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Human reasoning and scientific discovery

Inductive and deductive reasoning
I From observations (solutions) we construct a theory (F = mγ)
I We then use the theory to make predictions and design objects
I Until the theory is proven to be incorrect

Sudoku grid with solution Protein structure with its sequence

The theory is written as a pairwise Graphical Model (a Cost Function Network)
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Additive discrete graphical model CFN/WCSP

Reminder
I A set X of variables n variables
I Variable xi has domain Di max. size d
I a set of cost functions cij : Di × Dj → R+ ∪ {∞}

Variables and parameters/costs
I The cost C(t) of an assignment t is the sum of all cost functions on t
I The cost is linear in the parameters (costs in CF tables)
I It defines a probability distribution: P(t) ∝ exp(−C(t)) Markov Random Fields
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Structured output prediction (SOP) with a CFN model

ω
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Issues
I Gradients either zero or undefined
I Requires to repeatedly solve random NP-hard instances
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Structured output prediction (SOP) with a CFN model

X

ω Neural net

Sudoku
Library

CFN
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toulbar2

Hamming
piece-wise constant

Natural choice: the negative loglikelihood #P-hard
I Use Besag’s pseudo-loglikelihood (1975, efficient) (Besag 1975)

I Kicks the solver out of the training loop (scalable training)
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Besag's Pseudo-Loglikelihood

I The Pseudo-LL masks each variable successively in the solution X (Besag 1975)

NLL = −
∑

x

log(P(x)) NPLL = −
∑

x

∑
xi

log(P(xi|x−i))

I Nice asymptotic properties statistically consistent
I The NPLL is a “Fenchel-Young” loss (Defresne, Gambardella, et al. 2026; Blondel et al. 2020)

I Does not work in practice (high costs) (Montanari et al. 2009)

Vanishing gradient issue
I If enough constraints have been learned to force the observed value of Xi in the context of x−i,

it becomes impossible to learn other constraints.
I Related to the idempotence of logical information
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The Emmental-PLL

Removing vanishing gradients
We ignore a random fraction of the neighbors/functions when computing P(xi|x−i)
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Easy, hard and extremely hard Sudoku grids

Type Approach Acc. #hints Train set Param. Train time (h)

DL RRN (Palm et al. 2018) 96.6% 17 180,000 200k > 50
Rec. Trans. (Yang et al. 2023) 96.7% 17 180,000 211k > 50
Rec. Trans. 76.2–78.2% 17 9,000 - 1.8
DDPM (Ye et al. 2025) 99.2–100% 33.8 100,000 6M 13.6
DDPM 0.2% 17 - - -
HRM (G. Wang et al. 2025) 55% 24.8 1, 000× 1, 001 27M >10

Relax+DL SATNet (P.-W. Wang et al. 2019) 95.1–99.8% 36.2 9,000 600k 2.9
SATNet 86.1–86.2% 17 - - -

CO (Bessiere et al. 2023) 100% - 200 - 0.01

CO + ML (Brouard et al. 2020) 100% 17 9,000 - 1.5

CO+DL Hinge (Defresne, Barbe, et al. 2023) 100% 17 1,000 180k >50
E-PLL (ours) 100% 17 100 22k 0.05
E-PLL (HRM dataset) 100% 24.8 10 × 100 22k 0.04
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Learning to play Many-Solutions Sudokus

Sudokus have only one solution (single target for DL)
I Existing DL architectures fail on many-solutions Sudokus (Nandwani et al. 2021)

I Corrected using a Reinforcement learning approach
I Training set with 5 solutions per instance
I Ability to generate additional solutions

Our architecture directly learns how to solve many-solutions Sudokus
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Learning to play Futoshiki

Sudoku is easy, only one type of constraint
I Our architecture directly learns how to play Futoshiki
I Includes both difference and inequality constraints
I Perfect solving, expected constraints learned
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Learning to play Visual Sudoku

ω Neural net

Sudoku
Library

CFN
P(X|ω)

X∗

toulbar2

Simultaneously learns to recognize digits and to play the Sudoku

SATNet Theoretical
(no corrections)

Hybrid

63.2 % 74.2% 94.1 ± 0.8%
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Reading numbers without cheating (grounding)

ω Neural net

Sudoku
Library

CFN
P(X|ω)

X∗

toulbar2

Grounding issue: a nasty form of data leakage (Chang et al. 2020)

I The training set contains images and associated decoded digits (hints).
I Solved using a complex architecture (InfoGAN+clustering+Distillation) (Topan et al. 2021)

I E-PLL: missing data, imputation by optimisation
I Much longer training (a few hours)
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Existing approaches

Approach MNIST accuracy Percep. Solved Training (h)

SATNet 0.0 % 0.0 % 0.0 % -
Rec. Trans (Yang et al. 2023) 99.4% 74.8% 75.6% 5.1
NeSy. Prog. (Li et al. 2023) 99.6–99.7% 90.7–93.1% 92.2–94.4% 4.7

E-PLL (Ours) 98.8% 72.9% 93.4% 3.2
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Relation with Decision-focused learning

From DFL to Structured Output Prediction
I Data: pairs 〈ω, c〉 where c define the criterion parameters
I Assumes constraints are known
I we can compute a SOP data-set (ω, X∗)

I Aim: minimize regret (difference in real cost of the predicted and optimal solution)
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MinCut and MaxCut solving

The Min/Max-Cut problems
I one Boolean variable per vertex (cut side)
I per-edge difference (Min-Cut) or equality (Max-Cut) function scaled by a predicted scalar c(ω)
I bridge images with Gaussian noise (std-dev 10)
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MinCut, MaxCut, Regret and SPO+� (Elmachtoub et al. 2022)
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Learning to design proteins: Effie

X

ω Neural net

PDB
170,000 (ω, X)

CFN
P(X|ω)

Design
constraints

X∗toulbar2

Neural architecture
I More complex SE(3)-equivariant neural network
I Relies on Gated MLPs (post-transformer architecture) (Liu et al. 2021)
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Optimizing a complete protein sequence

Full redesign of large proteins in the test set
I Guaranteed toulbar2 solution expensive
I Using LR-BCD SDP solver instead (Durante et al. 2022)

Outperforms all-atoms XIXth-century physics
I Metric: Native Sequence Recovery rate (NSR)

Approach Rosetta Effie

NSR 17.9% 32.8%
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Effie vs. the model-free ProteinMPNN (Dauparas et al. 2022)

GPT-style ω Autoregressive NN

PDB

P(Xi|Xi−1, . . . , X1, ω)
X1, X2, . . .

Pros and cons
I P(X1, . . . , Xn) = P(X1)P(X2|X1) · · · P(Xn|X1, . . . Xn−1) is a mathematical identity
I But an easily broken one (e.g., low temperature sampling)
I Heuristic score instead of NP-hard solving
I Limited control for design constraints, hard to “reason forward”

ProteinMPNN Effie

NSR 45.9% 48.4%
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Predicting SARS-CoV2 variants

RBD ACE2

Enumerate CoViD variants with a bounded number of mutations
I Uses only the initial March 2020 RBD-ACE2 structure + Effie/toulbar2
I Relies on a global constraint to bound mutations (Ruffini et al. 2021)

I Predicts all the first SARS-CoV2 VoCs (α, β, γ, δ, κ, ι, λ and µ)
I In a few seconds, on one CPU-thread.

Not achievable by pure autoregressive models (ProteinMPNN).
Previously shown to predict contagious antibody-resistant variants (Colom et al. 2024).
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Design of an enzyme organizing platform

Design of an heteromeric hexamer

I Design and that self-assemble as but not as or
I Physics+logic: requires bi-level optimization (NPNP-complete) (Vucinic et al. 2020)

I Compare Effie+tb2 (NP-complete) with ProteinMPNN, bi-criteria (Buchet et al. 2024)
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How often is better than ?

Scoring → Effie PMPNN

Effie 100 % 99.5 %
PMPNN 3.0 % 82.6 %
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Conclusions

A Neural Net, a GM, and a discrete optimizer in a NeSy autoencoder
I A NeSy Generative AI that benefits from each component
I Neural Network: ideal to extract a representation of P(X|ω) from raw inputs
I Represented as a GM in a fully explorable and controllable latent layer
I Using decoding by discrete reasoning (toulbar2) that accepts side constraints
I All this with scalable training
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