
CMS-05, Marseille, 20-22 oct. 2005

1

REPRESENTING AND INTERPRETING FLEXIBLE PRODUCTION MANAGEMENT PLANS

Roger Martin-Clouaire, Jean-Pierre Rellier

INRA, Unité de Biométrie et d’Intelligence Artificielle

BP52627 Auzeville, 31326 Castanet Tolosan, France.

rmc@toulouse.inra.fr, rellier@toulouse.inra.fr

ABSTRACT

In agriculture the production management difficulties

stem from the high influence that uncontrollable factors

like weather or pests have on the biological processes

underlying any agricultural production. In order to cope

with uncertainty the decision making behavior must rely

on a kind of flexible plan that enables to postpone the full

determination of actions until execution time.

The paper presents a dedicated plan representation

language that supports the specification of a well

structured set of intended activities and an interpreter that

takes as input this handcrafted plan and determines

repeatedly over time the activities that are currently

eligible for execution. Once represented in this framework

a production management plan can be simulated in

various exogenous conditions, which enables the study of

the underlying production management behavior.

1. INTRODUCTION

This paper presents a plan representation language

designed for production management tasks that are highly

dependent on exogenous uncontrollable factors. The plan

representation approach is motivated by applications to the

study of agricultural production processes such as dairy or

crop production systems. The yield, quality and costs of

agricultural productions are inherently affected by weather,

diseases, pests and other factors that are highly uncertain.

A farm’s profitability and overall financial health is, of

course, highly dependent on the mechanisms in place for

performing timely and efficiently the required agronomic

operations and for mitigating the risk exposure.

The biological nature of agricultural production makes

it fundamentally different from manufacturing. Uncertainty

in manufacturing concerns mainly the production goals (the

demand) and to a lesser extent the availability of resources

(e.g. machine breakdown). In agriculture, uncertainty

affects the determinism of the actions and forces context-

dependent courses of actions to be adopted to cope with

threat or exploit opportunities. The production processes

in manufacturing is fully manmade and can be designed in

a way supporting the planning and scheduling of

operations. In agriculture the production process goes on

even if no action is performed; external natural inputs

(light, energy) constitute the primary driving factor. In

addition, the performance criteria are of different types

such as minimizing the timespan in manufacturing versus

keeping the production risk under control in agriculture.

Nevertheless, despite the pervasiveness of uncertainty

and variability in farm production processes, the decision

making behavior is far from being purely reactive. Indeed

the production processes offer a great deal of structures

and regularities from one year to the other, which enable

farmers to plan roughly the intended activities required by

the overall production objective.

Capturing how the flexible temporal organization of

activities can be specified and how such a specification can

be used for on-line determination of what actions are licit

for execution is the subject of this paper. The underlying

objective behind this modeling endeavor is to be able to

deal with agricultural production management behavior as

an object of scientific consideration and to conduct virtual

experimentation on it by computer simulation. Explicit

representation and simulation are also a means to ease

communication, learning and design of possible

management behaviors.

The next section provides some background about

production management in agriculture. The plan

representation language is presented in Section 3. The

algorithm that maintains the status of the plan activities is

given in Section 4. Section 5 points out some related

works.

CMS-05, Marseille, 20-22 oct. 2005

2

2. PRODUCTION SYSTEM ARCHITECTURE

As shown in Figure 1, an agricultural production system

is seen as an entity situated in what is called the external

environment (e.g. the climatic and economic context) and

can be decomposed into three interactive subsystems: the

manager, the operating system and the biophysical system.

A production system is an active entity in the sense that it

is the repository of processes and has inputs (physical or

informational), outputs and an event agenda. The processes

are controlled by events (straight lines) of the agenda.

matter

energy

OPERATING SYSTEM:

labor, tools, inputs

BIOPHYSICAL SYSTEM:

soil, crops, animals

MANAGER: farmer

information

events

produces

residues

Figure 1. Agricultural production system

The biophysical system is composed of biophysical

entities (e.g. crop, animals) that usually have their own

processes (e.g. photosynthesis, physiological functions).

Among the events controlling these processes are those

triggered by the execution of the operations performed by

the operating system. The inputs are material inputs (e.g.

fertilizers provided by the operating system) and energy

either coming from the external environment or provided

by the operating system. The processes may generate

particular events triggered by significant changes of the

biophysical system state. Thus the biophysical system may

also include some sensing and alarm devices.

The manager stands for the farmer having the

responsibility of achieving the overall production system

objective. In our model, the manager holds a management

strategy that drives the behaviors of the operating system

and, indirectly, of the biophysical system. A strategy is a

handcrafted construct that specifies a kind of flexible

nominal plan coming with its context-responsive

adaptations and the necessary implementation details to

constrain the stepwise determination and execution of the

actions to perform.

Since the production process is highly influenced by

factors beyond his control the farmer must pay special

attention to the robustness of his strategy so as to work

acceptably well in almost all climatic scenarios and be

responsive to important contingencies whose effects can be

eliminated or mitigated by proper agronomic practices.

Therefore agricultural production management must rely

on a decision making behavior that is both plan-based and

reactive.

With accumulation of experience and advice, farmers

have learned to design their own temporal organization of

farming activities. The planning is done consistently with

overall objective, resource limitation and intended tactic,

with their own perception and understanding of the

production system characteristics and with particular

events that have to be monitored and reacted to.

The manager’s processes are responsible for:

- monitoring the occurrence of new events and scrutinizing

salient aspects of the current state of the production

system (mainly in the biophysical system);

- updating the status of the activities in the nominal plan

depending on changes of the system state and the passing

of time (e.g. some activities may be obsolete while other

may become ready for execution consideration);

- revising the management strategy in situations recognized

beforehand to require such adaptations;

- generating the sets of activities that are feasible (i.e.

consistent with the nominal plan and thus open to further

consideration for execution) and providing the necessary

implementation details that constrain the dynamic

allocation of resources.

Every time the manager is activated the result of his

work (advocated sets of activities and requirements) is

handed over to the operating system that has to execute

them using the resources it is equipped with (e.g. labor,

tools). The operating system utilizes, within its autonomy,

its own problem solving procedure to derive the selected

set of executable activities. It has processes, in particular,

to:

- allocate resources to the activities;

- select the preferred set of activities in case of

concurrency.

The execution of the current set of operations continues

until a change on the resources occurs (end of an operation

or end of working hours). Such an event may be followed

by a new scheduling of activities to execute or by a transfer

of control to the manager or by nothing if the plan is

exhausted.

The next section focuses on the representation of plans.

3. REPRESENTING PLANS

3.1 Activities and primitive activities

The basic structure in a plan is the concept of activity.

In its simplest form, an activity, which is then called a

CMS-05, Marseille, 20-22 oct. 2005

3

primitive activity, specifies something to be done on a

particular biophysical object or location (e.g. a mob, a

plant, a field or a set of these) by a performer (e.g. a

worker, a robot or a set of these). Besides these three

components, a primitive activity is characterized by local

opening and closing conditions, defined by time windows

and/or predicates referring to the biophysical state. These

conditions are of use to determine at any time the activities

that are eligible for execution consideration. For this

purpose any activity has a status taking value in the set:

sleeping, waiting, open, closed and cancelled (explained

later).

The something-to-be-done component of a primitive

activity is an intended transformation called an operation

(e.g. the harvesting operation). The execution of an

operation causes changes to the biophysical system. These

changes take place over a period of time. An operation

affects either individual objects in a collection of processed

objects (e.g. plants in a greenhouse population) or objects

having numerical characteristics (e.g. area). The speed is

defined as a quantity (e.g. number of items, area)

processable in a unit of time. The duration of the operation

is the ratio of the total quantity by the speed. In order to

have the effect realized consistently with its definition the

operation must satisfy some enabling conditions that refer

to the current state of the biophysical system (e.g. the field

to be processed should not be too muddy).

Primitive activities can be further constrained by adding

temporal relations between them and by using

programming constructs enabling specification of temporal

ordering, iteration, grouping and optional execution. To

this end, a set of composition operators are used such as

before, iterate, and optional that are presented in the next

subsections. Other operators are utilized to specify choice

of one activity among several (or), grouping of activities

(and) and concurrency among some of them (e.g. overlap,

co-start).

 Any activity involving a composition operator is said to

be non-primitive; a composition operator applied to an

activity (primitive or not) defines another activity that may

also be given local opening and closing conditions. A non-

primitive activity is called the mother activity and the

activities that are the arguments of the operator are called

the child activities. The opening and closing of a non-

primitive activity depends on its own local opening and

closing conditions (if any), and of those of the underlying

primitive activities that play a role through the composition

operators. All the activities are connected; the only activity

that does not have a mother is the plan. The plan is flexible

in the sense that two different sequences of events are

likely to yield two different realizations of the plan. The

opening date of the same activity will not be the same in

the two cases. Moreover some activities may be cancelled

in one case and not in the other if they are optional or

subject to context-dependent choices.

The passing of time and the evolution of the state of the

production system may make true the conditions that

govern the changing of status of the primitive activities.

The change of status of activities is realized at particular

times specified by the manager and when an operation is

completed. Any change of status of an activity is

propagated to the activities that are directly or indirectly

connected to it via composition operators.

The meaning of the possible values of an activity status

can now be explained. The value sleeping is given to all

activities at creation time. It means that the opening and

closing conditions do not have to be examined yet. The

status turns to waiting as soon as the opening activities

have to be examined. For instance, as soon as an activity

finishes it becomes necessary to monitor those following it

in a sequence specified with a before operator. The

nominal plan is declared waiting at the starting time of a

simulation. The status of an activity turns to open when its

opening conditions are satisfied. The status changes from

open to closed when the closing conditions are satisfied or,

in case of primitive activity, when the underlying operation

is completed. The status turns to cancelled when the ac-

tivity becomes of no interest; this happens, for instance,

once a choice among alternatives specified through the or

operator has been made, making cancelled the non-selected

alternatives.

The meaning of each operator used to construct a new

activity by constraining other activities is defined by two

sets of rules specifying:

- the preconditions that must be satisfied by the mother

activity in order to enable the change of status of some of

the child activity and vice versa;

- the post-conditions or effects of any change of status of

one of the mother or child activities on the others.

The cases of the before, iterate, and optional operators are

visited in turn in the next subsections.

3.2 Sequencing constraints

To specify that two or more than two activities must be

performed successively without any overlapping in the

interval of time of their execution one can use the before

operator and apply it to the child activities. In other words,

the activity before(A B) imposes that the activity B cannot

have the status open before the status of A is closed. The

order in time of the sequence is expressed by the order of

the arguments of the operator. Any activity constructed

using the before operator has two extra properties that

enable specification of, if necessary, the delays between the

CMS-05, Marseille, 20-22 oct. 2005

4

opening of two consecutive activities, and between the

closing of one of them and the opening of the next one.

The change of status of any of the involved activities is

subject to the following preconditions. In order for the

mother activity status to become:

- waiting (resp. open), its first child must be allowed to

turn to waiting (resp. open);

- closed, its last child must be allowed to turn to closed.

In order for the first child to become:

- waiting (resp. open), the mother must be allowed to turn

to waiting (resp. open).

In order for any other child than the first one to become:

- waiting, the preceding activity must be closed or allowed

to turn to closed.

In order for last child to become:

- closed, the mother must be allowed to turn to closed.

The effect of a change of status of any (mother or child)

activity follows the following rules. As soon as the mother

turns to:

- waiting (resp. open), the first child turns to waiting (resp.

open);

- closed, the last child turns to closed.

As soon as a child activity turns to:

- waiting and if it is the first child then, the mother turns to

waiting. Otherwise, the preceding child turns to closed (if

not already so);

- open and if it is the first child then, the mother turns to

open;

- closed and if it is the last child then, the mother turns to

closed. Otherwise, the next child turns to waiting if

possible.

Another operator used to specify a sequence is meet. It

is very similar to before except that there should be no

delay between the closing of a child and the opening of the

next one.

3.3 Iteration

The operator iterate, which has a single argument

activity, specifies that the child activity be repeated within

the time in which the mother activity is open. The mother

must be given opening and closing time windows, or

opening and closing predicates, or the maximum and

minimum number of replication or any combination of the

above possibilities. The child or descendant activities

should not appear elsewhere in the plan. The mother

constructed using the iterate operator has two extra

properties that enable specification of, if necessary, the

delays between the opening of two consecutive iteration of

the child, and between the closing of the child and the

opening of its next iteration. The only preconditions to a

change of status of the child are that the mother be waiting

or open in order for the child to turn to waiting, and that

the mother be open in order for the child to turn to open or

closed.

As soon as the mother activity turns to:

- open, the child turns to waiting if possible;

- closed, the child turns to closed if possible.

As soon as the child turns to closed, it is set immediately to

waiting unless the mother’s closing conditions are satisfied

at that time.

The iteration process, which is controlled by a specific

procedure, duplicates (instantiates in fact) the child activity

as needed in agreement with the constraints of delay

between repetitions and of limitations of the number of

iterations if provided. These copies have a status changing

from sleeping, to waiting, from waiting to open, from open

to closed, and, exclusively for this case, from closed to

waiting. These transitions continue as long as the mother is

open.

3.4 Optional activity

The optional operator applied to an activity expresses

that if this one cannot be realized (i.e. it is too late with

respect to the opening interval or the opening predicate

cannot be satisfied) then, it is not a sufficient circumstance

to declare the plan invalid. In other words, this operator

enables specification of the child activity that should be

realized if possible. The child or descendant activities

should not appear elsewhere in the plan if not declared

optional there too. The status of the mother can change to

waiting if the child can turn to waiting. Analogous

preconditions hold when substituting waiting by open or by

closed and by permuting child and mother. The effect

rules follow from the precondition rules (e.g. the child be-

comes open as soon as the mother becomes open). When a

mother activity made with the optional operator cannot be

realized its status is forced to turn to closed.

4. UPDATING THE ACTIVITIES

4.1 Algorithm

The advance of time and the evolution of the production

system (the biophysical system in particular) may make

true the opening and closing conditions of the activities.

The updating of the status of the activities occurs at either

examination times specified by the manager (typically at

discontinuity points induced by new day or new week) or

when an operation is terminated. The change of status is

realized by a procedure that essentially checks that the

opening and/or closing conditions can be satisfied and that

the constraints linking this activity to others would be

CMS-05, Marseille, 20-22 oct. 2005

5

satisfied if the change proceeded. This procedure, applied

to the plan, causes a recursive examination of all the

activities that are waiting or open. Any activity whose

change of status is validated is updated and the change is

propagated immediately to the connected activities.

A more formal presentation of this updating process is

given through the pseudo-code of the Update procedure that

follows.

procedure: Update(activity)

 if activity.situation not waiting and

 activity.situation not open

 then return

/* beginning of plan failure detection */

 if {activity.situation = waiting and

 it is no longer possible to open} or

 { activity.type = primitive and

activity.situation = open and

 opening time is over and

 operation is not yet executing}

 then if activity.type = optional

 then {TurnToClosed(activity); return}

else exit("Plan failure")

 if activity.situation = open and

 it is no longer possible to close

 then exit("Plan failure")

/* end of plan failure detection */

 switch activity.type

case primitive

 if ?OpeningValid(activity)

 then TurnToOpen(activity)

 if ?ClosingValid(activity)

 then TurnToClosed(activity)

 /* ?ClosingValid includes test relative to minimal

 percentage of execution realization required, typically

 100%*/

case iteration

 if ?OpeningValid(activity)

 then TurnToOpen(activity)

 if situation = open

 then switch child.situation

 case sleeping

 TurnToClosed(activity)

 case waiting

 if ?ClosingValid(activity)

 then TurnToClosed(activity)

case others

 for each child do Update(child)

Normally the status updating process is repeatedly

invoked until the plan is closed. In some cases, the plan

cannot be closed, which reveals a plan failure. Such an

inconsistency situation occurs when some preconditions to

change cannot be satisfied (e.g. a meet activity in which the

second child cannot be open although the first should be

closed). In other words, this happens when an activity that

is not optional can no longer be open or when it cannot be

closed without violating constraints that link them to other

activities by composition operators.

Two important predicates are used in Update:

?OpeningValid, ?ClosingValid. They return true if it is legal to

open or close the argument activity. ?OpeningValid calls the

two activity-dependent predicates ?CheckSonsIfOpen and

?CheckIfSonOpen. The latter two, together with the predicates

?CheckSonsIfWaiting, ?CheckIfSonWaiting, ?CheckSonsIfClosed, and

?CheckIfSonClosed, implement the preconditions to changes

defined for each composition operator. They themselves

call ?OpeningValid, ?ClosingValid and ?WaitingValid. These three

predicates are very similar in principle. The pseudo-code

of ?OpeningValid is given below. For clarity, this code does

not include all the bookkeeping structures and tests

necessary to avoid loops.

predicate: ?OpeningValid(activity)

 if activity.situation = open then return true

 else

 if {activity.situation = waiting or ?WaitingValid(activity)}

 and local opening conditions satisfied

 then

 if ?CheckSonsIfOpen(activity)

 then {for each mother do

 if not ?CkeckIfSonOpen(activity, mother)

 then return false}; return true

 else return false

 else return false

Note that the predicates ?OpeningValid, ?ClosingValid and

?WaitingValid are also used in the operator-dependent

procedures that implement the effect of a change of status

of an activity.

Update calls the procedures TurnToOpen and TurnToClosed.

Together with TurnToWaiting each of these procedures

realizes the due changes of status of the argument activity

and propagates the effect to the connected activities. Once

they are called (either by Update or at the beginning of the

simulation when the plan status is forced to change from

sleeping to waiting) they perform all the required changes

in the plan according to the operator-dependent rules.

4.2 Example

The concepts and mechanisms defined in the above

sections have been used to describe glasshouse production

system for tomatoes (Jeannequin et al., 2003)]. To

illustrate this application, we consider here an extremely

simplified management plan that is actually only a small

part of a real one in this domain; this part should normally

be considered with the other parts at the same time because

they are likely to interact through their resource demands.

The plan is the following:

before(iterate(PRUNING1), iterate(optional(PRUNING2)))

CMS-05, Marseille, 20-22 oct. 2005

6

It expresses that two series of pruning activities have to

be done successively and the pruning activities in the

second series are optional. Both PRUNING1 and PRUNING2

are primitive activities that consist in applying a Prune

operation to the plants of a particular glasshouse

compartment. This operation removes young fruits from

the most recent truss so as to leave only a limited number

of them and prevent small sized fruit. The above two

activities differ only by the resources that they require: the

first one needs one worker of a particular type (e.g. highly

qualified) whereas the second one needs one worker too

but of another type (e.g. temporal labor). We assume that

w1 and w2 are workers of the first and second type respec-

tively. w1 is available from day 0 to day 30 whereas w2, is

hired from day 30 to the end of the season and might

nevertheless be unavailable from time to time at random

due to other duties. We assume he might be off for 6

consecutive days every 2 weeks (15 days) but he must stay

at least five days when he comes back to his glasshouse

job. The area of the glasshouse compartment is equal to 10

units and the pruning speed of a worker is 2 units per day.

The temporal specifications in the various activities are

expressed on a daily scale. It is assumed that the plan itself

(i.e. the before activity) has opening and closing windows

equal to [0, 60] and [60, 60] respectively. The opening

window of the first pruning activity in the first series is [0,

5]. When a pruning activity is open at time t the opening

window of the potential next iteration in the series is set to

[t+10, t+15]. Any pruning activity has a closing predicate

that forbids its closing later than 10 days after the

execution of the underlying operation has started. The two

arguments of the before activity have [0, ∞] as opening

windows; their closing windows are [30, 60] and [60, ∞]

respectively. Finally the before activity is specified such

that the opening window of the potential first iteration of

the second series is set to [t+10, t+15] where t is the

opening date of the last iteration in the first series. Since

the availability of w2 is stochastic the outcome of running

the plan is stochastic too. One of the possible realizations

is considered next and shown in Figure 2.

The first series involves three pruning activities that are

opened as soon as possible with respect to the delay

constraints (at days 0, 10 and 20 respectively). They are

never interrupted by resource unavailability so the

execution of the operation takes exactly 5 consecutive

days. The first pruning activity in the second series behaves

similarly for the same reason. At day 40 another pruning

activity is opened but the operation cannot be performed

because worker w2 is not available. Since w2 comes back

only at day 46 and a prune operation cannot start executing

later than 15 days after the opening of the previous pruning

activity, this optional activity cannot be performed and is

simply closed. The following candidate activity is opened

at day 50 (i.e. 10 days after the previous opening). The

prune operation is executed at days 50 and 51 when w2 is

available. This is not enough to complete the activity,

which resumes as soon as w2 is back at day 58. The

operation ends at day 60, which complies with the delay

requirement that the activity ends within 10 days after its

beginning. As specified, the execution of the plan stops at

the end of day 60.

5. RELATED WORKS

Several agent behavior specification approaches have

been published in the AI robotic literature in recent years.

Logic-based agent languages such as those of the

Golog/ConGolog family (De Giacomo et al., 2000) were

designed primarily to support formal reasoning about

current and potential agent activities to ensure that some

properties are met. They rely on explicit symbolic

representation of the environment of the agent and on

action theories that enable to express relationships between

fluents (properties that change from a situation to another),

the effect of actions on these fluents and reason about

them. ConGolog allows specification of complex plans that

are kinds of control procedures. It use programming

constructs such as sequencing, parallel execution,

conditional statements, non-deterministic choice of actions,

iteration, procedure call. A ConGolog program when

executed uses an extended version of situation calculus to

simulate the changes in the world so as to decide on the

executability of an action before actually executing it and

also to figure out which branch to take faced with a

conditional statement. The off-line interpreter verifies the

executability conditions, evaluates the conditions in the

conditional statements and makes choice at non-

deterministic choice points before actually executing the

program. Therefore, the correctness of a ConGolog

program with respect to a goal or a particular property can

be verified off-line. The sequence of actions generated as a

trace of the verification proof can then be executed.

The main difference with our approach is that our

interpreter can only determine repeatedly the actions that

are legible to execution; the non-executability is a property

that is eventually revealed when a dead end is met with.

Actually, for the target application domain, we are more

interested in a probabilistic assessment of the non-

executability; a plan that does not work in very extreme

climatic scenarios (e.g. severe drought) may not necessarily

be rejected in agriculture. A situation of non-executability

of the plan uncovered by simulation calls for a

modification of the plan or of the conditional adjustments

that should be used to make an modification of the plan in

CMS-05, Marseille, 20-22 oct. 2005

7

reaction to the occurrence of an anticipatory event. In

addition, we address management problems that involve

rich temporal and procedural constraints on and between

the activities. We have paid special attention to the plan

intelligibility provided by the language. The actions have

complex and highly uncertain consequences that can hardly

be incorporated in an action theory enabling to reason

about their anticipated effects. It is still an open question

whether formal approaches like ConGolog could scale up

to problems of this size, involving continuous changes (see

(Martin, 2003) however).

Reactive plan frameworks (see SPARK (Morley and

Myers, 2004) for one of the latest, a member of the PRS

family (Ingrand et al., 1992)) are also related to the present

work in the sense that they provide languages to express

procedural organizations of actions. They are equipped

with an execution mechanism capable of implementing

open-ended responsive decision making behavior based on

high level control constructs. These languages do not offer

however rich ready-to-use primitives to express temporal

constraints on the activities. Indeed a PRS agent will have

a set of pre-defined procedures (called plans or knowledge

areas) that specify how to achieve goals or perform

activities. Each plan includes a trigger, which indicates

when it should be considered for use, a context, which

indicates when it is valid for use, and a set of actions,

which specify sequentially how to achieve goals or react to

events. The temporal reasoning capabilities are rather

limited and the ability to maintain a sense of continuity in

the application of a nominal plan is hard to reproduce.

The kind of flexible temporal constraints that is used in

our plan representation framework is also present in the

COMIREM system (Smith et al., 2005) that promotes an

opportunistic interactive planning paradigm. In this system

resource allocation decisions are made incrementally as

availability constraints and activities coming from the plan

become known.

6. CONCLUDING REMARKS

We have presented a special purpose plan representa-

tion language designed for production management tasks

that are highly dependent on exogenous uncontrollable

factors and that involves activities constrained by rich

temporal properties. The representation framework

(Martin-Clouaire and Rellier, 2004) and the discrete event

simulation engine (Rellier, 2005) that runs the various

processes are implemented as a C++ package.

As pointed out in the previous section, the problem of

designing purposeful programmable action behaviors in

open environments is also addressed by the

planning/scheduling and autonomous agent communities in

artificial intelligence. In these approaches the emphasis is

more on automatic construction of plans and formal

verification of plan properties or on execution

performance. Because we only aim at simulating decision

behavior we give greater importance to the design of a rich

representation language that can incorporate the kind of

knowledge used by production managers in practice. The

language must grant enough flexibility, enabling to avoid

too early decisional commitment and to interleave

procedural reasoning and resource allocation at execution

time.

As pointed out in Section 2, coping with uncertainty in

agricultural production management requires to perform

reactive plan revisions when particular events occur. The

way to adapt the plan in such cases has not been addressed

in this paper. Another important aspect of our modeling

and simulation undertaking concerns resources and their

allocation process. This is the subject of a paper to come.

At this stage, the decision making behavior that is

associated to our representation and interpretation

framework works without an explicit representation of

goals. This becomes necessary to take into account

anticipatory decision making capabilities that are invoked

in some agricultural management problems such as those

taking place in infinite temporal horizon in particular.

Consequently we are currently extending the framework

towards a Belief-Desire-Intention (BDI) type of decision

making architecture (Rao and Georgeff, 1995) in which

beliefs express the decision maker current state of

knowledge about the production system, intentions are the

activities structured in a plan and desires are specifications

about target states of the production system.

7. REFERENCES

De Giacomo, G., Y. Lespérance, H. Levesque. 2000.

“Congolog, a concurrent programming language based

on the situation calculus”. Artificial Intelligence, 121:

109-169.

Ingrand, F., M. Georgeff, and A. Rao. 1992. “An

architecture for real-time reasoning and system

control”. IEEE Expert, Knowledge-Based Diagnosis in

Process Engineering, 7(6): 34-44.

Jeannequin, B., R. Martin-Clouaire, M. Navarrete, J.-P.

Rellier. 2003. “Modeling management strategies for

greenhouse tomato production”. Proc. of CIOSTA-

CIGRV Congress, Turin, 506-513.

Martin, Y. 2003. “The concurrent continuous FLUX”. Proc

of IJCAI, Acapulco.

Martin-Clouaire, R., J.-P. Rellier. 2004.“Fondements

ontologiques des systèmes pilotés”. Internal report

UBIA-INRA, Toulouse-Auzeville.

CMS-05, Marseille, 20-22 oct. 2005

8

Morley, D., K. Myers. 2004. “The SPARK agent

framework”. Proc. of AAMAS-04, New York, 712-

719.

Rao, A., M. Georgeff. 1995. “BDI agent: from theory to

practice”. Proc of Int. Conf. on Multiagent systems, San

Francisco.

Rellier, J.-P. 2005. “DIESE : un outil de modélisation et de

simulation de systèmes d’intérêt agronomique”. Internal

report UBIA-INRA, Toulouse-Auzeville.

Smith, S.F., D.W. Hildum, D.R. Crimm, 2005. “Comirem:

an intelligent form for resource management”. IEEE

Intelligent Systems, 20(2): 16-24.

iterate(optional(pruning))

iterate(pruning)

10 15 20 25 30 35 50 520 40 46 585 60time (in days):

w1 availability

w2 availability

0

1

0

1

0

1

0

1

0

1

percent achieved 0.4

Figure 2. Interpretation of the plan given the constraints on resource availability

