NUMBERS AND LOGIC TOGETHER IN CP: A PRACTICAL VIEW OF COST FUNCTION NETWORKS

CP'2020 TUTORIAL

S. de Givry¹ & T. Schiex¹

¹ Université Fédérale de Toulouse, ANITI, INRAE MIAT, UR 875, Toulouse, France

This is not a virtual tutorial

September 2020

Informally

(see also [CGS20])

A description of a multivariate function as the combination of a set of simple functions

Concise: we use a set of *small* functions

Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [AII+14]

value of the output solution or not feasibility, acceptability interference amount

2

- Concise: we use a set of *small* functions
- Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [All+14]

value of the output

solution or not feasibility, acceptability endel consistency, probability interference amount

Concise: we use a set of *small* functions

Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [All+14]

Concise: we use a set of *small* functions

Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [All+14]

Concise: we use a set of *small* functions

Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [All+14]

Concise: we use a set of *small* functions

Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [All+14]

Concise: we use a set of *small* functions

Complex: the joint function results from the interaction of several small functions

Example

- A digital circuit
- A Sudoku grid
- A schedule or a time-table
- A pedigree with genotypes [SGS08]
- A frequency assignment [Cab+99]
- A 3D molecule [All+14]

- Variables: X, Y, Z, \ldots , possibly indexed as X_i
- Domains: D^X for variable X, or D^i for variable X_i
- **U**nknown values: $u, v, w, x, y, z \dots$
- Sequence of variables: X, Y, Z, \ldots
- Sequence of possible values: $u, v, w, x, y, z \dots$
- Domain of a sequence of variables $X : D^X$ (Cartesian product of the domains)
- $oldsymbol{u} \in D^{oldsymbol{X}}$ is an assignment of $oldsymbol{X}$ (a value for each variable in $oldsymbol{X}$)
- **u**[Y]: projection of u on Y (the sequence of values of Y in u)

- Variables: X, Y, Z, \ldots , possibly indexed as X_i
- Domains: D^X for variable X, or D^i for variable X_i
- **Unknown values**: $u, v, w, x, y, z \dots$
- Sequence of variables: X, Y, Z, \ldots
- Sequence of possible values: $u, v, w, x, y, z \dots$
- Domain of a sequence of variables $X : D^X$ (Cartesian product of the domains)
- $oldsymbol{u} \in D^{oldsymbol{X}}$ is an assignment of $oldsymbol{X}$ (a value for each variable in $oldsymbol{X}$)
- **u**[Y]: projection of u on Y (the sequence of values of Y in u)

- Variables: X, Y, Z, \ldots , possibly indexed as X_i
- Domains: $\overline{D^X}$ for variable X, or D^i for variable X_i
- **Unknown values:** $u, v, w, x, y, z \dots$
- Sequence of variables: X, Y, Z, \ldots
- Sequence of possible values: $u, v, w, x, y, z \dots$
- Domain of a sequence of variables $X : D^X$ (Cartesian product of the domains)
- $lacksymbol{u} \in D^{oldsymbol{X}}$ is an assignment of $oldsymbol{X}$ (a value for each variable in $oldsymbol{X}$)
- **u**[Y]: projection of u on Y (the sequence of values of Y in u)

- Variables: X, Y, Z, \ldots , possibly indexed as X_i
- Domains: $\overline{D^X}$ for variable X, or D^i for variable X_i
- **Unknown values:** $u, v, w, x, y, z \dots$
- Sequence of variables: X, Y, Z, \dots
- Sequence of possible values: $u, v, w, x, y, z \dots$
- Domain of a sequence of variables $X : D^X$ (Cartesian product of the domains)
- $lacksymbol{u} \in D^{oldsymbol{X}}$ is an assignment of $oldsymbol{X}$ (a value for each variable in $oldsymbol{X}$)
- **u**[Y]: projection of u on Y (the sequence of values of Y in u)

- Variables: X, Y, Z, \ldots , possibly indexed as X_i
- Domains: D^X for variable X, or D^i for variable X_i
- **Unknown values:** $u, v, w, \overline{x, y, z \dots}$
- Sequence of variables: X, Y, Z, \ldots
- Sequence of possible values: $u, v, w, x, y, z \dots$
- Domain of a sequence of variables X : D^X (Cartesian product of the domains)
- $lacksymbol{u} \in D^{oldsymbol{X}}$ is an assignment of $oldsymbol{X}$ (a value for each variable in $oldsymbol{X}$)
- **u**[$m{Y}$]: projection of $m{u}$ on $m{Y}$ (the sequence of values of $m{Y}$ in $m{u}$)

- Variables: X, Y, Z, \ldots , possibly indexed as X_i
- Domains: D^X for variable X, or D^i for variable X_i
- **Unknown values:** $u, v, w, \overline{x, y, z \dots}$
- Sequence of variables: X, Y, Z, \ldots
- Sequence of possible values: $u, v, w, x, y, z \dots$
- Domain of a sequence of variables $X : D^X$ (Cartesian product of the domains)
- $lacksymbol{u} \in D^{oldsymbol{X}}$ is an assignment of $oldsymbol{X}$ (a value for each variable in $oldsymbol{X}$)
- **u**[Y]: projection of u on Y (the sequence of values of Y in u)

- Variables: X, Y, Z, \ldots , possibly indexed as X_i
- Domains: $\overline{D^X}$ for variable X, or D^i for variable X_i
- **Unknown values:** $u, v, w, x, y, z \dots$
- Sequence of variables: X, Y, Z, \ldots
- Sequence of possible values: $u, v, w, x, y, z \dots$
- Domain of a sequence of variables $X : D^X$ (Cartesian product of the domains)
- $u \in D^X$ is an assignment of X (a value for each variable in X)
- **u**[Y]: projection of u on Y (the sequence of values of Y in u)

- Variables: X, Y, Z, \ldots , possibly indexed as X_i
- Domains: $\overline{D^X}$ for variable X, or D^i for variable X_i
- **Unknown values:** $u, v, w, x, y, z \dots$
- Sequence of variables: X, Y, Z, \ldots
- Sequence of possible values: $u, v, w, x, y, z \dots$
- Domain of a sequence of variables $X : D^X$ (Cartesian product of the domains)
- $u \in D^X$ is an assignment of X (a value for each variable in X)
- **u**[Y]: projection of u on Y (the sequence of values of Y in u)

Definition (Graphical Model (GM [Bis06; KF09]))	
A GM $\mathcal{M}=\langle oldsymbol{V},\Phi angle$ is defined by:	
a sequence of variables V	n

$$\Phi_{\mathcal{M}}(\pmb{v}) = igoplus_{\pmb{arphi}igstacle \Phi} arphi_{\pmb{S}}(\pmb{v}[\pmb{S}])$$

Definition (Graphical Model (GM [Bis06; KF09]))	
A GM $\mathcal{M}=\langle oldsymbol{V},\Phi angle$ is defined by:	
a sequence of variables V	n
$lacksquare$ each $X\in oldsymbol{V}$ has finite domain D^X	max size d

$$\Phi_{\mathcal{M}}(oldsymbol{v}) = igoplus_{oldsymbol{s} \in \Phi} arphi_{oldsymbol{S}}(oldsymbol{v}[oldsymbol{S}])$$

Definition (Graphical Model (GM [Bis06; KF09]))	
A GM $\mathcal{M}=\langle oldsymbol{V},\Phi angle$ is defined by:	
a sequence of variables V	\overline{n}
$lacksquare$ each $X\in oldsymbol{V}$ has finite domain D^X	max size d
\blacksquare a set Φ of functions (or factors)	e

$$\Phi_{\mathcal{M}}(\boldsymbol{v}) = igoplus_{\boldsymbol{S}} \in \Phi \, \varphi_{\boldsymbol{S}}(\boldsymbol{v}[\boldsymbol{S}])$$

Definition (Graphical Model (GM [Bis06; KF09]))	
A GM $\mathcal{M} = \langle oldsymbol{V}, \Phi angle$ is defined by:	
$lacksquare$ a sequence of variables $oldsymbol{V}$	n
$lacksquare$ each $X\in oldsymbol{V}$ has finite domain D^X	max size d
\blacksquare a set Φ of functions (or factors)	e
Each function $\varphi_S \in \Phi$ is a function from $D^S \to B$	scope $oldsymbol{S}$, arity $ oldsymbol{S} $

$$\Phi_{\mathcal{M}}(oldsymbol{v}) = igoplus_{oldsymbol{s}\in\Phi} arphi_{oldsymbol{s}}(oldsymbol{v}[oldsymbol{S}])$$

Definition (Graphical Model (GM [Bis06; KF09]))	
A GM $\mathcal{M} = \langle oldsymbol{V}, \Phi angle$ is defined by:	
a sequence of variables V	\overline{n}
each $X \in V$ has finite domain D^X	max size d
\blacksquare a set Φ of functions (or factors)	e
Each function $\varphi_{m{S}} \in \Phi$ is a function from $D^{m{S}} o B$	scope $\overline{oldsymbol{S}},$ arity $ oldsymbol{S} $

$$\Phi_{\mathcal{M}}(oldsymbol{v}) = igoplus_{oldsymbol{S} \in \Phi} arphi_{oldsymbol{S}}(oldsymbol{v}[oldsymbol{S}])$$

ANITI INRAC

- Default: as tensors over B
- Boolean vars: (B-weighted) clauses
- Arithmetic, polynomes [вно2]
- Predicates (ALL-DIFFERENT [Rég94; LL12],...)

(multidimensional tables)

(disjunction of variables or their negation)

- Default: as tensors over *B*
- Boolean vars: (*B*-weighted) clauses
- Arithmetic, polynomes [BH02]
- Predicates (ALL-DIFFERENT [Rég94; LL12],...)

(multidimensional tables) (disjunction of variables or their negation)

- Default: as tensors over *B*
- Boolean vars: (B-weighted) clauses
- Arithmetic, polynomes [BH02]
- Predicates (ALL-DIFFERENT [Rég94; LL12],...)

(multidimensional tables)

(disjunction of variables or their negation)

- Default: as tensors over *B*
- Boolean vars: (*B*-weighted) clauses
- Arithmetic, polynomes [BH02]
- Predicates (ALL-DIFFERENT [Rég94; LL12],...)

(multidimensional tables)

(disjunction of variables or their negation)

Constraint networks [RBW06]/SAT [BHM09]

- \blacksquare a sequence of domain variables V
- **a** set Φ of e Boolean functions (or constraints)
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \to \{t, f\}$

${\cal M}$ defines a joint Boolean feasibility/consistency function

$$\Phi_{\mathcal{M}} = \bigwedge_{\varphi_S \in \Phi} \varphi_S$$

$$B = \mathbb{B} = \{t, f\}, \oplus = \wedge$$

Constraint networks [RBW06]/SAT [BHM09]

- \blacksquare a sequence of domain variables V
- **a** set Φ of *e* Boolean functions (or constraints)
- Each function $\varphi_{S} \in \Phi$ is a function from $D^{S} \to \{t, f\}$

${\cal M}$ defines a joint Boolean feasibility/consistency function

$$\Phi_{\mathcal{M}} = \bigwedge_{\varphi_{\boldsymbol{S}} \in \Phi} \varphi_{\boldsymbol{S}}$$

$$B = \mathbb{B} = \{t, f\}, \oplus = \wedge$$

Markov Random Fields: $B = \mathbb{R}^+, \oplus = \times$

- a set V of domain variables
- \blacksquare a set Φ of potential functions
- $\varphi_{S} \in \Phi : \prod_{X \in S} D^{X} \to \mathbb{R}^{+}$

\mathcal{M} : induces a probability distribution

$$\Phi_{\mathcal{M}} = \prod_{\varphi_{S} \in \Phi} \varphi_{S}$$

 $P_{\mathcal{M}} \propto \Phi_{\mathcal{M}}$

Markov Random Fields: $B = \mathbb{R}^+, \oplus = \times$

- a set *V* of domain variables
- \blacksquare a set Φ of potential functions
- $\bullet \varphi_{S} \in \Phi : \prod_{X \in S} D^{X} \to \mathbb{R}^{+}$

\mathcal{M} : induces a probability distribution

$$\Phi_{\mathcal{M}} = \prod_{\varphi_{S} \in \Phi} \varphi_{S}$$

 $P_{\mathcal{M}} \propto \Phi_{\mathcal{M}}$

Cost Function Networks $\mathcal M$ [FW92; SFV95; CS04]	$B = \overline{\mathbb{N}}^k, \oplus = +^k$
 a sequence of domain variables V a set \$\Phi\$ of \$e\$ numerical functions Each function \$\varphi_S \in \$\Phi\$ is a function from \$D^S\$ \$\to\$ \$\overline{\mathbb{N}}^k\$ 	
a $\overline{\mathbb{N}}^k$: elements of $\mathbb{N} \cup \{\infty\}$ bounded by k a $+^k$ is the k -bounded addition	$k \text{ finite or not} \\ \alpha \neq \beta = \min(\alpha + \beta, k)$
${\cal M}$ defines a joint (bounded) integer function	

Cost Function Networks $\mathcal M$ [FW92; SFV95; CS04]	$B = \overline{\mathbb{N}}^k, \oplus = +^k$
 a sequence of domain variables V a set Φ of e numerical functions Each function $\varphi_S \in \Phi$ is a function from $D^S \to \overline{\mathbb{N}}^k$ 	
■ $\overline{\mathbb{N}}^k$: elements of $\mathbb{N} \cup \{\infty\}$ bounded by k ■ \neq^k is the k -bounded addition	$k \text{ finite or not} \\ \alpha \neq^k \beta = \min(\alpha + \beta, k)$
${\cal M}$ defines a joint (bounded) integer function	
$\Phi_{\mathcal{M}} = \sum_{arphi_{oldsymbol{S}} \in \Phi}^k arphi_{oldsymbol{S}}$	

ANITI INRAC

CFN "normal form"

- \blacksquare Have a constant function φ_\varnothing
- Have all their unary functions $\varphi_i, X_i \in V$
- All functions have different scopes

 $\varphi_i(u) = k$ means u deleted

Used inside the solver

Main properties

- k = 1: Constraint networks and SAT, + is \wedge

Graph G = (V, E) with edge weight function w

- A Boolean variable X_i per vertex $i \in V$
- A cost function per edge $e = (i, j) \in E : \varphi_{ij} = w(i, j) \times \mathbb{1}[x_i \neq x_j]$
- Hard edges: constraints with costs 0 or ∞ (when $x_i \neq x_j$)

A simple graph

- vertices $\{1, 2, 3, 4\}$
- cut weight 1
- \blacksquare edge (1,2) hard

Graph G = (V, E) with edge weight function w

- A Boolean variable X_i per vertex $i \in V$
- A cost function per edge $e = (i, j) \in E : \varphi_{ij} = w(i, j) \times \mathbb{1}[x_i \neq x_j]$
- Hard edges: constraints with costs 0 or ∞ (when $x_i \neq x_j$)

Graph G = (V, E) with edge weight function w

- A Boolean variable X_i per vertex $i \in V$
- A cost function per edge $e = (i, j) \in E : \varphi_{ij} = w(i, j) \times \mathbb{1}[x_i \neq x_j]$
- Hard edges: constraints with costs 0 or ∞ (when $x_i \neq x_j$)

Min-CUT on 4 variables with hard edge

```
problem :{name: "MinCut", mustbe: "<100.0"},
variables: {x1: ["1"], x2: ["1","r"], x3: ["1","r"], x4: ["r"]}
functions: {
    cut12: {scope: ["x1","x2"], costs: [0.0, 100.0, 100.0, 0.0]},
    cut13: {scope: ["x1","x3"], costs: [0.0,1.0,1.0,0.0]},
    cut23: {scope: ["x2","x3"], costs: [0.0,1.0,1.0,0.0]},
    cut34: {scope: ["x3","x4"], costs: [0.0,1.0,1.0,0.0]}
```


Definition (Functions and graphical models equivalence)

Two functions (or GMs) are equivalent iff they are always equal

Definition (Relaxation of a function or graphical model)

A function (or GM) φ is a relaxation of φ' iff $\varphi \leq \varphi'$

For $B = \mathbb{B}, t < f$

 $(\varphi \text{ relaxation of } \varphi') \Leftrightarrow (\varphi' \models \varphi)$

Definition (Functions and graphical models equivalence)

Two functions (or GMs) are equivalent iff they are always equal

Definition (Relaxation of a function or graphical model)

A function (or GM) φ is a relaxation of φ' iff $\varphi \leq \varphi'$

For $B = \mathbb{B}, t < f$

 $(\varphi \text{ relaxation of } \varphi') \Leftrightarrow (\varphi' \models \varphi)$

Definition (Functions and graphical models equivalence)

Two functions (or GMs) are equivalent iff they are always equal

Definition (Relaxation of a function or graphical model)

A function (or GM) φ is a relaxation of φ' iff $\varphi \leq \varphi'$

For $B = \mathbb{B}, t < f$

 $(\varphi \text{ relaxation of } \varphi') \Leftrightarrow (\varphi' \models \varphi)$

1 Optimization

- 2 Algorithms
- 3 All Toulbar2 bells and whistles

4 Learning CFN from data

Minimization queries

■ $B = \{t \equiv 0, f \equiv 1\}, \oplus = +^{1} = \wedge$, clauses ■ $B = \{t \equiv 0, f \equiv 1\}, \oplus = +^{1} = \wedge$, tensors ■ $B = \overline{\mathbb{N}}^{k}, \oplus = +^{k}$, tensors t

s the SAT Problem s the Constraint Satisfaction Problem the Weighted Constraint Satisfaction Problem

We always use +

Minimization queries

■ $B = \{t \equiv 0, f \equiv 1\}, \oplus = +^{1} = \wedge$, clauses ■ $B = \{t \equiv 0, f \equiv 1\}, \oplus = +^{1} = \wedge$, tensors ■ $B = \overline{\mathbb{N}}^{k}, \oplus = +^{k}$, tensors t

s the SAT Problem s the Constraint Satisfaction Problem the Weighted Constraint Satisfaction Problem

We always use $+^{k}$

(without eq. (1)) The "local polytope" [Sch76; Kos99; Wer07] $\text{Minimize} \sum_{i,a} \varphi_i(a) \cdot x_{ia} + \sum_{\varphi_{ij} \in \Phi} \varphi_{ij}(a,b) \cdot y_{iajb} \text{ such that}$ $\sum x_{ia} = 1$ $\forall i \in \{1, \ldots, n\}$ $\sum y_{iajb} = x_{ia}$ $\forall \varphi_{ii} \in \Phi, \forall a \in D^i$ $\sum y_{iajb} = x_{jb}$ $\forall \varphi_{ii} \in \Phi, \forall b \in D^j$ $\forall i \in \{1, \dots, n\} \quad (1)$ $x_{ia} \in \{0, 1\}$

 $nd + ed^2$ variables, n + 2ed constraints

1 Optimization

2 Algorithms

- Conditioning based: systematic and local search
- Elimination based: local consistency and variable elimination

3 All Toulbar2 bells and whistles

4 Learning CFN from data

Conditioning: $\varphi_{S X=a}$ ($X \in S$)	Assignment
$\varphi_{\boldsymbol{S} X=a}(\boldsymbol{v}) = (\varphi_{\boldsymbol{S}}(\boldsymbol{v} \cup \{X=a\})$	Scope $oldsymbol{S} - \{X\}$, negligible complexity

Conditioning: $\varphi_{S X=a}$ ($X \in S$)	Assignment
$\varphi_{\boldsymbol{S} X=a}(\boldsymbol{v}) = (\varphi_{\boldsymbol{S}}(\boldsymbol{v} \cup \{X=a\})$	Scope $oldsymbol{S} - \{X\}$, negligible complexity

Conditioning by
$$X_2 = b$$

 $\begin{array}{c|c} X_1 \\ 3 & 1 & 2 \end{array}$

CONDITIONING-BASED APPROACHES

51

- Else choose $X \in V$ s.t. $|D^X| > 1$ and $u \in D^X$ and reduce to
 - 1. one query where we condition by $X_i = u$
 - 2. one where u is removed from D^X
- Return the minimum

Time $O(d^n)$, linear space

update k to $\Phi_{\mathcal{M}}(\boldsymbol{v})$

CONDITIONING-BASED APPROACHES

51

Systematic tree search

- If all $|D^X| = 1$ obvious minimum
- Else choose $X \in V$ s.t. $|D^X| > 1$ and $u \in D^X$ and reduce to
 - 1. one query where we condition by $X_i = u$
 - 2. one where u is removed from D^X
- Return the minimum

Time $O(d^n)$, linear space

update k to $\Phi_{\mathcal{M}}(\boldsymbol{v})$

CONDITIONING-BASED APPROACHES

51

Systematic tree search

- If all $|D^X| = 1$ obvious minimum
- Else choose $X \in V$ s.t. $|D^X| > 1$ and $u \in D^X$ and reduce to
 - 1. one query where we condition by $X_i = u$
 - 2. one where u is removed from D^X
- Return the minimum

Time $O(d^n)$, linear space

update k to $\Phi_{\mathcal{M}}(\boldsymbol{v})$

Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15]

- Anyspace
- Uses Depth-First Search for a bounded amount of backtracks
- Pending nodes are pushed onto a list of Open nodes
- The next DFS starts from the best Open node
- Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

- Good upper bounds quickly (DFS)
- A constantly improving lower bound (optimality gap)
- Implicit restarts, easy parallelization

Hybrid Best First Search [All+15]

- Uses Depth-First Search for a bounded amount of backtracks
- Pending nodes are pushed onto a list of Open nodes
- The next DFS starts from the best Open node
- Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Anyspace

Nice properties

- Good upper bounds quickly (DFS)
- A constantly improving lower bound (optimality gap)
- Implicit restarts, easy parallelization

Also local search of course (VNS here)

Two last tools: Combination and Elimination

Combination of φ_{S} and $\varphi_{S'}$	Space/time $O(d^{ S\cup S' })$ for tensors	
$(arphi_{oldsymbol{S}} eq eta^k arphi_{oldsymbol{S}'})(oldsymbol{v}) = arphi_{oldsymbol{S}}(oldsymbol{v}[oldsymbol{S}]) + $		
Elimination of $X \in \boldsymbol{S}$ from $\varphi_{\boldsymbol{S}}$	Time $O(d^{ S })$, space $O(d^{ S -1})$ for tensors	

Two last tools: Combination and Elimination

Combination of φ_{S} and $\varphi_{S'}$ Space/time $O(d^{ S \cup S' })$ for ten	
$(\varphi_{\boldsymbol{S}} \stackrel{k}{+} \varphi_{\boldsymbol{S}'})(\boldsymbol{v}) = \varphi_{\boldsymbol{S}}(\boldsymbol{v}[\boldsymbol{S}]) \stackrel{k}{+} \varphi_{\boldsymbol{S}'}(\boldsymbol{v}[\boldsymbol{S}'])$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Rightarrow X_{2} \qquad \begin{array}{c c} X_{1} \\ a & 5 & 6 & 7 \\ \hline & 9 & 7 & 8 \\ c & 6 & 7 & 5 \end{array}$
Elimination of $X \in \boldsymbol{S}$ from $\varphi_{\boldsymbol{S}}$	Time $O(d^{ S })$, space $O(d^{ S -1})$ for tensors

Used together

- Combination accumulates all information in a single function
- Elimination forgets one variable without loosing *optimality* information

At the core of

- Local consistencies, Unit propagation: subproblem induced by one function
- Variable elimination, the Resolution Principle: subproblem around one variable

Used together

- Combination accumulates all information in a single function
- Elimination forgets one variable without loosing *optimality* information

At the core of

Local consistencies, Unit propagation: subproblem induced by one function

• Variable elimination, the Resolution Principle: subproblem around one variable

Arc consistency of X_i w.r.t. φ_{ij} [RBW06]

- **Combine** φ_{ij} and the unary φ_j
- Eliminate X_j producing a function (message) on X_i

$$m_i^j = (\varphi_{ij} + \varphi_j)[-X_j]$$

Properties

- \blacksquare The message can be added to $arphi_i$
- X_i is AC w.r.t. φ_{ij} if $m_j^i \leq \varphi_i$
- Unique fixpoint, reached in polynomial time
- Support of $u \in D^i$ on D^j

(relaxation, value deletion) (no new information) (inconsistency detection) e argmin of the elimination

Arc consistency of X_i w.r.t. φ_{ij} [RBW06]

- **Combine** φ_{ij} and the unary φ_j
- Eliminate X_j producing a function (message) on X_i

$$n_i^j = (\varphi_{ij} + \varphi_j)[-X_j]$$

Properties

- \blacksquare The message can be added to φ_i
- X_i is AC w.r.t. φ_{ij} if $m_j^i \leq \varphi_i$
- Unique fixpoint, reached in polynomial time
- Support of $u \in D^i$ on D^j

(relaxation, value deletion) (no new information) (inconsistency detection) the argmin of the elimination

Obvious issue

Messages can not be included in the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with $-^k \;\; (lpha - ^k eta) \equiv ((lpha = k) \; ? \; k : lpha - eta)$

- lacksquare Add the message m_i^j to $arphi_j$ with +
- Subtract m_i^j from its source using $-^k$

Can be reversed, any relaxation of m_i^j can be used instead

Obvious issue

Messages can not be included in the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with $-^{k}$ $(\alpha - ^{k} \beta) \equiv ((\alpha = k) ? k : \alpha - \beta)$

- Add the message m_i^j to φ_j with +
- **Subtract** m_i^j from its source using $-^k$

Can be reversed, any relaxation of m_i^j can be used instead

(Loss of) properties

Preserves equivalence but fixpoints may be non unique (or may not exist)

ANITI INRAC

(Loss of) properties

$$\Downarrow$$
 $m_{
m s}$

$$\varphi_{\varnothing} = 1$$

(Loss of) properties

$$\Downarrow$$
 $m_{
m s}$

$$\varphi_{\varnothing} = 1$$

(Loss of) properties

The many "soft ACs" [Coo+10]

NC: one unary function [Lar02]	Unary suppo	rts ($\varphi_i(u)=0$)
+AC: one binary function [Sch00; Lar02]	Arc supports ($v\in D^j$	$, \varphi_{ij}(u,v) = 0)$
■ +DAC: FDAC, binary & unary function (+ directio	n) [Coo03]	Full Supports
• +Existential AC: EDAC, a star (variable incident fu	Inctions) [Lar+05]	EAC supports
+Virtual AC: any spanning tree [Coo+08; Coo+10]		VAC supports

Properties

Related works in Comp. Vision [Kol06; Son+12; Wer07; Kol15]

- Proper extension of classical NC/DAC or AC respectively
- Polynomial time and O(ed) space
- Incremental, strengthens $\varphi_{\mathscr{L}}$
- May have several fixpoints/ φ_{\varnothing}

- $AC \ge EDAC \ge FDAC \ge AC \ge NC$

ANIT
The many "soft ACs" [Coo+10]

NC: one unary function [Lar02]	Unary supports ($arphi_i$	(u) = 0)
+AC: one binary function [Sch00; Lar02]	Arc supports ($v\in D^j, arphi_{ij}(u,$	(v) = 0
■ +DAC: FDAC, binary & unary function (+ direction	n) [Coo03] Full S	upports
• +Existential AC: EDAC, a star (variable incident fu	Inctions) [Lar+05] EAC s	upports
+Virtual AC: any spanning tree [Coo+08; Coo+10]	VAC s	upports

n	
Pro	nortioc
110	perties

Related works in Comp. Vision [Kol06; Son+12; Wer07; Kol15]

- Proper extension of classical NC/DAC or AC respectively
- Polynomial time and O(ed) space
- Incremental, strengthens φ_{\varnothing}
- May have several fixpoints/ φ_{\varnothing}

(VAC > EDAC > FDAC > AC > NC)

Sequence of integer EPTs

Computing a sequence of integer EPTs that maximizes φ_{\varnothing} is decision NP-complete [CS04]

Set of rational EPTs (OSAC [Sch76; Coo07; Wer07; Coo+10])

Computing a set of rational EPTs maximizing φ_{\emptyset} is in P, solvable by Linear Prog. + AC Solving the dual of the local polytope + AC enforcing (k)

Sequence of integer EPTs

Computing a sequence of integer EPTs that maximizes φ_{\emptyset} is decision NP-complete [CS04]

Set of rational EPTs (OSAC [Sch76; Coo07; Wer07; Coo+10])

Computing a set of rational EPTs maximizing φ_{\emptyset} is in P, solvable by Linear Prog. + AC Solving the dual of the local polytope + AC enforcing (k)

OPTIMAL SOFT ARC CONSISTENCY (OPTIMIZATION ALONE)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

- 1. u_i : amount of cost shifted from φ_i to φ_{\varnothing}
- 2. p_{ija} : amount of cost shifted from φ_{ij} to $\varphi_i(a)$
- 3. p_{jib} : amount of cost shifted from φ_{ij} to $\varphi_j(b)$

OSAC

$$\begin{array}{ll} \text{Maximize } \sum_{i=1}^{n} u_{i} & \text{subject to} \\ \\ \varphi_{i}(a) - u_{i} + \sum_{(\varphi_{ij} \in C)} p_{ija} \geq 0 & \forall i \in \{1, \dots, n\}, \, \forall a \in D^{i} \\ \\ \varphi_{ij}(a, b) - p_{ija} - p_{jib} \geq 0 & \forall \varphi_{ij} \in C, \forall (a, b) \in D^{ij} \end{array}$$

OPTIMAL SOFT ARC CONSISTENCY (OPTIMIZATION ALONE)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

- 1. u_i : amount of cost shifted from φ_i to φ_{\varnothing}
- 2. p_{ija} : amount of cost shifted from $arphi_{ij}$ to $arphi_i(a)$
- 3. p_{jib} : amount of cost shifted from φ_{ij} to $\varphi_j(b)$

OSAC

$$\begin{array}{ll} \text{Maximize } \displaystyle\sum_{i=1}^{n} u_{i} & \text{subject to} \\ \\ \varphi_{i}(a) - u_{i} + \displaystyle\sum_{(\varphi_{ij} \in C)} p_{ija} \geq 0 & \forall i \in \{1, \ldots, n\}, \ \forall a \in D^{i} \\ \\ \varphi_{ij}(a, b) - p_{ija} - p_{jib} \geq 0 & \forall \varphi_{ij} \in C, \forall (a, b) \in D^{ij} \end{array}$$

OSAC AND THE LOCAL POLYTOPE

 $\sum x_{ia} = 1$

 $a \in$

The "local polytope"

$$\mathsf{Minimize} \sum_{i,a} \varphi_i(a) \cdot x_{ia} + \sum_{\substack{\varphi_{ij} \in \Phi \\ a \in D^i, b \in D^j}} \varphi_{ij}(a,b) \cdot y_{iajb} \; \; \mathsf{such that} \;$$

$$\forall i \in \{1, \dots, n\}$$
 (2)

$$\sum_{b \in D^{j}} y_{iajb} = x_{ia} \qquad \qquad \forall \varphi_{ij} \in \Phi, \forall a \in D^{i} \quad (3)$$

$$\sum_{D^{i}} y_{iajb} = x_{jb} \qquad \qquad \forall \varphi_{ij} \in \Phi, \forall b \in D^{j} \quad (4)$$

 u_i multiplier for (2), p_{ija}/p_{jib} for (3) and (4)

Local polytope proved to be "Universal for LP" [PW15]

Problem solved by OSAC/VAC [Coo+10; KZ17]

- Tree-structured problems
- Permutated submodular problems
- OSAC/VAC + $\forall X_i, \exists ! u \in D^i \text{ s.t. } \varphi_i(u) = 0$

(eg. Min-Cut, Min/Max-closed relations)

[Coo+10; HSS18; TGK20]

Supports provide value ordering heuristics

- EAC supports u for X_i : $\varphi_i(u) = 0$, can be extended for free on X_i 's star
- VAC supports can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides cost-based pruning

If $(\varphi_{\varnothing} \neq^k \varphi_i(u)) = k$, NC deletes u

Local consistencies vs. LP

- OSAC empirically very expensive to enforce
- Local consistencies provide fast approximate LP bounds
- and deal with constraints seamlessly

CFN Local Consistencies

Enhance CP with fast incremental approximate Linear Programming dual bounds

Local consistencies vs. LP

- OSAC empirically very expensive to enforce
- Local consistencies provide fast approximate LP bounds
- and deal with constraints seamlessly

CFN Local Consistencies

Enhance CP with fast incremental approximate Linear Programming dual bounds

CPLEX V12.4.0.0

```
Problem '3e4h.LP' read.
Root relaxation solution time = 811.28 sec.
...
MIP - Integer optimal solution: Objective = 150023297067
Solution time = 864.39 sec.
```

tb2 and VAC

loading CFN file: 3e4h.wcsp Lb after VAC: 150023297067 Preprocessing time: 9.13 seconds. Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

Kind words from OpenGM2 developpers

"ToulBar2 variants were superior to CPLEX variants in all our tests"[HSS18]

32

(AC3 based)

CPLEX V12.4.0.0

```
Problem '3e4h.LP' read.
Root relaxation solution time = 811.28 sec.
...
MIP - Integer optimal solution: Objective = 150023297067
Solution time = 864.39 sec.
```

tb2 and VAC

loading CFN file: 3e4h.wcsp Lb after VAC: 150023297067 Preprocessing time: 9.13 seconds. Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.

Kind words from OpenGM2 developpers

"ToulBar2 variants were superior to CPLEX variants in all our tests"[HSS18]

(AC3 based)

WHAT IF THE LANGUAGE IS CNF?

Soft UP and Max resolution [LH05; BLM07]

- combination and elimination are Ok
- but subtracting a clause from another clause does not yield a clause (CNF/DNF)
- generates additional "compensation" clauses [LH05; HLO07; BLM07; LHG08])

More issues

Definition (Message from *X* to its neighbors)

Let $X \in V$, and Φ^X be the set $\{\varphi_S \in \Phi \text{ s.t. } X \in S\}$, T, the neighbors of X. The message $m_T^{\Phi_X}$ from Φ^X to T is:

$$m_T^{\Phi_X} = (\sum_{\varphi_S \in \Phi^X} {}^k \varphi_S)[-X]$$

The message contains all the effect of X on the optimization problem Distributivity

$$\min_{\boldsymbol{v}\in D^{V}}\left[\sum_{\varphi_{\boldsymbol{S}}\in\Phi}^{k}(\varphi_{\boldsymbol{S}}(\boldsymbol{v}[\boldsymbol{S}]))\right] \quad = \quad \min_{\boldsymbol{v}\in D^{V-\{X\}}}\left[\sum_{\varphi<_{\boldsymbol{S}}\in\Phi-\Phi^{X}\cup\{m_{T}^{\Phi_{X}}\}}^{k}(\varphi_{\boldsymbol{S}}(\boldsymbol{v}[\boldsymbol{S}]))\right]$$

Definition (Message from *X* to its neighbors)

Let $X \in V$, and Φ^X be the set $\{\varphi_S \in \Phi \text{ s.t. } X \in S\}$, T, the neighbors of X. The message $m_T^{\Phi_X}$ from Φ^X to T is:

$$m_T^{\Phi_X} = (\sum_{\varphi_S \in \Phi^X} {}^k \varphi_S)[-X]$$

The message contains all the effect of X on the optimization problem Distributivity

$$\min_{\boldsymbol{v}\in D^{\boldsymbol{V}}}\left[\sum_{\varphi_{\boldsymbol{S}}\in\Phi}^{k}(\varphi_{\boldsymbol{S}}(\boldsymbol{v}[\boldsymbol{S}]))\right] \quad = \quad \min_{\boldsymbol{v}\in D^{\boldsymbol{V}-\{\boldsymbol{X}\}}}\left[\sum_{\varphi<_{\boldsymbol{S}}\in\Phi-\Phi^{\boldsymbol{X}}\cup\{\boldsymbol{m}_{\boldsymbol{T}}^{\Phi_{\boldsymbol{X}}}\}}^{k}(\varphi_{\boldsymbol{S}}(\boldsymbol{v}[\boldsymbol{S}]))\right]$$

Boosting search with VE [Lar00]

Boosting search with VE [Lar00]

1 Optimization

- 2 Algorithms
- 3 All Toulbar2 bells and whistles

4 Learning CFN from data

- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- Value ordering (for free): existential or virtual supports
- Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]
- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- Value ordering (for free): existential or virtual supports
- Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]
- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- Value ordering (for free): existential or virtual supports
- Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]
- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- Value ordering (for free): existential or virtual supports
- Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]
- **Function decomposition** [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- Value ordering (for free): existential or virtual supports
- Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]
- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- Value ordering (for free): existential or virtual supports
- Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]
- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

- Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]
- Value ordering (for free): existential or virtual supports
- Dominance analysis (substitutability/DEE) [Fre91; DPO13; All+14]
- Function decomposition [Fav+11]
- Global cost functions (weighted Regular, All-Diff, Among...) [LL12; All+16]
- Incremental solving, guaranteed diverse solutions [Ruf+19]
- Parallel decomposed Variable Neighborhood Search/LDS (UPDGVNS [Oua+20])

Unified Decomposition Guided VNS $_{\rm [Oua+20;\,Oua+17]}$

Practical aspects

- C++ Open source, MIT licence on GitHub, available in Debian
- Uses 64 bits integer costs to represent adjustable precision decimal costs
- Tackles minimization, maximization with costs of arbitrary signs and constraints
- JSON compatible CFN input format
- Python API (PyToulbar2)

3026 instances of various origins

genoweb.toulouse.inra.fr/~degivry/evalgm

- MRF: Probabilistic Inference Challenge 2011
- CVPR: Computer Vision & Pattern Recognition OpenGM2
- CFN: Cost Function Library
- MaxCSP: MaxCSP 2008 competition
- WPMS: Weighted Partial MaxSAT evaluation 2013
- CP: MiniZinc challenge 2012/13

Benchmark	Nb.	UAI	WCSP	LP(direct)	LP(tuple)	WCNF(direct)	WCNF(tuple)	MINIZINC
MRF CVPR CFN MaxCSP WPMS CP	319 1461 281 503 427 35	187MB 430MB 43MB 13MB N/A 7.5MB	475MB 557MB 122MB 24MB 387MB 597MB	2.4G 9.8GB 300MB 311MB 433MB 499MB	2.0GB 11GB 3.5GB 660MB N/A 1.2GB	518MB 3.0GB 389MB 73MB 717MB 378MB	2.9GB 15GB 5.7GB 999MB N/A 1.9GB	473MB N/A 69MB 29MB 631MB 21KB
Total	3026	0.68G	2.2G	14G	18G	5G	27G	1.2G
HBFS - Normalized LB AND UB PROFILES (HARD PROBLEMS) [HUR+16]

Comparison with Rosetta's Simulated Annealing [Sim+15]

Optimality gap of the Simulated annealing solution as problems get harder

QUANTUM COMPUTING (DWAVE), TOULBAR2 & SA [MUL+19]

DWave approximations

within 1.16 of optimum, 10% of the time

4.35, 50% of the time

8.45, 90% of the time

UDGVNS - NUMBER OF SOLVED PROBLEMS [OUA+17]

ANITI

INRAØ

UDGVNS - UPPER BOUND PROFILES[OUA+17]

UPDGVNS - UPPER BOUND PROFILES[OUA+20]

1 Optimization

- 2 Algorithms
- 3 All Toulbar2 bells and whistles
- 4 Learning CFN from data

Definition (Learning a pairwise CFN from high quality solutions)

Given:

- \blacksquare a set of variables V,
- a set of assignments E i.i.d. from an unknown distribution of high-quality solutions Find a pairwise CFN M that can be solved to produce high-quality solutions

MRFs tightly connected	(additive energy)			

Definition (Learning a pairwise CFN from high quality solutions)

Given:

- \blacksquare a set of variables V,
- a set of assignments E i.i.d. from an unknown distribution of high-quality solutions Find a pairwise CFN M that can be solved to produce high-quality solutions

MRFs tightly connecte	d to CFNs (<i>k</i>	(additive energy)		
MRF ${\cal M}$	$\xrightarrow{-\log(x)}$	CFN \mathcal{M}^ℓ	$ \exp(-x)$	MRF ${\cal M}$

Opens the door to learning from data ${\pmb E}$

- \blacksquare *E* a set of i.i.d. assignments of *V*
- The log-likelihood of \mathcal{M} given \boldsymbol{E} is $\log(\prod_{\boldsymbol{v} \in \boldsymbol{E}} P_{\mathcal{M}}(\boldsymbol{v})) = \sum_{\boldsymbol{v} \in \boldsymbol{E}} \log(P_{\mathcal{M}}(\boldsymbol{v}))$
- Maximimizing loglikelihood over all binary \mathcal{M}

 $(O(\frac{n(n-1)}{2}d^2) \text{ costs})$

Maximum loglikelihood \mathcal{M} on \mathcal{M}_{ℓ}

$$\begin{aligned} \mathcal{L}(\mathcal{M}, E) &= \log(\prod_{v \in E} P_{\mathcal{M}}(v)) = \sum_{v \in E} \log(P_{\mathcal{M}}(v)) \\ &= \sum_{v \in E} \log(\Phi_{\mathcal{M}}(v)) - \log(Z_{\mathcal{M}}) \\ &= \sum_{v \in E} (-C_{\mathcal{M}^{\ell}}(v)) - \log(\sum_{t \in \prod X \in VD^{X}} \exp(-C_{\mathcal{M}^{\ell}}(t))) \\ &\xrightarrow{\text{-costs of } E \text{ samples}} \underbrace{\text{Soft-Min of all assignment costs}} \end{aligned}$$

Opens the door to learning from data ${\pmb E}$

- \blacksquare *E* a set of i.i.d. assignments of *V*
- The log-likelihood of \mathcal{M} given \boldsymbol{E} is $\log(\prod_{\boldsymbol{v} \in \boldsymbol{E}} P_{\mathcal{M}}(\boldsymbol{v})) = \sum_{\boldsymbol{v} \in \boldsymbol{E}} \log(P_{\mathcal{M}}(\boldsymbol{v}))$
- Maximimizing loglikelihood over all binary \mathcal{M}

$$(O(\frac{n(n-1)}{2}d^2) \operatorname{costs})$$

Maximum loglikelihood $\mathcal M$ on $\mathcal M_\ell$

$$\begin{aligned} \mathcal{L}(\mathcal{M}, \boldsymbol{E}) &= \log(\prod_{\boldsymbol{v} \in \boldsymbol{E}} P_{\mathcal{M}}(\boldsymbol{v})) = \sum_{\boldsymbol{v} \in \boldsymbol{E}} \log(P_{\mathcal{M}}(\boldsymbol{v})) \\ &= \sum_{\boldsymbol{v} \in \boldsymbol{E}} \log(\Phi_{\mathcal{M}}(\boldsymbol{v})) - \log(Z_{\mathcal{M}}) \\ &= \sum_{\boldsymbol{v} \in \boldsymbol{E}} (-C_{\mathcal{M}^{\ell}}(\boldsymbol{v})) - \log(\sum_{\boldsymbol{t} \in \prod X \in \boldsymbol{V} D^{X}} \exp(-C_{\mathcal{M}^{\ell}}(\boldsymbol{t}))) \\ &\xrightarrow{\text{-costs of } \boldsymbol{E} \text{ samples}} \underbrace{\text{Soft-Min of all assignment costs}} \end{aligned}$$

LEARNING A COST FUNCTION NETWORK FROM HIGH-QUALITY SOLUTIONS

See how it learns how to play the Sudoku (and more) Friday 9/11, 1PM session

LEARNING A COST FUNCTION NETWORK FROM HIGH-QUALITY SOLUTIONS

See how it learns how to play the Sudoku (and more) Friday 9/11, 1PM session

- [ALL+14] David Allouche et al. "Computational protein design as an optimization problem".In: Artificial Intelligence 212 (2014), pp. 59–79.
- [ALL+15] David Allouche et al. "Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP". In: Principles and Practice of Constraint Programming. Springer. 2015, pp. 12–29.
- [ALL+16] David Allouche et al. "Tractability-preserving transformations of global cost functions". In: *Artificial Intelligence* 238 (2016), pp. 166–189.
- [AM00] Srinivas M Aji and Robert J McEliece. "The generalized distributive law". In: *IEEE transactions on Information Theory* 46.2 (2000), pp. 325–343.
- [BB69A] Umberto Bertele and Francesco Brioschi. "A new algorithm for the solution of the secondary optimization problem in non-serial dynamic programming". In: *Journal of Mathematical Analysis and Applications* 27.3 (1969), pp. 565–574.
- [BB69B] Umberto Bertele and Francesco Brioschi. "Contribution to nonserial dynamic programming". In: *Journal of Mathematical Analysis and Applications* 28.2 (1969), pp. 313–325.
- [BB72] Umberto Bertelé and Francesco Brioshi. *Nonserial Dynamic Programming*. Academic Press, 1972.

- [BGS20] Céline Brouard, Simon de Givry, and Thomas Schiex. "Pushing data into CP models using Graphical Model Learning and Solving". In: LNCS 4204 (2020).
- [BH02] E. Boros and P. Hammer. "Pseudo-Boolean Optimization". In: *Discrete Appl. Math.* 123 (2002), pp. 155–225.
- [BHM09] Armin Biere, Marijn Heule, and Hans van Maaren, eds. *Handbook of Satisfiability*. Vol. 185. IOS press, 2009.
- [BIS06] Christopher M Bishop. *Pattern Recognition and Machine Learning*. Springer, 2006.
- [BLM07] María Luisa Bonet, Jordi Levy, and Felip Manyà. "Resolution for max-sat". In: Artificial Intelligence 171.8-9 (2007), pp. 606–618.
- [Bou+04] Frédéric Boussemart et al. "Boosting systematic search by weighting constraints". In: *ECAI*. Vol. 16. 2004, p. 146.
- [CAB+99] B. Cabon et al. "Radio Link Frequency Assignment". In: Constraints 4 (1999), pp. 79–89.
- [CGS07] M C. Cooper, S. de Givry, and T. Schiex. "Optimal soft arc consistency". In: *Proc.* of IJCAI'2007. Hyderabad, India, Jan. 2007, pp. 68–73.

- [CGS20] Martin Cooper, Simon de Givry, and Thomas Schiex. "Graphical Models: Queries, Complexity, Algorithms". In: Leibniz International Proceedings in Informatics (STACS'2020) 154 (2020), pp. 4–1.
- [Coo+08] Martin C Cooper et al. "Virtual Arc Consistency for Weighted CSP". In: AAAI. Vol. 8. 2008, pp. 253–258.
- [Coo+10] M. Cooper et al. "Soft arc consistency revisited". In: Artificial Intelligence 174 (2010), pp. 449–478.
- [Coo03] M C. Cooper. "Reduction operations in fuzzy or valued constraint satisfaction". In: *Fuzzy Sets and Systems* 134.3 (2003), pp. 311–342.
- [Coo07] M C. Cooper. "On the minimization of locally-defined submodular functions". In: *Constraints* (2007). To appear.
- [CS04] M C. Cooper and T. Schiex. "Arc consistency for soft constraints". In: Artificial Intelligence 154.1-2 (2004), pp. 199–227.
- [DEC99] Rina Dechter. "Bucket Elimination: A Unifying Framework for Reasoning". In: Artificial Intelligence 113.1–2 (1999), pp. 41–85.
- [DPO13] Simon De Givry, Steven D Prestwich, and Barry O'Sullivan. "Dead-end elimination for weighted CSP". In: *Principles and Practice of Constraint Programming*. Springer. 2013, pp. 263–272.

- [DR03] Rina Dechter and Irina Rish. "Mini-buckets: A general scheme for bounded inference". In: *Journal of the ACM (JACM)* 50.2 (2003), pp. 107–153.
- [FAV+11] A. Favier et al. "Pairwise decomposition for combinatorial optimization in graphical models". In: *Proc. of IJCAI'11*. Barcelona, Spain, 2011.
- [FRE91] Eugene C. Freuder. "Eliminating Interchangeable Values in Constraint Satisfaction Problems". In: *Proc. of AAAI'91*. Anaheim, CA, 1991, pp. 227–233.
- [FW92] E.C. Freuder and R.J. Wallace. "Partial Constraint Satisfaction". In: Artificial Intelligence 58 (Dec. 1992), pp. 21–70.
- [GSV06] S. de Givry, T. Schiex, and G. Verfaillie. "Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP". In: *Proc. of the National Conference on Artificial Intelligence, AAAI-2006.* 2006, pp. 22–27.
- [HG95] W. D. Harvey and M. L. Ginsberg. "Limited Discrepency Search". In: *Proc. of the* 14th IJCAI. Montréal, Canada, 1995.
- [HLO07] Federico Heras, Javier Larrosa, and Albert Oliveras. "MiniMaxSat: A New Weighted Max-SAT Solver". In: Proc. of SAT'2007. LNCS 4501. Lisbon, Portugal, May 2007, pp. 41–55.

- [HSS18] Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. "Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation". In: *Thirty-Second AAAI Conference on Artificial Intelligence*. 2018.
- [HUR+16] Barry Hurley et al. "Multi-language evaluation of exact solvers in graphical model discrete optimization". In: *Constraints* (2016), pp. 1–22.
- [KF09] Daphne Koller and Nir Friedman. *Probabilistic graphical models: principles and techniques.* MIT press, 2009.
- [Kol06] Vladimir Kolmogorov. "Convergent tree-reweighted message passing for energy minimization". In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 28.10 (2006), pp. 1568–1583.
- [Kol15] Vladimir Kolmogorov. "A new look at reweighted message passing". In: *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 37.5 (2015), pp. 919–930.
- [Kos99] A M C A. Koster. "Frequency assignment: Models and Algorithms". Available at www.zib.de/koster/thesis.html. PhD thesis. The Netherlands: University of Maastricht, Nov. 1999.
- [KZ17] Andrei A. Krokhin and Stanislav Zivny. "The Complexity of Valued CSPs". In: The Constraint Satisfaction Problem: Complexity and Approximability. Ed. by Andrei A. Krokhin and Stanislav Zivny. Vol. 7. Dagstuhl Follow-Ups. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 233–266. ISBN: 978-3-95977-003-3. DOI: 10.4230/DFU.Vol7.15301.9. URL: https://doi.org/10.4230/DFU.Vol7.15301.9.

- [LAR+05] J. Larrosa et al. "Existential arc consistency: getting closer to full arc consistency in weighted CSPs". In: *Proc. of the 19th IJCAI*. Edinburgh, Scotland, Aug. 2005, pp. 84–89.
- [LAR00] J. Larrosa. "Boosting search with variable elimination". In: Principles and Practice of Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 291–305.
- [LAR02] J. Larrosa. "On Arc and Node Consistency in weighted CSP". In: *Proc. AAAI'02*. Edmondton, (CA), 2002, pp. 48–53.
- [LEC+09] C. Lecoutre et al. "Reasoning from last conflict(s) in constraint programming". In: *Artificial Intelligence* 173 (2009), pp. 1592, 1614.
- [LH05] J. Larrosa and F. Heras. "Resolution in Max-SAT and its relation to local consistency in weighted CSPs". In: Proc. of the 19th IJCAI. Edinburgh, Scotland, 2005, pp. 193–198.

- [LHG08] Javier Larrosa, Federico Heras, and Simon de Givry. "A logical approach to efficient Max-SAT solving". In: Artif. Intell. 172.2-3 (2008), pp. 204–233. URL: http://dx.doi.org/10.1016/j.artint.2007.05.006.
- [LL12] Jimmy Ho-Man Lee and Ka Lun Leung. "Consistency techniques for flow-based projection-safe global cost functions in weighted constraint satisfaction". In: *Journal of Artificial Intelligence Research* 43.1 (2012), pp. 257–292.
- [LS03] J. Larrosa and T. Schiex. "In the quest of the best form of local consistency for Weighted CSP". In: Proc. of the 18th IJCAI. Acapulco, Mexico, Aug. 2003, pp. 239–244.
- [LS04] Javier Larrosa and Thomas Schiex. "Solving weighted CSP by maintaining arc consistency". In: *Artif. Intell.* 159.1-2 (2004), pp. 1–26.
- [LW66] Eugene L Lawler and David E Wood. "Branch-and-bound methods: A survey". In: *Operations research* 14.4 (1966), pp. 699–719.
- [MD09] Radu Marinescu and Rina Dechter. "AND/OR branch-and-bound search for combinatorial optimization in graphical models". In: *Artificial Intelligence* 173.16-17 (2009), pp. 1457–1491.
- [MUL+19] Vikram Khipple Mulligan et al. "Designing Peptides on a Quantum Computer". In: *bioRxiv* (2019), p. 752485.

- [OuA+17] Abdelkader Ouali et al. "Iterative decomposition guided variable neighborhood search for graphical model energy minimization". In: *Conference on Uncertainty in Artificial Intelligence, UAI'17.* Sydney, Australia, 2017.
- [OuA+20] Abdelkader Ouali et al. "Variable neighborhood search for graphical model energy minimization". In: *Artificial Intelligence* 278 (2020), p. 103194.
- [Рон70] Ira Pohl. "Heuristic search viewed as path finding in a graph". In: *Artificial intelligence* 1.3–4 (1970), pp. 193–204.
- [PW15] Daniel Prusa and Tomas Werner. "Universality of the local marginal polytope". In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 37.4 (2015), pp. 898–904.
- [RBW06] F. Rossi, P. van Beek, and T. Walsh, eds. *Handbook of Constraint Programming*. Elsevier, 2006.
- [Réc94] J.C. Régin. "A filtering algorithm for constraints of difference in CSPs". In: *Proc. of AAAI'94*. Seattle, WA, 1994, pp. 362–367.
- [RUF+19] Manon Ruffini et al. "Guaranteed Diversity & Quality for the Weighted CSP". In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE. 2019, pp. 18–25.

- [Sсн00] T. Schiex. "Arc consistency for soft constraints". In: *Principles and Practice of Constraint Programming - CP 2000.* Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411–424.
- [Sсн76] M.I. Schlesinger. "Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in noisy conditions)". In: *Kibernetika* 4 (1976), pp. 113–130.
- [SFV95] T. Schiex, H. Fargier, and G. Verfaillie. "Valued Constraint Satisfaction Problems: hard and easy problems". In: Proc. of the 14th IJCAI. Montréal, Canada, Aug. 1995, pp. 631–637.
- [SGS08] Martí Sánchez, Simon de Givry, and Thomas Schiex. "Mendelian Error Detection in Complex Pedigrees Using Weighted Constraint Satisfaction Techniques". In: Constraints 13.1-2 (2008), pp. 130–154.
- [SHA91] G. Shafer. *An Axiomatic Study of Computation in Hypertrees*. Working paper 232. Lawrence: University of Kansas, School of Business, 1991.
- [SIM+15] David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: *Journal of Chemical Theory and Computation* 11.12 (2015), pp. 5980–5989. DOI: 10.1021/acs.jctc.5b00594.

- [Son+12] David Sontag et al. "Tightening LP relaxations for MAP using message passing". In: arXiv preprint arXiv:1206.3288 (2012).
- [TGK20] Fulya Trösser, Simon de Givry, and George Katsirelos. "VAC integrality based variable heuristics and initial upper-bounding (vacint and rasps):
 Relaxation-Aware Heuristics for Exact Optimization in Graphical Models". In: *Proc. of CPAIOR-20.* 2020.
- [WER07] T. Werner. "A Linear Programming Approach to Max-sum Problem: A Review.". In: IEEE Trans. on Pattern Recognition and Machine Intelligence 29.7 (July 2007), pp. 1165–1179. URL: http://dx.doi.org/10.1109/TPAMI.2007.1036.