “local polytope” [Sch76; Kos99; Wer07] (without eq. (1))

Minimize
∑
i,a

ϕi(a) · xia +
∑
ϕij∈Φ

a∈Di ,b∈Dj

ϕij(a, b) · yiajb such that

∑
a∈Di

xia = 1 ∀i ∈ {1, . . . ,n}

∑
b∈Dj

yiajb = xia ∀ϕij ∈ Φ, ∀a ∈ Di

∑
a∈Di

yiajb = xjb ∀ϕij ∈ Φ, ∀b ∈ Dj

xia ∈ {0, 1} ∀i ∈ {1, . . . ,n} (1)

nd + ed2 variables, n + 2ed constraints

15 51

Presentation Outline

1 Optimization

2 Algorithms
Conditioning based: systematic and local search
Elimination based: local consistency and variable elimination

3 All Toulbar2 bells and whistles

4 Learning CFN from data

16 51

First tool: Conditioning

Conditioning: ϕS|X=a (X ∈ S) Assignment

ϕS|X=a(v) = (ϕS(v ∪ {X = a}) Scope S − {X}, negligible complexity

X1

a 1 2 3
X2 b 3 1 2

c 2 3 1

Conditioning by
X2 = b

X1

3 1 2

17 51

First tool: Conditioning

Conditioning: ϕS|X=a (X ∈ S) Assignment

ϕS|X=a(v) = (ϕS(v ∪ {X = a}) Scope S − {X}, negligible complexity

X1

a 1 2 3
X2 b 3 1 2

c 2 3 1

Conditioning by
X2 = b

X1

3 1 2

17 51

Conditioning-based approaches

Systematic tree search Time O(dn), linear space

If all |DX | = 1 obvious minimum update k to ΦM(v)
Else choose X ∈ V s.t. |DX | > 1 and u ∈ DX and reduce to

1. one query where we condition by Xi = u
2. one where u is removed from DX

Return the minimum

Optimization Branch and Bound [LW66]

If the local lower bound︸ ︷︷ ︸
ϕ∅

reaches the global upper bound︸ ︷︷ ︸
k

Prune!

Partial search
Relaxed pruning ((1 + α)ϕ∅ ≥ k) [Poh70], bounded number of backtracks or discrepencies
(LDS [HG95])

18 51

Conditioning-based approaches

Systematic tree search Time O(dn), linear space

If all |DX | = 1 obvious minimum update k to ΦM(v)
Else choose X ∈ V s.t. |DX | > 1 and u ∈ DX and reduce to

1. one query where we condition by Xi = u
2. one where u is removed from DX

Return the minimum

Optimization Branch and Bound [LW66]

If the local lower bound︸ ︷︷ ︸
ϕ∅

reaches the global upper bound︸ ︷︷ ︸
k

Prune!

Partial search
Relaxed pruning ((1 + α)ϕ∅ ≥ k) [Poh70], bounded number of backtracks or discrepencies
(LDS [HG95])

18 51

Conditioning-based approaches

Systematic tree search Time O(dn), linear space

If all |DX | = 1 obvious minimum update k to ΦM(v)
Else choose X ∈ V s.t. |DX | > 1 and u ∈ DX and reduce to

1. one query where we condition by Xi = u
2. one where u is removed from DX

Return the minimum

Optimization Branch and Bound [LW66]

If the local lower bound︸ ︷︷ ︸
ϕ∅

reaches the global upper bound︸ ︷︷ ︸
k

Prune!

Partial search
Relaxed pruning ((1 + α)ϕ∅ ≥ k) [Poh70], bounded number of backtracks or discrepencies
(LDS [HG95])

18 51

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15] Anyspace

Uses Depth-First Search for a bounded amount of backtracks

Pending nodes are pushed onto a list of Open nodes

The next DFS starts from the best Open node

Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

Good upper bounds quickly (DFS)

A constantly improving lower bound (optimality gap)

Implicit restarts, easy parallelization

19 51

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15] Anyspace

Uses Depth-First Search for a bounded amount of backtracks

Pending nodes are pushed onto a list of Open nodes

The next DFS starts from the best Open node

Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

Good upper bounds quickly (DFS)

A constantly improving lower bound (optimality gap)

Implicit restarts, easy parallelization

19 51

Also local search of course (VNS here)

20 51

Two last tools: Combination and Elimination

Combination of ϕS and ϕS′ Space/time O(d |S∪S′|) for tensors

(ϕS +k ϕS′)(v) = ϕS(v[S]) +k ϕS′(v[S ′])

X1

a 4 1 2 3
X2 b 6 3 1 2

c 4 2 3 1

=⇒

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Elimination of X ∈ S from ϕS Time O(d |S|), space O(d |S|−1) for tensors

ϕS [−X](u) = min
v∈DX

ϕS(u ∪ v) Produces relaxations

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Eliminate X2
X1

5 6 5
Eliminate X1

∅
5

21 51

Two last tools: Combination and Elimination

Combination of ϕS and ϕS′ Space/time O(d |S∪S′|) for tensors

(ϕS +k ϕS′)(v) = ϕS(v[S]) +k ϕS′(v[S ′])

X1

a 4 1 2 3
X2 b 6 3 1 2

c 4 2 3 1

=⇒

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Elimination of X ∈ S from ϕS Time O(d |S|), space O(d |S|−1) for tensors

ϕS [−X](u) = min
v∈DX

ϕS(u ∪ v) Produces relaxations

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Eliminate X2
X1

5 6 5
Eliminate X1

∅
5

21 51

Two last tools: Combination and Elimination

Combination of ϕS and ϕS′ Space/time O(d |S∪S′|) for tensors

(ϕS +k ϕS′)(v) = ϕS(v[S]) +k ϕS′(v[S ′])

X1

a 4 1 2 3
X2 b 6 3 1 2

c 4 2 3 1

=⇒

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Elimination of X ∈ S from ϕS Time O(d |S|), space O(d |S|−1) for tensors

ϕS [−X](u) = min
v∈DX

ϕS(u ∪ v) Produces relaxations

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Eliminate X2
X1

5 6 5
Eliminate X1

∅
5

21 51

Two last tools: Combination and Elimination

Combination of ϕS and ϕS′ Space/time O(d |S∪S′|) for tensors

(ϕS +k ϕS′)(v) = ϕS(v[S]) +k ϕS′(v[S ′])

X1

a 4 1 2 3
X2 b 6 3 1 2

c 4 2 3 1

=⇒

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Elimination of X ∈ S from ϕS Time O(d |S|), space O(d |S|−1) for tensors

ϕS [−X](u) = min
v∈DX

ϕS(u ∪ v) Produces relaxations

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Eliminate X2
X1

5 6 5
Eliminate X1

∅
5

21 51

Expensive but powerful tools

Used together

Combination accumulates all information in a single function

Elimination forgets one variable without loosing optimality information

At the core of

Local consistencies, Unit propagation: subproblem induced by one function

Variable elimination, the Resolution Principle: subproblem around one variable

22 51

Expensive but powerful tools

Used together

Combination accumulates all information in a single function

Elimination forgets one variable without loosing optimality information

At the core of

Local consistencies, Unit propagation: subproblem induced by one function

Variable elimination, the Resolution Principle: subproblem around one variable

22 51

Good old Arc consistency revisited (using B)

Arc consistency of Xi w.r.t. ϕij [RBW06]

Combine ϕij and the unary ϕj

Eliminate Xj producing a function (message) on Xi

mj
i = (ϕij +

k ϕj)[−Xj]

Properties

The message can be added to ϕi (relaxation, value deletion)

Xi is AC w.r.t. ϕij if mi
j ≤ ϕi (no new information)

Unique fixpoint, reached in polynomial time (inconsistency detection)

Support of u ∈ Di on Dj the argmin of the elimination

23 51

Good old Arc consistency revisited (using B)

Arc consistency of Xi w.r.t. ϕij [RBW06]

Combine ϕij and the unary ϕj

Eliminate Xj producing a function (message) on Xi

mj
i = (ϕij +

k ϕj)[−Xj]

Properties

The message can be added to ϕi (relaxation, value deletion)

Xi is AC w.r.t. ϕij if mi
j ≤ ϕi (no new information)

Unique fixpoint, reached in polynomial time (inconsistency detection)

Support of u ∈ Di on Dj the argmin of the elimination

23 51

General CFN case [Sch00; LS03; LS04; CS04; Coo+10]

Obvious issue
Messages can not be included in the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with −k (α−k β) ≡ ((α = k) ? k : α− β)

Add the message mj
i to ϕj with +k

Subtract mj
i from its source using −k

Can be reversed, any relaxation of mj
i can be used instead

24 51

General CFN case [Sch00; LS03; LS04; CS04; Coo+10]

Obvious issue
Messages can not be included in the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with −k (α−k β) ≡ ((α = k) ? k : α− β)

Add the message mj
i to ϕj with +k

Subtract mj
i from its source using −k

Can be reversed, any relaxation of mj
i can be used instead

24 51

Example with elimination and −k on one function

m2
1 m1

2

← →

X1 X2

→ ←
−m2

1 −m1
2⇓ m1

∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

25 51

Example with elimination and −k on one function

m2
1

m1
2

←

→
X1 X2

→ ←
−m2

1 −m1
2⇓ m1

∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

25 51

Example with elimination and −k on one function

m2
1

m1
2

←

→
X1 X2

→

←

−m2
1

−m1
2

⇓ m1
∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

25 51

Example with elimination and −k on one function

m2
1

m1
2

←

→

X1 X2

→ ←
−m2

1 −m1
2⇓ m1

∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

25 51

Example with elimination and −k on one function

m2
1

m1
2

←

→

X1 X2

→

←

−m2
1

−m1
2⇓ m1

∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

25 51

Example with elimination and −k on one function

m2
1

m1
2

←

→

X1 X2

→ ←
−m2

1 −m1
2

⇓ m1
∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

25 51

Example with elimination and −k on one function

m2
1

m1
2

←

→

X1 X2

→ ←
−m2

1 −m1
2

⇓ m1
∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

25 51

Example with elimination and −k on one function

m2
1

m1
2

←

→

X1 X2

→ ←
−m2

1 −m1
2

⇓ m1
∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

25 51

Many way to avoid loops (enforce fixpoint existence)

The many “soft ACs” [Coo+10]

NC: one unary function [Lar02] Unary supports (ϕi(u) = 0)

+AC: one binary function [Sch00; Lar02] Arc supports (v ∈ Dj , ϕij(u, v) = 0)

+DAC: FDAC, binary & unary function (+ direction) [Coo03] Full Supports

+Existential AC: EDAC, a star (variable incident functions) [Lar+05] EAC supports

+Virtual AC: any spanning tree [Coo+08; Coo+10] VAC supports

Properties Related works in Comp. Vision [Kol06; Son+12; Wer07; Kol15]

Proper extension of classical NC/DAC or AC respectively (k = 1)

Polynomial time and O(ed) space (Generalized ACs)

Incremental, strengthens ϕ∅ (VAC ≥ EDAC ≥ FDAC ≥ AC ≥ NC)

May have several fixpoints/ϕ∅

26 51

Many way to avoid loops (enforce fixpoint existence)

The many “soft ACs” [Coo+10]

NC: one unary function [Lar02] Unary supports (ϕi(u) = 0)

+AC: one binary function [Sch00; Lar02] Arc supports (v ∈ Dj , ϕij(u, v) = 0)

+DAC: FDAC, binary & unary function (+ direction) [Coo03] Full Supports

+Existential AC: EDAC, a star (variable incident functions) [Lar+05] EAC supports

+Virtual AC: any spanning tree [Coo+08; Coo+10] VAC supports

Properties Related works in Comp. Vision [Kol06; Son+12; Wer07; Kol15]

Proper extension of classical NC/DAC or AC respectively (k = 1)

Polynomial time and O(ed) space (Generalized ACs)

Incremental, strengthens ϕ∅ (VAC ≥ EDAC ≥ FDAC ≥ AC ≥ NC)

May have several fixpoints/ϕ∅

26 51

Complexity results

Sequence of integer EPTs

Computing a sequence of integer EPTs that maximizes ϕ∅ is decision NP-complete [CS04]

Set of rational EPTs (OSAC [Sch76; Coo07; Wer07; Coo+10])

Computing a set of rational EPTs maximizing ϕ∅ is in P, solvable by Linear Prog. + AC

Solving the dual of the local polytope + AC enforcing (k)

27 51

Complexity results

Sequence of integer EPTs

Computing a sequence of integer EPTs that maximizes ϕ∅ is decision NP-complete [CS04]

Set of rational EPTs (OSAC [Sch76; Coo07; Wer07; Coo+10])

Computing a set of rational EPTs maximizing ϕ∅ is in P, solvable by Linear Prog. + AC

Solving the dual of the local polytope + AC enforcing (k)

27 51

Optimal Soft Arc Consistency (optimization alone)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

1. ui : amount of cost shifted from ϕi to ϕ∅

2. pija : amount of cost shifted from ϕij to ϕi(a)
3. pjib: amount of cost shifted from ϕij to ϕj(b)

OSAC

Maximize
n∑

i=1

ui subject to

ϕi(a)− ui +
∑

(ϕij∈C)

pija ≥ 0 ∀i ∈ {1, . . . ,n}, ∀a ∈ Di

ϕij(a, b)− pija − pjib ≥ 0 ∀ϕij ∈ C , ∀(a, b) ∈ Dij

28 51

Optimal Soft Arc Consistency (optimization alone)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

1. ui : amount of cost shifted from ϕi to ϕ∅

2. pija : amount of cost shifted from ϕij to ϕi(a)
3. pjib: amount of cost shifted from ϕij to ϕj(b)

OSAC

Maximize
n∑

i=1

ui subject to

ϕi(a)− ui +
∑

(ϕij∈C)

pija ≥ 0 ∀i ∈ {1, . . . ,n}, ∀a ∈ Di

ϕij(a, b)− pija − pjib ≥ 0 ∀ϕij ∈ C , ∀(a, b) ∈ Dij

28 51

OSAC and the local polytope

The “local polytope”

Minimize
∑
i,a

ϕi(a) · xia +
∑
ϕij∈Φ

a∈Di ,b∈Dj

ϕij(a, b) · yiajb such that

∑
a∈Di

xia = 1 ∀i ∈ {1, . . . ,n} (2)

∑
b∈Dj

yiajb = xia ∀ϕij ∈ Φ, ∀a ∈ Di (3)

∑
a∈Di

yiajb = xjb ∀ϕij ∈ Φ, ∀b ∈ Dj (4)

ui multiplier for (2), pija/pjib for (3) and (4)

Local polytope proved to be “Universal for LP” [PW15]

29 51

The power of local consistencies

Problem solved by OSAC/VAC [Coo+10; KZ17]

Tree-structured problems

Permutated submodular problems (eg. Min-Cut, Min/Max-closed relations)

OSAC/VAC + ∀Xi ,∃!u ∈ Di s.t. ϕi(u) = 0 [Coo+10; HSS18; TGK20]

Supports provide value ordering heuristics

EAC supports u for Xi : ϕi(u) = 0, can be extended for free on Xi ’s star

VAC supports can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides cost-based pruning

If (ϕ∅ +k ϕi(u)) = k, NC deletes u

30 51

Local consistencies vs. LP

OSAC empirically very expensive to enforce

Local consistencies provide fast approximate LP bounds

and deal with constraints seamlessly

CFN Local Consistencies
Enhance CP with fast incremental approximate Linear Programming dual bounds

31 51

Local consistencies vs. LP

OSAC empirically very expensive to enforce

Local consistencies provide fast approximate LP bounds

and deal with constraints seamlessly

CFN Local Consistencies
Enhance CP with fast incremental approximate Linear Programming dual bounds

31 51

VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

Problem '3e4h.LP' read.
Root relaxation solution time = 811.28 sec.
...
MIP - Integer optimal solution: Objective = 150023297067
Solution time = 864.39 sec.

tb2 and VAC (AC3 based)

loading CFN file: 3e4h.wcsp
Lb after VAC: 150023297067
Preprocessing time: 9.13 seconds.
Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

Kind words from OpenGM2 developpers

“ToulBar2 variants were superior to CPLEX variants in all our tests”[HSS18]

32 51

VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

Problem '3e4h.LP' read.
Root relaxation solution time = 811.28 sec.
...
MIP - Integer optimal solution: Objective = 150023297067
Solution time = 864.39 sec.

tb2 and VAC (AC3 based)

loading CFN file: 3e4h.wcsp
Lb after VAC: 150023297067
Preprocessing time: 9.13 seconds.
Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

Kind words from OpenGM2 developpers

“ToulBar2 variants were superior to CPLEX variants in all our tests”[HSS18]

32 51

What if the language is CNF?

Soft UP and Max resolution [LH05; BLM07] More issues

combination and elimination are Ok

but subtracting a clause from another clause does not yield a clause (CNF/DNF)

generates additional “compensation” clauses [LH05; HLO07; BLM07; LHG08])

33 51

Variable elimination
Non Serial Dynamic Programming [BB69b; BB69a; BB72; Sha91; Dec99; AM00]

Definition (Message from X to its neighbors)

Let X ∈ V , and ΦX be the set {ϕS ∈ Φ s.t. X ∈ S}, T , the neighbors of X .

The message mΦX
T from ΦX to T is:

mΦX
T = (

∑
ϕS∈ΦX

k
ϕS)[−X]

The message contains all the effect of X on the optimization problem Distributivity

min
v∈DV

 k∑
ϕS∈Φ

(ϕS(v[S]))

 = min
v∈DV−{X}

 k∑
ϕ<S∈Φ−ΦX∪{mΦX

T }

(ϕS(v[S]))

34 51

Variable elimination
Non Serial Dynamic Programming [BB69b; BB69a; BB72; Sha91; Dec99; AM00]

Definition (Message from X to its neighbors)

Let X ∈ V , and ΦX be the set {ϕS ∈ Φ s.t. X ∈ S}, T , the neighbors of X .

The message mΦX
T from ΦX to T is:

mΦX
T = (

∑
ϕS∈ΦX

k
ϕS)[−X]

The message contains all the effect of X on the optimization problem Distributivity

min
v∈DV

 k∑
ϕS∈Φ

(ϕS(v[S]))

 = min
v∈DV−{X}

 k∑
ϕ<S∈Φ−ΦX∪{mΦX

T }

(ϕS(v[S]))

34 51

Variable elimination

Daoopt & mini-buckets [DR03] split ΦX in subsets of controlled size (lower bound)

35 51

Variable elimination

Daoopt & mini-buckets [DR03] split ΦX in subsets of controlled size (lower bound)

35 51

Variable elimination

Daoopt & mini-buckets [DR03] split ΦX in subsets of controlled size (lower bound)

35 51

Variable elimination

Daoopt & mini-buckets [DR03] split ΦX in subsets of controlled size (lower bound)

35 51

Variable elimination

Daoopt & mini-buckets [DR03] split ΦX in subsets of controlled size (lower bound)

35 51

On the fly Variable elimination

Boosting search with VE [Lar00]

If a variable has a small degree, eliminate it (backtrackable) else branch

36 51

On the fly Variable elimination

Boosting search with VE [Lar00]

If a variable has a small degree, eliminate it (backtrackable) else branch

36 51

On the fly Variable elimination

Boosting search with VE [Lar00]

If a variable has a small degree, eliminate it (backtrackable) else branch

36 51

On the fly Variable elimination

Boosting search with VE [Lar00]

If a variable has a small degree, eliminate it (backtrackable) else branch

36 51

On the fly Variable elimination

Boosting search with VE [Lar00]

If a variable has a small degree, eliminate it (backtrackable) else branch

36 51

On the fly Variable elimination

Boosting search with VE [Lar00]

If a variable has a small degree, eliminate it (backtrackable) else branch

36 51

Presentation Outline

1 Optimization

2 Algorithms

3 All Toulbar2 bells and whistles

4 Learning CFN from data

37 51

Toulbar2

Additional algorithmic ingredients

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

Value ordering (for free): existential or virtual supports

Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

Function decomposition [Fav+11]

Global cost functions (weighted Regular, All-Diff, Among…) [LL12; All+16]

Incremental solving, guaranteed diverse solutions [Ruf+19]

Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

38 51

Toulbar2

Additional algorithmic ingredients

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

Value ordering (for free): existential or virtual supports

Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

Function decomposition [Fav+11]

Global cost functions (weighted Regular, All-Diff, Among…) [LL12; All+16]

Incremental solving, guaranteed diverse solutions [Ruf+19]

Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

38 51

Toulbar2

Additional algorithmic ingredients

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

Value ordering (for free): existential or virtual supports

Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

Function decomposition [Fav+11]

Global cost functions (weighted Regular, All-Diff, Among…) [LL12; All+16]

Incremental solving, guaranteed diverse solutions [Ruf+19]

Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

38 51

Toulbar2

Additional algorithmic ingredients

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

Value ordering (for free): existential or virtual supports

Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

Function decomposition [Fav+11]

Global cost functions (weighted Regular, All-Diff, Among…) [LL12; All+16]

Incremental solving, guaranteed diverse solutions [Ruf+19]

Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

38 51

Toulbar2

Additional algorithmic ingredients

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

Value ordering (for free): existential or virtual supports

Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

Function decomposition [Fav+11]

Global cost functions (weighted Regular, All-Diff, Among…) [LL12; All+16]

Incremental solving, guaranteed diverse solutions [Ruf+19]

Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

38 51

Toulbar2

Additional algorithmic ingredients

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

Value ordering (for free): existential or virtual supports

Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

Function decomposition [Fav+11]

Global cost functions (weighted Regular, All-Diff, Among…) [LL12; All+16]

Incremental solving, guaranteed diverse solutions [Ruf+19]

Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

38 51

Toulbar2

Additional algorithmic ingredients

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

Value ordering (for free): existential or virtual supports

Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

Function decomposition [Fav+11]

Global cost functions (weighted Regular, All-Diff, Among…) [LL12; All+16]

Incremental solving, guaranteed diverse solutions [Ruf+19]

Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

38 51

Unified Decomposition Guided VNS [Oua+20; Oua+17]

39 51

Toulbar2

Practical aspects

C++ Open source, MIT licence on GitHub, available in Debian

Uses 64 bits integer costs to represent adjustable precision decimal costs

Tackles minimization, maximization with costs of arbitrary signs and constraints

JSON compatible CFN input format

Python API (PyToulbar2)

40 51

https://github.com/toulbar2/toulbar2

Benchmarking [Hur+16]

3026 instances of various origins genoweb.toulouse.inra.fr/~degivry/evalgm

MRF: Probabilistic Inference Challenge 2011

CVPR: Computer Vision & Pattern Recognition OpenGM2

CFN: Cost Function Library

MaxCSP: MaxCSP 2008 competition

WPMS: Weighted Partial MaxSAT evaluation 2013

CP: MiniZinc challenge 2012/13

41 51

http://genoweb.toulouse.inra.fr/~degivry/evalgm

HBFS - Normalized lb and ub profiles (hard problems) [Hur+16]

42 51

Comparison with Rosetta’s Simulated annealing [Sim+15]

Optimality gap of the Simulated annealing solution as problems get harder

43 51

Quantum computing (DWave),Toulbar2 & SA [Mul+19]

DWave approximations

within 1.16 of optimum, 10% of the time 4.35, 50% of the time 8.45, 90% of the time

44 51

UDGVNS - Number of solved problems [Oua+17]

45 51

UDGVNS - Upper bound profiles[Oua+17]

46 51

UPDGVNS - Upper bound profiles[Oua+20]

47 51

Presentation Outline

1 Optimization

2 Algorithms

3 All Toulbar2 bells and whistles

4 Learning CFN from data

48 51

Learning from historical solutions [BGS20]

Definition (Learning a pairwise CFN from high quality solutions)

Given:

a set of variables V ,

a set of assignments E i.i.d. from an unknown distribution of high-quality solutions

Find a pairwise CFNM that can be solved to produce high-quality solutions

MRFs tightly connected to CFNs (k =∞) (additive energy)

MRFM −−−−−→
− log(x)

CFNM` −−−−−→
exp(−x)

MRFM

49 51

Learning from historical solutions [BGS20]

Definition (Learning a pairwise CFN from high quality solutions)

Given:

a set of variables V ,

a set of assignments E i.i.d. from an unknown distribution of high-quality solutions

Find a pairwise CFNM that can be solved to produce high-quality solutions

MRFs tightly connected to CFNs (k =∞) (additive energy)

MRFM −−−−−→
− log(x)

CFNM` −−−−−→
exp(−x)

MRFM

49 51

Stochastic Graphical Model

Opens the door to learning from data E

E a set of i.i.d. assignments of V
The log-likelihood ofM given E is log(

∏
v∈E PM(v)) =

∑
v∈E log(PM(v))

Maximimizing loglikelihood over all binaryM (O(n(n−1)
2 d2) costs)

Maximum loglikelihoodM onM`

L(M,E) = log(
∏

v∈E PM(v)) =
∑

v∈E log(PM(v))
=

∑
v∈E log(ΦM(v))− log(ZM)

=
∑
v∈E

(−CM`(v))︸ ︷︷ ︸
-costs of E samples

− log(
∑

t∈
∏

X∈VDX

exp(−CM`(t)))

︸ ︷︷ ︸
Soft-Min of all assignment costs

50 51

Stochastic Graphical Model

Opens the door to learning from data E

E a set of i.i.d. assignments of V
The log-likelihood ofM given E is log(

∏
v∈E PM(v)) =

∑
v∈E log(PM(v))

Maximimizing loglikelihood over all binaryM (O(n(n−1)
2 d2) costs)

Maximum loglikelihoodM onM`

L(M,E) = log(
∏

v∈E PM(v)) =
∑

v∈E log(PM(v))
=

∑
v∈E log(ΦM(v))− log(ZM)

=
∑
v∈E

(−CM`(v))︸ ︷︷ ︸
-costs of E samples

− log(
∑

t∈
∏

X∈VDX

exp(−CM`(t)))

︸ ︷︷ ︸
Soft-Min of all assignment costs

50 51

Learning a Cost Function Network from high-quality solutions

See how it learns how to play the Sudoku (and more) Friday 9/11, 1PM session

51 / 51

Learning a Cost Function Network from high-quality solutions

See how it learns how to play the Sudoku (and more) Friday 9/11, 1PM session

51 / 51

[All+14] David Allouche et al. “Computational protein design as an optimization problem”.
In: Artificial Intelligence 212 (2014), pp. 59–79.

[All+15] David Allouche et al. “Anytime Hybrid Best-First Search with Tree
Decomposition for Weighted CSP”. In: Principles and Practice of Constraint
Programming. Springer. 2015, pp. 12–29.

[All+16] David Allouche et al. “Tractability-preserving transformations of global cost
functions”. In: Artificial Intelligence 238 (2016), pp. 166–189.

[AM00] Srinivas M Aji and Robert J McEliece. “The generalized distributive law”. In: IEEE
transactions on Information Theory 46.2 (2000), pp. 325–343.

[BB69a] Umberto Bertele and Francesco Brioschi. “A new algorithm for the solution of
the secondary optimization problem in non-serial dynamic programming”. In:
Journal of Mathematical Analysis and Applications 27.3 (1969), pp. 565–574.

[BB69b] Umberto Bertele and Francesco Brioschi. “Contribution to nonserial dynamic
programming”. In: Journal of Mathematical Analysis and Applications 28.2 (1969),
pp. 313–325.

[BB72] Umberto Bertelé and Francesco Brioshi. Nonserial Dynamic Programming.
Academic Press, 1972.

51 / 51

[BGS20] Céline Brouard, Simon de Givry, and Thomas Schiex. “Pushing data into CP
models using Graphical Model Learning and Solving”. In: LNCS 4204 (2020).

[BH02] E. Boros and P. Hammer. “Pseudo-Boolean Optimization”. In: Discrete Appl. Math.
123 (2002), pp. 155–225.

[BHM09] Armin Biere, Marijn Heule, and Hans van Maaren, eds. Handbook of Satisfiability.
Vol. 185. IOS press, 2009.

[Bis06] Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[BLM07] Marıá Luisa Bonet, Jordi Levy, and Felip Manyà. “Resolution for max-sat”. In:
Artificial Intelligence 171.8-9 (2007), pp. 606–618.

[Bou+04] Frédéric Boussemart et al. “Boosting systematic search by weighting constraints”.
In: ECAI. Vol. 16. 2004, p. 146.

[Cab+99] B. Cabon et al. “Radio Link Frequency Assignment”. In: Constraints 4 (1999),
pp. 79–89.

[CGS07] M C. Cooper, S. de Givry, and T. Schiex. “Optimal soft arc consistency”. In: Proc.
of IJCAI’2007. Hyderabad, India, Jan. 2007, pp. 68–73.

51 / 51

[CGS20] Martin Cooper, Simon de Givry, and Thomas Schiex. “Graphical Models: Queries,
Complexity, Algorithms”. In: Leibniz International Proceedings in Informatics
(STACS’2020) 154 (2020), pp. 4–1.

[Coo+08] Martin C Cooper et al. “Virtual Arc Consistency for Weighted CSP”. In: AAAI.
Vol. 8. 2008, pp. 253–258.

[Coo+10] M. Cooper et al. “Soft arc consistency revisited”. In: Artificial Intelligence 174
(2010), pp. 449–478.

[Coo03] M C. Cooper. “Reduction operations in fuzzy or valued constraint satisfaction”.
In: Fuzzy Sets and Systems 134.3 (2003), pp. 311–342.

[Coo07] M C. Cooper. “On the minimization of locally-defined submodular functions”. In:
Constraints (2007). To appear.

[CS04] M C. Cooper and T. Schiex. “Arc consistency for soft constraints”. In: Artificial
Intelligence 154.1-2 (2004), pp. 199–227.

[Dec99] Rina Dechter. “Bucket Elimination: A Unifying Framework for Reasoning”. In:
Artificial Intelligence 113.1–2 (1999), pp. 41–85.

[DPO13] Simon De Givry, Steven D Prestwich, and Barry O’Sullivan. “Dead-end
elimination for weighted CSP”. In: Principles and Practice of Constraint
Programming. Springer. 2013, pp. 263–272.

51 / 51

[DR03] Rina Dechter and Irina Rish. “Mini-buckets: A general scheme for bounded
inference”. In: Journal of the ACM (JACM) 50.2 (2003), pp. 107–153.

[Fav+11] A. Favier et al. “Pairwise decomposition for combinatorial optimization in
graphical models”. In: Proc. of IJCAI’11. Barcelona, Spain, 2011.

[Fre91] Eugene C. Freuder. “Eliminating Interchangeable Values in Constraint
Satisfaction Problems”. In: Proc. of AAAI’91. Anaheim, CA, 1991, pp. 227–233.

[FW92] E.C. Freuder and R.J. Wallace. “Partial Constraint Satisfaction”. In: Artificial
Intelligence 58 (Dec. 1992), pp. 21–70.

[GSV06] S. de Givry, T. Schiex, and G. Verfaillie. “Exploiting Tree Decomposition and Soft
Local Consistency in Weighted CSP”. In: Proc. of the National Conference on
Artificial Intelligence, AAAI-2006. 2006, pp. 22–27.

[HG95] W. D. Harvey and M. L. Ginsberg. “Limited Discrepency Search”. In: Proc. of the
14th IJCAI. Montréal, Canada, 1995.

[HLO07] Federico Heras, Javier Larrosa, and Albert Oliveras. “MiniMaxSat: A New
Weighted Max-SAT Solver”. In: Proc. of SAT’2007. LNCS 4501. Lisbon, Portugal,
May 2007, pp. 41–55.

51 / 51

[HSS18] Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. “Exact MAP-Inference by
Confining Combinatorial Search with LP Relaxation”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

[Hur+16] Barry Hurley et al. “Multi-language evaluation of exact solvers in graphical
model discrete optimization”. In: Constraints (2016), pp. 1–22.

[KF09] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[Kol06] Vladimir Kolmogorov. “Convergent tree-reweighted message passing for energy
minimization”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on
28.10 (2006), pp. 1568–1583.

[Kol15] Vladimir Kolmogorov. “A new look at reweighted message passing”. In: Pattern
Analysis and Machine Intelligence, IEEE Transactions on 37.5 (2015), pp. 919–930.

[Kos99] A M C A. Koster. “Frequency assignment: Models and Algorithms”. Available at
www.zib.de/koster/thesis.html. PhD thesis. The Netherlands: University of
Maastricht, Nov. 1999.

[KZ17] Andrei A. Krokhin and Stanislav Zivny. “The Complexity of Valued CSPs”. In: The
Constraint Satisfaction Problem: Complexity and Approximability. Ed. by
Andrei A. Krokhin and Stanislav Zivny. Vol. 7. Dagstuhl Follow-Ups. Schloss

51 / 51

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 233–266. isbn:
978-3-95977-003-3. doi: 10.4230/DFU.Vol7.15301.9. url:
https://doi.org/10.4230/DFU.Vol7.15301.9.

[Lar+05] J. Larrosa et al. “Existential arc consistency: getting closer to full arc consistency
in weighted CSPs”. In: Proc. of the 19th IJCAI. Edinburgh, Scotland, Aug. 2005,
pp. 84–89.

[Lar00] J. Larrosa. “Boosting search with variable elimination”. In: Principles and Practice
of Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000,
pp. 291–305.

[Lar02] J. Larrosa. “On Arc and Node Consistency in weighted CSP”. In: Proc. AAAI’02.
Edmondton, (CA), 2002, pp. 48–53.

[Lec+09] C. Lecoutre et al. “Reasoning from last conflict(s) in constraint programming”. In:
Artificial Intelligence 173 (2009), pp. 1592, 1614.

[LH05] J. Larrosa and F. Heras. “Resolution in Max-SAT and its relation to local
consistency in weighted CSPs”. In: Proc. of the 19th IJCAI. Edinburgh, Scotland,
2005, pp. 193–198.

51 / 51

https://doi.org/10.4230/DFU.Vol7.15301.9
https://doi.org/10.4230/DFU.Vol7.15301.9

[LHG08] Javier Larrosa, Federico Heras, and Simon de Givry. “A logical approach to
efficient Max-SAT solving”. In: Artif. Intell. 172.2-3 (2008), pp. 204–233. url:
http://dx.doi.org/10.1016/j.artint.2007.05.006.

[LL12] Jimmy Ho-Man Lee and Ka Lun Leung. “Consistency techniques for flow-based
projection-safe global cost functions in weighted constraint satisfaction”. In:
Journal of Artificial Intelligence Research 43.1 (2012), pp. 257–292.

[LS03] J. Larrosa and T. Schiex. “In the quest of the best form of local consistency for
Weighted CSP”. In: Proc. of the 18th IJCAI. Acapulco, Mexico, Aug. 2003,
pp. 239–244.

[LS04] Javier Larrosa and Thomas Schiex. “Solving weighted CSP by maintaining arc
consistency”. In: Artif. Intell. 159.1-2 (2004), pp. 1–26.

[LW66] Eugene L Lawler and David E Wood. “Branch-and-bound methods: A survey”. In:
Operations research 14.4 (1966), pp. 699–719.

[MD09] Radu Marinescu and Rina Dechter. “AND/OR branch-and-bound search for
combinatorial optimization in graphical models”. In: Artificial Intelligence
173.16-17 (2009), pp. 1457–1491.

[Mul+19] Vikram Khipple Mulligan et al. “Designing Peptides on a Quantum Computer”.
In: bioRxiv (2019), p. 752485.

51 / 51

http://dx.doi.org/10.1016/j.artint.2007.05.006

[Oua+17] Abdelkader Ouali et al. “Iterative decomposition guided variable neighborhood
search for graphical model energy minimization”. In: Conference on Uncertainty in
Artificial Intelligence, UAI’17. Sydney, Australia, 2017.

[Oua+20] Abdelkader Ouali et al. “Variable neighborhood search for graphical model
energy minimization”. In: Artificial Intelligence 278 (2020), p. 103194.

[Poh70] Ira Pohl. “Heuristic search viewed as path finding in a graph”. In: Artificial
intelligence 1.3–4 (1970), pp. 193–204.

[PW15] Daniel Prusa and Tomas Werner. “Universality of the local marginal polytope”. In:
Pattern Analysis and Machine Intelligence, IEEE Transactions on 37.4 (2015),
pp. 898–904.

[RBW06] F. Rossi, P. van Beek, and T. Walsh, eds. Handbook of Constraint Programming.
Elsevier, 2006.

[Rég94] J.C. Régin. “A filtering algorithm for constraints of difference in CSPs”. In: Proc. of
AAAI’94. Seattle, WA, 1994, pp. 362–367.

[Ruf+19] Manon Ruffini et al. “Guaranteed Diversity & Quality for the Weighted CSP”. In:
2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI).
IEEE. 2019, pp. 18–25.

51 / 51

[Sch00] T. Schiex. “Arc consistency for soft constraints”. In: Principles and Practice of
Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000,
pp. 411–424.

[Sch76] M.I. Schlesinger. “Sintaksicheskiy analiz dvumernykh zritelnikh signalov v
usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in noisy
conditions)”. In: Kibernetika 4 (1976), pp. 113–130.

[SFV95] T. Schiex, H. Fargier, and G. Verfaillie. “Valued Constraint Satisfaction Problems:
hard and easy problems”. In: Proc. of the 14th IJCAI. Montréal, Canada, Aug. 1995,
pp. 631–637.

[SGS08] Martı ́ Sánchez, Simon de Givry, and Thomas Schiex. “Mendelian Error Detection
in Complex Pedigrees Using Weighted Constraint Satisfaction Techniques”. In:
Constraints 13.1-2 (2008), pp. 130–154.

[Sha91] G. Shafer. An Axiomatic Study of Computation in Hypertrees. Working paper 232.
Lawrence: University of Kansas, School of Business, 1991.

[Sim+15] David Simoncini et al. “Guaranteed Discrete Energy Optimization on Large
Protein Design Problems”. In: Journal of Chemical Theory and Computation 11.12
(2015), pp. 5980–5989. doi: 10.1021/acs.jctc.5b00594.

51 / 51

https://doi.org/10.1021/acs.jctc.5b00594

[Son+12] David Sontag et al. “Tightening LP relaxations for MAP using message passing”.
In: arXiv preprint arXiv:1206.3288 (2012).

[TGK20] Fulya Trösser, Simon de Givry, and George Katsirelos. “VAC integrality based
variable heuristics and initial upper-bounding (vacint and rasps):
Relaxation-Aware Heuristics for Exact Optimization in Graphical Models”. In:
Proc. of CPAIOR-20. 2020.

[Wer07] T. Werner. “A Linear Programming Approach to Max-sum Problem: A Review.”. In:
IEEE Trans. on Pattern Recognition and Machine Intelligence 29.7 (July 2007),
pp. 1165–1179. url: http://dx.doi.org/10.1109/TPAMI.2007.1036.

51 / 51

http://dx.doi.org/10.1109/TPAMI.2007.1036

	Notations, Definitions
	Some fundamental properties
	Optimization
	Algorithms
	Conditioning based: systematic and local search
	Elimination based: local consistency and variable elimination

	All Toulbar2 bells and whistles
	Learning CFN from data
	References
	References

