
Chapter 4. 
Hybrid tree and local search

Search strategies for visiting nodes

Variable ordering exploiting the structure

Value ordering used in partial search strategy

Variable neighborhood search



































Benchmark

http://genoweb.toulouse.inra.fr/~degivry/evalgm

http://genoweb.toulouse.inra.fr/~degivry/evalgm


(CPAIOR16 – Constraints16)

Normalized lower and upper bounds on 1208 difficult instances as time passes



Results exploiting cliques

Normalized lower and upper bounds on 252 instances as time passes

(CP17)
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Many real applications have a structured network

SPOT5 #509 (Constraints 4(3), 1999) 

langladeM7 sheep pedigree
(Constraints 13(1), 2008) 

CELAR SCEN-07r
(Constraints 4(1), 1999) 

Earth
Observation

Satellite
Management

Radio
Link

Frequency
Assignment

Mendelian
Error

Detection

Tag
SNP

Selection

HapMap chr01 r2≥0.8 #14481
(Bioinformatics 22(2), 2006)



Search & Variable Elimination

Condition, condition, condition … and 
then only eliminate (Cycle-Cutset)

Eliminate, eliminate, eliminate … and
then only search

Interleave conditioning and elimination

(slide from IJCAI’09 tutorial) 23
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Conditioning vs. Elimination
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Interleaving Conditioning and Elimination
BB-VE(2) (Larrosa & Dechter, CP 2002)

(slide from IJCAI’09 tutorial) 25



Interleaving Conditioning and Elimination
BB-VE(2)
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Interleaving Conditioning and Elimination
BB-VE(2)
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Interleaving Conditioning and Elimination
BB-VE(2)

(slide from IJCAI’09 tutorial) 28



Interleaving Conditioning and Elimination 
BB-VE(2)

(slide from IJCAI’09 tutorial) 29



Interleaving Conditioning and Elimination
BB-VE(2)

(slide from IJCAI’09 tutorial) 30



Interleaving Conditioning and Elimination
BB-VE(2)

...

...

(slide from IJCAI’09 tutorial) 31
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Pedigree

B&B with dom/deg

B&B with last conflict

B&B-VE(2) with dom/deg

B&B-VE(2) with last conflict

• toulbar2 v0.5 with EDAC3 and binary branching
• Minimize the number of genotypings to be removed
• CPU time in seconds to find and prove optimality

on a linux PC 3 GHz with 16 GB

(Sanchez et al, Constraints 2008)



Search & Cluster Tree Elimination

Depth-First Branch and Bound
exploiting a tree decomposition with:

 A restricted variable ordering

 Graph-based backjumping

 Graph-based learning

 Lazy elimination of subproblems
using search
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The set of clusters
covers
the set of variables and
the set of cost functions

Separator = intersection 
between
two connected clusters
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Search with Tree Decomposition
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AND/OR tree search
(Marinescu & Dechter, AIJ 2009)

time O(exp(w log(n))
linear space
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Search with Tree Decomposition
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(Marinescu & Dechter, AAAI 2006)
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Search with Tree Decomposition

0 1 0 1

0 1 0 1 0 1 0 1
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Record the optimum 
of P2 / {(D=red)}

LBP2 / {(D=red)} = 1
OPTP2 / {(D=red)} = true

P2 / {(D=red)}

Assume a global upper
bound k = 5.

It may be useless to 
compute the optimum of 
P2 / {(D=red)},
only a lower bound is
needed!
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AND/OR graph search
(Marinescu & Dechter, AIJ 2009) 

time O(exp(w))
space O(exp(w))
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Backtrack bounded by Tree Decomposition 
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P2 / {(D=red)}

Assume a global upper
bound k = 5.

It may be useless to compute the 

optimum of P2,

only a lower bound is needed!

Add a local upper bound:
UBP2 / {(D=red)} = k – 3 – LBP4 / {(D=red)}

UBP2 / {(D=red)} = k – 3 – max ( f
C4 + f

C5, LBP4 / {(D=red)} )

Maintaining local consistency Recorded during search
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BTD
(Jégou & Terrioux, ECAI 2004)
(de Givry et al., AAAI 2006)
time O(k*exp(w))
space O(exp(w))
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Limited Discrepancy Search (Ginsberg 95)

- Small example with 3 variables and 2 values per domain

E1

l=0



Limited Discrepancy Search 

l
- Small example with   3 variables and  2 values per domain

E2 E3 E5

l=1



Limited Discrepancy Search (Ginsberg 95)

l=2

E4 E6 E7



l=3 ⇒ optimality proof

Full exploration 

lmax = n *(d - 1)   :  in this case,  lmax=3*(2-1)=3

Limited Discrepancy Search (Ginsberg 95)

E8

l=3

In practice, it occurs before l
max

thanks to bounding and pruning
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 IDWalk performs S moves and returns the best solution 
found during the walk. 

 A move examines at most Max candidate neighbors at 
random (flips among variables in conflicts):
◦ If the cost of a neighbor is less than or equal to the cost of 

the current solution, then it is selected (intensification) 

◦ If no neighbors are selected, then chose one  at random 
(diversification)

4

6

ID Walk: a Candidate List Strategy with a Simple Diversification Device.
B. Neveu, G. Trombettoni, F. Glover. LNCS 3258, Springer, p. 423--437, CP 2004

S= 100,000 ; Max=200 ; 3 repeats

(Neveu et al, CP 2004)



vnsVariable Neighborhood Search (Hansen 97)

LDS SEARCH 

with given discrepancy



UDGVNS : Exploration of both  k and l dimensions

LDS  



Step 1 : Initial solution

Lds  

Greedy assignment



NEW SOLUTION WITH BETTER E  → RESTART

Lds  

New 

E best



Lds  

Proof of Optimality

IFF ub=lb(problem) can 

be before kmax 



Lds  

Proof of Optimality

In the worst case l >= max number of right branches 

( lmax= |x|*(Dmax-1) )

Iff k = kmax = problem size



Lds  

Proof of Optimality

In the worst case l >= max number of right branches 

( lmax= |x|*(Dmax-1) )

Iff k = kmax = problem size

In practice can be before lmax

( due to the pruning in DFBB) 



Cluster visit in a topological order :



Results
(UAI17)



Results
(UAI17)



Results
(UAI17)



Parallel VNS

Unified Parallel Decomposition Guided VNS (UPDGVNS)



Results
(UAI17)
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