Chapter 4.
Hybrid tree and local search

Search strategies for visiting nodes
Variable ordering exploiting the structure
Value ordering used In partial search strategy

Variable neighborhood search



DFS

Depth First




DFS

Depth First
Advantages

e |ncrementality




DFS

Depth First
Advantages

e |ncrementality
e Anytime (sort of)




DFS

Depth First
Advantages

e |ncrementality
e Anytime (sort of)

But
e Thrashing



DFS

Depth First
Advantages

e |ncrementality
e Anytime (sort of)

But

e Thrashing
e No global lower bounds
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Best first
e Memory requirements

e No incrementality or
even greater memory cost

e Not anytime

e Theoretical guarantees

e Global lower bounds
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BFS with DFS probes™
e |Improved anytime behavior

e |ncrementality
without memory overhead

e Lower bounds

e Some of the
advantages of restarting

adaptive heuristic for probe size



Benchmark

MRF: Probabilistic Inference Challenge 2011 (uai format)

CVPR: Computer Vision and Pattern Recognition OpenGM2 (uai)
CEN: MaxCSP 2008 Competition and CFLib (wcsp format)
WPMS: Weighted Partial MaxSAT Evaluation 2013 (wenf format)
CP: MiniZinc Challenge 2012 & 2013 (minizinc format)

Number of instances and their total compressed (gzipped) size:

Benchmark Nb. UA WCSP LP(direct) LP(tuple) WCNF(direct) WCNF(tuple) MINIZINC
MRF 319 187MB 475MB 2.4G 2.0GB 518MB 2.9GB 473MB
CVPR 1461 430MB 557MB 9.8GB 11GB 3.0GB 15GB N/A
CFN 281 43MB 122MB 300MB 3.5GB 389MB 5.7GB 69MB
MaxCSP 503 13MB 24MB 311MB 660MB 73MB 999MB 29MB
WPMS 427 N/A 387MB 433MB N/A 717MB N/A 631MB
CP 35 7.5MB 597MB 499MB 1.2GB 378MB 1.9GB 21KB

Total 3026 0.68G 2.2G 14G 18G 5G 27G 1.2G



http://genoweb.toulouse.inra.fr/~degivry/evalgm
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Many real applications have a structured network

Radio Earth -
Link Observation
Frequency Satellite
Assignment Management

CELAR SCEN-07r
(Constraints 4(1), 1999)

Mendelian |
Error = SNP i
Detection - Selection
Iangladel_\/l? sheep pedigree HapMap chr01 r2=0.8 #14481
(Constraints 13(1), 2008) (Bioinformatics 22(2), 2006)



Search & Variable Elimination

#Condition, condition, condition ... and
then only eliminate (Cycle-Cutset)

#Eliminate, eliminate, eliminate ... and
then only search

#[nterleave conditioning and elimination
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Conditioning vs. Elimination
_Ej—CQndjtiQning (search) Elimination (inference)

Q @ Q € O—F
G @ & ® ¥
d “sparser” problems 1 “denser” problem
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Interleaving Conditioning and Elimination
BB-VE(2) (Larrosa & Dechter, CP 2002)

N
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Interleaving Conditioning and Elimination
BB-VE(2)

N

s
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e toulbar2 v0.5 with EDAC3 and binary branching
* Minimize the number of genotypings to be removed

P d - « CPU time in seconds to find and prove optimality
e Ig ree on-a-linuPE-3-GHz with-16-GB
L/

N
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Search & Cluster Tree Elimination

N

# Depth-First Branch and Bound
exploiting a tree decomposition with:
= A restricted variable ordering
= Graph-based backjumping
= Graph-based learning

- Lazy elimination of subproblems
using search
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Tree Decomposition

The set of clusters
covers

the set of variables and
the set of cost functions

Separator = intersection
between
two connected clusters
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Search with Tree Decomposition H

;iumé.

The assignment

of a separator
disconnects the problem
into two independent
subproblems




Search with Tree Decomposition ||r
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Unite
trie et .. ntelligence

. Arificielle

ghitly

Record the optimum
of P2 / {(D=red)}

;iumé.

bound k = 5.

It may be useless to
compute the optimum of
P2 / {(D=red)},

only a lower bound is
needed!




8% Backtrack bounded by Tree Decomposition HI

Biometrie et ntelligence Ariificielle

It may be useless to compute the
optimum of P2,
only a lower bound is needed!

Add a local upper bound:
UBp;  ((p=redpy = K = 3 = LBp4  yp=rea))

UBp;, ((p=req = K — 3 —max (f@C4 + f@C’BP4/{(D=red)
Y Y
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Limited Discrepancy Search (insoerg os)

- Small example with 3 variables and 2 values per domain
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Limited Discrepancy Search (insoerg os)
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Limited Discrepancy Search (insoerg os)

max =N *(d-1) : in this case, |,,,=3*(2-1)=3
/ \
} / \. / \
Full exploration /\ /\ d XEH

|I=3 = optimality proof

In practice, it occurs before | thanks to bounding and pruning
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INCOP local search IDWalk

(Neveu et al, CP 2004)

» IDWalk performs S moves and returns the best solution
found during the walk.

» A move examines at most Max candidate neighbors at
random (flips among variables in conflicts):

° |f the cost of a neighbor is less than or equal to the cost of
the current solution, then it is selected (intensification)

° |If no neighbors are selected, then chose one at random
(diversification)

ID Walk: a Candidate List Strategy with a Simple Diversification Device.
B. Neveu, G. Trombettoni, F. Glover. LNCS 3258, Springer, p. 423--437, CP 2004

5=100,000 ; Max=200 ; 3 repeats

[e20F N



Variable Nelghborhood Search ansen o7

Current solution S : New solution §'
with energy E Selected variables @ with energy E’

1. Select randomly and
uniformly a local set of k
variables

LDS SEARCH
with given discrepancy

L 4

3. If E' < E then intensification : S = S"and k = k_init (small)

Else diversification : k= k+1




UDGVNS : Exploration of both k and | dimensions

= h b A



Lds

° :
kmax :_ / ;

Greedy assignment

Step 1 : Initial solution



NEW SOLUTION WITH BETTER E — RESTART

kmax

Lds
[=0

/




Proof of Optimality

Lds
[=0 [=1

IFF ub=Ib(problem) can

k=5 : 4\ 9%\ 4’ be before k.,

Yooy oy
max %N
SR R N L A B



Proof of Optimality

Lds
=0 s 2 - - .

1 1 E
k . - 5
max p X : : ; : . .
In the worst case | >= max number of right branches '
( Imax: |X|*(Dmax'1) ) /

Iff kK =K. = problem size

.



Proof of Optimality

Lds
1=0 s 2 = L.

kinit=4 /

AR Y

In the worst case | >= max number of right branches
( Imax: |X|*(Dmax'1) ) /

Iff K = K. = Problem size




Cluster visit in atopological order :

7 v,
X =7
A T oy, X/
oAV

=V

Graph treewidth (W)
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Normalized upper bounds
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Normalized upper bounds
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Parallel VNS

Sends
@ —»  HeighiLkl) > Worker Process 1
Sends
Neigh{2.k,I} » Worker Process 2
@ + -
: Generates
I 1
I 1
I [}
I 1
| [}
1
[}
1
(o :
1
; 1 Sends
Recycling ' Neignikh » Worker Process p
Tree decomposition & Neighborhoods
One step of intensified shaking
Master Process
A A A S l 3
AAK olution

Unified Parallel Decomposition Guided VNS (UPDGVNS)



Normalized upper bounds
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