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What is a (discrete) graphical model?

Informally (see also [CGS20])

A description of a multivariate function as the combination of a set of simple functions
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What for?

Concisely describing and analyzing complex systems

Concise: we use a set of small functions

Complex: the joint function results from the interaction of several small functions

Example

A digital circuit value of the output

A Sudoku grid solution or not

A schedule or a time-table feasibility, acceptability

A pedigree with genotypes [SGS08] Mendel consistency, probability

A frequency assignment [Cab+99] interference amount

A 3D molecule [All+14] energy, stability
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Notations

Variables: X ,Y ,Z , . . ., possibly indexed as Xi

Domains: DX for variable X , or Di for variable Xi

Unknown values: u, v,w, x, y, z . . .
Sequence of variables: X,Y ,Z , . . .

Sequence of possible values: u, v,w,x,y, z . . .

Domain of a sequence of variables X : DX (Cartesian product of the domains)

u ∈ DX is an assignment of X (a value for each variable in X)

u[Y ]: projection of u on Y (the sequence of values of Y in u)
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A definition parameterized by set B and operator
⊕

Definition (Graphical Model (GM [Bis06; KF09]))

A GMM = 〈V ,Φ〉 is defined by:

a sequence of variables V n
each X ∈ V has finite domain DX max size d
a set Φ of functions (or factors) e
Each function ϕS ∈ Φ is a function from DS → B scope S , arity |S|

Definition (M joint function)

ΦM(v) =
⊕
ϕS∈Φ

ϕS(v[S])
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For computers, language matters…

How are functions ϕS ∈ Φ represented?

Default: as tensors over B (multidimensional tables)

Boolean vars: (B-weighted) clauses (disjunction of variables or their negation)

Arithmetic, polynomes [BH02]

Predicates (All-Different [Rég94; LL12],…)
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Boolean Logic

Constraint networks [RBW06]/SAT [BHM09] B = B = {t, f },⊕ = ∧

a sequence of domain variables V
a set Φ of e Boolean functions (or constraints)

Each function ϕS ∈ Φ is a function from DS → {t, f }

M defines a joint Boolean feasibility/consistency function

ΦM =
∧

ϕS∈Φ
ϕS
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Stochastic Graphical Model [KF09; Bis06]

Markov Random Fields: B = R+,⊕ = ×

a set V of domain variables

a set Φ of potential functions

ϕS ∈ Φ :
∏

X∈S
DX → R+

M: induces a probability distribution

ΦM =
∏

ϕS∈Φ
ϕS PM ∝ ΦM
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Numbers with Boolean Logic

Cost Function NetworksM [FW92; SFV95; CS04] B = Nk
,⊕ = +k

a sequence of domain variables V
a set Φ of e numerical functions

Each function ϕS ∈ Φ is a function from DS → Nk

Nk
: elements of N ∪ {∞} bounded by k k finite or not

+k is the k-bounded addition α+k β = min(α+ β, k)

M defines a joint (bounded) integer function

ΦM =
∑
ϕS∈Φ

k
ϕS
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Cost Function Networks: normal form

CFN “normal form” Used inside the solver

Have a constant function ϕ∅

Have all their unary functions ϕi ,Xi ∈ V ϕi(u) = k means u deleted

All functions have different scopes

Main properties

ϕ∅ is a lower bound of the joint function ΦM

k = 1: Constraint networks and SAT, +k is ∧
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Example: Min-CUT with hard edges

Graph G = (V ,E) with edge weight function w

A Boolean variable Xi per vertex i ∈ V
A cost function per edge e = (i, j) ∈ E : ϕij = w(i, j)× 1[xi 6= xj ]

Hard edges: constraints with costs 0 or∞ (when xi 6= xj )

A simple graph

vertices {1, 2, 3, 4}
cut weight 1

edge (1, 2) hard

10 51
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∞
∞
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toulbar2 input file https://github.com/toulbar2/toulbar2

Min-CUT on 4 variables with hard edge

{
problem :{name: "MinCut", mustbe: "<100.0"},

variables: {x1: ["l"], x2: ["l","r"], x3: ["l","r"], x4: ["r"]}
functions: {

cut12: {scope: ["x1","x2"], costs: [0.0, 100.0, 100.0, 0.0]},
cut13: {scope: ["x1","x3"], costs: [0.0,1.0,1.0,0.0]},
cut23: {scope: ["x2","x3"], costs: [0.0,1.0,1.0,0.0]},
cut34: {scope: ["x3","x4"], costs: [0.0,1.0,1.0,0.0]}

}
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Equivalence, relaxation

Definition (Functions and graphical models equivalence)

Two functions (or GMs) are equivalent iff they are always equal

Definition (Relaxation of a function or graphical model)

A function (or GM) ϕ is a relaxation of ϕ′ iff ϕ ≤ ϕ′

For B = B, t < f
(ϕ relaxation of ϕ′)⇔ (ϕ′ |= ϕ)
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Presentation Outline

1 Optimization

2 Algorithms

3 All Toulbar2 bells and whistles

4 Learning CFN from data
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Optimization

Minimization queries

B = {t ≡ 0, f ≡ 1},⊕ = +1 = ∧, clauses the SAT Problem

B = {t ≡ 0, f ≡ 1},⊕ = +1 = ∧, tensors the Constraint Satisfaction Problem

B = Nk
,⊕ = +k , tensors the Weighted Constraint Satisfaction Problem

We always use +k
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Binary WCSP as 01LP (optimization only)

The “local polytope” [Sch76; Kos99; Wer07] (without eq. (1))

Minimize
∑
i,a

ϕi(a) · xia +
∑
ϕij∈Φ

a∈Di ,b∈Dj

ϕij(a, b) · yiajb such that

∑
a∈Di

xia = 1 ∀i ∈ {1, . . . ,n}

∑
b∈Dj

yiajb = xia ∀ϕij ∈ Φ, ∀a ∈ Di

∑
a∈Di

yiajb = xjb ∀ϕij ∈ Φ, ∀b ∈ Dj

xia ∈ {0, 1} ∀i ∈ {1, . . . ,n} (1)

nd + ed2 variables, n + 2ed constraints
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Presentation Outline

1 Optimization

2 Algorithms
Conditioning based: systematic and local search
Elimination based: local consistency and variable elimination

3 All Toulbar2 bells and whistles

4 Learning CFN from data
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First tool: Conditioning

Conditioning: ϕS|X=a (X ∈ S) Assignment

ϕS|X=a(v) = (ϕS(v ∪ {X = a}) Scope S − {X}, negligible complexity

X1

a 1 2 3
X2 b 3 1 2

c 2 3 1

Conditioning by
X2 = b

X1

3 1 2
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Conditioning-based approaches

Systematic tree search Time O(dn), linear space

If all |DX | = 1 obvious minimum update k to ΦM(v)
Else choose X ∈ V s.t. |DX | > 1 and u ∈ DX and reduce to

1. one query where we condition by Xi = u
2. one where u is removed from DX

Return the minimum

Optimization Branch and Bound [LW66]

If the local lower bound︸ ︷︷ ︸
ϕ∅

reaches the global upper bound︸ ︷︷ ︸
k

Prune!

Partial search
Relaxed pruning ((1 + α)ϕ∅ ≥ k) [Poh70], bounded number of backtracks or discrepencies
(LDS [HG95])

18 51
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Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15] Anyspace

Uses Depth-First Search for a bounded amount of backtracks

Pending nodes are pushed onto a list of Open nodes

The next DFS starts from the best Open node

Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

Good upper bounds quickly (DFS)

A constantly improving lower bound (optimality gap)

Implicit restarts, easy parallelization

19 51
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Also local search of course (VNS here)
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Two last tools: Combination and Elimination

Combination of ϕS and ϕS′ Space/time O(d |S∪S′|) for tensors

(ϕS +k ϕS′)(v) = ϕS(v[S]) +k ϕS′(v[S ′])

X1

a 4 1 2 3
X2 b 6 3 1 2

c 4 2 3 1

=⇒

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Elimination of X ∈ S from ϕS Time O(d |S|), space O(d |S|−1) for tensors

ϕS [−X ](u) = min
v∈DX

ϕS(u ∪ v) Produces relaxations

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Eliminate X2
X1

5 6 5
Eliminate X1

∅
5
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Expensive but powerful tools

Used together

Combination accumulates all information in a single function

Elimination forgets one variable without loosing optimality information

At the core of

Local consistencies, Unit propagation: subproblem induced by one function

Variable elimination, the Resolution Principle: subproblem around one variable
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Good old Arc consistency revisited (using B)

Arc consistency of Xi w.r.t. ϕij [RBW06]

Combine ϕij and the unary ϕj

Eliminate Xj producing a function (message) on Xi

mj
i = (ϕij +

k ϕj)[−Xj ]

Properties

The message can be added to ϕi (relaxation, value deletion)

Xi is AC w.r.t. ϕij if mi
j ≤ ϕi (no new information)

Unique fixpoint, reached in polynomial time (inconsistency detection)

Support of u ∈ Di on Dj the argmin of the elimination
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General CFN case [Sch00; LS03; LS04; CS04; Coo+10]

Obvious issue
Messages can not be included in the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with −k (α−k β) ≡ ((α = k) ? k : α− β)

Add the message mj
i to ϕj with +k

Subtract mj
i from its source using −k

Can be reversed, any relaxation of mj
i can be used instead
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Example with elimination and −k on one function

m2
1 m1

2

← →

X1 X2

→ ←
−m2

1 −m1
2⇓ m1

∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)
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Many way to avoid loops (enforce fixpoint existence)

The many “soft ACs” [Coo+10]

NC: one unary function [Lar02] Unary supports (ϕi(u) = 0)

+AC: one binary function [Sch00; Lar02] Arc supports (v ∈ Dj , ϕij(u, v) = 0)

+DAC: FDAC, binary & unary function (+ direction) [Coo03] Full Supports

+Existential AC: EDAC, a star (variable incident functions) [Lar+05] EAC supports

+Virtual AC: any spanning tree [Coo+08; Coo+10] VAC supports

Properties Related works in Comp. Vision [Kol06; Son+12; Wer07; Kol15]

Proper extension of classical NC/DAC or AC respectively (k = 1)

Polynomial time and O(ed) space (Generalized ACs)

Incremental, strengthens ϕ∅ (VAC ≥ EDAC ≥ FDAC ≥ AC ≥ NC)

May have several fixpoints/ϕ∅
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Complexity results

Sequence of integer EPTs

Computing a sequence of integer EPTs that maximizes ϕ∅ is decision NP-complete [CS04]

Set of rational EPTs (OSAC [Sch76; Coo07; Wer07; Coo+10])

Computing a set of rational EPTs maximizing ϕ∅ is in P, solvable by Linear Prog. + AC

Solving the dual of the local polytope + AC enforcing (k)
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Optimal Soft Arc Consistency (optimization alone)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

1. ui : amount of cost shifted from ϕi to ϕ∅

2. pija : amount of cost shifted from ϕij to ϕi(a)
3. pjib: amount of cost shifted from ϕij to ϕj(b)

OSAC

Maximize
n∑

i=1

ui subject to

ϕi(a)− ui +
∑

(ϕij∈C)

pija ≥ 0 ∀i ∈ {1, . . . ,n}, ∀a ∈ Di

ϕij(a, b)− pija − pjib ≥ 0 ∀ϕij ∈ C , ∀(a, b) ∈ Dij
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OSAC and the local polytope

The “local polytope”

Minimize
∑
i,a

ϕi(a) · xia +
∑
ϕij∈Φ

a∈Di ,b∈Dj

ϕij(a, b) · yiajb such that

∑
a∈Di

xia = 1 ∀i ∈ {1, . . . ,n} (2)

∑
b∈Dj

yiajb = xia ∀ϕij ∈ Φ, ∀a ∈ Di (3)

∑
a∈Di

yiajb = xjb ∀ϕij ∈ Φ, ∀b ∈ Dj (4)

ui multiplier for (2), pija/pjib for (3) and (4)

Local polytope proved to be “Universal for LP” [PW15]
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The power of local consistencies

Problem solved by OSAC/VAC [Coo+10; KZ17]

Tree-structured problems

Permutated submodular problems (eg. Min-Cut, Min/Max-closed relations)

OSAC/VAC + ∀Xi ,∃!u ∈ Di s.t. ϕi(u) = 0 [Coo+10; HSS18; TGK20]

Supports provide value ordering heuristics

EAC supports u for Xi : ϕi(u) = 0, can be extended for free on Xi ’s star

VAC supports can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides cost-based pruning

If (ϕ∅ +k ϕi(u)) = k, NC deletes u
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Local consistencies vs. LP

OSAC empirically very expensive to enforce

Local consistencies provide fast approximate LP bounds

and deal with constraints seamlessly

CFN Local Consistencies
Enhance CP with fast incremental approximate Linear Programming dual bounds

31 51



Local consistencies vs. LP

OSAC empirically very expensive to enforce

Local consistencies provide fast approximate LP bounds

and deal with constraints seamlessly

CFN Local Consistencies
Enhance CP with fast incremental approximate Linear Programming dual bounds

31 51



VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

Problem '3e4h.LP' read.
Root relaxation solution time = 811.28 sec.
...
MIP - Integer optimal solution: Objective = 150023297067
Solution time = 864.39 sec.

tb2 and VAC (AC3 based)

loading CFN file: 3e4h.wcsp
Lb after VAC: 150023297067
Preprocessing time: 9.13 seconds.
Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

Kind words from OpenGM2 developpers

“ToulBar2 variants were superior to CPLEX variants in all our tests”[HSS18]
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What if the language is CNF?

Soft UP and Max resolution [LH05; BLM07] More issues

combination and elimination are Ok

but subtracting a clause from another clause does not yield a clause (CNF/DNF)

generates additional “compensation” clauses [LH05; HLO07; BLM07; LHG08])
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Variable elimination
Non Serial Dynamic Programming [BB69b; BB69a; BB72; Sha91; Dec99; AM00]

Definition (Message from X to its neighbors)

Let X ∈ V , and ΦX be the set {ϕS ∈ Φ s.t. X ∈ S}, T , the neighbors of X .

The message mΦX
T from ΦX to T is:

mΦX
T = (

∑
ϕS∈ΦX

k
ϕS)[−X ]

The message contains all the effect of X on the optimization problem Distributivity

min
v∈DV

 k∑
ϕS∈Φ

(ϕS(v[S]))

 = min
v∈DV−{X}

 k∑
ϕ<S∈Φ−ΦX∪{mΦX

T }

(ϕS(v[S]))
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Variable elimination

Daoopt & mini-buckets [DR03] split ΦX in subsets of controlled size (lower bound)
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On the fly Variable elimination

Boosting search with VE [Lar00]

If a variable has a small degree, eliminate it (backtrackable) else branch
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Presentation Outline

1 Optimization

2 Algorithms

3 All Toulbar2 bells and whistles

4 Learning CFN from data
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Toulbar2

Additional algorithmic ingredients

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

Value ordering (for free): existential or virtual supports

Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

Function decomposition [Fav+11]

Global cost functions (weighted Regular, All-Diff, Among…) [LL12; All+16]

Incremental solving, guaranteed diverse solutions [Ruf+19]

Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])
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Unified Decomposition Guided VNS [Oua+20; Oua+17]
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Toulbar2

Practical aspects

C++ Open source, MIT licence on GitHub, available in Debian

Uses 64 bits integer costs to represent adjustable precision decimal costs

Tackles minimization, maximization with costs of arbitrary signs and constraints

JSON compatible CFN input format

Python API (PyToulbar2)

40 51
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Benchmarking [Hur+16]

3026 instances of various origins genoweb.toulouse.inra.fr/~degivry/evalgm

MRF: Probabilistic Inference Challenge 2011

CVPR: Computer Vision & Pattern Recognition OpenGM2

CFN: Cost Function Library

MaxCSP: MaxCSP 2008 competition

WPMS: Weighted Partial MaxSAT evaluation 2013

CP: MiniZinc challenge 2012/13

41 51
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HBFS - Normalized lb and ub profiles (hard problems) [Hur+16]
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Comparison with Rosetta’s Simulated annealing [Sim+15]

Optimality gap of the Simulated annealing solution as problems get harder
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Quantum computing (DWave),Toulbar2 & SA [Mul+19]

DWave approximations

within 1.16 of optimum, 10% of the time 4.35, 50% of the time 8.45, 90% of the time
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UDGVNS - Number of solved problems [Oua+17]
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UDGVNS - Upper bound profiles[Oua+17]
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UPDGVNS - Upper bound profiles[Oua+20]
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Presentation Outline

1 Optimization

2 Algorithms

3 All Toulbar2 bells and whistles

4 Learning CFN from data
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Learning from historical solutions [BGS20]

Definition (Learning a pairwise CFN from high quality solutions)

Given:

a set of variables V ,

a set of assignments E i.i.d. from an unknown distribution of high-quality solutions

Find a pairwise CFNM that can be solved to produce high-quality solutions

MRFs tightly connected to CFNs (k =∞) (additive energy)

MRFM −−−−−→
− log(x)

CFNM` −−−−−→
exp(−x)

MRFM
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Stochastic Graphical Model

Opens the door to learning from data E

E a set of i.i.d. assignments of V
The log-likelihood ofM given E is log(

∏
v∈E PM(v)) =

∑
v∈E log(PM(v))

Maximimizing loglikelihood over all binaryM (O(n(n−1)
2 d2) costs)

Maximum loglikelihoodM onM`

L(M,E) = log(
∏

v∈E PM(v)) =
∑

v∈E log(PM(v))
=

∑
v∈E log(ΦM(v))− log(ZM)

=
∑
v∈E

(−CM`(v))︸ ︷︷ ︸
-costs of E samples

− log(
∑

t∈
∏

X∈VDX

exp(−CM`(t)))

︸ ︷︷ ︸
Soft-Min of all assignment costs
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Learning a Cost Function Network from high-quality solutions

See how it learns how to play the Sudoku (and more) Friday 9/11, 1PM session
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