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Abstract. WCSP is a soft constraint framework with a wide range of
applications. Most current complete solvers can be described as a depth-
first branch and bound search that maintain some form of local consis-
tency during the search. However, the known consistencies are unable
to solve problems with huge domains because of their time and space
complexities. In this paper, we adapt a weaker form of arc consistency,
well-known in classic CSPs, called the bound arc consistency and we
provide several algorithms to enforce it.

1 Introduction

The weighted constraint satisfaction problem (WCSP) is a well-known exten-
sion of the CSP framework with many practical applications. Recently, several
generalizations of the CSP’s arc consistency have been proposed for soft con-
straints, like AC* in [1]. Unfortunately, the time complexity always increases
by a factor of d (the size of the largest domain) and the memory space is at
least proportional to d. This makes these consistencies useless for problems with
long domains like RNA detection or temporal constraints with preferences. We
present here an extension of the bound arc consistency, first described for classic
CSPs in [2]. Its time and space complexities are better than the complexities of
AC* by an order of d.

Bound arc consistency (BAC*) is based on a interval representation of the
sets of values and it can treat efficiently “easy” constraints, such as precedence

f(v1, v2) =

{

v2 − v1 − d if v2 − v1 − d > 0,

0 otherwise.

that often show up in problems with long domains (like scheduling). We also
propose several extensions of this consistency that take into account the se-
mantics of the function, like monotonicity or convexity and we define ∅-inverse
consistency that can boost the cost propagation on some conditions.

Finally, we compare BAC* with AC* on the problem of non-coding RNA
detection and show the superiority of our consistency for this kind of problems.

2 Preliminaries

Valuation structures are algebraic objects that specify costs [3]. For WCSP [4],
it is defined by a triple S = 〈E,⊕,≤〉 where



– E = [0..k] ⊆ N is the set of costs, k can possibly be ∞;
– ⊕, the addition on E, is defined by ∀(a, b) ∈ N

2, a⊕ b = min{a + b, k},
– ≤ is the usual operator on N.

It is useful to define the subtraction 	 of costs:

∀(a, b) ∈ N
2, a	 b =

{

a− b if a 6= k,

k otherwise.

A binary WCSP is a tuple P = 〈S,X ,D, C〉, where:

– S is the valuation structure,
– X = {x1, . . . , xn} is a set of n variables,
– D = {D(x1), . . . , D(xn)} is the set of the finite domains of each variable and

the size of the largest one is d,
– C = {c1, . . . , ce} is the set of e constraints.

A constraint c ∈ C can be either:

– a unary constraint: c : D(xi)→ E (we call it ci), or
– a binary constraint: c : D(xi)×D(xj)→ E (we call it cij).

We will restrict ourselves to binary WCSP, where no constraint has an arity
greater than 2. Results can easily be extended to higher arity constraints. Fur-
thermore, we assume the existence of a unary constraint ci for every variable,
and a zero-arity constraint (i.e. a constant), noted c∅ (if no such constraints are
defined, we can always define dummy ones: ci is the null function over D(xi),
c∅ = 0).

Given a pair (vi, wj) (resp. a value vi), cij(vi, wj) = k (resp. ci(vi) = k) means
that the constraint forbids the corresponding assignment. Another cost means
the pair (resp. the value) is permitted by the constraint with the corresponding
cost. The cost of an assignment t = (v1, . . . , vn), noted V(t), is the sum over all
the cost functions:

V(t) =
⊕

i,j

cij(vi, vj)⊕
⊕

i

ci(vi)⊕ c∅

An assignment t is consistent if V(t) < k. The usual task of interest is to
find a consistent assignment with minimum cost. This is a NP-hard problem.
Observe that, if k = 1, a WCSP reduces to classic CSP.

3 Some local properties

3.1 Existing local consistencies

WCSPs are usually solved with a branch-and-bound tree of which each node is
a partial assignment. To accelerate the search, local consistency properties are
widely used to transform the sub-problem at each node of the tree to an equiva-
lent, simpler one. The simplest local consistency property is the node consistency
(NC*, cf. [1]).



Definition 1. A variable xi is node consistent if:

– ∀vi ∈ D(xi), c∅ ⊕ ci(vi) < k and
– ∃vi ∈ D(xi), ci(vi) = 0 (this value vi is called the unary support of xi).

A WCSP is node consistent if every variable is node consistent.

This property can be enforced in time and spaceO(nd). Another famous stronger
local consistency is the arc consistency (AC*, cf. [1]).

Definition 2. The neighbours N(xi) of a variable xi is the set of the variables
xj such that there exists a constraint that involves xi and xj. More formally:

∀xi ∈ X , N(xi) = {xj ∈ X : cij ∈ C}

A variable xi is arc consistent if:

– ∀vi ∈ D(xi), ∀xj ∈ N(xi), ∃wj ∈ D(xj), cij(vi, wj) = 0 (this value wj is
called the support of xi in vi w.r.t. cij) and

– xi is node consistent.

A WCSP is arc consistent if every variable is arc consistent.

On a binary WCSP, arc consistency can be enforced in time O(n2d3) and in space
O(ed). The algorithm uses the operations ProjectUnary and Project described in
Alg. 1 to enforce the supports of the values and the unary supports respectively.

Algorithm 1: Operations enforcing AC*

Procedure ProjectUnary(xi) [ Find the unary support of xi ]

min← minvi∈I(xi){ci(vi)} ;
if (min = 0) then return ;
c∅ raised← true ;
foreach vi ∈ I(xi) do ci(vi)← ci(vi)	min ;1

c∅ ← c∅ ⊕min ;
if (c∅ ≥ k) then raise exception ;

Procedure Project(xi, vi, xj) [ Find the support of vi w.r.t. cij ]

min← minwj∈I(xj){cij(vi, wj)} ;

foreach wj ∈ I(xj) do cij(vi, wj)← cij(vi, wj)	min ;2

ci(vi)← ci(vi)⊕min ;

Example 1. Fig. 1(a) represents an instance of a small problem. It contains two
variables (x1 and x2) with two possible values for each one (a and b), a unary
constraint for each variable (the costs are written in the circles) and a binary
constraint (the costs are written on the edge that connects a pair of values; if
there is no edge between two values, the cost is 0). k is arbitrarily set to 4 and
c∅ is set to 0. As the cost of x1 = a is equal to k (first point of the definition



of NC*), this value is discarded (cf. Fig. 1(b)). Then, we notice that x2 has no
unary support (second point of the definition of NC*) and we project a cost of
1 to c∅ (cf. Fig. 1(c)). The instance is NC*. To enforce AC*, we project 1 from
the binary constraint to x1 = a as this value has no support (cf. Fig. 1(d)).
Finally, we project 1 from c1(b) to c∅, as seen on Fig. 1(e).

In practice, to reach the O(ed) space complexity, the algorithm uses extra
costs differences data structures as suggested in [5]. For each value vi of each
variable involved in each binary constraint cij , we create a new cost difference
∆vi

ij , initialized to 0. It stores the cost that has been projected to ci(vi) by the
binary constraint cij . Thus the line 2 can be replaced by

∆vi

ij ← ∆vi

ij ⊕min ;

and every occurrence of “cij(vi, wj)” should be replaced by “cij(vi, wj)	 (∆vi

ij ⊕

∆
wj

ij )”. Similarly, we use another cost difference in ProjectUnary for each variable:
∆i. It stores the cost that has been projected from ci to c∅. The line 1 can be
replaced by

∆i ← ∆i ⊕min ;

and every occurrence of “ci(vi)” should be replaced by “ci(vi)	 (∆i)”.
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3.2 Bound arc consistency

We present here a consistency which is weaker than AC*. It can be enforced
with lower time and space complexities and it is called bound arc consistency
(BAC*).

Definition 3. To apply bound arc consistency, we need to change the definition
of a WCSP: the domains are now intervals I. Each variable xi can take all the
values in I(xi) = [lbi..ubi] (lbi is the lower bound of the interval of xi and ubi

is its upper bound). A variable xi is bound node consistent (BNC*) if:

– (c∅ ⊕ ci(lbi) < k) ∧ (c∅ ⊕ ci(ubi) < k) and
– ∃vi ∈ I(xi), ci(vi) = 0.

A variable xi is bound arc consistent if:

– ∀xj ∈ N(xi), ∃(wj , w
′
j) ∈ I2(xj), cij(lbi, wj) = cij(ubi, w

′
j) = 0 and

– it is bound node consistent.

A WCSP is bound arc consistent if every variable is bound arc consistent.

The intervals initially range over all the possible values. We shall suppose
that all the values of the variables are sorted by an arbitrary order and ∀xi ∈
X , lbi = min{D(xi)}, ubi = max{D(xi)}. Changing the representation of the
set of the values to intervals alters the expressivity of the framework: it is not
possible to describe that a value which is inside an interval has been deleted. But
this allows us to decrease the space complexity as a domain is now represented by
only two values. The Alg. 2 provides an algorithm to enforce this consistency.

Example 2. Fig. 2(b) describes another problem. The values are supposed to be
sorted by the lexicographic order (a ≺ b ≺ c), thus lb1 = a and ub1 = c for x1 and
the same for x2. After a call of Project(x1, a), we get Fig. 2(c). As c∅⊕ ci(lb1) is
equal to k, x1 = a is discarded and the lower bound of x1 is updated to lb1 (cf.
Fig. 2(d)). This instance is BAC* but not AC* because x2 = b has no support.
This proves that BAC* is strictly weaker than AC*.

Theorem 1. Algorithm 2 enforces BAC* in time O(ed2 + knd) and in space
O(n + e).

Proof. Correction: We will consider the following invariants:

1. on line 2, all variables are BNC*,
2. if xi is not in Q, then ∀xj ∈ N(xi), lbi, ubi, lbj and ubj have a support w.r.t.

cij .

First, ProjectUnary(xi) finds the unary support of xi and SetBNC*(xi) loops
until it finds the allowed bounds of xi, so this function enforces BNC*. At the
beginning of the algorithm, as the variables may not have this property, we call
SetBNC*(xi) for each variable xi. Thus the second invariant is respected at the
beginning of the algorithm.
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This invariant may be broken by a projection from a binary constraint to a
bound of an interval; this may either lead to the fact that one of the bound is
now forbidden, or that a unary support (which was this bound) has disappeared.
This is why SetBNC* is called on xj and all its neighbours (lines 5 and 6) after
the projections of the line 4.

The first invariant could also be broken when c∅ increases: a bound can now
have a unary cost greater that k − c∅. This event can occur after the lines 5

and 6. This explains the if beginning at line 7.

Concerning the second invariant, it is true at the beginning of the algorithm
as all the variables are enqueued. Afterwards, Project(xi, vi, xj) finds the support
of vi w.r.t. cij , so SetBSupport(xi, xj) finds the supports of the bounds of xi w.r.t.
cij . Thus the line 4 enforces the second invariant.

This invariant can only be broken by SetBNC* and anytime this function is
called, the corresponding variable is enqueued. Finally, at the end of the algo-
rithm, the instance is BNC* (thanks to the first invariant) and every bound has
a support w.r.t. to each constraint in which it is involved (thanks to the second
invariant): the problem is now BAC*.

Time complexity: Thanks to [1], we know that Project and ProjectUnary

take time O(d). Thus SetBSupport also takes time O(d) and the complexity of
the line 1 is O(nd).



Algorithm 2: Algorithm enforcing BAC*

Procedure SetBAC*() [ Enforce BAC* ]

foreach xi ∈ X do SetBNC*(xi) ;1

Q← X ; c∅ raised← false ;
while (Q 6= ∅) do2

xj ← Q.pop() ;
foreach xi ∈ N(xj) do3

SetBSupport(xi, xj) ; SetBSupport(xj, xi) ;4

if (SetBNC*(xi)) then Q← Q ∪ {xi} ;5

if (SetBNC*(xj)) then Q← Q ∪ {xj} ;6

if (c∅ raised) then7

c∅ raised← false ;
foreach xi ∈ X do8

if (SetBNC*(xi)) then Q← Q ∪ {xi} ;9

Function SetBNC*(xi): boolean [ Enforce NC* ]

changed← false ;
while (bii ≤ bsi) ∧ (c∅ ⊕ (ci(bii)	∆i) ≥ k) do10

bii ← bii + 1 ; changed← true ;11

while (bii ≤ bsi) ∧ (c∅ ⊕ (ci(bsi)	∆i) ≥ k) do12

bsi ← bsi − 1 ; changed← true ;13

ProjectUnary(xi) ;
return changed ;

Procedure SetBSupport(xi , xj) [ Find the supports of the bounds of xi w.r.t. cij ]

Project(xi, bii, xj) ; Project(xi, bsi, xj) ;

Each variable can be pushed in at most O(d) times into Q, thus the overall
complexity of the line 6 is O(nd2). The program enters in the loop of line 3

at most O(ed) times (given a constraint cij , the program can enter O(d) times
because of xi and O(d) times because of xj) thus the overall complexity of lines 4

and 5 is O(ed2). The line 7 can be true at most k times (otherwise the problem is
detected as inconsistent) and the overall complexity of the line 9 is O(k×n×d).
To sum up, this algorithm takes time O(nd2 + ed2 + knd) = O(ed2 + knd).
However, as the while on line 2 can be true at mostO(nd) times, the foreach on
line 8 cannot loop more than O(n2d) times and the complexity of the line 9 is not
greater than O(n2d2). So the actual time complexity is O(ed2+min{k, nd}×nd),
and if k > nd then it is O(n2d2).

Space complexity: For each binary constraint, we need 4 cost differences
(one for each bound of each variable) and for each variable xi, a cost difference
∆i. Including the space for Q, the overall space complexity is O(e + n).

3.3 Strengthening BAC*

We may want to enforce a stronger local consistency that takes into account the
constraint costs involving values inside the intervals. To keep a reasonable space



complexity, this cost will be projected directly to c∅. Thus we add to the BAC*
property the ∅-inverse consistency (∅IC):

Definition 4. The constraint cij is ∅-inverse consistent if

∃(vi, wj) ∈ D(xi)×D(xj), cij(vi, wj) = 0

(this pair (vi, wj) is called the binary support of c∅). A WCSP is ∅-inverse
consistent if every constraint is ∅-inverse consistent.

Remark that ∅IC is a generalization to a higher arity of the second point of the
NC* property.

When BAC* finds a support wj for lbi w.r.t. cij , it projects the cost cij(lbi, wj)
to the unary constraint ci. The constraint is now ∅IC (the binary support is
(lbi, wj)), but this property is more relevant when enforced first: it directly in-
creases the c∅.

Example 3. Let us resume with the problem on Fig. 2(a). If no cost is men-
tionned on an edge, it is by default 1. We can see on this instance that for any
value of x1 and for any value of x2, the binary constraint yields to a cost not
less than 1. In this case, BAC* would project some binary costs to the bounds
but ∅IC directly projects all of this costs to c∅ (cf. Fig. 2(b)); this guarantees
an increase of the lower bound.

Algorithm 3: Algorithm enforcing BAC* with ∅IC

Procedure SetBSupport(xi , xj) [ Add ∅IC to the previous procedure ]

ProjectBinary(xi, xj) ;
Project(xi, bii, xj) ; Project(xi, bsi, xj) ;

Procedure ProjectBinary(xi, xj) [ Find the binary support of cij ]

min← min vi∈I(xi)
wj∈I(xj)

{cij(vi, wj)	 (∆vi
ij ⊕∆

wj

ij ⊕∆ij)} ;

if (min = 0) then return ;
c∅ raised← true ;
∆ij ← ∆ij ⊕min ;
c∅ ← c∅ ⊕min ;
if (c∅ ≥ k) then raise exception ;

Alg. 3 shows the differences with the previous algorithm to enforce BAC*
with ∅IC.

Theorem 2. Alg. 3 takes time O(ed3 + knd) and space O(n + e).

Proof. Correction: We add an invariant to the ones listed in the previous proof:

3. if xi is not in Q, then ∀xj ∈ N(xi), cij has a binary support.



Note that the prerequisite is the same as in the first invariant. This comes from
the fact that, once a binary support has been enforced, only the application of
SetBAC* can break it. As this invariant is enforced in the same time as the first
invariant, the same reasoning applies.

Time complexity: The procedure ProjectBinary takes time O(d2). Thus the
overall complexity of the algorithm becomes O(nd2+ed3+knd) = O(ed3+knd).

Space complexity: As we just store the cost difference, we only need O(e)
extra space to remember the cost that has been projected from a constraint
directly to c∅. The overall space complexity remains the same.

It could be possible to decrease the time complexity in d by using an appro-
priate structure that contains the sorted costs of a constraint. But this would
increase the space complexity by a factor at least of d2, which is unacceptable.
Another possibility to have a faster algorithm is to use the semantics of the
constraints to find the minimum of the function in less than O(d2) time, when
possible, to decrease the complexity. We need a definition to describe easily the
cost propagation:

Definition 5. Given a binary constraint cij , cij(vi, wj) is a border cost if vi =
lbi or vi = ubi or wj = lbj or wj = ubj. It is an interior cost otherwise.

Given a unary constraint ci, ci(vi) is a border cost if vi = lbi or vi = ubi. It
is an interior cost otherwise.

Theorem 3. If the minimum of the binary cost functions can be found in O(d)
time, the complexity of BAC* with ∅IC becomes O(ed2 + knd) with no memory
space increase.

Proof. The main difficulty is that the costs of the constraint can be projected
either to the unary constraints (BAC*) or to c∅ (∅IC). In the latter case, the
minimum is still attained by the same tuple as all costs have uniformly decreased.
In the former case, the actual minimum may be a border cost and each of them
must be checked. There are 4(d − 1) border costs and finding the minimum
amoung interior cost, by assumption, takes O(d) time. ProjectBinary now takes
time O(d) and thus the complexity of the whole algorithm is O(ed2 + knd).

This result is particularly interesting for semi-convex functions (well-known
in temporal constraints with preferences) w.r.t. a single variable, because the
minimum cost is reached by a value on the edge of the cost matrix and so can
be found in O(d) time.

Definition 6. A function ci (resp. cij) is semi-convex [6] iff: ∀e ∈ E, the set

{vi ∈ D(xi) : ci(vi) > e} (resp. {(vi, wj) ∈ D(xi)×D(xj) : cij(vi, wj) > e})

is an interval.

Informally speaking, semi-convex functions have only one peak. An example
of semi-convex function is described Fig. 3(a). The unary semi-convex functions



encompass monotonic functions (cf. Fig. 3(b)) and anti-functional constraints
[7] (cf. Fig. 3(c)). The function on Fig. 3(d) is not semi-convex. An example of
semi-convex function w.r.t. a single variable is x, y 7→ x2 − y2. It is semi-convex
w.r.t. x but not to y.

(a) semi-
convex

(b) semi-
convex

k

(c) anti-
functional

(d) not
semi-
convex

Fig. 3. Characteristics of some functions

If the costs functions are semi-convex w.r.t. every variable, like x, y 7→ x+ y,
the minima can be found in constant time because they are located in the corner
of the cost matrices and we have the following result:

Theorem 4. If the minimum of unary and binary cost functions can be found
in constant time, the complexity of BAC* with ∅IC becomes O(ed+kn) with no
memory space increase.

Proof. To find the binary support of cij in ProjectBinary rapidly, we need to
compute nine minima and compare them: the minimum of the interior of cij , the

minimum of the four borders (excluding the corners) cij(lbi, .)	∆lbi

ij , cij(ubi, .)	

∆ubi

ij , cij(., lbj)	∆
lbj

ij and cij(., ubj)	∆
ubj

ij , and the minimum of the four corners

cij(lbi, lbj)	∆lbi

ij 	∆
lbj

ij , cij(lbi, ubj)	∆lbi

ij 	∆
ubj

ij , cij(ubi, lbj)	∆ubi

ij 	∆
lbj

ij and

cij(ubi, ubj)	∆ubi

ij 	∆
ubj

ij . Thus, ProjectBinary and SetBSupport run in constant
time.

The same idea applies to ProjectUnary. The domain should be split in three
parts (the interior and the two bounds) and the minimum can be found and
projected to c∅ in constant time with the cost differences ∆i. Now we can notice
that the conditions at lines 10 and 12 are true, given a variable, at most d times,
so the overall complexity of lines 11 and 13 is O(nd).

Let us sum up the overall complexities:

– the line 4 takes O(ed),
– the line 5 takes O(ed + nd),
– the line 6 takes O(nd),
– the line 9 takes O(kn + nd),

This proves our theorem.



4 Discussion

Comparison with 2B-consistency: The definition of 2B-consistency, as de-
fined in [2] for numeric non-binary CSP (NCSP) is:

Definition 7. x ∈ X is 2B-consistent if ∀c : D(x)×D(x1)× . . .×D(xr) ∈ C if:

– ∃(v1, . . . vr) ∈ D(x1)× . . .×D(xr), c(lb, v1, . . . , vr) and
– ∃(v1, . . . vr) ∈ D(x1)× . . .×D(xr), c(ub, v1, . . . , vr).

A NCSP is 2B-consistent iff every variable is 2B-consistent.

Obviously, a WCSP such that k = 1 which is BAC* is 2B-consistent.
Besides, it is possible to express a WCSP in classic CSP by reifying the

costs [8].

Definition 8. Consider the WCSP P = 〈S,X ,D, C〉 Let P ′ = 〈X ′,D′, C′〉 be
the classic CSP such that:

– the set X ′ of variables is X augmented with a cost variable x.
E per constraint:

x
ij
E for the binary constraint cij , xi

E for the unary constraint ci;
– the domain of x is D(x) if x is in X , E if x is a cost variable x.

E; the set of
the domains is D′;

– the set C′ of constraints contains:
• the reified constraints c′ij defined by the set of tuples

{(vi, wj , e) : vi ∈ D(xi), wj ∈ D(xj), e = cij(vi, wj)}

• the reified constraints c′i defined by the set of tuples

{(vi, e) : vi ∈ D(xi), e = ci(vi)}

• an extra constraint c′E that applies on the cost variables x.
E

∑

cij∈C

x
ij
E +

∑

ci∈C

xi
E < k

The problem P ′ has a solution iff P has a solution. The aim of enforcing a
property is usually to find inconsistencies as soon as possible. This leads to a
definition of the strength of a consistency:

Definition 9. A property T is at least as strong as another property T ′ iff for
any problem P, when the enforcement of T ′ finds an inconsistency, then T finds
an inconsistency too.

Consider now the little WCSP defined by three variables (x1, x2 and x3) and two
binary constraints (c1,2 and c1,3). D(x1) = {a, b, c, d}, D(x2) = D(x3) = {a, b, c}
(we suppose a ≺ b ≺ c ≺ d) and the costs of the binary constraints are described
Fig. 4. We set k to 2.

The reader can check the reified problem is 2B-consistent. BAC* would detect
an unconsistency by projecting the costs to x1 and reducing little by little its
domain. This shows that BAC* is at least not comparable with 2B-consistency
for reified WCSPs. The existence of a more accurate comparison between these
consistencies is still an open problem.
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Comparison with AC*: BAC* coupled with ∅IC can be strictly weaker than
AC* even for semi-convex functions. Consider for example the matrix cost in
Fig. 5. It represents the costs of a binary semi-convex function with domain
[a..c]. All the bounds have a support and thus the constraint is BAC* and ∅IC.
But the values b have no support and thus this instance is not AC*.
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a 0 1 0

121

0 1 0

ba c

Fig. 5. A cost matrix

The advantage of BAC with ∅IC is that projecting the minimum of a con-
straint requires only one operation. For the same cost propagation, AC* must
project from the binary constraints to the unary constraints and to the unary
constraints to c∅. Moreover, if AC* does not project all the binary costs on the
same variable, c∅ may even not increase with the same amount.

To take advantage of the efficiency of BAC* with ∅IC and the strength of
AC*, both consistencies can be combined in the same algorithm. Initially, the
set of values is represented by intervals. When they are smaller than a given
value, intervals are transformed into domains and holes are possible. This needs
only minor changes in the code in SetBSupport and SetBNC*.

Extension of BAC* for piecewise functions: BAC* can also be extended
to efficiently handle piecewise monotonic function. It is called piecewise bound
arc consistency:

Definition 10. To apply piecewise bound arc consistency (PBAC*), an interval
I(xi) becomes a set of pi intervals I1(xi), . . . , I

pi(xi) with ∀q ∈ [1..pi], I
q(xi) =

[lbq
i ..ub

q
i ]. We also have lb1

i = lbi, ub
pi

i = ubi and ∀q ∈ [1..pi−1], ub
q
i +1 = lb

q+1
i .

A variable xi is piecewise bound node consistent (PBAC*) if:

– ∀q ∈ [1..pi], (c∅ ⊕ ci(lb
q
i ) < k) ∧ (c∅ ⊕ ci(ub

q
i ) < k) and

– ∃vi ∈
⋃

q∈[1..pi]
Iq(xi), ci(vi) = 0.

A variable xi is piecewise bound arc consistent if:



– ∀q ∈ [1..pi], ∀xj ∈ N(xi), ∃(wj , w
′
j) ∈ I2(xj), cij(lb

q
i , wj) = cij(ub

q
i , w

′
j) = 0,

– it is piecewise bound node consistent.

A WCSP is piecewise bound arc consistent if every variable is piecewise bound
arc consistent.

Even for continuous function, dividing the long intervals into several smaller
ones could notably improve the cost propagation.

5 Experimental results

We have applied BAC* to the problem of non-coding RNA (ncRNA) detection.
RNA sequences can be considered as oriented texts (left to right) over the four
letter alphabet {A, C, G, U}. An RNA molecule can fold on itself through inter-
actions between the nucleotides G–C, C–G, A–U and U–A. Such a folding gives
rise to characteristic structural elements such as helices (a succession of paired
nucleotides), and various kinds of loops (unpaired nucleotides surrounded by
helices).

Thus, the information contained both in the sequence itself and the structure
can be viewed as a biological signal to exploit and search for. These common
structural characteristics can be captured by a signature that represents the
structural elements which are conserved inside a set of related RNA molecules.

We call motif the elements of the secondary structure that define a RNA
family. To a first approximation, a motif can be decomposed into strings (cf.
Fig. 6(a)) and helices (cf. Fig. 6(b)). Two elements can be separated by spacers
(cf. Fig. 6(c)). These elements of description are modeled by soft constraints
and the costs are given by the usual pattern matching algorithms (for strings
and helices) or analytic function (for spacers).

Our aim is to find all the occurrences in the sequence that match the given
motif, and the cost of these solutions. We have tried to detect the structure of
tRNA [10] (cf. Fig. 6(d)), modeled by 16 variables, 15 spacers, 3 strings and
4 helices as well as an IRE motif [11] (cf. Fig. 6(e)) modeled by 8 variables,
7 spacers, 2 strings and 2 helices on parts of the genome of Saccharomyces
Cerevisiæ of different sizes and on the whole genome of Escherichia coli. For
tRNA, we used two different models, the first being much tighter than the second.

For each soft constraint, there is an hard constraint that prunes all the uncon-
sistent values faster through bound arc consistency for classic CSPs. As the helix
is a 4-ary constraint, we used a generalized bound arc consistency to propagate
the costs. ∅IC has been enforced for spacers (which are semi-convex functions)
but not for strings nor for helices. We used a 2.4Ghz Intel Xeon with 8 GB RAM
to solve these instances. The results on our comparison between our algorithm
and the classic AC* are displayed on Fig. 7. For each instance of the problem,
we write its size (10k is sequence of 10.000 nucleotides and the genome of Es-
cherichia coli contains more than 4.6 millions nucleotides) and the number of
solutions. We also show the number of nodes explored and the time in seconds
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Fig. 6. A few motifs

tRNA, tight definition

Size / ] solutions 10k / 16 50k / 16 100k / 16 500k / 16 1M / 24 ecoli / 140

AC* (nodes/time) 23 / 29 35 / 545 - - - -

BAC* (nodes/time) 32 / 0 39 / 0 51 / 0 194 / 1 414 / 2 1867 / 7

tRNA, loose definition

Size / ] solutions 10k / 84 50k / 84 100k / 84 500k / 111 1M / 164 ecoli / 702

AC* (nodes/time) 215 / 401 495 / 7041 - - - -

BAC* (nodes/time) 347 / 0 1036 / 1 1775 / 2 8418 / 4 17499 / 8 83476 / 34

IRE

Size / ] solutions 10k / 0 50k / 0 100k / 0 500k / 1 1M / 4 ecoli / 8

AC* (nodes/time) 0 / 3 0 / 57 0 / 223 - - -

BAC* (nodes/time) 0 / 0 0 / 0 0 / 0 20 / 0 44 / 2 237 / 8

Fig. 7. Number of nodes explored and time in seconds spent to solve several instances
of the ncRNA detection problem

spent. A “-” means the instance could not be solved due to memory reasons
despite all the memory optimizations.

The reason of the superiority of BAC* over AC* is twofold. First, AC* needs
to store all the unary cost for every variable to project cost from binary con-
straints to unary constraint. Thus, the space complexity of AC* is at leastO(nd).
For very long domains (in our experiment, greater than 50.000 values), the com-
puter cannot allocate sufficient memory and the program is aborted. For the



same kind of projection, BAC* only needs to store the costs of the bounds of
the domains, leading to a space complexity of O(n). A similar conclusion would
have been drawn after a comparison between BAC* and Max-CSP algorithms
like PFC-MRDAC (cf. [12]).

Second, the distance constraints dramatically reduce the size of the domains.
Concretely, when a single variable is assigned, and when all the distance costs
have been propagated, all the other domains have a size that is a constant with
respect to d. As BAC* behaves particularly well with this kind of constraints,
the instance becomes quickly tractable.

6 Conclusions and future work

In this paper we have presented a new local consistency for weighted CSPs, called
bound arc consistency. It is specially devoted to problems with large domains
and time and space complexities are lower than the well-known arc consistencies.
Several extensions have been proposed for constrains with good characteristics,
like semi-convex functions, and ∅IC seems particularly efficient for this kind of
functions. Finally, we showed that maintaining BAC* is much better than AC*
for the problem of ncRNA detection. In the future, we will try to implement
better heuristics for boosting the search.
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