Numbers and logic together in CP:

 A Practical View of Cost Function NetworksS. de Givry ${ }^{1}$ \& T. Schiex ${ }^{1}$
${ }^{1}$ Université Fédérale de Toulouse, ANITI, INRAE MIAT, UR 875, Toulouse, France
This is not a virtual tutorial
September 2020

Informally
A description of a multivariate function as the combination of a set of simple functions

Concisely describing and analyzing complex systems

- Concise: we use a set of small functions
- Complex: the joint function results from the interaction of several small functions

Concisely describing and analyzing complex systems

- Concise: we use a set of small functions
- Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit

```
value of the output solution or not feasibility, acceptability Mendel consistency, probability interference amount energy, stability
```

- A 3D molecule [All+14]

Concisely describing and analyzing complex systems

- Concise: we use a set of small functions
- Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
value of the output solution or not
- A Sudoku grid
feasibility, acceptability Mendel consistency, probability interference amount
- A 3D molecule [All+14] energy, stability

Concisely describing and analyzing complex systems

- Concise: we use a set of small functions
- Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [All+14]
value of the output solution or not feasibility, acceptability Mendel consistency, probability interference amount energy stability

Concisely describing and analyzing complex systems

- Concise: we use a set of small functions
- Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [All+14]
value of the output solution or not feasibility, acceptability Mendel consistency, probability
interference amount energy, stability

Concisely describing and analyzing complex systems

- Concise: we use a set of small functions
- Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [All+14]
value of the output solution or not feasibility, acceptability Mendel consistency, probability interference amount energy, stability

Concisely describing and analyzing complex systems

- Concise: we use a set of small functions
- Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [All+14]
value of the output solution or not feasibility, acceptability Mendel consistency, probability interference amount energy, stability

Notations

- Variables: X, Y, Z, \ldots, possibly indexed as X_{i}
- Domains: D^{X} for variable X, or D^{i} for variable X_{i}
- Unknown values: $u, v, w, x, y, z \ldots$
- Sequence of variables: $X, Y, Z \ldots$
\square Sequence of possible values: $u, v, w, x, y, z \ldots$
- Domain of a sequence of variables $X: D^{X}$ (Cartesian product of the domains)
- $u \in D^{X}$ is an assignment of \boldsymbol{X} (a value for each variable in \boldsymbol{X})
- $u[Y]$: projection of u on Y (the sequence of values of Y in u)

Notations

- Variables: X, Y, Z, \ldots, possibly indexed as X_{i}
- Domains: D^{X} for variable X, or D^{i} for variable X_{i}Unknown values: $u, v, w, x, y, z \ldots$Sequence of variables: $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$,
- Sequence of possible values: $u, v, w, x, y, z \ldots$
- Domain of a sequence of variables $X: D^{X}$ (Cartesian product of the domains)
- $u \in D^{X}$ is an assignment of X (a value for each variable in X)
$\square u[Y]$: projection of u on Y (the sequence of values of Y in u)

Notations

- Variables: X, Y, Z, \ldots, possibly indexed as X_{i}
- Domains: D^{X} for variable X, or D^{i} for variable X_{i}
- Unknown values: $u, v, w, x, y, z \ldots$
- Sequence of variables: X, Y, Z,
- Sequence of possible values: $u, v, w, x, y, z \ldots$
- Domain of a sequence of variables $X: D^{X}$ (Cartesian product of the domains)
- $u \in D^{X}$ is an assignment of X (a value for each variable in X)
- u[Y]: projection of u on Y (the sequence of values of Y in u)

Notations

- Variables: X, Y, Z, \ldots, possibly indexed as X_{i}
- Domains: D^{X} for variable X, or D^{i} for variable X_{i}
- Unknown values: $u, v, w, x, y, z \ldots$
- Sequence of variables: $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}, \ldots$
- Sequence of possible values: $u, v, w, x, y, z \ldots$
- Domain of a sequence of variables $X: D^{X}$ (Cartesian product of the domains)
$\square u \in D^{X}$ is an assignment of X (a value for each variable in X)
- $u[Y]$: projection of u on Y (the sequence of values of Y in u)

Notations

- Variables: X, Y, Z, \ldots, possibly indexed as X_{i}
- Domains: D^{X} for variable X, or D^{i} for variable X_{i}
- Unknown values: $u, v, w, x, y, z \ldots$
- Sequence of variables: $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}, \ldots$
\square Sequence of possible values: $u, v, w, x, y, z \ldots$
- Domain of a sequence of variables $X: D^{X}$ (Cartesian product of the domains)
- $u \in D^{X}$ is an assignment of X (a value for each variable in X)
-u[Y]: projection of u on Y (the sequence of values of Y in u)

Notations

- Variables: X, Y, Z, \ldots, possibly indexed as X_{i}
- Domains: D^{X} for variable X, or D^{i} for variable X_{i}
- Unknown values: $u, v, w, x, y, z \ldots$
- Sequence of variables: $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}, \ldots$
\square Sequence of possible values: $u, v, w, x, y, z \ldots$
- Domain of a sequence of variables $X: D^{X}$ (Cartesian product of the domains)
-u $u \in D^{X}$ is an assignment of X (a value for each variable in X)
-u[$u]$: projection of u on Y (the sequence of values of Y in u)

Notations

- Variables: X, Y, Z, \ldots, possibly indexed as X_{i}
- Domains: D^{X} for variable X, or D^{i} for variable X_{i}
- Unknown values: $u, v, w, x, y, z \ldots$
- Sequence of variables: $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}, \ldots$
\square Sequence of possible values: $u, v, w, x, y, z \ldots$
- Domain of a sequence of variables $X: D^{X}$ (Cartesian product of the domains)
- $u \in D^{X}$ is an assignment of X (a value for each variable in X)
-u[Y]: projection of u on Y (the sequence of values of Y in u)

Notations

- Variables: X, Y, Z, \ldots, possibly indexed as X_{i}
- Domains: D^{X} for variable X, or D^{i} for variable X_{i}
- Unknown values: $u, v, w, x, y, z \ldots$
- Sequence of variables: $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}, \ldots$
\square Sequence of possible values: $u, v, w, x, y, z \ldots$
- Domain of a sequence of variables $X: D^{X}$ (Cartesian product of the domains)
- $u \in D^{X}$ is an assignment of X (a value for each variable in X)
-u[Y]: projection of u on Y (the sequence of values of Y in u)

Definition (Graphical Model (GM [Biso6; KFo9]))
A $\mathrm{GM} \mathcal{M}=\langle V, \Phi\rangle$ is defined by:

- a sequence of variables V
- each $X \in V$ has finite domain D^{X}
- a set Φ of functions (or factors)
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \rightarrow B$

Definition (\mathcal{M} joint function)

$$
\Phi_{\mathcal{M}}(v)=\bigoplus_{\varphi_{S} \in \Phi} \varphi_{S}(v[S])
$$

Definition (Graphical Model (GM [Biso6; KFo9]))
A $\mathrm{GM} \mathcal{M}=\langle V, \Phi\rangle$ is defined by:

- a sequence of variables V

■ each $X \in V$ has finite domain D^{X}
\max size d

- a set Φ of functions (or factors)
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \rightarrow B$

Definition (\mathcal{M} joint function)

$$
\Phi_{\mathcal{M}}(v)=\bigoplus_{\varphi_{S} \in \Phi} \varphi_{S}(v[S])
$$

Definition (Graphical Model (GM [Biso6; KFooj])

A $\mathrm{GM} \mathcal{M}=\langle V, \Phi\rangle$ is defined by:

- a sequence of variables V

■ each $X \in V$ has finite domain D^{X}

- a set Φ of functions (or factors)
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \rightarrow B$

Definition (\mathcal{M} joint function)

$$
\Phi_{\mathcal{M}}(v)=\bigoplus_{\varphi_{S} \in \Phi} \varphi_{S}(v[S])
$$

Definition (Graphical Model (GM [Biso6; KFooj])

A $\mathrm{GM} \mathcal{M}=\langle V, \Phi\rangle$ is defined by:

- a sequence of variables V

■ each $X \in V$ has finite domain D^{X}

- a set Φ of functions (or factors)
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \rightarrow B$

Definition (\mathcal{M} joint function)

$$
\Phi_{\mathcal{M}}(v)=\bigoplus_{\varphi_{S} \in \Phi} \varphi_{S}(v[S])
$$

Definition (Graphical Model (GM [Biso6; KFo9]))

A $\mathrm{GM} \mathcal{M}=\langle\boldsymbol{V}, \Phi\rangle$ is defined by:

- a sequence of variables V

■ each $X \in V$ has finite domain D^{X}

- a set Φ of functions (or factors)
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \rightarrow B$

Definition $(\mathcal{M}$ joint function)

$$
\Phi_{\mathcal{M}}(v)=\bigoplus_{\varphi_{S} \in \Phi} \varphi_{S}(v[S])
$$

How are functions $\varphi_{S} \in \Phi$ represented?

- Default: as tensors over B
(multidimensional tables) (disjunction of variables or their negation)
- Arithmetic, polynomes [BH02]
- Predicates (All-Different [Rég94 LLL12]....)

How are functions $\varphi_{S} \in \Phi$ represented?

- Default: as tensors over B
(multidimensional tables)
- Boolean vars: (B-weighted) clauses (disjunction of variables or their negation)
- Arithmetic, polynomes [BH02]
- Predicates (All-Different [Rég94; LL12]....)

How are functions $\varphi_{S} \in \Phi$ represented?

- Default: as tensors over B
(multidimensional tables)
- Boolean vars: (B-weighted) clauses (disjunction of variables or their negation)
- Arithmetic, polynomes [BH02]
- Predicates (All-Different [Rég94; LL12]....)

How are functions $\varphi_{S} \in \Phi$ represented?

- Default: as tensors over B
(multidimensional tables)
- Boolean vars: (B-weighted) clauses (disjunction of variables or their negation)
- Arithmetic, polynomes [BH02]
- Predicates (All-Different [Rég94; LL12],...)

Constraint networks [RBWOG]/SAT [BHMO9]

$$
B=\mathbb{B}=\{t, f\}, \oplus=\wedge
$$

- a sequence of domain variables V
- a set Φ of e Boolean functions (or constraints)
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \rightarrow\{t, f\}$

\mathcal{M} defines a joint Boolean feasibility/consistency function

Constraint networks [RBWOG]/SAT [BHMO9]

$$
B=\mathbb{B}=\{t, f\}, \oplus=\wedge
$$

- a sequence of domain variables V
- a set Φ of e Boolean functions (or constraints)
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \rightarrow\{t, f\}$

\mathcal{M} defines a joint Boolean feasibility/consistency function

$$
\Phi_{\mathcal{M}}=\bigwedge_{\varphi_{S} \in \Phi} \varphi_{S}
$$

Markov Random Fields: $B=\mathbb{R}^{+}, \oplus=\times$

- a set V of domain variables
- a set Φ of potential functions
- $\varphi_{S} \in \Phi: \prod_{X \in S} D^{X} \rightarrow \mathbb{R}^{+}$

\mathcal{M} : induces a probability distribution

$$
\Phi_{\mathcal{M}}=\prod_{\varphi_{S} \in \Phi} \varphi_{S}
$$

$$
P_{\mathcal{M}} \propto \Phi_{\mathcal{M}}
$$

Markov Random Fields: $B=\mathbb{R}^{+}, \oplus=\times$

- a set V of domain variables
- a set Φ of potential functions
- $\varphi_{S} \in \Phi: \prod_{X \in S} D^{X} \rightarrow \mathbb{R}^{+}$
\mathcal{M} : induces a probability distribution

$$
\Phi_{\mathcal{M}}=\prod_{\varphi_{S} \in \Phi} \varphi_{S} \quad \quad P_{\mathcal{M}} \propto \Phi_{\mathcal{M}}
$$

Cost Function Networks \mathcal{M} [FW92; SFV95; CS04]
 $$
B=\overline{\mathbb{N}}^{k}, \oplus=\downarrow^{k}
$$

- a sequence of domain variables V
- a set Φ of e numerical functions
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \rightarrow \overline{\mathbb{N}}^{k}$

■ $\overline{\mathbb{N}}^{k}$: elements of $\mathbb{N} \cup\{\infty\}$ bounded by k
k finite or not
$\square{ }^{k}$ is the k-bounded addition $\alpha+^{k} \beta=\min (\alpha+\beta, k)$

\mathcal{M} defines a joint (bounded) integer function

Cost Function Networks \mathcal{M} [FW92; SFV95; CS04]
 $$
B=\overline{\mathbb{N}}^{k}, \oplus=+^{k}
$$

- a sequence of domain variables V
- a set Φ of e numerical functions
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \rightarrow \overline{\mathbb{N}}^{k}$
- $\overline{\mathbb{N}}^{k}$: elements of $\mathbb{N} \cup\{\infty\}$ bounded by k
k finite or not
$\square \downarrow^{k}$ is the k-bounded addition
$\alpha+^{k} \beta=\min (\alpha+\beta, k)$
\mathcal{M} defines a joint (bounded) integer function

$$
\Phi_{\mathcal{M}}=\sum_{\varphi_{S} \in \Phi}^{k} \varphi_{S}
$$

- Have a constant function $\varphi \varnothing$
- Have all their unary functions $\varphi_{i}, X_{i} \in V \quad \varphi_{i}(u)=k$ means u deleted
- All functions have different scopes

Main properties

$\square \varphi_{\varnothing}$ is a lower bound of the joint function $\Phi_{\mathcal{M}}$
$\square k=1$: Constraint networks and SAT, $+^{k}$ is \wedge

Graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with edge weight function w

- A Boolean variable X_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: \varphi_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$
- Hard edges: constraints with costs 0 or $\infty\left(\right.$ when $\left.x_{i} \neq x_{j}\right)$

A simple graph

- vertices $\{1,2,3,4\}$
- cut weight 1
- edge $(1,2)$ hard

Example: Min-CUT with hard edges

Graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with edge weight function w

- A Boolean variable X_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: \varphi_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$
- Hard edges: constraints with costs 0 or $\infty\left(\right.$ when $\left.x_{i} \neq x_{j}\right)$

A simple graph

- vertices $\{1,2,3,4\}$
- cut weight 1
- edge $(1,2)$ hard

Example: Min-CUT with hard edges

Graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with edge weight function w

- A Boolean variable X_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: \varphi_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$
- Hard edges: constraints with costs 0 or $\infty\left(\right.$ when $\left.x_{i} \neq x_{j}\right)$

A simple graph

- vertices $\{1,2,3,4\}$
- cut weight 1
- edge (1,2) hard

Min-CUT on 4 variables with hard edge
\{
problem :\{name: "MinCut", mustbe: "<100.0"\}, variables: \{x1: ["1"], x2: ["1","r"], x3: ["1","r"], x4: ["r"]\} functions: \{ cut12: \{scope: ["x1","x2"], costs: [0.0, 100.0, 100.0, 0.0]\}, cut13: \{scope: ["x1","x3"], costs: [0.0,1.0,1.0,0.0]\}, cut23: \{scope: ["x2","x3"], costs: [0.0,1.0,1.0,0.0]\}, cut34: \{scope: ["x3", "x4"], costs: [0.0,1.0,1.0,0.0]\}
\}

Definition (Functions and graphical models equivalence)
Two functions (or GMs) are equivalent iff they are always equal

Definition (Relaxation of a function or graphical model)
A function (or GM) φ is a relaxation of φ^{\prime} iff $\varphi \leq \varphi^{\prime}$
For $B=\mathbb{B}, t<f$

$$
\left(\varphi \text { relaxation of } \varphi^{\prime}\right) \Leftrightarrow\left(\varphi^{\prime} \mid=\varphi\right)
$$

Definition (Functions and graphical models equivalence)

Two functions (or GMs) are equivalent iff they are always equal

Definition (Relaxation of a function or graphical model)

$$
\text { A function (or GM) } \varphi \text { is a relaxation of } \varphi^{\prime} \text { iff } \varphi \leq \varphi^{\prime}
$$

For $B=\mathbb{B}, t<f$

$$
\left(\varphi \text { relaxation of } \varphi^{\prime}\right) \Leftrightarrow\left(\varphi^{\prime} \mid=\varphi\right)
$$

Definition (Functions and graphical models equivalence)

Two functions (or GMs) are equivalent iff they are always equal

Definition (Relaxation of a function or graphical model)
A function (or GM) φ is a relaxation of φ^{\prime} iff $\varphi \leq \varphi^{\prime}$
For $B=\mathbb{B}, t<f$

$$
\left(\varphi \text { relaxation of } \varphi^{\prime}\right) \Leftrightarrow\left(\varphi^{\prime} \mid=\varphi\right)
$$

1 Optimization
2 Algorithms

3 All Toulbar2 bells and whistles

4 Learning CFN from data

Minimization queries

- $B=\{t \equiv 0, f \equiv 1\}, \oplus=廿^{1}=\wedge$, clauses
the SAT Problem
■ $B=\{t \equiv 0, f \equiv 1\}, \oplus=+\frac{1}{+}=\wedge$, tensors
the Constraint Satisfaction Problem
- $B=\overline{\mathbb{N}}^{k}, \oplus=+^{k}$, tensors the Weighted Constraint Satisfaction Problem

We always use

Minimization queries

- $B=\{t \equiv 0, f \equiv 1\}, \oplus=+1=\wedge$, clauses
the SAT Problem
■ $B=\{t \equiv 0, f \equiv 1\}, \oplus=+{ }_{+}^{1}=\wedge$, tensors
the Constraint Satisfaction Problem
- $B=\overline{\mathbb{N}}^{k}, \oplus=+^{k}$, tensors
the Weighted Constraint Satisfaction Problem

We always use $+^{k}$

The "local polytope" [Sch76; Kos99; Wer07]

$$
\begin{array}{cr}
\text { Minimize } \sum_{i, a} \varphi_{i}(a) \cdot x_{i a}+\sum_{\substack{\varphi_{i j \in \Phi} \in \Phi \\
a \in D^{j}, b \in D^{j}}} \varphi_{i j}(a, b) \cdot y_{i a j b} \text { such that } & \\
\sum_{a \in D^{i}} x_{i a}=1 & \forall i \in\{1, \ldots, n\} \\
\sum_{b \in D^{j}} y_{i a j b}=x_{i a} & \forall \varphi_{i j} \in \Phi, \forall a \in D^{i} \\
\sum_{a \in D^{i}} y_{i a j b}=x_{j b} & \forall \varphi_{i j} \in \Phi, \forall b \in D^{j} \\
x_{i a} \in\{0,1\} & \forall i \in\{1, \ldots, n\}
\end{array}
$$

$n d+e d^{2}$ variables, $n+2 e d$ constraints

1 Optimization

2 Algorithms

- Conditioning based: systematic and local search
- Elimination based: local consistency and variable elimination

3 All Toulbar2 bells and whistles

4 Learning CFN from data

Conditioning: $\varphi_{S \mid X=a} \quad(X \in S)$	Assignment
$\varphi_{S \mid X=a}(v)=\left(\varphi_{S}(v \cup\{X=a\})\right.$	Scope $S-\{X\}$, negligible complexity

Conditioning: $\varphi_{S \mid X=a} \quad(X \in \boldsymbol{S})$

$$
\varphi_{S \mid X=a}(\boldsymbol{v})=\left(\varphi_{S}(v \cup\{X=a\})\right.
$$

Assignment

Scope $S-\{X\}$, negligible complexity

\[

\]

Conditioning by $X_{2}=b$

- If all $\left|D^{X}\right|=1$ obvious minimum update k to $\Phi_{\mathcal{M}}(v)$
■ Else choose $X \in V$ s.t. $\left|D^{X}\right|>1$ and $u \in D^{X}$ and reduce to

1. one query where we condition by $X_{i}=u$
2. one where u is removed from D^{X}

- Return the minimum

Optimization

Branch and Bound [LW66]

If the local lower bound reaches the global upper bound Prune!

Partial search

Relaxed nruning $\left((1+\alpha) \varphi_{\varnothing} \geq k\right)$ [Poh70], bounded number of backtracks or discrepencies (LDS [HG95])

- If all $\left|D^{X}\right|=1$ obvious minimum update k to $\Phi_{\mathcal{M}}(v)$
- Else choose $X \in V$ s.t. $\left|D^{X}\right|>1$ and $u \in D^{X}$ and reduce to

1. one query where we condition by $X_{i}=u$
2. one where u is removed from D^{X}

- Return the minimum

Optimization

Prune!

Partial search

Relaxed nruning $\left((1+\alpha) \varphi_{\varnothing} \geq k\right)$ [Poh70], bounded number of backtracks or discrepencies (LDS [HG95])

- If all $\left|D^{X}\right|=1$ obvious minimum

■ Else choose $X \in V$ s.t. $\left|D^{X}\right|>1$ and $u \in D^{X}$ and reduce to

1. one query where we condition by $X_{i}=u$
2. one where u is removed from D^{X}

- Return the minimum

Optimization
If the local lower bound, reaches the global upper bound

Prune!

Partial search
Relaxed pruning $\left((1+\alpha) \varphi_{\varnothing} \geq k\right)$ [Poh70], bounded number of backtracks or discrepencies (LDS [HG95])

Depth First (CP) or Best First (ILP)?

- Uses Depth-First Search for a bounded amount of backtracks
- Pending nodes are pushed onto a list of Open nodes
- The next DFS starts from the best Open node
- Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

- Cood' upper bounds quickly (DFS)
- A constantly improving lower bound (optimality gap)
- Implicit restarts, easy parallelization

Depth First (CP) or Best First (ILP)?

- Uses Depth-First Search for a bounded amount of backtracks
- Pending nodes are pushed onto a list of Open nodes
- The next DFS starts from the best Open node
- Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

- Good upper bounds quickly (DFS)
- A constantly improving lower bound (optimality gap)
- Implicit restarts, easy parallelization

Improved: keep, reset s to s_{0}
Else: forget, set s to $s+1$

Combination of φ_{S} and $\varphi_{S^{\prime}} \quad$ Space/time $O\left(d^{\mid S \cup S^{\prime}}\right)$ for tensors
$\left(\varphi_{S}+{ }^{k} \varphi_{S^{\prime}}\right)(v)=\varphi_{S}(v[S])+\varphi_{S^{\prime}}\left(v\left[S^{\prime}\right]\right)$

Elimination of $X \in S$ from φ_{S}
$\varphi_{s}\left[-X \backslash(u)=\min _{v \in D} \varphi_{s}(u \cup v)\right.$

Time $O\left(d^{|S|}\right)$, space $O\left(d^{|S|-1}\right)$ for tensors
Produces relaxations

Eliminate X_{1}
\varnothing
5

Combination of φ_{S} and $\varphi_{S^{\prime}}$
Space/time $O\left(d^{\left|S \cup S^{\prime}\right|}\right)$ for tensors

$$
\left(\varphi_{S}+{ }^{k} \varphi_{S^{\prime}}\right)(v)=\varphi_{S}(v[S])+\varphi_{S^{\prime}}\left(v\left[S^{\prime}\right]\right)
$$

Elimination of $X \in S$ from φ_{S} Time $O\left(d^{|S|}\right)$, space $O\left(d^{|S|-1}\right)$ for tensors

Combination of φ_{S} and $\varphi_{S^{\prime}}$

Space/time $O\left(d^{\left|S \cup S^{\prime}\right|}\right)$ for tensors

$\left(\varphi_{s}+\varphi_{s}\right)(v)=\varphi_{s}(v|S|)+\varphi_{s}\left(v \mid S^{\prime}\right)$

Elimination of $X \in S$ from φ_{S} Time $O\left(d^{|S|}\right)$, space $O\left(d^{|S|-1}\right)$ for tensors $\varphi_{S}[-X](u)=\min _{v \in D^{X}} \varphi_{S}(u \cup v)$

Combination of φ_{S} and $\varphi_{S^{\prime}}$

Space/time $O\left(d^{\left|S \cup S^{\prime}\right|}\right)$ for tensors

$\left(\varphi_{s}+\varphi_{s^{\prime}}\right)(v)=\varphi_{s}(v|S|)+{ }^{k} \varphi_{s^{\prime}}\left(v \mid S^{\prime}\right)$

Elimination of $X \in S$ from φ_{S}

$$
\varphi_{S}[-X](u)=\min _{v \in D^{X}} \varphi_{S}(u \cup v)
$$

Time $O\left(d^{|S|}\right)$, space $O\left(d^{|S|-1}\right)$ for tensors
Produces relaxations

Eliminate X_{2}
X_{1}
$5|6| 5$

Eliminate X_{1}

Used together

- Combination accumulates all information in a single function
- Elimination forgets one variable without loosing optimality information

At the core of

- I ocal consistencies, Unit propagation: subproblem induced by one function
- Variable elimination, the Resolution Principle: subproblem around one variable

Used together

- Combination accumulates all information in a single function
- Elimination forgets one variable without loosing optimality information

At the core of

- Local consistencies, Unit propagation: subproblem induced by one function
- Variable elimination, the Resolution Principle: subproblem around one variable

Arc consistency of X_{i} w.r.t. $\varphi_{i j}$ [RBW06]

- Combine $\varphi_{i j}$ and the unary φ_{j}
- Eliminate X_{j} producing a function (message) on X_{i}

$$
m_{i}^{j}=\left(\varphi_{i j}+\frac{k}{k} \varphi_{j}\right)\left[-X_{j}\right]
$$

Properties

The message can be added to φ_{i}

- X_{i} is AC w.r.t. $\varphi_{i j}$ if $m_{j}^{i} \leq \varphi_{i}$
\square Unique fixpoint, reached in polynomial time
- Support of $u \in D^{i}$ on D^{j}
(relaxation, value deletion)
(no new information)
(inconsistency detection) the argmin of the elimination

Arc consistency of X_{i} w.r.t. $\varphi_{i j}$ [RBW06]

- Combine $\varphi_{i j}$ and the unary φ_{j}
- Eliminate X_{j} producing a function (message) on X_{i}

$$
m_{i}^{j}=\left(\varphi_{i j}+\varphi_{j}\right)\left[-X_{j}\right]
$$

Properties

- The message can be added to φ_{i}
- X_{i} is AC w.r.t. $\varphi_{i j}$ if $m_{j}^{i} \leq \varphi_{i}$

■ Unique fixpoint, reached in polynomial time

- Support of $u \in D^{i}$ on D^{j}
(relaxation, value deletion) (no new information) (inconsistency detection)

Obvious issue

Messages can not be included in the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with $-{ }^{k}\left(\alpha-{ }^{k} \beta\right) \equiv((\alpha=k)$? $k: \alpha-\beta)$

- Add the message m_{i}^{j} to φ_{i} with ψ^{k}
- Subtract m_{i}^{j} from its source using $-k$

Can be reversed, any relaxation of m_{i}^{j} can be used instead

Obvious issue

Messages can not be included in the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with $-{ }^{k}\left(\alpha-{ }^{k} \beta\right) \equiv((\alpha=k) ? k: \alpha-\beta)$

- Add the message m_{i}^{j} to φ_{j} with \uparrow^{k}
- Subtract m_{i}^{j} from its source using $-{ }^{k}$

Can be reversed, any relaxation of m_{i}^{j} can be used instead

(Loss of) properties
Preserves equivalence but fixpoints may be non unique (or may not exist)

(Loss of) properties
Preserves equivalence bit fixpoints may be non unique (or may not exist)

(Loss of) properties
Preserves equivalence but fixpoints may be non unique (or may not exist)

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

(Loss of) properties

Dreserves equivalence but fixpoints may be non unique (or may not exist)
m_{1}^{2}

$\Downarrow \quad m_{\varnothing}^{1}$

$$
\varphi_{\varnothing}=1
$$

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

(Loss of) properties
Preserves equivalence but fixpoints may be non unique (or may not exist)

The many "soft ACs" [Coo+10]

- NC: one unary function [Lar02]

Unary supports $\left(\varphi_{i}(u)=0\right)$

- +AC: one binary function [Sch00; Lar02]

Arc supports $\left(v \in D^{j}, \varphi_{i j}(u, v)=0\right)$

- +DAC: FDAC, binary \& unary function (+ direction) [Coo03]
- +Existential AC: EDAC, a star (variable incident functions) [Lar+05]
- +Virtual AC: any spanning tree [Coo+08; Coo+10]

Full Supports
EAC supports
VAC supports

Properties

Related works in Comp. Vision [Kol06; Son+12; Wer07; Kol15]

- Proper extension of classical NC/DAC or AC respectively
- Polynomial time and $O(e d)$ space
- Incremental, strengthens φ_{\varnothing}
$(\mathrm{VAC} \geq \mathrm{EDAC} \geq \mathrm{FDAC} \geq \mathrm{AC} \geq \mathrm{NC})$
\square May have several fixpoints $/ \varphi_{\varnothing}$

The many "soft ACs" [Coot10]

- NC: one unary function [Lar02]

Unary supports $\left(\varphi_{i}(u)=0\right)$

- +AC: one binary function [Sch00; Lar02] Arc supports $\left(v \in D^{j}, \varphi_{i j}(u, v)=0\right)$
- +DAC: FDAC, binary \& unary function (+ direction) [Coo03] Full Supports
- +Existential AC: EDAC, a star (variable incident functions) [Lar+05]

EAC supports

- +Virtual AC: any spanning tree [Coo+08; Coo+10]

VAC supports

Properties

Related works in Comp. Vision [Kol06; Son+12; Wer07; Kol15]

- Proper extension of classical NC/DAC or AC respectively

$$
(k=1)
$$

- Polynomial time and $O(e d)$ space (Generalized ACs)
- Incremental, strengthens φ_{\varnothing}

$$
(\mathrm{VAC} \geq \mathrm{EDAC} \geq \mathrm{FDAC} \geq \mathrm{AC} \geq \mathrm{NC})
$$

- May have several fixpoints $/ \varphi_{\varnothing}$

Sequence of integer EPTs
Computing a sequence of integer EPTs that maximizes φ_{\varnothing} is decision NP-complete [CSO4]

Set of rational EPTs (OSAC [sch76; Cooo7; Wero7; Coot10])
Computing a set of rational EPTs maximizing φ_{\varnothing} is in P , solvable by Linear Prog. +AC
Solving the dual of the local polytope +AC enforcing (k)

Sequence of integer EPTs

Computing a sequence of integer EPTs that maximizes $\varphi \varnothing$ is decision NP-complete [CS04]

Set of rational EPTs (OSAC [Sch76; Cooo7; Wero7; Coo+10])
Computing a set of rational EPTs maximizing φ_{\varnothing} is in P , solvable by Linear Prog. + AC Solving the dual of the local polytope + AC enforcing (k)

Optimal Soft Arc Consistency (optimization alone)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

1. u_{i} : amount of cost shifted from φ_{i} to φ_{\varnothing}
2. $p_{i j a}$: amount of cost shifted from $\varphi_{i j}$ to $\varphi_{i}(a)$
3. $p_{j i b}$: amount of cost shifted from $\varphi_{i j}$ to $\varphi_{j}(b)$

OSAC

Optimal Soft Arc Consistency (optimization alone)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

1. u_{i} : amount of cost shifted from φ_{i} to φ_{\varnothing}
2. $p_{i j a}$: amount of cost shifted from $\varphi_{i j}$ to $\varphi_{i}(a)$
3. $p_{j i b}$: amount of cost shifted from $\varphi_{i j}$ to $\varphi_{j}(b)$

OSAC

$$
\begin{array}{lr}
\text { Maximize } & \sum_{i=1}^{n} u_{i} \\
& \varphi_{i}(a)-u_{i}+\sum_{\left(\varphi_{i j} \in C\right)} p_{i j a} \geq 0 \\
\varphi_{i j}(a, b)-p_{i j a}-p_{j i b} \geq 0 & \forall i \in\{1, \ldots, n\}, \forall a \in D^{i} \\
\text { subject to } \\
\end{array}
$$

The "local polytope"

$$
\text { Minimize } \sum_{i, a} \varphi_{i}(a) \cdot x_{i a}+\sum_{\substack{\varphi_{i j} \in \Phi \\ a \in D^{\prime}, b \in D^{j}}} \varphi_{i j}(a, b) \cdot y_{i a j b} \text { such that }
$$

$$
\begin{array}{lr}
\sum_{a \in D^{i}} x_{i a}=1 & \forall i \in\{1, \ldots, n\} \\
\sum_{b \in D^{j}} y_{i a j b}=x_{i a} & \forall \varphi_{i j} \in \Phi, \forall a \in D^{i} \\
\sum y_{i a j b}=x_{j b} & \forall \varphi_{i j} \in \Phi, \forall b \in D^{j}
\end{array}
$$

u_{i} multiplier for (2), $p_{i j a} / p_{j b b}$ for (3) and (4)

Problem solved by OSAC/VAC [Coo+10; KZ17]

- Tree-structured problems
- Permutated submodular problems
(eg. Min-Cut, Min/Max-closed relations)
$\square \mathrm{OSAC} / \mathrm{VAC}+\forall X_{i}, \exists!u \in D^{i}$ s.t. $\varphi_{i}(u)=0$

Supports provide value ordering heuristics
EAC supports u for $X_{i}: \varphi_{i}(u)=0$, can be extended for free on X_{i} 's star

- VAC supports can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides cost-based pruning

$$
\text { If }\left(\varphi_{\varnothing}+\varphi_{i}(u)\right)=k, \text { NC deletes } u
$$

Local consistencies vs. LP

- OSAC empirically very expensive to enforce
- Local consistencies provide fast approximate LP bounds
- and deal with constraints seamlessly

CFN Local Consistencies

Fnhance CP with fast incremental approximate Linear Programming dual bounds

Local consistencies vs. LP

- OSAC empirically very expensive to enforce
- Local consistencies provide fast approximate LP bounds
- and deal with constraints seamlessly

CFN Local Consistencies

Enhance CP with fast incremental approximate Linear Programming dual bounds

CPLEX V12.4.0.0

```
Problem '3e4h.LP' read.
Root relaxation solution time = 811.28 sec.
MIP - Integer optimal solution: Objective = 150023297067
Solution time = 864.39 sec.
```


tb2 and VAC

loading CFN file: 3e4h.wcsp
Lb after VAC: 150023297067
Preprocessing time: 9.13 seconds.
Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

Kind words from OpenGM2 developpers

"ToulBar2 variants were superior to CPLEX variants in all our tests"[HSS18]

VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

Problem '3e4h.LP' read.
Root relaxation solution time $=811.28 \mathrm{sec}$.

MIP - Integer optimal solution: Objective $=150023297067$
Solution time $=864.39 \mathrm{sec}$.

tb2 and VAC

loading CFN file: 3e4h.wcsp
Lb after VAC: 150023297067
Preprocessing time: 9.13 seconds.
Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

Kind words from OpenGM2 developpers

"ToulBar2 variants were superior to CPLEX variants in all our tests"[HSS18]

- combination and elimination are Ok
- but subtracting a clause from another clause does not yield a clause (CNF/DNF)
- generates additional "compensation" clauses [LH05; HLO07; BLM07; LHG08])

Variable elimination

Definition (Message from X to its neighbors)

Let $X \in V$, and Φ^{X} be the set $\left\{\varphi_{S} \in \Phi\right.$ s.t. $\left.X \in S\right\}, T$, the neighbors of X.
The message $m_{T}^{\Phi X}$ from Φ^{X} to T is:

$$
m_{T}^{\Phi_{X}}=\left(\sum_{\varphi_{S} \in \Phi^{X}}^{k} \varphi_{S}\right)[-X]
$$

The message contains all the effect of X on the optimization problem Distributivity

Variable elimination

Definition (Message from X to its neighbors)

Let $X \in V$, and Φ^{X} be the set $\left\{\varphi_{S} \in \Phi\right.$ s.t. $\left.X \in S\right\}, T$, the neighbors of X.
The message $m_{T}^{\Phi X}$ from Φ^{X} to T is:

$$
m_{T}^{\Phi_{X}}=\left(\sum_{\varphi_{S} \in \Phi^{X}}^{k} \varphi_{S}\right)[-X]
$$

The message contains all the effect of X on the optimization problem Distributivity

\ll

Daoopt \& mini-buckets [DR03] split Φ^{X} in subsets of controlled size (lower bound)

Daoopt \& mini-buckets [DR03] split Φ^{X} in subsets of controlled size (lower bound)

Boosting search with VE [Laroo]

If a variable has a small degree, eliminate it (backtrackable) else branch

Boosting search with VE [Laroo]

If a variable has a small degree, eliminate it (backtrackable) else branch

Boosting search with VE [Laroo]

If a variable has a small degree, eliminate it (backtrackable) else branch

Boosting search with VE [Laroo]

If a variable has a small degree, eliminate it (backtrackable) else branch

Boosting search with VE [Laroo]

If a variable has a small degree, eliminate it (backtrackable) else branch

On the fly Variable elimination

Boosting search with VE [Laroo]

If a variable has a small degree, eliminate it (backtrackable) else branch

1 Optimization
2 Algorithms

3 All Toulbar2 bells and whistles
4 Learning CFN from data

Additional algorithmic ingredients

- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- Value ordering (for free): existential or virtual supports
- Dominance analysis (substitutability/DEE) [Fre91; DPO 13; All+14]
- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
\square Incremental solving, guaranteed diverse solutions [Ruf+ 19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

Additional algorithmic ingredients

- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- Value ordering (for free): existential or virtual supportsDominance analysis (substitutability/DEE) [Fre91; DPO 13; All+14]
\square Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LLi12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

Additional algorithmic ingredients
■ Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

- Value ordering (for free): existential or virtual supports

■ Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

Additional algorithmic ingredients
■ Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

- Value ordering (for free): existential or virtual supports

■ Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LLi2; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

Additional algorithmic ingredients
■ Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

- Value ordering (for free): existential or virtual supports

■ Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

Additional algorithmic ingredients
■ Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

- Value ordering (for free): existential or virtual supports

■ Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

Additional algorithmic ingredients

- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- Value ordering (for free): existential or virtual supports

■ Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]

- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

Practical aspects

- C++ Open source, MIT licence on GitHub, available in Debian
- Uses 64 bits integer costs to represent adjustable precision decimal costs
- Tackles minimization, maximization with costs of arbitrary signs and constraints
- JSON compatible CFN input format
- Python API (PyToulbar2)

3026 instances of various origins

■ MRF: Probabilistic Inference Challenge 2011

- CVPR: Computer Vision \& Pattern Recognition OpenGM2
- CFN: Cost Function Library
- MaxCSP: MaxCSP 2008 competition
- WPMS: Weighted Partial MaxSAT evaluation 2013
- CP: MiniZinc challenge 2012/13

Benchmark	Nb.	UAI	WCSP	LP(direct)	LP(tuple)	wCNF(direct)	wCNF(tuple)	MINIZINC
MRF	319	187 MB	475 MB	2.4 G	2.0 GB	518 MB	2.9 GB	473 MB
CVPR	1461	430 MB	557 MB	9.8 GB	11 GB	3.0 GB	15 GB	$\mathrm{~N} / \mathrm{A}$
CFN	281	43 MB	122 MB	300 MB	3.5 GB	389 MB	5.7 GB	69 MB
MaxCSP	503	13 MB	24 MB	311 MB	660 MB	73 MB	999 MB	29 MB
WPMS	427	$\mathrm{~N} / \mathrm{A}$	387 MB	433 MB	N / A	717 MB	N / A	631 MB
CP	35	7.5 MB	597 MB	499 MB	1.2 GB	378 MB	1.9 GB	21 KB
Total	3026	0.68 G	2.2 G	14 G	18 G	5 G	27 G	1.2 G

Optimality gap of the Simulated annealing solution as problems get harder

DWave approximations
within 1.16 of optimum, 10% of the time
$4.35,50 \%$ of the time
$8.45,90 \%$ of the time

| toulbar2 |
| :---: | :---: | :---: | :---: | :---: |
| cplex |
| UDGVNS |

1 Optimization

2 Algorithms

3 All Toulbar2 bells and whistles

4 Learning CFN from data

Definition (Learning a pairwise CFN from high quality solutions)

Given:

- a set of variables V,
- a set of assignments \boldsymbol{E} i.i.d. from an unknown distribution of high-quality solutions

Find a pairwise CFN \mathcal{M} that can be solved to produce high-quality solutions

MRFs tightly connected to CFNs $(k=\infty)$
\longrightarrow

Definition (Learning a pairwise CFN from high quality solutions)

Given:

- a set of variables V,
- a set of assignments \boldsymbol{E} i.i.d. from an unknown distribution of high-quality solutions Find a pairwise CFN \mathcal{M} that can be solved to produce high-quality solutions

MRFs tightly connected to CFNs $(k=\infty)$
(additive energy)
MRF M $\underset{-\log (x)}{ } \quad$ CFN M $^{\ell} \xrightarrow[\exp (-x)]{ } \quad$ MRF M

Opens the door to learning from data \boldsymbol{E}

- E a set of i.i.d. assignments of V
- The \log-likelihood of \mathcal{M} given \boldsymbol{E} is $\log \left(\prod_{v \in E} P_{\mathcal{M}}(v)\right)=\sum_{v \in E} \log \left(P_{\mathcal{M}}(v)\right)$
- Maximimizing loglikelihood over all binary \mathcal{M}

$$
\left(O\left(\frac{n(n-1)}{2} d^{2}\right) \text { costs }\right)
$$

Maximum \log likelihood \mathcal{M} on \mathcal{M}_{ℓ}

Opens the door to learning from data \boldsymbol{E}

- E a set of i.i.d. assignments of V
- The log-likelihood of \mathcal{M} given \boldsymbol{E} is $\log \left(\prod_{v \in E} P_{\mathcal{M}}(v)\right)=\sum_{v \in E} \log \left(P_{\mathcal{M}}(v)\right)$
- Maximimizing loglikelihood over all binary \mathcal{M}

$$
\left(O\left(\frac{n(n-1)}{2} d^{2}\right) \text { costs }\right)
$$

Maximum \log likelihood \mathcal{M} on \mathcal{M}_{ℓ}

$$
\begin{aligned}
\mathcal{L}(\mathcal{M}, \boldsymbol{E}) & =\log \left(\prod_{v \in E} P_{\mathcal{M}}(v)\right)=\sum_{v \in E} \log \left(P_{\mathcal{M}}(v)\right) \\
& =\underbrace{}_{\text {-costs of } E \text { samples }} \underbrace{}_{\text {Soft-Min of all assignment costs }} \\
= & \sum_{v \in E}\left(-C_{\mathcal{M}^{e}}(v)\right)
\end{aligned}
$$

Learning a Cost Function Network from high-quality solutions

Learning a Cost Function Network from high-quality solutions

[All+14] David Allouche et al. "Computational protein design as an optimization problem". In: Artificial Intelligence 212 (2014), pp. 59-79.
[All+15] David Allouche et al. "Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP". In: Principles and Practice of Constraint Programming. Springer. 2015, pp. 12-29.
[AlL+16] David Allouche et al. "Tractability-preserving transformations of global cost functions". In: Artificial Intelligence 238 (2016), pp. 166-189.
[AM00] Srinivas M Aji and Robert J McEliece. "The generalized distributive law". In: IEEE transactions on Information Theory 46.2 (2000), pp. 325-343.
[BB69A] Umberto Bertele and Francesco Brioschi. "A new algorithm for the solution of the secondary optimization problem in non-serial dynamic programming". In: Journal of Mathematical Analysis and Applications 27.3 (1969), pp. 565-574.
[BB69B] Umberto Bertele and Francesco Brioschi. "Contribution to nonserial dynamic programming". In: Journal of Mathematical Analysis and Applications 28.2 (1969), pp. 313-325.
[BB72] Umberto Bertelé and Francesco Brioshi. Nonserial Dynamic Programming. Academic Press, 1972.
[BGS20]
Céline Brouard, Simon de Givry, and Thomas Schiex. "Pushing data into CP models using Graphical Model Learning and Solving". In: LNCS 4204 (2020).
[BH02] E. Boros and P. Hammer. "Pseudo-Boolean Optimization". In: Discrete Appl. Math. 123 (2002), pp. 155-225.
[BHM09] Armin Biere, Marijn Heule, and Hans van Maaren, eds. Handbook of Satisfiability. Vol. 185. IOS press, 2009.
[Bis06] Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[BLM07] María Luisa Bonet, Jordi Levy, and Felip Manyà. "Resolution for max-sat". In: Artificial Intelligence 171.8-9 (2007), pp. 606-618.
[Bou+04] Frédéric Boussemart et al. "Boosting systematic search by weighting constraints". In: ECAI. Vol. 16. 2004, p. 146.
[CAB+99] B. Cabon et al. "Radio Link Frequency Assignment". In: Constraints 4 (1999), pp. 79-89.
[CGS07] M C. Cooper, S. de Givry, and T. Schiex. "Optimal soft arc consistency". In: Proc. of IJCAI'2007. Hyderabad, India, Jan. 2007, pp. 68-73.
[CGS20] Martin Cooper, Simon de Givry, and Thomas Schiex. "Graphical Models: Queries, Complexity, Algorithms". In: Leibniz International Proceedings in Informatics (STACS'2020) 154 (2020), pp. 4-1.
[Coo+08] Martin C Cooper et al. "Virtual Arc Consistency for Weighted CSP". In: AAAI. Vol. 8. 2008, pp. 253-258.
[Coo+10] M. Cooper et al. "Soft arc consistency revisited". In: Artificial Intelligence 174 (2010), pp. 449-478.
[Coo03] M C. Cooper. "Reduction operations in fuzzy or valued constraint satisfaction". In: Fuzzy Sets and Systems 134.3 (2003), pp. 311-342.
[Coo07] M C. Cooper. "On the minimization of locally-defined submodular functions". In: Constraints (2007). To appear.
[CS04] M C. Cooper and T. Schiex. "Arc consistency for soft constraints". In: Artificial Intelligence 154.1-2 (2004), pp. 199-227.
[Dec99] Rina Dechter. "Bucket Elimination: A Unifying Framework for Reasoning". In: Artificial Intelligence 113.1-2 (1999), pp. 41-85.
[DPO13] Simon De Givry, Steven D Prestwich, and Barry O'Sullivan. "Dead-end elimination for weighted CSP". In: Principles and Practice of Constraint Programming. Springer. 2013, pp. 263-272.
[DR03]
Rina Dechter and Irina Rish. "Mini-buckets: A general scheme for bounded inference". In: Journal of the ACM (JACM) 50.2 (2003), pp. 107-153.
[FAv+11] A. Favier et al. "Pairwise decomposition for combinatorial optimization in graphical models". In: Proc. of IJCAI'11. Barcelona, Spain, 2011.
[Fre91] Eugene C. Freuder. "Eliminating Interchangeable Values in Constraint Satisfaction Problems". In: Proc. of AAAl'91. Anaheim, CA, 1991, pp. 227-233.
[FW92] E.C. Freuder and R.J. Wallace. "Partial Constraint Satisfaction". In: Artificial Intelligence 58 (Dec. 1992), pp. 21-70.
[GSV06] S. de Givry, T. Schiex, and G. Verfaillie. "Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP". In: Proc. of the National Conference on Artificial Intelligence, AAAI-2006. 2006, pp. 22-27.
[HG95] W. D. Harvey and M. L. Ginsberg. "Limited Discrepency Search". In: Proc. of the 14 ${ }^{\text {th }}$ IJCAI. Montréal, Canada, 1995.
[HLO07] Federico Heras, Javier Larrosa, and Albert Oliveras. "MiniMaxSat: A New Weighted Max-SAT Solver". In: Proc. of SAT'2007. LNCS 4501. Lisbon, Portugal, May 2007, pp. 41-55.
[HSS18]
Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. "Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation". In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
[Hur+16] Barry Hurley et al. "Multi-language evaluation of exact solvers in graphical model discrete optimization". In: Constraints (2016), pp. 1-22.
[KF09] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.
[Kol06] Vladimir Kolmogorov. "Convergent tree-reweighted message passing for energy minimization". In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 28.10 (2006), pp. 1568-1583.
[Kol15] Vladimir Kolmogorov. "A new look at reweighted message passing". In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 37.5 (2015), pp. 919-930.
[Kos99] A M C A. Koster. "Frequency assignment: Models and Algorithms". Available at www.zib.de/koster/thesis.html. PhD thesis. The Netherlands: University of Maastricht, Nov. 1999.
[KZ17] Andrei A. Krokhin and Stanislav Zivny. "The Complexity of Valued CSPs". In: The Constraint Satisfaction Problem: Complexity and Approximability. Ed. by Andrei A. Krokhin and Stanislav Zivny. Vol. 7. Dagstuhl Follow-Ups. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 233-266. ISBN: 978-3-95977-003-3. DoI: 10.4230/DFU.Vol7.15301.9. URL: https://doi.org/10.4230/DFU.Vol7.15301.9.
[LAR+05] J. Larrosa et al. "Existential arc consistency: getting closer to full arc consistency in weighted CSPs". In: Proc. of the 19 th $I J C A I$. Edinburgh, Scotland, Aug. 2005, pp. 84-89.
[LAR00] J. Larrosa. "Boosting search with variable elimination". In: Principles and Practice of Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 291-305.
[LAR02] J. Larrosa. "On Arc and Node Consistency in weighted CSP". In: Proc. AAAI'02. Edmondton, (CA), 2002, pp. 48-53.
[LEC+09] C. Lecoutre et al. "Reasoning from last conflict(s) in constraint programming". In: Artificial Intelligence 173 (2009), pp. 1592, 1614.
[LH05] J. Larrosa and F. Heras. "Resolution in Max-SAT and its relation to local consistency in weighted CSPs". In: Proc. of the $19^{\text {th }}$ IJCAI. Edinburgh, Scotland, 2005, pp. 193-198.
[LHG08] Javier Larrosa, Federico Heras, and Simon de Givry. "A logical approach to efficient Max-SAT solving". In: Artif. Intell. 172.2-3 (2008), pp. 204-233. URL: http://dx.doi.org/10.1016/j.artint.2007.05.006.
[LL12] Jimmy Ho-Man Lee and Ka Lun Leung. "Consistency techniques for flow-based projection-safe global cost functions in weighted constraint satisfaction". In: Journal of Artificial Intelligence Research 43.1 (2012), pp. 257-292.
[LS03] J. Larrosa and T. Schiex. "In the quest of the best form of local consistency for Weighted CSP". In: Proc. of the $18^{\text {th }}$ IJCAI. Acapulco, Mexico, Aug. 2003, pp. 239-244.
[LS04] Javier Larrosa and Thomas Schiex. "Solving weighted CSP by maintaining arc consistency". In: Artif. Intell. 159.1-2 (2004), pp. 1-26.
[LW66] Eugene L Lawler and David E Wood. "Branch-and-bound methods: A survey". In: Operations research 14.4 (1966), pp. 699-719.
[MD09] Radu Marinescu and Rina Dechter. "AND/OR branch-and-bound search for combinatorial optimization in graphical models". In: Artificial Intelligence 173.16-17 (2009), pp. 1457-1491.
[Mul+19] Vikram Khipple Mulligan et al. "Designing Peptides on a Quantum Computer". In: bioRxiv (2019), p. 752485.
[OuA+17] Abdelkader Ouali et al. "Iterative decomposition guided variable neighborhood search for graphical model energy minimization". In: Conference on Uncertainty in Artificial Intelligence, UAI’17. Sydney, Australia, 2017.
[OuA 20] Abdelkader Ouali et al. "Variable neighborhood search for graphical model energy minimization". In: Artificial Intelligence 278 (2020), p. 103194.
[Рон70] Ira Pohl. "Heuristic search viewed as path finding in a graph". In: Artificial intelligence 1.3-4 (1970), pp. 193-204.
[PW15] Daniel Prusa and Tomas Werner. "Universality of the local marginal polytope". In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 37.4 (2015), pp. 898-904.
[RBW06] F. Rossi, P. van Beek, and T. Walsh, eds. Handbook of Constraint Programming. Elsevier, 2006.
[Réc94] J.C. Régin. "A filtering algorithm for constraints of difference in CSPs". In: Proc. of AAAI'94. Seattle, WA, 1994, pp. 362-367.
[RuF+19] Manon Ruffini et al. "Guaranteed Diversity \& Quality for the Weighted CSP". In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE. 2019, pp. 18-25.
T. Schiex. "Arc consistency for soft constraints". In: Principles and Practice of Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411-424.
[Sch76] M.I. Schlesinger. "Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in noisy conditions)". In: Kibernetika 4 (1976), pp. 113-130.
[SFV95] T. Schiex, H. Fargier, and G. Verfaillie. "Valued Constraint Satisfaction Problems: hard and easy problems". In: Proc. of the $14^{\text {th }}$ IJCAI. Montréal, Canada, Aug. 1995, pp. 631-637.
[SGS08] Martí Sánchez, Simon de Givry, and Thomas Schiex. "Mendelian Error Detection in Complex Pedigrees Using Weighted Constraint Satisfaction Techniques". In: Constraints 13.1-2 (2008), pp. 130-154.
[Sha91] G. Shafer. An Axiomatic Study of Computation in Hypertrees. Working paper 232. Lawrence: University of Kansas, School of Business, 1991.
[Sim+15] David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DoI: 10.1021/acs.jctc.5b00594.
[Son+12] David Sontag et al. "Tightening LP relaxations for MAP using message passing". In: arXiv preprint arXiv:1206.3288 (2012).
[TGK20] Fulya Trösser, Simon de Givry, and George Katsirelos. "VAC integrality based variable heuristics and initial upper-bounding (vacint and rasps):
Relaxation-Aware Heuristics for Exact Optimization in Graphical Models". In: Proc. of CPAIOR-20. 2020.
[Wer07] T. Werner. "A Linear Programming Approach to Max-sum Problem: A Review.". In: IEEE Trans. on Pattern Recognition and Machine Intelligence 29.7 (July 2007), pp. 1165-1179. URL: http://dx.doi.org/10.1109/TPAMI.2007.1036.

