
CMS-05, Marseille, 20-22 oct. 2005 

1 

REPRESENTING AND INTERPRETING FLEXIBLE PRODUCTION MANAGEMENT PLANS 
 

 

 

Roger Martin-Clouaire, Jean-Pierre Rellier 

INRA, Unité de Biométrie et d’Intelligence Artificielle  

BP52627 Auzeville,  31326 Castanet Tolosan, France. 

rmc@toulouse.inra.fr,  rellier@toulouse.inra.fr 

 

 
ABSTRACT 

 

In agriculture the production management difficulties 

stem from the high influence that uncontrollable factors 

like weather or pests have on the biological processes 

underlying any agricultural production. In order to cope 

with uncertainty the decision making behavior must rely 

on a kind of flexible plan that enables to postpone the full 

determination of actions until execution time. 

The paper presents a dedicated plan representation 

language that supports the specification of a well 

structured set of  intended activities and an interpreter that 

takes as input this handcrafted plan and determines 

repeatedly over time the activities that are currently 

eligible for execution. Once represented in this framework 

a production management plan can be simulated in 

various exogenous conditions, which enables the study of 

the underlying production management behavior. 

 

1. INTRODUCTION 

 

This paper presents a plan representation language 

designed for production management tasks that are highly 

dependent on exogenous uncontrollable factors. The plan 

representation approach is motivated by applications to the 

study of agricultural production processes such as dairy or 

crop production systems. The yield, quality and costs of 

agricultural productions are inherently affected by weather, 

diseases, pests and other factors that are highly uncertain. 

A farm’s profitability and overall financial health is, of 

course, highly dependent on the mechanisms in place for 

performing timely and efficiently the required agronomic 

operations and for mitigating the risk exposure.  

The biological nature of agricultural production makes 

it fundamentally different from manufacturing. Uncertainty 

in manufacturing concerns mainly the production goals (the 

demand) and to a lesser extent the availability of resources 

(e.g. machine breakdown). In agriculture, uncertainty 

affects the determinism of the actions and forces context-

dependent courses of actions to be adopted to cope with 

threat or exploit opportunities.  The production processes 

in manufacturing is fully manmade and can be designed in 

a way supporting the planning and scheduling of 

operations. In agriculture the production process goes on 

even if no action is performed; external natural inputs 

(light, energy) constitute the primary driving factor. In 

addition, the performance criteria are of different types 

such as minimizing the timespan in manufacturing versus 

keeping the production risk under control in agriculture.  

Nevertheless, despite the pervasiveness of uncertainty 

and variability in farm production processes, the decision 

making behavior is far from being purely reactive. Indeed 

the production processes offer a great deal of structures 

and regularities from one year to the other, which enable 

farmers to plan roughly the intended activities required by 

the overall production objective.  

Capturing how the flexible temporal organization of 

activities can be specified and how such a specification can 

be used for on-line determination of what actions are licit 

for execution is the subject of this paper. The underlying 

objective behind this modeling endeavor is to be able to 

deal with agricultural production management behavior as 

an object of scientific consideration and to conduct virtual 

experimentation on it by computer simulation. Explicit 

representation and simulation are also a means to ease 

communication, learning and design of possible 

management behaviors. 

The next section provides some background about 

production management in agriculture. The plan 

representation language is presented in Section 3. The 

algorithm that maintains the status of the plan activities is 

given in Section 4. Section 5 points out some related 

works. 
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2. PRODUCTION SYSTEM ARCHITECTURE 
 

As shown in Figure 1, an agricultural production system 

is seen as an entity situated in what is called the external 

environment (e.g. the climatic and economic context) and 

can be decomposed into three interactive subsystems: the 

manager, the operating system and the biophysical system. 

A production system is an active entity in the sense that it 

is the repository of processes and has inputs (physical or 

informational), outputs and an event agenda. The processes 

are controlled by events (straight lines) of the agenda. 

 

 

matter  

energy 

OPERATING SYSTEM: 

labor, tools, inputs 

BIOPHYSICAL SYSTEM: 

soil, crops, animals  

MANAGER: farmer 

information 

events 

produces 

residues 
 

Figure 1. Agricultural production system 

 

The biophysical system is composed of biophysical 

entities (e.g. crop, animals) that usually have their own 

processes (e.g. photosynthesis, physiological functions). 

Among the events controlling these processes are those 

triggered by the execution of the operations performed by 

the operating system. The inputs are material inputs (e.g. 

fertilizers provided by the operating system) and energy 

either coming from the external environment or provided 

by the operating system. The processes may generate 

particular events triggered by significant changes of the 

biophysical system state. Thus the biophysical system may 

also include some sensing and alarm devices.  

The manager stands for the farmer having the 

responsibility of achieving the overall production system 

objective. In our model, the manager holds a management 

strategy that drives the behaviors of the operating system 

and, indirectly, of the biophysical system. A strategy is a 

handcrafted construct that specifies a kind of flexible 

nominal plan coming with its context-responsive 

adaptations and the necessary implementation details to 

constrain the stepwise determination and execution of the 

actions to perform. 

Since the production process is highly influenced by 

factors beyond his control the farmer must pay special 

attention to the robustness of his strategy so as to work 

acceptably well in almost all climatic scenarios and be 

responsive to important contingencies whose effects can be 

eliminated or mitigated by proper agronomic practices. 

Therefore agricultural production management must rely 

on a decision making behavior that is both plan-based and 

reactive. 

With accumulation of experience and advice, farmers 

have learned to design their own temporal organization of 

farming activities. The planning is done consistently with 

overall objective, resource limitation and intended tactic, 

with their own perception and understanding of the 

production system characteristics and with particular 

events that have to be monitored and reacted to.  

The manager’s processes are responsible for: 

- monitoring the occurrence of new events and scrutinizing 

salient aspects of the current state of the production 

system (mainly in the biophysical system); 

- updating the status of the activities in the nominal plan 

depending on changes of the system state and the passing 

of time (e.g. some activities may be obsolete while other 

may become ready for execution consideration); 

- revising the management strategy in situations recognized 

beforehand to require such adaptations; 

- generating the sets of activities that are feasible (i.e. 

consistent with the nominal plan and thus open to further 

consideration for execution) and providing the necessary 

implementation details that constrain the dynamic 

allocation of resources. 

Every time the manager is activated the result of his 

work (advocated sets of activities and requirements) is 

handed over to the operating system that has to execute 

them using the resources it is equipped with (e.g. labor, 

tools). The operating system utilizes, within its autonomy, 

its own problem solving procedure to derive the selected 

set of executable activities. It has processes, in particular, 

to: 

- allocate resources to the activities; 

- select the preferred set of activities in case of 

concurrency. 

The execution of the current set of operations continues 

until a change on the resources occurs (end of an operation 

or end of working hours). Such an event may be followed 

by a new scheduling of activities to execute or by a transfer 

of control to the manager or by nothing if the plan is 

exhausted. 

The next section focuses on the representation of plans. 

 

3. REPRESENTING PLANS 

 

3.1 Activities and primitive activities 

 

The basic structure in a plan is the concept of activity. 

In its simplest form, an activity, which is then called a 
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primitive activity, specifies something to be done on a 

particular biophysical object or location (e.g. a mob, a 

plant, a field or a set of these) by a performer (e.g. a 

worker, a robot or a set of these). Besides these three 

components, a primitive activity is characterized by local 

opening and closing conditions, defined by time windows 

and/or predicates referring to the biophysical state. These 

conditions are of use to determine at any time the activities 

that are eligible for execution consideration. For this 

purpose any activity has a status taking value in the set: 

sleeping, waiting, open, closed and cancelled (explained 

later). 

The something-to-be-done component of a primitive 

activity is an intended transformation called an operation 

(e.g. the harvesting operation). The execution of an 

operation causes changes to the biophysical system. These 

changes take place over a period of time. An operation 

affects either individual objects in a collection of processed 

objects (e.g. plants in a greenhouse population) or objects 

having numerical characteristics (e.g. area). The speed is 

defined as a quantity (e.g. number of items, area) 

processable in a unit of time. The duration of the operation 

is the ratio of the total quantity by the speed. In order to 

have the effect realized consistently with its definition the 

operation must satisfy some enabling conditions that refer 

to the current state of the biophysical system (e.g. the field 

to be processed should not be too muddy). 

Primitive activities can be further constrained by adding 

temporal relations between them and by using 

programming constructs enabling specification of temporal 

ordering, iteration, grouping and optional execution. To 

this end, a set of composition operators are used such as 

before, iterate, and optional that are presented in the next 

subsections. Other operators are utilized to specify choice 

of one activity among several (or), grouping of activities 

(and) and concurrency among some of them (e.g. overlap, 

co-start). 

 Any activity involving a composition operator is said to 

be non-primitive; a composition operator applied to an 

activity (primitive or not) defines another activity that may 

also be given local opening and closing conditions. A non-

primitive activity is called the mother activity and the 

activities that are the arguments of the operator are called 

the child activities. The opening and closing of a non-

primitive activity depends on its own local opening and 

closing conditions (if any), and of those of the underlying 

primitive activities that play a role through the composition 

operators. All the activities are connected; the only activity 

that does not have a mother is the plan. The plan is flexible 

in the sense that two different sequences of events are 

likely to yield two different realizations of the plan. The 

opening date of the same activity will not be the same in 

the two cases. Moreover some activities may be cancelled 

in one case and not in the other if they are optional or 

subject to context-dependent choices. 

The passing of time and the evolution of the state of the 

production system may make true the conditions that 

govern the changing of status of the primitive activities. 

The change of status of activities is realized at particular 

times specified by the manager and when an operation is 

completed. Any change of status of an activity is 

propagated to the activities that are directly or indirectly 

connected to it via composition operators. 

The meaning of the possible values of an activity status 

can now be explained. The value sleeping is given to all 

activities at creation time. It means that the opening and 

closing conditions do not have to be examined yet. The 

status turns to waiting as soon as the opening activities 

have to be examined. For instance, as soon as an activity 

finishes it becomes necessary to monitor those following it 

in a sequence specified with a before operator. The 

nominal plan is declared waiting at the starting time of a 

simulation. The status of an activity turns to open when its 

opening conditions are satisfied. The status changes from 

open to closed when the closing conditions are satisfied or, 

in case of primitive activity, when the underlying operation 

is completed. The status turns to cancelled when the ac-

tivity becomes of no interest; this happens, for instance, 

once a choice among alternatives specified through the or 

operator has been made, making cancelled the non-selected 

alternatives. 

The meaning of each operator used to construct a new 

activity by constraining other activities is defined by two 

sets of rules specifying: 

- the preconditions that must be satisfied by the mother 

activity in order to enable the change of status of some of 

the child activity and vice versa;  

- the post-conditions or effects of any change of status of 

one of the mother or child activities on the others.   

The cases of the before, iterate, and optional operators are 

visited in turn in the next subsections.  

 

3.2 Sequencing constraints 

 

To specify that two or more than two activities must be 

performed successively without any overlapping in the 

interval of time of their execution one can use the before 

operator and apply it to the child activities. In other words, 

the activity before(A B) imposes that the activity B cannot 

have the status open before the status of A is closed. The 

order in time of the sequence is expressed by the order of 

the arguments of the operator. Any activity constructed 

using the before operator has two extra properties that 

enable specification of, if necessary, the delays between the 
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opening of two consecutive activities, and between the 

closing of one of them and the opening of the next one.  

The change of status of any of the involved activities is 

subject to the following preconditions. In order for the 

mother activity status to become: 

- waiting (resp. open),  its first child must be allowed to 

turn to waiting (resp. open); 

- closed, its last child must be allowed to turn to closed.    

In order for the first child to become:  

- waiting (resp. open), the mother must be allowed to turn 

to waiting (resp. open). 

In order for any other child than the first one to become:  

- waiting, the preceding activity must be closed or allowed 

to turn to closed. 

In order for last child to become:  

- closed, the mother must be allowed to turn to closed.   

The effect of a change of status of any (mother or child) 

activity follows the following rules. As soon as the mother 

turns to: 

- waiting (resp. open),  the first child turns to waiting (resp. 

open); 

- closed, the last child turns to closed. 

As soon as a child activity turns to: 

- waiting and if it is the first child then, the mother turns to 

waiting. Otherwise, the preceding child turns to closed (if 

not already so); 

- open and if it is the first child then, the mother turns to 

open; 

- closed and if it is the last child then, the mother turns to 

closed. Otherwise, the next child turns to waiting if 

possible. 

Another operator used to specify a sequence is meet. It 

is very similar to before except that there should be no 

delay between the closing of a child and the opening of the 

next one.  

 

3.3 Iteration 

 

The operator iterate, which has a single argument 

activity, specifies that the child activity be repeated within 

the time in which the mother activity is open. The mother 

must be given opening and closing time windows, or 

opening and closing predicates, or the maximum and 

minimum number of replication or any combination of the 

above possibilities. The child or descendant activities 

should not appear elsewhere in the plan. The mother 

constructed using the iterate operator has two extra 

properties that enable specification of, if necessary, the 

delays between the opening of two consecutive iteration of 

the child, and between the closing of the child and the 

opening of its next iteration. The only preconditions to a 

change of status of the child are that the mother be waiting 

or open in order for the child to turn to waiting, and that 

the mother be open in order for the child to turn to open or 

closed.  

As soon as the mother activity turns to: 

- open, the child turns to waiting if possible; 

- closed, the child turns to closed if possible. 

As soon as the child turns to closed, it is set immediately to 

waiting unless the mother’s closing conditions are satisfied 

at that time. 

The iteration process, which is controlled by a specific 

procedure, duplicates (instantiates in fact) the child activity 

as needed in agreement with the constraints of delay 

between repetitions and of limitations of the number of 

iterations if provided. These copies have a status changing 

from sleeping, to waiting, from waiting to open, from open 

to closed, and, exclusively for this case, from closed to 

waiting. These transitions continue as long as the mother is 

open. 

 

3.4 Optional activity 

 

The optional operator applied to an activity expresses 

that if this one cannot be realized (i.e. it is too late with 

respect to the opening interval or the opening predicate 

cannot be satisfied) then, it is not a sufficient circumstance 

to declare the plan invalid. In other words, this operator 

enables specification of the child activity that should be 

realized if possible. The child or descendant activities 

should not appear elsewhere in the plan if not declared 

optional there too. The status of the mother can change to 

waiting if the child can turn to waiting. Analogous 

preconditions hold when substituting waiting by open or by 

closed and by permuting child and mother.  The effect 

rules follow from the precondition rules (e.g. the child be-

comes open as soon as the mother becomes open). When a 

mother activity made with the optional operator cannot be 

realized its status is forced to turn to closed. 

 

4.  UPDATING THE ACTIVITIES 

 

4.1 Algorithm 

 

The advance of time and the evolution of the production 

system (the biophysical system in particular) may make 

true the opening and closing conditions of the activities. 

The updating of the status of the activities occurs at either 

examination times specified by the manager (typically at 

discontinuity points induced by new day or new week) or 

when an operation is terminated. The change of status is 

realized by a procedure that essentially checks that the 

opening and/or closing conditions can be satisfied and that 

the constraints linking this activity to others would be 
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satisfied if the change proceeded. This procedure, applied 

to the plan, causes a recursive examination of all the 

activities that are waiting or open. Any activity whose 

change of status is validated is updated and the change is 

propagated immediately to the connected activities.  

A more formal presentation of this updating process is 

given through the pseudo-code of the Update procedure that 

follows.  

procedure: Update(activity) 

      if  activity.situation not waiting and 

     activity.situation not open     

      then  return 

/* beginning of  plan failure detection */ 

      if  {activity.situation = waiting and 

      it is no longer possible to open} or 

      { activity.type = primitive and 

activity.situation = open and 

      opening time is over and  

      operation is not yet executing}  

      then  if   activity.type = optional 

 then {TurnToClosed(activity); return} 

else  exit("Plan failure")  

      if activity.situation = open and 

        it is no longer possible to close 

      then exit("Plan failure") 

/* end of  plan failure detection */ 

      switch activity.type 

case primitive 

             if  ?OpeningValid(activity) 

            then  TurnToOpen(activity) 

             if  ?ClosingValid(activity) 

            then  TurnToClosed(activity) 

     /* ?ClosingValid includes test relative to minimal  

    percentage of execution realization required, typically  

   100%*/ 

case iteration 

        if  ?OpeningValid(activity) 

        then  TurnToOpen(activity) 

        if  situation = open 

        then switch child.situation 

 case sleeping  

                     TurnToClosed(activity)  

 case waiting  

              if   ?ClosingValid(activity) 

              then TurnToClosed(activity) 

case others 

       for each child do Update(child) 

Normally the status updating process is repeatedly 

invoked until the plan is closed. In some cases, the plan 

cannot be closed, which reveals a plan failure. Such an 

inconsistency situation occurs when some preconditions to 

change cannot be satisfied (e.g. a meet activity in which the 

second child cannot be open although the first should be 

closed). In other words, this happens when an activity that 

is not optional can no longer be open or when it cannot be 

closed without violating constraints that link them to other 

activities by composition operators.  

Two important predicates are used in Update: 

?OpeningValid, ?ClosingValid. They return true if it is legal to 

open or close the argument activity. ?OpeningValid  calls the 

two activity-dependent predicates ?CheckSonsIfOpen and 

?CheckIfSonOpen. The latter two, together with the predicates 

?CheckSonsIfWaiting, ?CheckIfSonWaiting, ?CheckSonsIfClosed, and 

?CheckIfSonClosed,  implement the preconditions to changes 

defined for each composition operator. They themselves 

call ?OpeningValid, ?ClosingValid and ?WaitingValid. These three 

predicates are very similar in principle. The pseudo-code 

of ?OpeningValid is given below. For clarity, this code does 

not include all the bookkeeping structures and tests 

necessary to avoid loops. 

predicate: ?OpeningValid(activity) 

   if  activity.situation = open  then  return  true 

   else 

        if   {activity.situation = waiting or ?WaitingValid(activity)}  

             and local opening conditions satisfied  

       then   

            if ?CheckSonsIfOpen(activity) 

            then   {for each mother do 

      if   not ?CkeckIfSonOpen(activity, mother) 

      then  return false}; return true 

            else  return false 

        else return false 

Note that the predicates ?OpeningValid, ?ClosingValid and 

?WaitingValid are also used in the operator-dependent 

procedures that implement the effect of a change of status 

of an activity. 

Update calls the procedures TurnToOpen and TurnToClosed. 

Together with TurnToWaiting each of these procedures 

realizes the due changes of status of the argument activity 

and propagates the effect to the connected activities. Once 

they are called (either by Update or at the beginning of the 

simulation when the plan status is forced to change from 

sleeping to waiting) they perform all the required changes 

in the plan according to the operator-dependent rules. 

 

4.2  Example 

 

The concepts and mechanisms defined in the above 

sections have been used to describe glasshouse production 

system for tomatoes (Jeannequin et al., 2003)]. To 

illustrate this application, we consider here an extremely 

simplified management plan that is actually only a small 

part of a real one in this domain; this part should normally 

be considered with the other parts at the same time because 

they are likely to interact through their resource demands. 

The plan is the following: 

before(iterate(PRUNING1), iterate(optional(PRUNING2))) 
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It expresses that two series of pruning activities have to 

be done successively and the pruning activities in the 

second series are optional. Both PRUNING1 and PRUNING2 

are primitive activities that consist in applying a Prune 

operation to the plants of a particular glasshouse 

compartment. This operation removes young fruits from 

the most recent truss so as to leave only a limited number 

of them and prevent small sized fruit. The above two 

activities differ only by the resources that they require: the 

first one needs one worker of a particular type (e.g. highly 

qualified) whereas the second one needs one worker too 

but of another type (e.g. temporal labor). We assume that 

w1 and w2 are workers of  the first and second type respec-

tively. w1 is available from day 0 to day 30 whereas w2, is 

hired from day 30 to the end of the season and might 

nevertheless be unavailable from time to time at random 

due to other duties. We assume he might be off for 6 

consecutive days every 2 weeks (15 days) but he must stay 

at least five days when he comes back to his glasshouse 

job. The area of the glasshouse compartment is equal to 10 

units and the pruning speed of a worker is 2 units per day. 

The temporal specifications in the various activities are 

expressed on a daily scale. It is assumed that the plan itself 

(i.e. the before activity) has opening and closing windows 

equal to [0, 60] and [60, 60] respectively. The opening 

window of the first pruning activity in the first series is [0, 

5]. When a pruning activity is open at time t the opening 

window of the potential next iteration in the series is set to 

[t+10, t+15]. Any pruning activity has a closing predicate 

that forbids its closing later than 10 days after the 

execution of the underlying operation has started. The two 

arguments of the before activity have [0, ∞] as opening 

windows; their closing windows are [30, 60] and [60, ∞] 

respectively. Finally the before activity is specified such 

that the opening window of the potential first iteration of 

the second series is set to [t+10, t+15] where t is the 

opening date of the last iteration in the first series. Since 

the availability of w2 is stochastic the outcome of running 

the plan is stochastic too. One of the possible realizations 

is considered next and shown in Figure 2. 

The first series involves three pruning activities that are 

opened as soon as possible with respect to the delay 

constraints (at days 0, 10 and 20 respectively). They are 

never interrupted by resource unavailability so the 

execution of the operation takes exactly 5 consecutive 

days. The first pruning activity in the second series behaves 

similarly for the same reason. At day 40 another pruning 

activity is opened but the operation cannot be performed 

because worker w2 is not available. Since w2 comes back 

only at day 46 and a prune operation cannot start executing 

later than 15 days after the opening of the previous pruning 

activity, this optional activity cannot be performed and is 

simply closed. The following candidate activity is opened 

at day 50 (i.e. 10 days after the previous opening). The 

prune operation is executed at days 50 and 51 when w2 is 

available. This is not enough to complete the activity, 

which resumes as soon as w2 is back at day 58. The 

operation ends at day 60, which complies with the delay 

requirement that the activity ends within 10 days after its 

beginning. As specified, the execution of the plan stops at 

the end of day 60. 

 

5. RELATED WORKS 

 

Several agent behavior specification approaches have 

been published in the AI robotic literature in recent years. 

Logic-based agent languages such as those of the 

Golog/ConGolog family (De Giacomo et al., 2000) were 

designed primarily to support formal reasoning about 

current and potential agent activities to ensure that some 

properties are met. They rely on explicit symbolic 

representation of the environment of the agent and on 

action theories that enable to express relationships between 

fluents (properties that change from a situation to another), 

the effect of actions on these fluents and reason about 

them. ConGolog allows specification of complex plans that 

are kinds of control procedures. It use programming 

constructs such as sequencing, parallel execution, 

conditional statements, non-deterministic choice of actions, 

iteration, procedure call. A ConGolog program when 

executed uses an extended version of situation calculus to 

simulate the changes in the world so as to decide on the 

executability of an action before actually executing it and 

also to figure out which branch to take faced with a 

conditional statement. The off-line interpreter verifies the 

executability conditions, evaluates the conditions in the 

conditional statements and makes choice at non-

deterministic choice points before actually executing the 

program. Therefore, the correctness of a ConGolog 

program with respect to a goal or a particular property can 

be verified off-line. The sequence of actions generated as a 

trace of the verification proof can then be executed.  

The main difference with our approach is that our 

interpreter can only determine repeatedly the actions that 

are legible to execution; the non-executability is a property 

that is eventually revealed when a dead end is met with. 

Actually, for the target application domain, we are more 

interested in a probabilistic assessment of the non-

executability; a plan that does not work in very extreme 

climatic scenarios (e.g. severe drought) may not necessarily 

be rejected in agriculture. A situation of non-executability 

of the plan uncovered by simulation calls for a 

modification of the plan or of the conditional adjustments 

that should be used to make an modification of the plan in  
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reaction to the occurrence of an anticipatory event. In 

addition, we address management problems that involve 

rich temporal and procedural constraints on and between 

the activities. We have paid special attention to the plan 

intelligibility provided by the language. The actions have 

complex and highly uncertain consequences that can hardly 

be incorporated in an action theory enabling to reason 

about their anticipated effects. It is still an open question 

whether formal approaches like ConGolog could scale up 

to problems of this size, involving continuous changes (see 

(Martin, 2003) however). 

Reactive plan frameworks (see SPARK (Morley and 

Myers, 2004) for one of the latest, a member of the PRS 

family (Ingrand et al., 1992)) are also related to the present 

work in the sense that they provide languages to express 

procedural organizations of actions. They are equipped 

with an execution mechanism capable of implementing 

open-ended responsive decision making behavior based on 

high level control constructs. These languages do not offer 

however rich ready-to-use primitives to express temporal 

constraints on the activities. Indeed a PRS agent will have 

a set of pre-defined procedures (called plans or knowledge 

areas) that specify how to achieve goals or perform 

activities. Each plan includes a trigger, which indicates 

when it should be considered for use, a context, which 

indicates when it is valid for use, and a set of actions, 

which specify sequentially how to achieve goals or react to 

events. The temporal reasoning capabilities are rather 

limited and the ability to maintain a sense of continuity in 

the application of a nominal plan is hard to reproduce. 

The kind of flexible temporal constraints that is used in 

our plan representation framework is also present in the 

COMIREM system (Smith et al., 2005) that promotes an 

opportunistic interactive planning paradigm. In this system 

resource allocation decisions are made incrementally as 

availability constraints and activities coming from the plan 

become known.  

 

6. CONCLUDING REMARKS  

 

We have presented a special purpose plan representa-

tion language designed for production management tasks 

that are highly dependent on exogenous uncontrollable 

factors and that involves activities constrained by rich 

temporal properties. The representation framework 

(Martin-Clouaire and Rellier, 2004) and the discrete event 

simulation engine (Rellier, 2005) that runs the various 

processes are implemented as a C++ package. 

As pointed out in the previous section, the problem of 

designing purposeful programmable action behaviors in 

open environments is also addressed by the 

planning/scheduling and autonomous agent communities in 

artificial intelligence. In these approaches the emphasis is 

more on automatic construction of plans and formal 

verification of plan properties or on execution 

performance. Because we only aim at simulating decision 

behavior we give greater importance to the design of a rich 

representation language that can incorporate the kind of 

knowledge used by production managers in practice. The 

language must grant enough flexibility, enabling to avoid 

too early decisional commitment and to interleave 

procedural reasoning and resource allocation at execution 

time. 

As pointed out in Section 2, coping with uncertainty in 

agricultural production management requires to perform 

reactive plan revisions when  particular  events occur. The 

way to adapt the plan in such cases has not been addressed 

in this paper. Another important aspect of our modeling 

and simulation undertaking concerns resources and their 

allocation process. This is the subject of a paper to come. 

At this stage, the decision making behavior that is 

associated to our representation and interpretation 

framework works without an explicit representation of 

goals. This becomes necessary to take into account 

anticipatory decision making capabilities that are invoked 

in some agricultural management problems such as those 

taking place in infinite temporal horizon in particular. 

Consequently we are currently extending the framework 

towards a Belief-Desire-Intention (BDI) type of decision 

making architecture (Rao and Georgeff, 1995) in which 

beliefs express the decision maker current state of 

knowledge about the production system, intentions are the 

activities structured in a plan and desires are specifications 

about target states of the production system.  
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Figure 2. Interpretation of the plan given the constraints on resource availability

 


