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Human reasoning and scientific discovery

Inductive and deductive reasoning

> From observations (solutions) we construct a theory (F = mv)
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Human reasoning and scientific discovery

Inductive and deductive reasoning

> From observations (solutions) we construct a theory (F = mv)
» We then use the theory to make predictions and design objects
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Sudoku grid with solution Protein structure with its sequence

The theory is written as a pairwise Graphical Model (a Cost Function Network)
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Additive discrete graphical model CFN/WCSPF

Reminder
> Aset X of variables nvariables
» Variable x; has domain D; max. size d
> aset of cost functions ¢j: Dy x Dy — R U {oo}
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Additive discrete graphical model CFN/WCSPF

Reminder
> Aset X of variables nvariables
» Variable x; has domain D; max. size d
> aset of cost functions ¢j: Dy x Dy — R U {oo}

Variables and parameters/costs

» The cost C(t) of an assignment t is the sum of all cost functions on t
» The cost is linear in the parameters (costs in CF tables)
> It defines a probability distribution: P(t) o exp(—C(t)) Markov Random Fields
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Structured output prediction (SOP) with a CFN model
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Structured output prediction (SOP) with a CFN model

8 | 4 | 1 | W———— Neural net
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Structured output prediction (SOP) with a CFN model
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Structured output prediction (SOP) with a CFN model

Sudoku
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Structured output prediction (SOP) with a CFN model

Sudoku
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Structured output prediction (SOP) with a CFN model

Sudoku
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Hamming JX

X piece-wise constant

Issues
» Gradients either zero or undefined

> Requires to repeatedly solve random NP-hard instances
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Structured output prediction (SOP) with a CFN model

Sudoku
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%
Hamming J X
X piece-wise constant
Natural choice: the negative loglikelihood #P-hard
> Use Besag’s pseudo-loglikelihood (1975, efficient) (Besag 1975)

> Kicks the solver out of the training loop (scalable training)
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Besag's Pseudo-Loglikelihood

» The Pseudo-LL masks each variable successively in the solution X (Besag 1975)

NLL = — > log(P(x) NPLL= = ) "log(P(xilx—1))
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Besag's Pseudo-Loglikelihood

» The Pseudo-LL masks each variable successively in the solution X (Besag 1975)
NLL = —) "log(P(x)) NPLL=—> " "log(P(xi[x_;))
X X Xj
» Nice asymptotic properties statistically consistent
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Besag's Pseudo-Loglikelihood

» The Pseudo-LL masks each variable successively in the solution X (Besag 1975)

NLL = —) "log(P(x))

» Nice asymptotic properties
» The NPLL is a “Fenchel-Young” loss

NPLL=—> "> "log(P(xi|xs))

statistically consistent

(Defresne, Gambardella, et al. 2026; Blondel et al. 2020)
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Besag's Pseudo-Loglikelihood

» The Pseudo-LL masks each variable successively in the solution X (Besag 1975)
NLL = —) "log(P(x)) NPLL=—> " "log(P(xi[x_;))
X X Xi
» Nice asymptotic properties statistically consistent
» The NPLL is a “Fenchel-Young” loss (Defresne, Gambardella, et al. 2026; Blondel et al. 2020)
» Does not work in practice (high costs) (Montanari et al. 2009)

Vanishing gradient issue

» If enough constraints have been learned to force the observed value of X; in the context of x_;,
it becomes impossible to learn other constraints.

> Related to the idempotence of logical information
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The Emmental-PLL

Removing vanishing gradients
We ignore a random fraction of the neighbors/functions when computing P(x;|x_;)
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Easy, hard and extremely hard Sudoku grids

Type Approach Acc.  #hints Trainset Param. Train time (h)
DL RRN (Palm et al. 2018) 96.6% 17 180,000 200k > 50
Rec. Trans. (Yang et al. 2023) 96.7% 17 180,000 211k > 50
Rec. Trans. 76.2-78.2% 17 9,000 - 1.8
DDPM (Ye et al. 2025) 99.2—-100% 33.8 100,000 6M 13.6
DDPM 0.2% 17 - - -
HRM (G. Wang et al. 2025) 55%  24.8 1,000 x 1,001  27M 510
Relax+DL  SATNet (P.-W. Wang et al. 2019) 95.1-99.8% 36.2 9,000 600k 2.9
SATNet 86.1-86.2% 17 - - -
CcO (Bessiere et al. 2023) 100% - 200 - 0.01
CO+ML  (Brouard et al. 2020) 100% 17 9,000 - 1.5
CO+DL Hinge (Defresne, Barbe, et al. 2023) 100% 17 1,000 180k >50
E-PLL (ours) 100% 17 100 22k 0.05
E-PLL (HRM dataset) 100% 24.8 10 x 100 22k 0.04
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Learning to play Many-Solutions Sudokus

Sudokus have only one solution (single target for DL)

» Existing DL architectures fail on many-solutions Sudokus (Nandwani et al. 2021)
> Corrected using a Reinforcement learning approach

» Training set with 5 solutions per instance

> Ability to generate additional solutions
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Learning to play Many-Solutions Sudokus

Sudokus have only one solution (single target for DL)

» Existing DL architectures fail on many-solutions Sudokus (Nandwani et al. 2021)
> Corrected using a Reinforcement learning approach

» Training set with 5 solutions per instance

> Ability to generate additional solutions

Our architecture directly learns how to solve many-solutions Sudokus
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Learning to play Futoshiki

CHA GHEH
Sudoku is easy, only one type of constraint L] =] ] [s]] 2]

» Our architecture directly learns how to play Futoshiki ‘Tl ‘Tl ‘Tl lTl ITI
» Includes both difference and inequality constraints — —— — —
> Perfect solving, expected constraints learned ‘il ‘il ‘il ILHL‘

KL B, EEE
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Learning to play Visual Sudoku

Sudoku

T Library AOnROOanD
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Learning to play Visual Sudoku

Sudoku

T Library hhnnl
+ 3¢ / v 5({8 7|3 /4/2|1]9]6

SR . toulbar2 6.4|3|5/7 /9|8 /12
iz 3| W ——> Neural net CFN OO DORO0E
AETmCIRE P(X|w) 96 2|1 5 7]a8]s
g 325 713/ 4|6 /9/8|2/51
8 ‘* 8i1/5|2/3/4|6|7]9

Simultaneously learns to recognize digits and to play the Sudoku

SATNet Theoretical Hybrid
(no corrections)
63.2% 74.2% 94.1 + 0.8%
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Reading numbers without cheating (grounding)

Sudoku
A Library
s 3¢ |/ ‘ v & 1b 5 8 {7 2 9i6
3 )7 oulbar2[e« [: | [+ =
rz 3| W ———— Neural net CFN ENODOONBE
AN F 9 5 4 3
3 825 P(X|w) Py PR ;
T =1 105[2]3 6,79
X*
Grounding issue: a nasty form of data leakage (Chang et al. 2020)
» The training set contains images and associated decoded digits (hints).
» Solved using a complex architecture (InfoGAN+clustering+Distillation) (Topan et al. 2021)

» E-PLL: missing data, imputation by optimisation
» Much longer training (a few hours)
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Existing approaches

Approach  MNIST accuracy Percep. Solved Training (h)
SATNet 0.0% 0.0% 0.0% -
Rec. Trans (vang et al. 2023) 99.4% 74.8% 75.6% 5.1
NeSy. Prog. (Lietal 2023)  99.6-99.7%  90.7-93.1% 92.2-94.4% 4.7
E-PLL (Ours) 98.8% 72.9% 93.4% 3.2
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Relation with Decision-focused learning

From DFL to Structured Output Prediction

» Data: pairs (w, c) where c define the criterion parameters
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Relation with Decision-focused learning

From DFL to Structured Output Prediction

» Data: pairs (w, c) where c define the criterion parameters
> Assumes constraints are known

» we can compute a SOP data-set (w, X*)
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Relation with Decision-focused learning

From DFL to Structured Output Prediction

» Data: pairs (w, c) where c define the criterion parameters

> Assumes constraints are known

» we can compute a SOP data-set (w, X*)

» Aim: minimize regret (difference in real cost of the predicted and optimal solution)
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MinCut and MaxCut solving

The Min/Max-Cut problems

» one Boolean variable per vertex (cut side)
» per-edge difference (Min-Cut) or equality (Max-Cut) function scaled by a predicted scalar c(w)
> bridge images with Gaussian noise (std-dev 10)
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MinCut, MaxCut, Regret and SPO+

mincut learning task maxcut learning task
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Learning to design proteins: Effie

PDB Design
170,000 (w, X) constraints
v v
toulbar?2
W ——— Neural net CFN X
P(X|w)
Neural architecture
» More complex SE(3)-equivariant neural network
» Relies on Gated MLPs (post-transformer architecture) (Liu et al. 2021)
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Optimizing a complete protein sequence

Full redesign of large proteins in the test set

» Guaranteed toulbar?2 solution expensive
» Using LR-BCD SDP solver instead (Durante et al. 2022)
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Optimizing a complete protein sequence

Full redesign of large proteins in the test set

> Guaranteed toulbar2 solution expensive
» Using LR-BCD SDP solver instead (Durante et al. 2022)

Outperforms all-atoms XIXt"-century physics
p y pny

> Metric: Native Sequence Recovery rate (NSR)

Approach  Rosetta  Effie
NSR  17.9% 32.8%
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Effie vs. the model-free ProteinMPNN

PDB

|

w —> Autoregressive NN —— X;, Xy, . ..
( |X1717 cee 7X17 )

GPT-style
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Effie vs. the model-free ProteinMPNN

PDB

|

w —> Autoregressive NN —— X;, Xy, . ..
( |X1717 cee 7X17 )

GPT-style

Pros and cons
> P(Xy,...,Xn) = P(X1)P(Xa|X1) - - - P(Xy|X1, . . . Xq—1) is @ mathematical identity
» But an easily broken one (e.g., low temperature samphng)
» Heuristic score instead of NP-hard solving
» Limited control for design constraints, hard to “reason forward”
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Effie vs. the model-free ProteinMPNN

PDB

|

J
\g W —> Autoregresswe NN—— X;, Xo, ...
|X1 17"'7X17 )

GPT-style

Pros and cons
> P(Xy,...,Xn) = P(X1)P(Xa|X1) - - - P(Xy|X1, . . . Xq—1) is @ mathematical identity
» But an easily broken one (e.g., low temperature samphng)
» Heuristic score instead of NP-hard solving
» Limited control for design constraints, hard to “reason forward”

ProteinMPNN Effie

NSR 45.9% 48.4%
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Predicting SARS-CoV2 variants

RBD ACE2

Enumerate CoViD variants with a bounded number of mutations
» Uses only the initial March 2020 RBD-ACE2 structure + Effieftoulbar2
> Relies on a global constraint to bound mutations (ruffini et al. 2021)
» Predicts all the first SARS-CoV2 VoCs (a, 3,7, 0, K, ¢, A and )
» In afew seconds, on one CPU-thread.

Not achievable by pure autoregressive models (ProteinMPNN).
Previously shown to predict contagious antibody-resistant variants (Colom et al. 2024).
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Design of an enzyme organizing platform

Design of an heteromeric hexamer

/N /G /N
> Design A and A that self-assemble as VAY but not as VAY or VAV

PNP

bs

» Physics+logic: requires bi-level optimization (NP""-complete) (vucinic et al. 2020)
» Compare Effie+tb2 (NP-complete) with ProteinMPNN, bi-criteria (Buchet et al. 2024)

AVA AVA
A/ \4 A/ \4

AVA
av

AVA
A/ \4
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Design of an enzyme organizing platform

Design of an heteromeric hexamer

/N /G /N
> Design A and A that self-assemble as VA¥ but not as VA¥ or VAV T
» Physics+logic: requires bi-level optimization (NPNP-complete) (vucinic et al. 2020)
» Compare Effie+tb2 (NP-complete) with ProteinMPNN, bi-criteria (Buchet et al. 2024)
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How oftenis "4 better than ":v?

Scoring —  Effie  PMPNN

Effie 100% 99.5%
PMPNN 30% 82.6%
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How oftenis "4 better than ":v?

160-compile duo fluo at 12h

Scoring -  Effie  PMPNN

Effie 100% 99.5%
PMPNN 30% 826%

GFP fluorescence (In A.U x10% at 12h
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£ Designs with Effie Designs with ProteinMPNN
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Conclusions

A Neural Net, a GM, and a discrete optimizer in a NeSy autoencoder

> A NeSy Generative Al that benefits from each component
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Conclusions

A Neural Net, a GM, and a discrete optimizer in a NeSy autoencoder

> A NeSy Generative Al that benefits from each component
> Neural Network: ideal to extract a representation of P(X|w) from raw inputs
> Represented as a GM in a fully explorable and controllable latent layer

» Using decoding by discrete reasoning (toulbar2) that accepts side constraints
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Conclusions

A Neural Net, a GM, and a discrete optimizer in a NeSy autoencoder

> A NeSy Generative Al that benefits from each component

> Neural Network: ideal to extract a representation of P(X|w) from raw inputs
> Represented as a GM in a fully explorable and controllable latent layer

» Using decoding by discrete reasoning (toulbar2) that accepts side constraints
> All this with scalable training
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