Chapter 4. Hybrid tree and local search

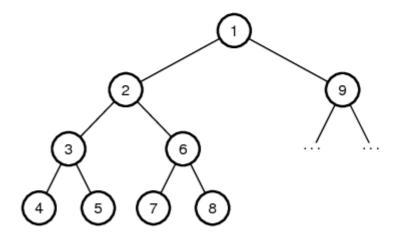
Search strategies for visiting nodes

Variable ordering exploiting the structure

Value ordering used in partial search strategy

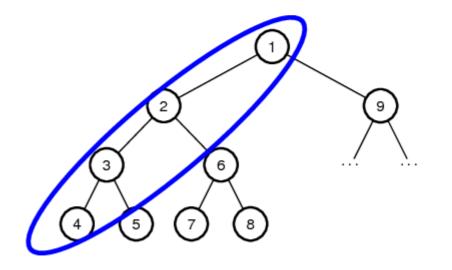
Variable neighborhood search

Depth First



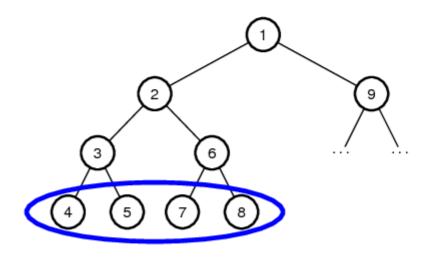
Depth First Advantages

Incrementality



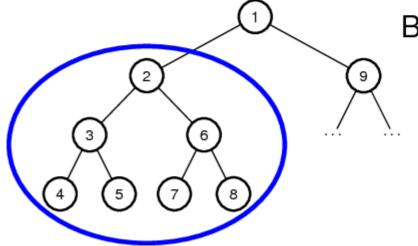
Depth First Advantages

- Incrementality
- Anytime (sort of)



Depth First Advantages

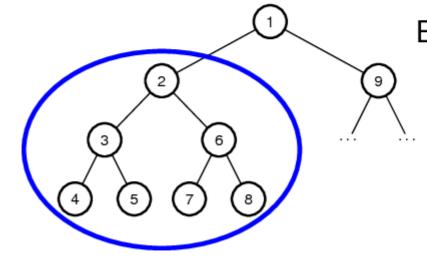
- Incrementality
- Anytime (sort of)



- But
 - Thrashing

Depth First Advantages

- Incrementality
- Anytime (sort of)

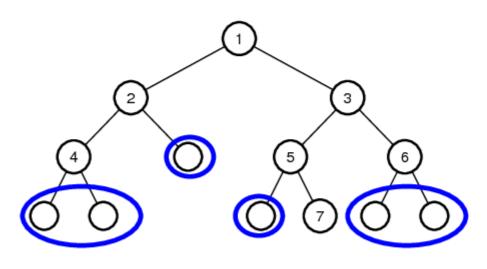


But

- Thrashing
- No global lower bounds

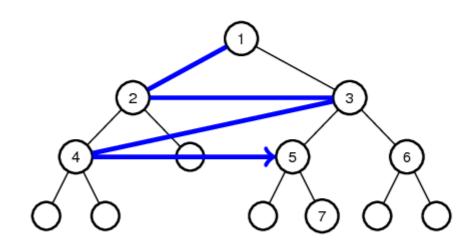
Best first

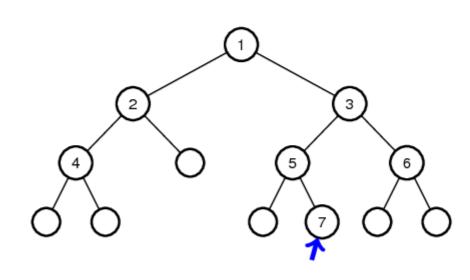
• Memory requirements



Best first

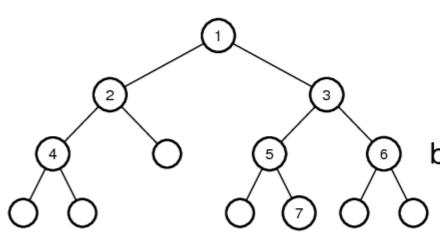
- Memory requirements
- No incrementality or even greater memory cost





Best first

- Memory requirements
- No incrementality or even greater memory cost
- Not anytime

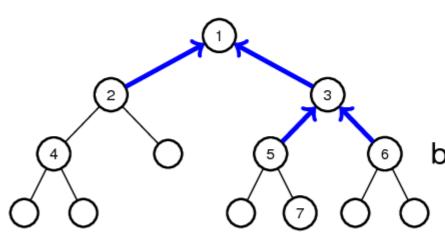


Best first

- Memory requirements
- No incrementality or even greater memory cost
- Not anytime

but

• Theoretical guarantees

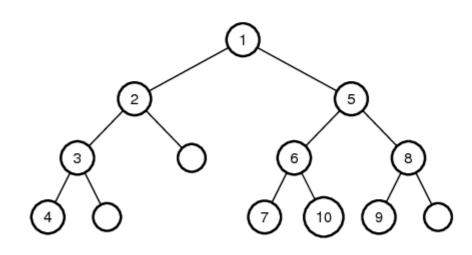


Best first

- Memory requirements
- No incrementality or even greater memory cost
- Not anytime

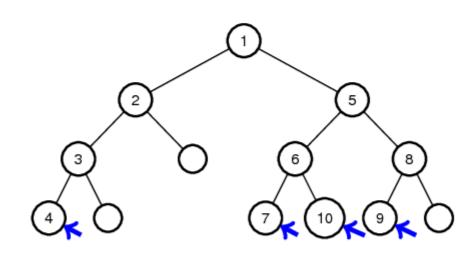
but

- Theoretical guarantees
- Global lower bounds

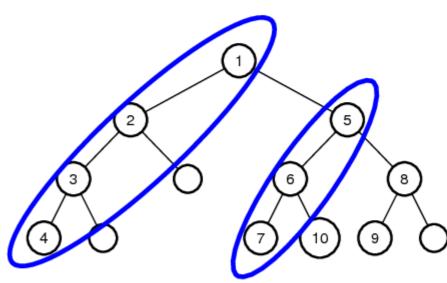


BFS with DFS probes*

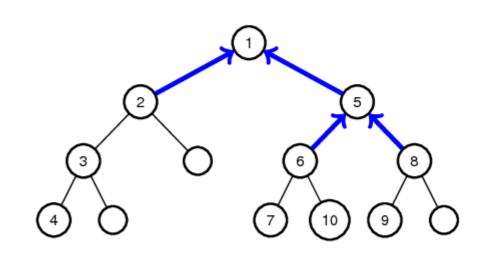
Improved anytime behavior



- Improved anytime behavior
- Incrementality without memory overhead



- Improved anytime behavior
- Incrementality without memory overhead
- Lower bounds



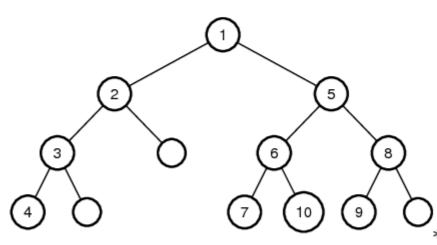
- Improved anytime behavior
- Incrementality without memory overhead
- Lower bounds
- Some of the advantages of restarting

BFS with DFS probes*

- Improved anytime behavior
- Incrementality without memory overhead
- Lower bounds
- Some of the advantages of restarting

* With

adaptive heuristic for probe size



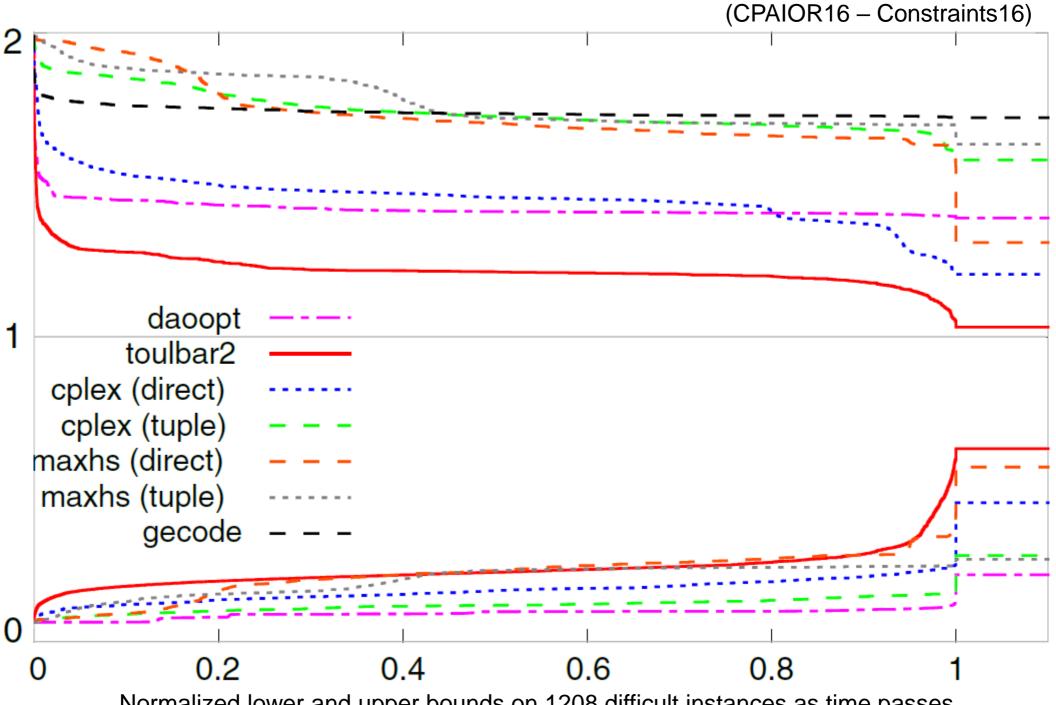
Benchmark

- MRF: Probabilistic Inference Challenge 2011 (uai format)
- CVPR: Computer Vision and Pattern Recognition OpenGM2 (uai)
- CFN: MaxCSP 2008 Competition and CFLib (wcsp format)
- WPMS: Weighted Partial MaxSAT Evaluation 2013 (wcnf format)
- CP: MiniZinc Challenge 2012 & 2013 (minizinc format)

Number of instances and their total compressed (gzipped) size:

Benchmark	Nb.	UAI	WCSP	LP(direct)	LP(tuple)	WCNF(direct)	WCNF(tuple)	MINIZINC
MRF	319	187MB	475MB	2.4G	2.0GB	518MB	2.9GB	473MB
CVPR	1461	430MB	557MB	9.8GB	11GB	3.0GB	15GB	N/A
CFN	281	43MB	122MB	300MB	3.5GB	389MB	5.7GB	69MB
MaxCSP	503	13MB	24MB	311MB	660MB	73MB	999MB	29MB
WPMS	427	N/A	387MB	433MB	N/A	717MB	N/A	631MB
CP	35	7.5MB	597MB	499MB	1.2GB	378MB	1.9GB	21KB
Total	3026	0.68G	2.2G	14G	18G	5G	27G	1.2G

http://genoweb.toulouse.inra.fr/~degivry/evalgm



Normalized lower and upper bounds on 1208 difficult instances as time passes

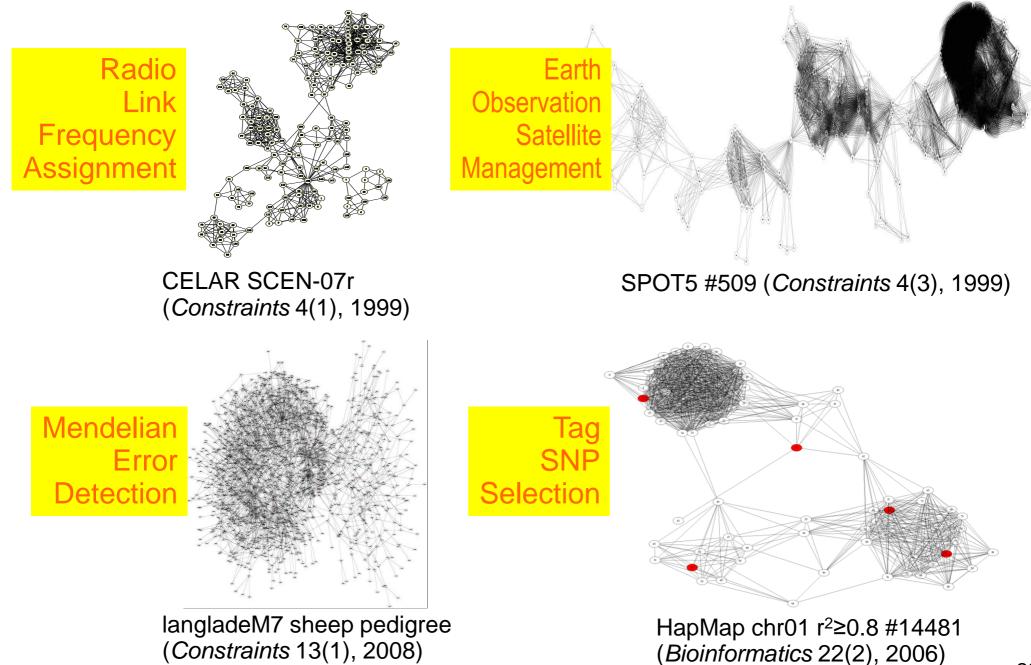
Results exploiting cliques 1.4 toulbar2 toulbar2^clq 1.3 cplex maxhs 1.2 eva gecode 1.1 1 0.9 0.8 0.7 0.6 0.2 0.4 0.6 0.8 0

Normalized lower and upper bounds on 252 instances as time passes

Bibliography

For benchmarking and solvers comparisons, see Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization, Hurley et al., Constraints 2016. For hybrid search, see Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP, Katsirelos et al., CP2015.

Many real applications have a structured network

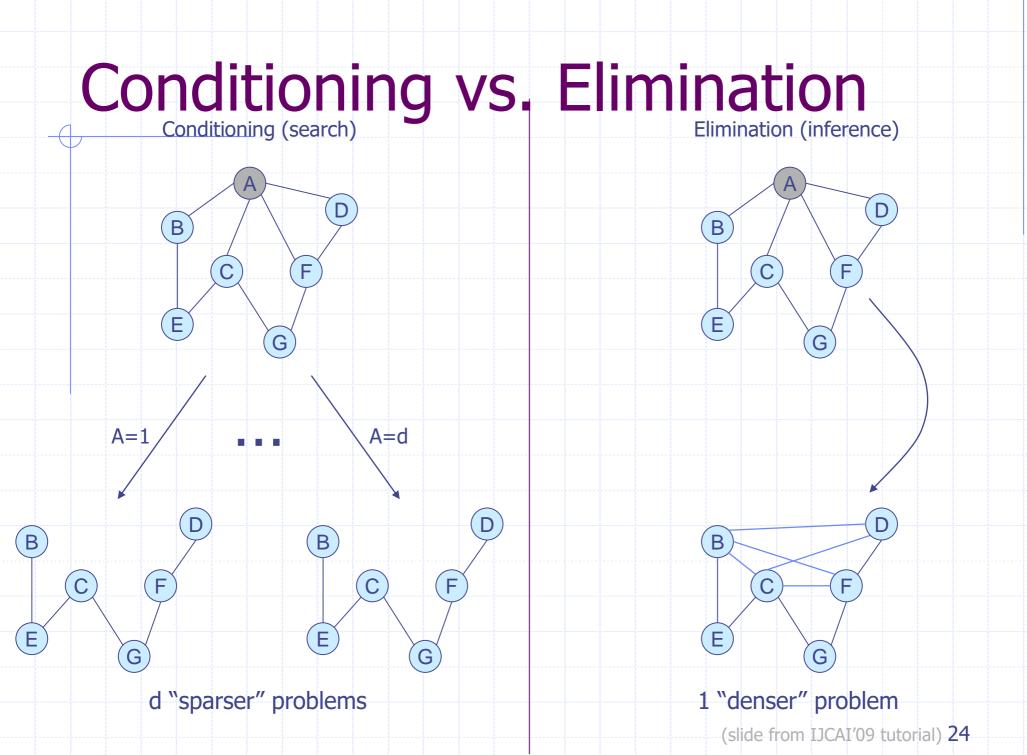


Search & Variable Elimination

Condition, condition, condition ... and then only eliminate (*Cycle-Cutset*)

Eliminate, eliminate, eliminate ... and then only search

Interleave conditioning and elimination



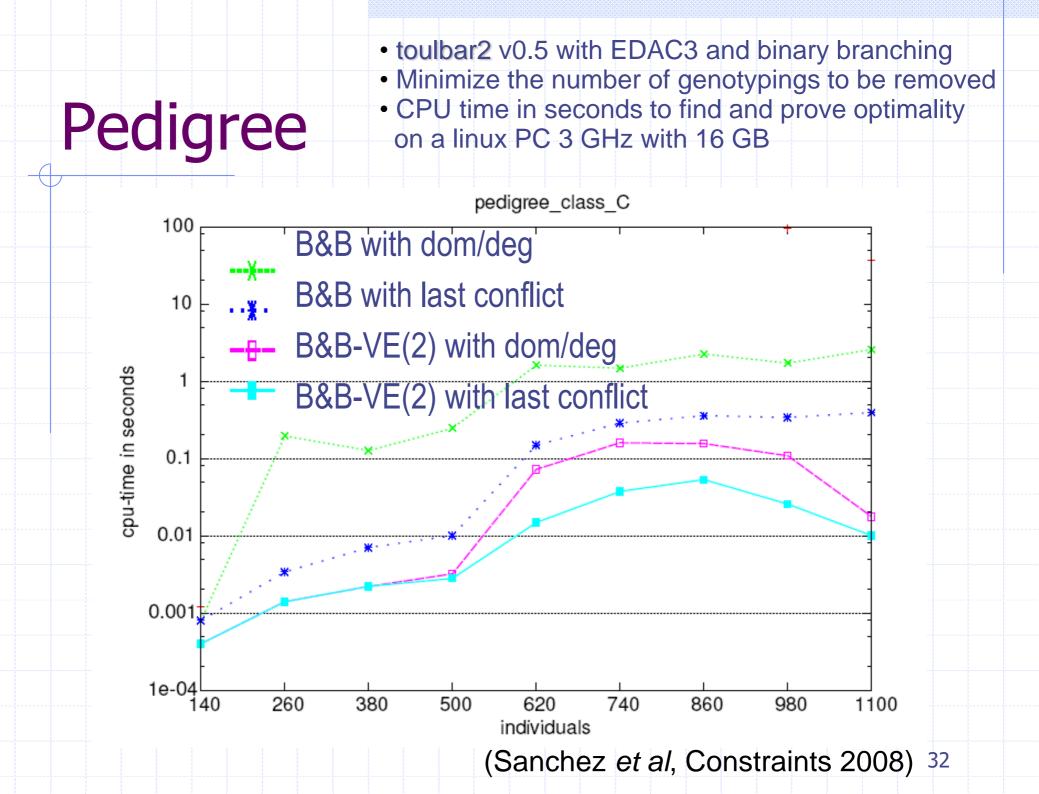
Interleaving Conditioning and Elimination BB-VE(2) (Larrosa & Dechter, CP 2002)

(slide from IJCAI'09 tutorial) 26

(slide from IJCAI'09 tutorial) 29

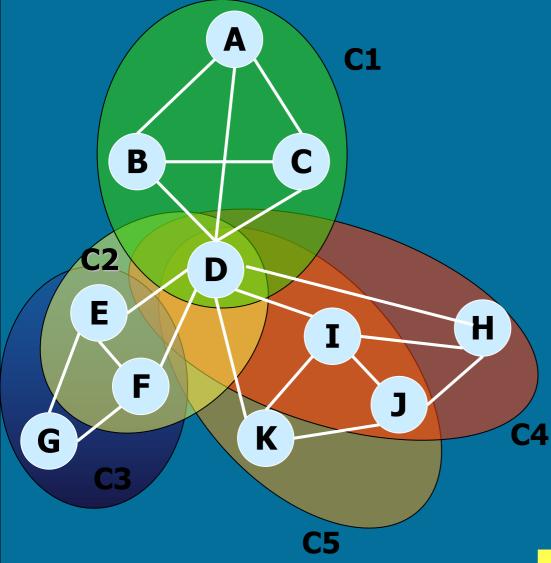
(slide from IJCAI'09 tutorial) 30

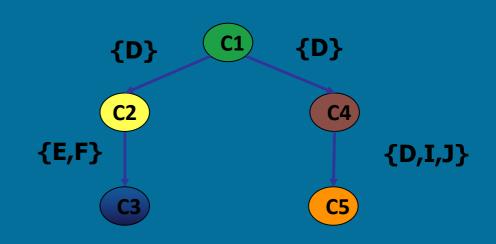
Interleaving Conditioning and Elimination BB-VE(2) (slide from IJCAI'09 tutorial) 31



Search & Cluster Tree Elimination

Depth-First Branch and Bound exploiting a tree decomposition with: A restricted variable ordering Graph-based backjumping Graph-based learning ⇒ Lazy elimination of subproblems using search





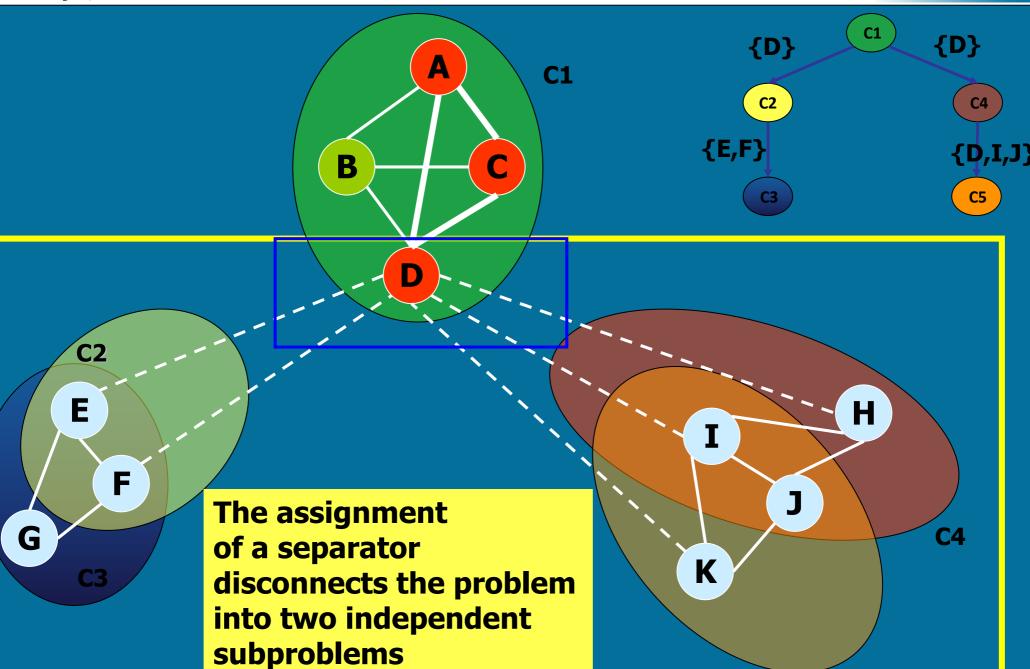
The set of clusters covers the set of variables and the set of cost functions

Separator = intersection between two connected clusters

Unité

Biométrie et Zntelligence Artificiell

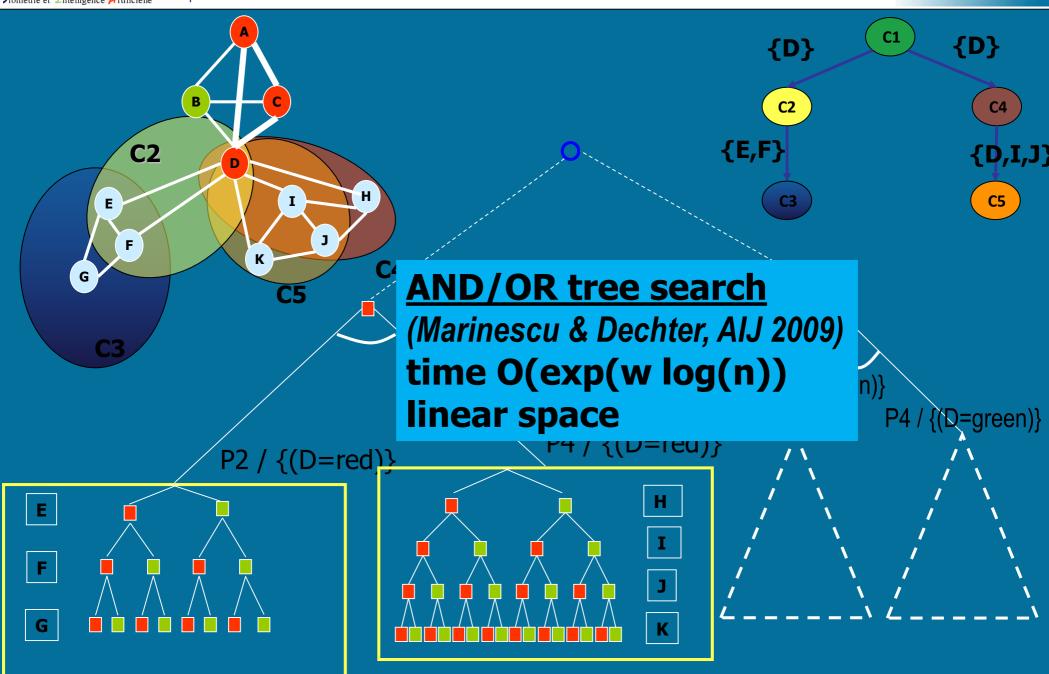
Search with Tree Decomposition



C5

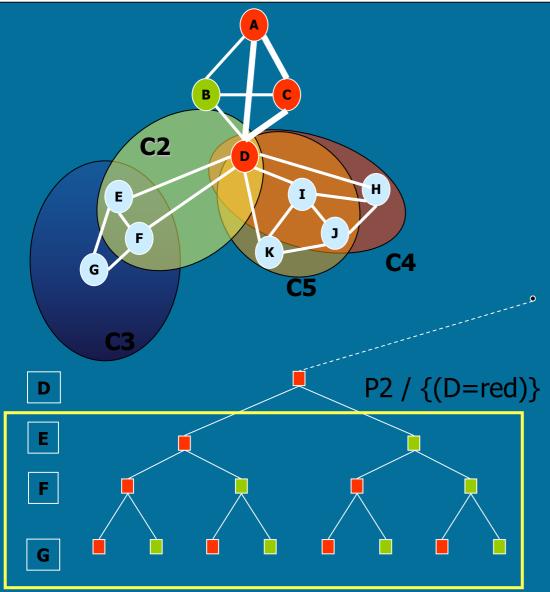
INRA

Search with Tree Decomposition



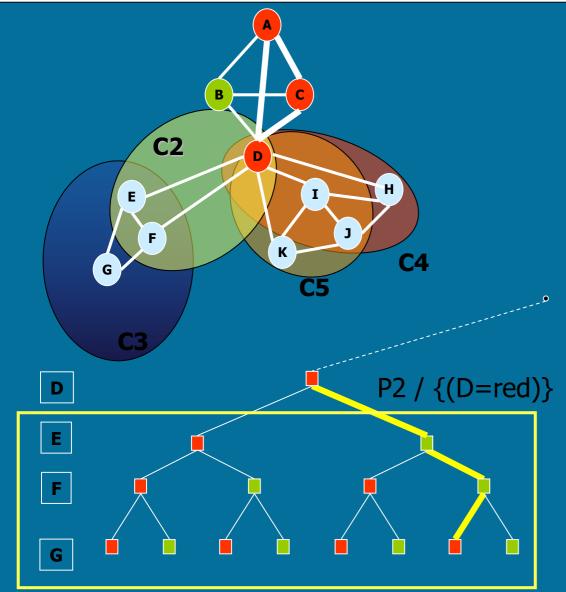
INRA

Search with Tree Decomposition



INRA

Search with Tree Decomposition

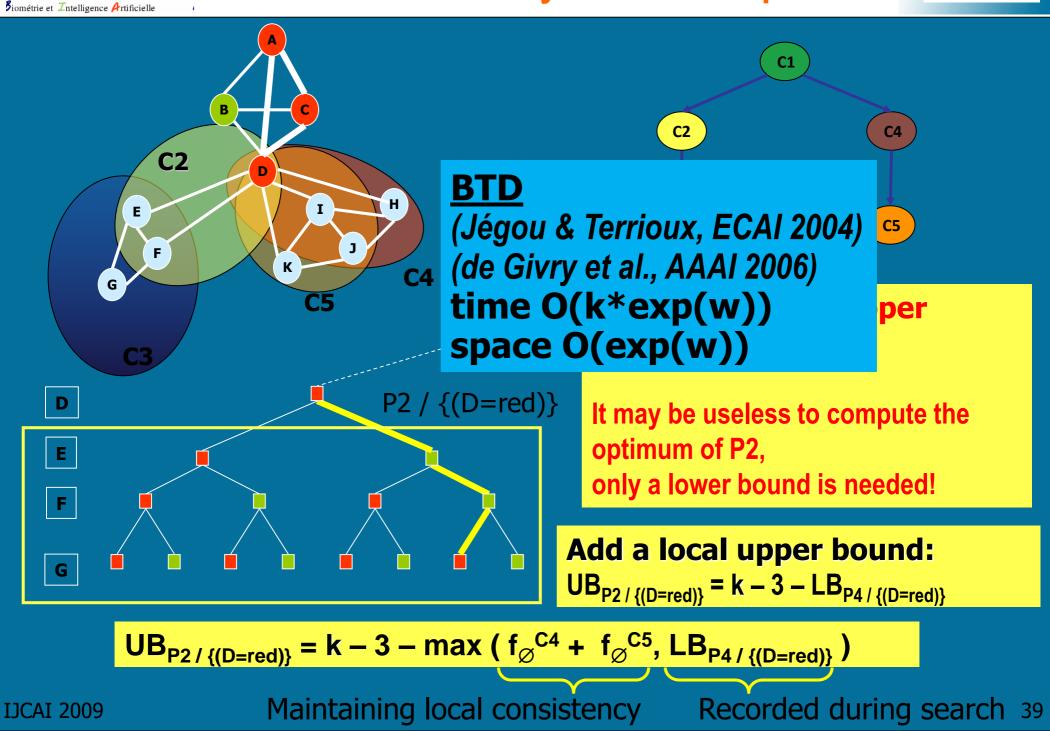


Record the optimum of P2 / {(D=red)}

AND/OR graph search (Marinescu & Dechter, AIJ 2009) time O(exp(w)) space O(exp(w)) bound k = 5.

It may be useless to compute the optimum of P2 / {(D=red)}, only a lower bound is needed! **Backtrack bounded by Tree Decomposition**

Unite



Bibliography

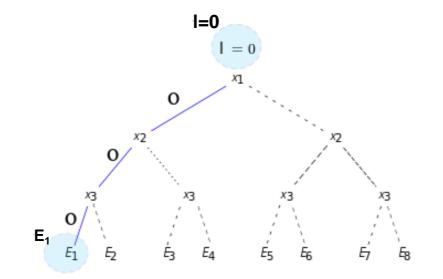
For hybrids of search and inference, see the chapter 10 in *Constraint Processing*, Dechter, Morgan Kaufmann, 2003.

For exploiting tree decomposition, see

"Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP", de Givry, Schiex & Verfaillie, AAAI 2006.

Memory intensive AND/OR search for combinatorial optimization in graphical models (Part I&II)",
Marinescu & Dechter, AIJ 2009.

Limited Discrepancy Search (Ginsberg 95)



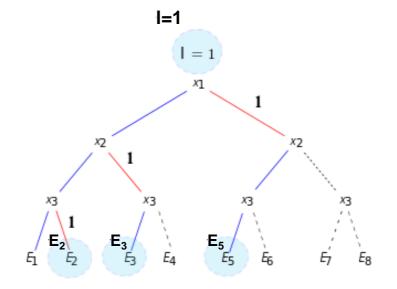
Small example with 3 variables and 2 values per domain

-

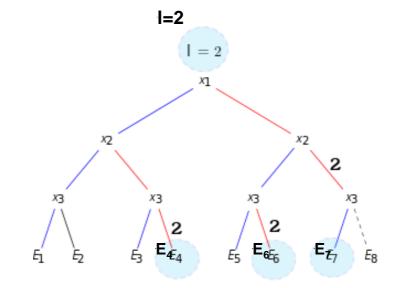
Limited Discrepancy Search

Small example with 3 variables and 2 values per domain

-

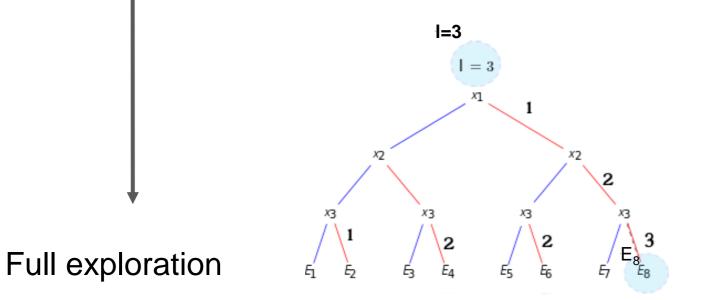


Limited Discrepancy Search (Ginsberg 95)



Limited Discrepancy Search (Ginsberg 95)

$$I_{max} = n * (d - 1)$$
 : in this case, $I_{max} = 3*(2-1) = 3$



$I=3 \Rightarrow optimality proof$

In practice, it occurs before I_{max} thanks to bounding and pruning

Bibliography

For LDS, see: Limited discrepancy search, Harvey and Ginsberg, IJCAI 1995.

For partial tree search, see:
Nonsystematic backtracking search, Harvey, PhD 1995.

A unified framework for partial and hybrid search methods in constraint programming, Givry and Jeannin, *C&OR 2006*.

INCOP local search IDWalk

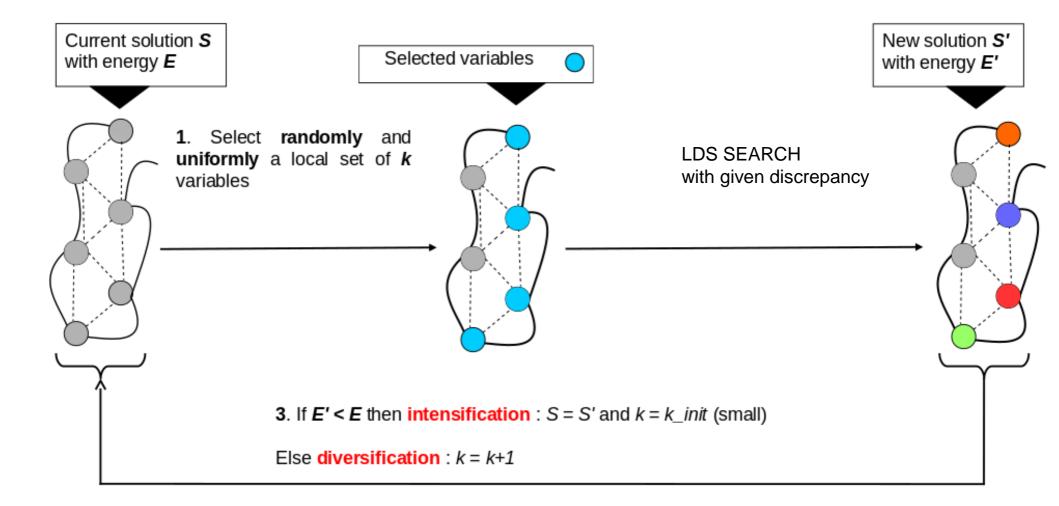
(Neveu et al, CP 2004)

- IDWalk performs S moves and returns the best solution found during the walk.
- A move examines at most Max candidate neighbors at random (flips among variables in conflicts):
 - If the cost of a neighbor is less than or equal to the cost of the current solution, then it is selected (intensification)
 - If no neighbors are selected, then chose one at random (diversification)

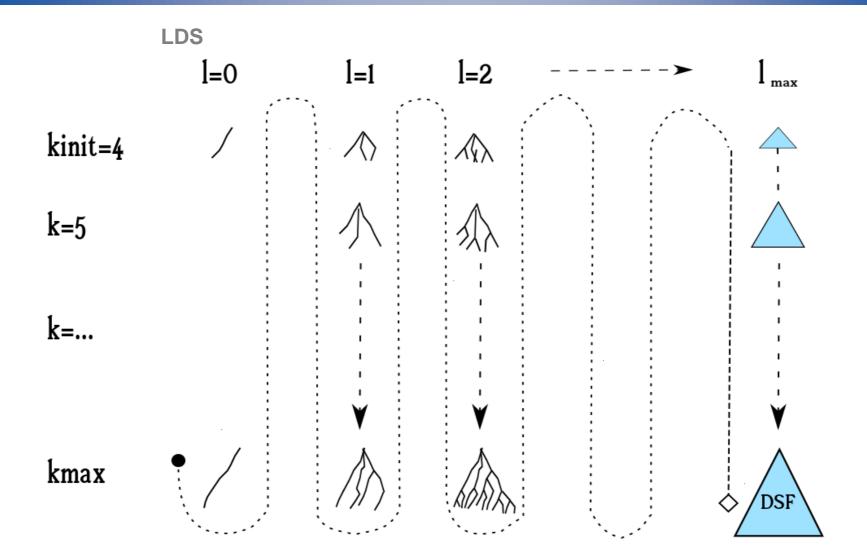
ID Walk: a Candidate List Strategy with a Simple Diversification Device. B. Neveu, G. Trombettoni, F. Glover. LNCS 3258, Springer, p. 423--437, CP 2004

S= 100,000 ; Max=200 ; 3 repeats

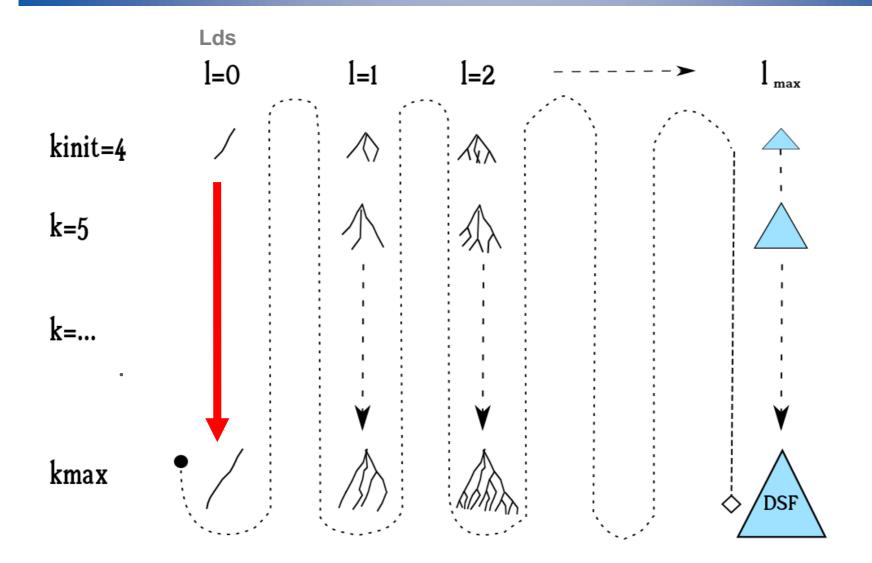
Variable Neighborhood Search (Hansen 97)



UDGVNS : Exploration of both k and l dimensions

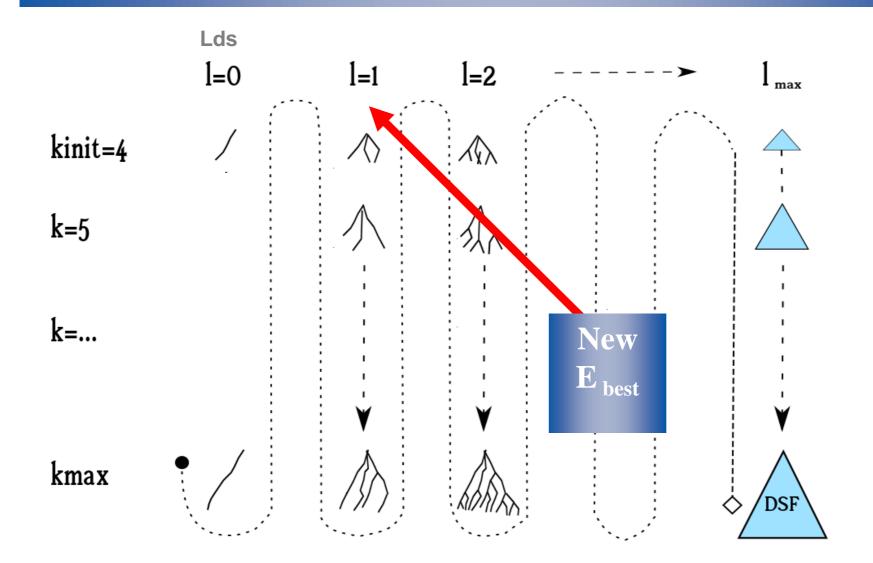


Step 1 : Initial solution

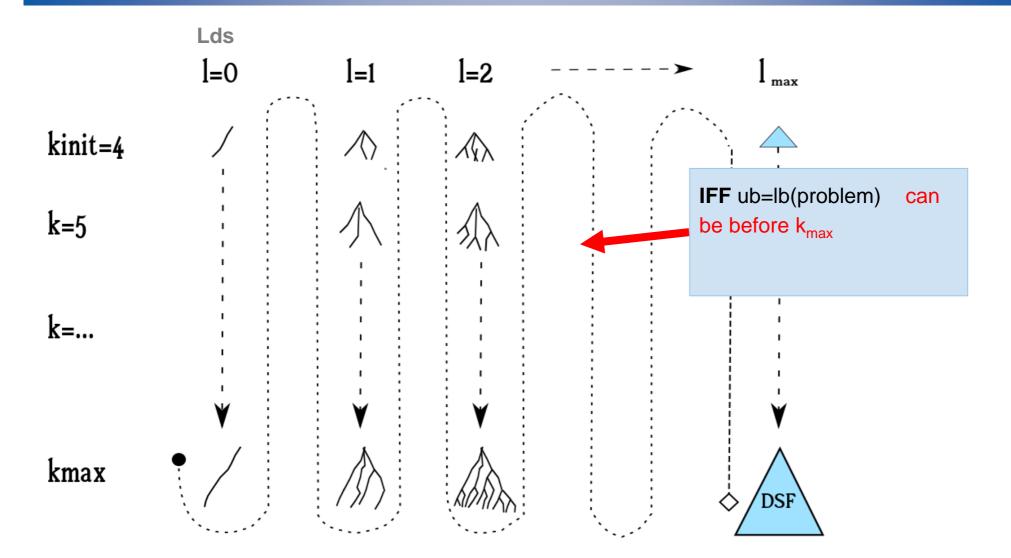


Greedy assignment

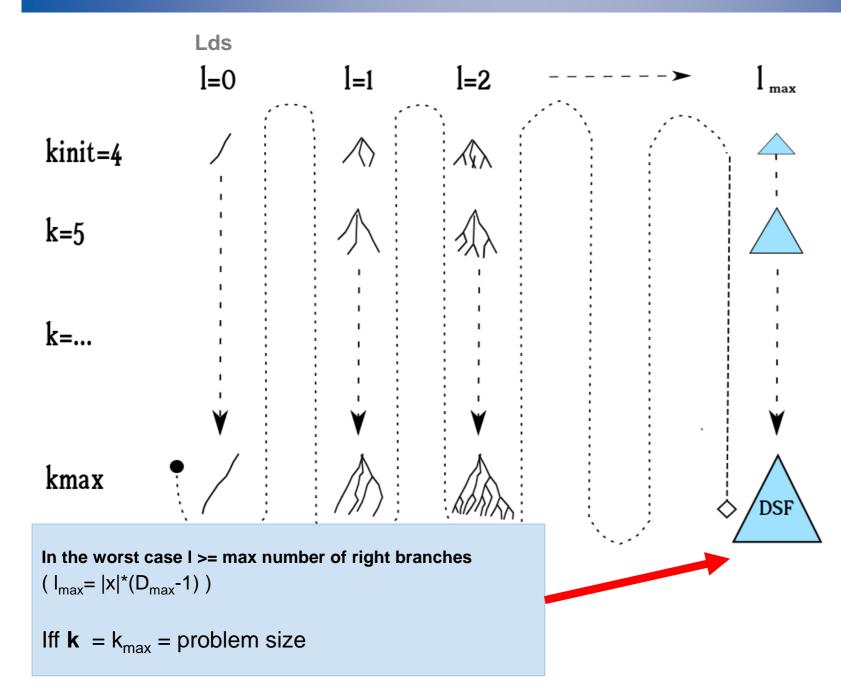
NEW SOLUTION WITH BETTER E \rightarrow **RESTART**



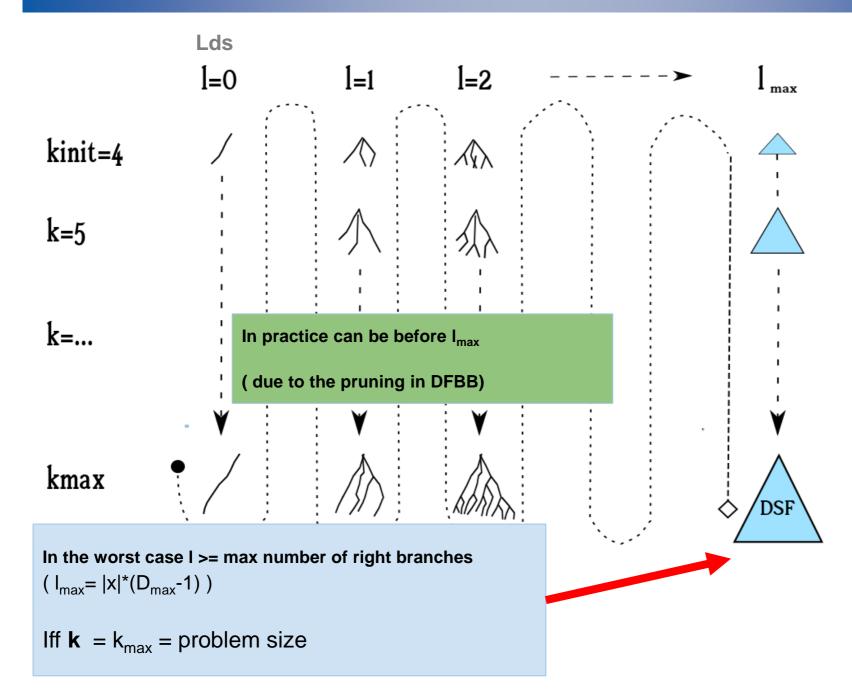
Proof of Optimality



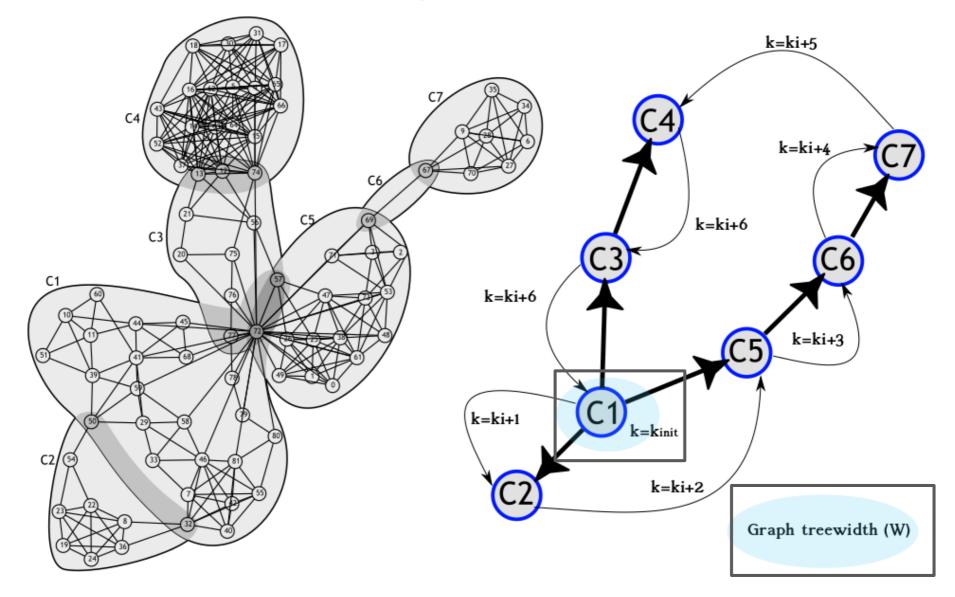
Proof of Optimality

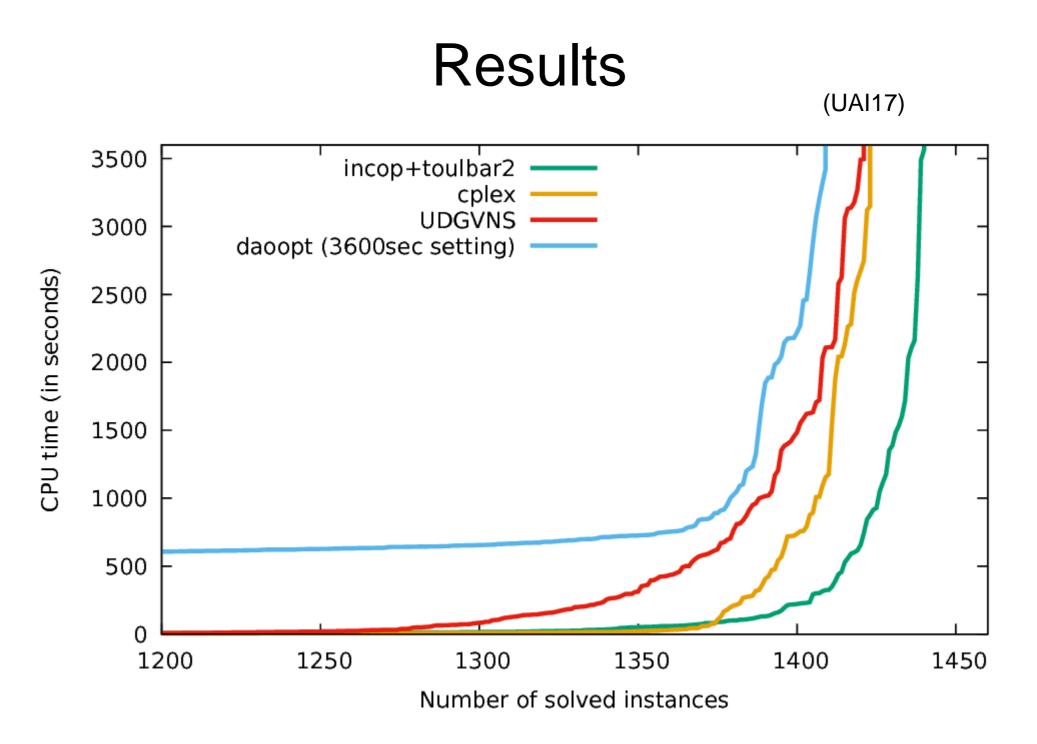


Proof of Optimality



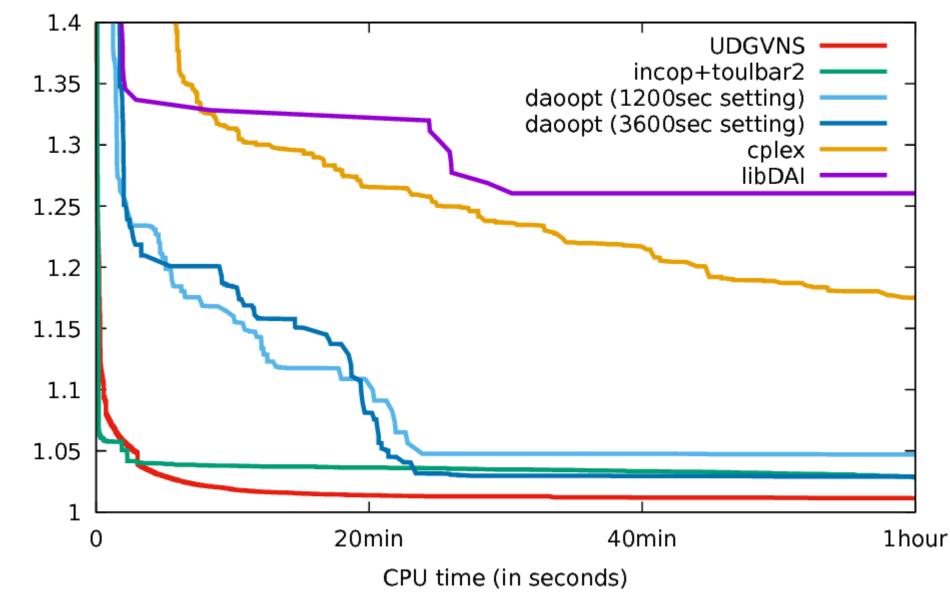
Cluster visit in a topological order :





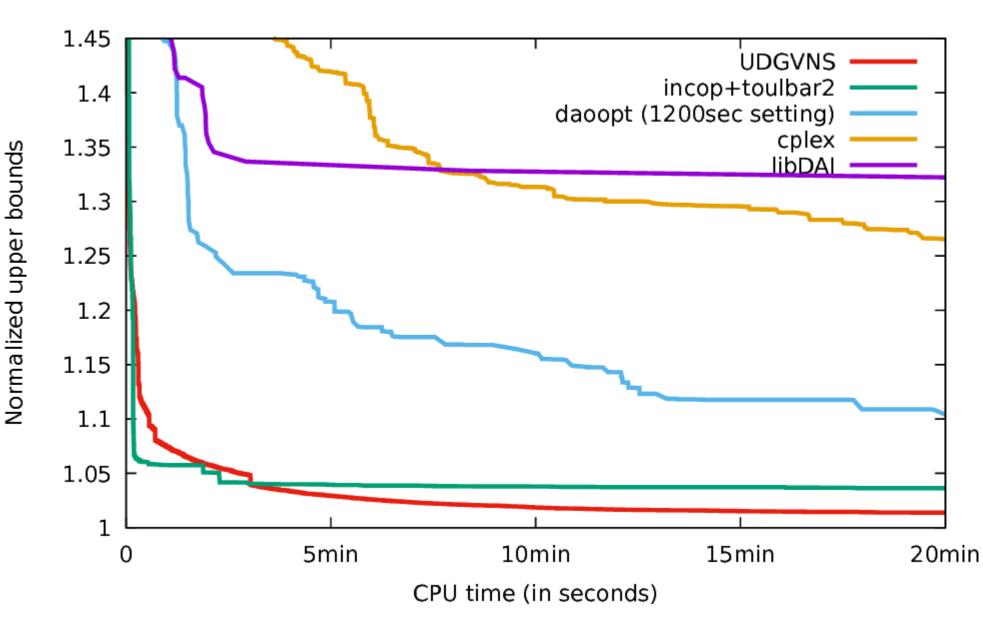
Results

(UAI17)

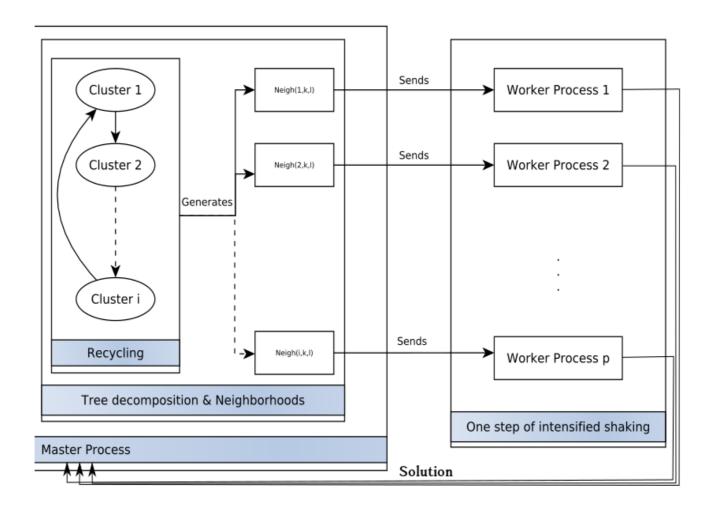


Normalized upper bounds

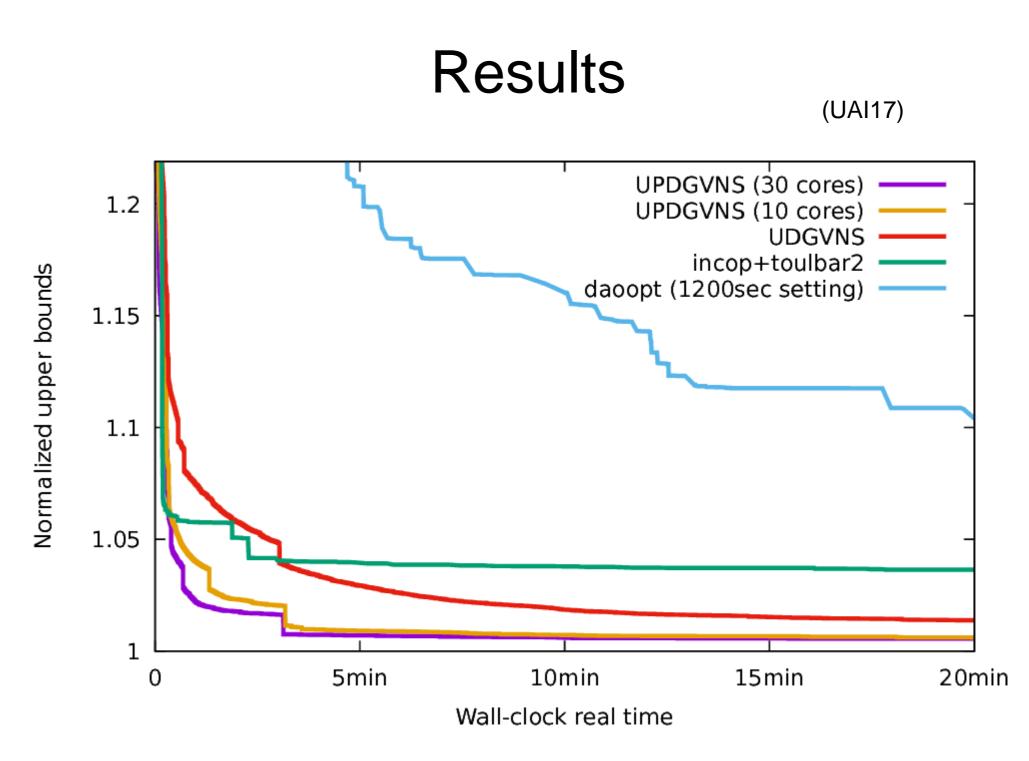
(UAI17)



Parallel VNS



Unified Parallel Decomposition Guided VNS (UPDGVNS)



Bibliography

For stochastic local search, see:
ID Walk: a Candidate List Strategy with a Simple Diversification Device, B. Neveu, G. Trombettoni, F. Glover, CP 2004.

For variable neighborhood search, see Iterative Decomposition Guided Variable Neighborhood Search for Graphical Model Energy Minimization, Ouali et al., UAI2017.