
Cost Function Networks

PFIA – 4 July 2019

Martin Cooper
IRIT, Toulouse

Simon de Givry
INRA, Toulouse

2

What are they and why do we need them?

Tractable classes

Search using soft consistency

Hybrid tree and local search

Toulbar2 solver demonstration

Cost Function Networks

Chapter 1. What are CFNs?

Motivation,

Definitions,

Some general theorems

A unifying abstraction: CSP

= Talks to be scheduled at conference

Transmitters to be assigned frequencies

Amino acids to be located in space

Circuit components to be placed on a chip

Variables

A unifying abstraction: CSP

= All invited talks on different days

No interference between near transmitters

x + y + z > 0

Foundations dug before walls built

Constraints

A unifying abstraction: CSP

A solution is an assignment of values to variables that

satisfies all the constraints

7

But what if…

There are lots of solutions, but some are better
than others?

There are no solutions, but some assignments
satisfy more constraints than others?

We don’t know the exact constraints, only
probabilities, or fuzzy membership functions?

We’re willing to violate some constraints if we
can get a better overall solution that way?

8

Fragmentation of research

Constraint Optimisation Problem
Max-CSP
Max-SAT
WCSP
Fuzzy CSP
Pseudo-Boolean Optimisation
Bayesian Networks
Markov Random Fields
Integer Programming
…

A solution is an assignment of values to variables that

satisfies all the constraints

A unifying abstraction: CFN

now associate costs with each assignmentConstraints

A solution is an assignment of values to variables that

minimises the combined costs

10

Definition of a CFN instance

a set of n variables Xi with domains di

a set of valued constraints, where each
constraint has a

 scope (list of variables)

 cost function (function from assignments
to costs)

It only remains to specify what the possible costs are,
and how to combine them

11

Definition of a valuation structure

a set S of costs

a total order <

minimum and maximum elements:

we denote these by 0 and 

an aggregation operator  which is
commutative, associative, monotonic,
and such that , 0=

12

Examples of valuation structures

If S = {0, }, then CFN  CSP

If S = non-negative reals  {}, and  is addition,

then CFN generalizes MAX-CSP.

And we can model MPE in Bayesian networks or MAP
in Markov random fields, by calculating the sum of
-log(P(x | parents(x))

If S = [0,1], and  is max, then CFN  Fuzzy CSP

If S = {0, 1, …., k}, and  is bounded addition +k

where +k  = min {k, +}, then CFN  WCSP

13

Families of valuation structures

A valuation structure is idempotent if
, =

All idempotent valuation structures
are equivalent to Fuzzy CSP

14

Families of valuation structures

A valuation structure is strictly monotonic if
<, <,  < 

All strictly monotonic valuation structures
can be embedded in a fair valuation structure

A valuation structure is fair if

aggregation has a partial inverse, that is,

,  such that =

15

Families of valuation structures

A valuation structure is discrete if between
any pair of finite costs there are finitely many
other costs

All discrete and fair valuation structures
can be decomposed into

a contiguous sequence of valuation structures
with aggregation operator +k

Bibliography

For general background on different formalisms for
soft constraints, see the chapter on “Soft Constraints”
by Meseguer, Rossi and Schiex, in the Handbook of
Constraint Programming, Elsevier, 2006, or

Cooper, de Givry & Schiex, “Réseaux de contraintes
valuées”, Chapter 7, Panorama de l'Intelligence
Artificielle, Cépaduès, 2014.

For classification results on valuation structures see
“Arc Consistency for Soft Constraints”, Cooper &
Schiex, AIJ, 2004.

16

Chapter 2. Tractable classes

Structural restrictions,
Cost function languages,
Submodularity,
Weighted polymorphisms,
Hybrid tractability

General question

Having a unified formulation allows us to
ask general questions about efficiency:

When is the CFN

problem tractable?

Problem features

This picture illustrates the constraint scopes

The set of scopes is sometimes called the
constraint hypergraph, or the scheme

Restricting the scheme can lead to
tractability, as in the standard CSP

20

Structural tractability

Tree-structured binary CFNs are tractable

x1

x2 x3

x4 x5 x6 x7

Project out leaf nodes by minimising over possible assignments

Proceed from the leaf nodes to a chosen root node

Time complexity O(e d2)
Space complexity O(n d)

n: number of variables
d: maximum domain size
e: number of cost functions

E1

E2

E3
E4

Bounded treewidth CFNs are tractable

Tree decomposition

E1

E2

E3

E4

Time complexity O(e dw+1)
Space complexity O(n ds)

w: bounded treewidth
= max |Ei| - 1

s: max {|Ei  Ej|: i≠j}

Finding a tree decomposition with minimum w* is NP-hard!

21

Tree decomposition example

22

CELAR scen06r
n = 82
d = 44
e = 327

w = 26
s = 3

Benchmark problem
assigning frequencies
to transmitters
to minimise total interference

Problem features

We have seen that structural features of a
problem can lead to tractability

This is very similar to the standard CSP

What about other kinds of restrictions to the CFN?

More problem features

The picture now emphasises the cost functions

Restricting the cost functions we allow can also
lead to tractability

C1

C2

C3
C4

25

Languages of cost functions

A set of cost functions is called a language of cost
functions

CFN() represents the set of CFN instances whose
cost functions belong to the language 

For some choices of , CFN() is tractable

We consider examples where the valuation structure
contains non-negative real values and infinity, and
aggregation is standard addition

26

Submodular functions

where min and max are applied component-wise, i.e.

min(<s1,…,sk>,<t1,…,tk>) = <min(s1,t1),…,min(sk,tk)>

CFN(submodular) is tractable

A cost function c is submodular if s,t

c(min(s,t)) + c(max(s,t))  c(s) + c(t)

A class of functions that has been widely studied in OR is
the class of submodular functions…

x y z

0 0 0 0

0 0 1 1

0 1 0 7

0 1 1 1

1 0 0 ∞

1 0 1 3

1 1 0 ∞

1 1 1 0

0 0 1 1

1 0 0 ∞

1 0 1 3 Maximum

0 0 0 0 Minimum

+ = 3

+ = ∞

s,t c(Min(s,t)) + c(Max(s,t))  c(s) + c(t)

Definition of submodularity

s

t

28

Examples of submodular functions

all unary functions

all linear functions (of any arity)

the binary Boolean function cut

where cut(a,b)=1 if (a,b)=(0,1) (0 otherwise)

the rank function of a matroid

the Euclidean distance function between two
points (x1, x2), (x3, x4) in the plane

(x,y)=(x-y)r if x ≥ y ( otherwise) for r ≥ 1

29

Example: Min-Cut

The s-t Min-Cut problem can be modelled using the

single submodular binary cost function cut

t=1

s=0

00

00

0 0

Solution to CFN is a Min-Cut

cut(a,b)=1 if (a,b)=(0,1)

Valued constraints on
all edges (both ways)

with cost function cut

CFN with domain {0,1}

30

Algorithms

The best known general algorithm for
Boolean submodular function minimisation

is O(e n3 logO(1) n),

where e=number of cost functions

See Yin Tat Lee et al., “A Faster Cutting Plane Method and its

Implications for Combinatorial and Convex Optimization”, FOCS, 2015

However, many special cases can be solved
more efficiently by flow algorithms...

Boolean submodular functions
Many Boolean submodular functions can be

expressed using the binary function cut

(these include all {0,1}-valued Boolean submodular
functions, all binary and all ternary Boolean
submodular functions, and many others)

(

31

CFN({cut}) is O(n3)

See Živný & Jeavons, “Classes of submodular constraints
expressible by graph cuts”, Constraints, 2010

Binary submodular functions

x1

x2

32

Binary CFN(submodular) is O(n3d3)

See Cohen et al, “A maximal tractable class of soft constraints”, JAIR 2004

Binary submodular functions
over any finite domain
can be expressed as a sum of
”Generalized Interval” functions

(they correspond to Monge matrices)

x y z

0 0 0 0

0 0 1 1

0 1 0 7

0 1 1 1

1 0 0 ∞

1 0 1 3

1 1 0 ∞

1 1 1 0

s,t c(Min(s,t)) + c(Max(s,t))  c(s) + c(t)

By choosing other functions,

we can obtain other tractable

cost function languages…

We say that the cost function has

the multimorphism (Min,Max)

Beyond submodularity

Known tractable cases

1) (Min,Max)

2) (Max,Max)

3) (Min,Min)

4) (Majority,Majority,Majority)

5) (Minority,Minority,Minority)

6) (Majority,Majority,Minority)

7) (Constant 0)

8) (Constant 1)

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable:

See Cohen et al, “The complexity of soft constraint satisfaction”, AIJ 2006

A dichotomy theorem

1) (Min,Max)

2) (Max,Max)

3) (Min,Min)

4) (Majority,Majority,Majority)

5) (Minority,Minority,Minority)

6) (Majority,Majority,Minority)

7) (Constant 0)

8) (Constant 1)

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable:

See Cohen et al, “The complexity of soft constraint satisfaction”, AIJ 2006

For Boolean cost
functions…

In all other cases the
cost functions have
no significant
common
multimorphisms and
the CFN problem is
NP-hard.

36

Benefits of a general approach

This dichotomy theorem immediately implies
earlier results for SAT, MAX-SAT, Weighted
Min-Ones and Weighted Max-Ones

Multimorphisms have also been used to show
that not all submodular functions can be
expressed using binary functions
see Živný et al “The expressive power of binary submodular functions”,
Discrete Applied Maths, 2009.

Multimorphisms (and its generalisations)
allow submodularity to be generalised to
larger classes of tractable languages.

37

Generalising multimorphisms

Fractional/weighted polymorphism - each
function has an associated rational weight >0

(in multimorphisms this weight is always 1)
see Cohen et al, “An Algebraic Theory of Complexity for Discrete
Optimization”, SIAM J. Comput, 2013.

This generalisation has led to ground-
breaking results such as …

https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp42.html

38

Recent theoretical results:

Identification of all tractable languages of
finite-valued cost functions.

J. Thapper and S. Živný, J.ACM 2016.

Necessary and sufficient condition for the
tractability of any language (assuming the
identification of all tractable crisp languages)

V. Kolmogorov, A. Krokhin, M. Rolinek, SIAM J. Comput. 2017.

https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp46.html
https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp46.html

39

Recent theoretical results:

Identification of all tractable languages of
finite-valued cost functions.

J. Thapper and S. Živný, J.ACM 2016.

Necessary and sufficient condition for the
tractability of any language (assuming the
identification of all tractable crisp languages)

V. Kolmogorov, A. Krokhin, M. Rolinek, SIAM J. Comput. 2017.

Identification of all tractable crisp languages
A. Bulatov, FOCS 2017 and D. Zhuk, FOCS 2017.

https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp46.html
https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp46.html

Hybrid classes

Certain important properties of instances
cannot be defined by purely structural or
purely language restrictions.

For example: absence of saddle points
implies a unique local minimum (but this is
neither a structural nor a language property).

Truly hybrid tractability

Truly hybrid = independent restrictions on
the language  and on the constraint graph.

For example:

 + planar  no new tractable languages

P. Fulla & S. Živný, MFCS 2016

Tractability from local patterns

Example: JWP (Joint Winner Property)

α ≥ min(β,γ)

+ arbitrary unary cost functions

Generalisation:

cross-free convex (CFC) ≈ convex cardinality
cost functions on nested scopes

•

• •
α

γ β

Bibliography

For general background on tractable structures,
see the chapter on “Tractable Structures” by R.
Dechter, in the Handbook of Constraint
Programming, Elsevier, 2006.

For language and hybrid tractability see

A. Krokhin & S. Živný, “The Constraint
Satisfaction Problem: Complexity and
Approximability”. Dagstuhl Follow-Ups, 2017.

43

Chapter 3. Search
using problem transformations

Branch and Bound,
Equivalence-preserving operations,
Soft local consistency (node, arc,

existential, virtual, optimal),
Soft global constraints.

DepthFirst Branch and Bound (DFBB)

(LB) Lower Bound

(UB) Upper Bound

If  UB then prune

V
a
ri
a
b
le

s
(d

y
n
a
m

ic
 o

rd
e
ri
n
g
)

= underestimate of the best
solution in the sub-tree

= best solution found so far

Each node is a CFN subproblem
(on the unassigned variables)

c0

= c0

(Obtained by enforcing local consistency)

45

46

Equivalence-preserving
transformations (EPT)

An EPT transforms CFN instance P1 into
another CFN instance P2

with the same objective function.

Examples of EPTs:

- Propagation of inconsistencies ( costs)

- UnaryProject

- Project/Extend

47

UnaryProject(i,)

Precondition: 0    min{ci(a) : a  di}

c0 := c0 +  ;

for all a  di do

ci(a) := ci(a) -  ;

Increases the lower bound c0 if all unary

costs ci(a) are non-zero.

48

Project(M,i,a,)

Precondition: iM, adi, -ci(a)    min{cM(x): x[i]=a}

ci(a) := ci(a) +  ;

for all x  labelings(M) s.t. x[i]=a do

cM(x) := cM(x) -  ;

If >0, this projects costs from cM to ci

If <0, this extends costs from ci to cM

49

Node and soft arc consistency

Node consistent (NC) if i

no UnaryProject(i,) is possible for >0 and
no propagation of  costs possible between ci

and c0 (value adi removed if ci(a)+c0  UB)

Soft arc consistent (SAC) if M,i,a

no Project(M,i,a,) is possible for >0

50

Soft AC closure is not unique

1

1

1

1

1

1

••

•

•

•

•

•

•

•

••

•

OR

1 1

11

1 1

51

Different soft AC notions:

Directional: send costs from Xj to Xi if i<j (in
the hope that this will increase c0)

Existential: i, send costs to Xi

simultaneously from its neighbor variables if
this increases c0

Virtual: no sequence of Projects/Extends
increases c0

Optimal: no simultaneous set of
Projects/Extends increases c0

52

Example instance

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100

200

300

200

600

53

Example instance after NC

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100

200

300

200

600

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100 100

400

c0 = 400

→

54

Example instance after SAC

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100

200

300

200

600

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•





100

300

c0 = 500

→

55

Example instance after EDAC

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100

200

300

200

600

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•






200

c0 = 600

→

100

100

56

Example instance after VAC

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100

200

300

200

600

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•





c0 = 700

→

200

200

100

57

Directional Arc Consistency

for all i<j, a  di b  dj such that

cij(a,b) = cj(b) = 0.

Solves tree-structured CFNs

DAC can be established in O(ed2) time

58

Existential Arc Consistency

node consistent and i, adi such
that ci(a) = 0 and for all cost functions
cij , b  dj such that cij(a, b) = cj(b) =0

EDAC = Existential AC + Directional AC

+ Soft AC

EDAC can be established in

O(ed2 max{nd,UB}) time

59

Virtual Arc Consistency (VAC)

If P is a CFN instance then Bool(P) is
the CSP instance whose allowed tuples
are the zero-cost tuples in P-c0

If Bool(P) has a solution, then P has a
solution of cost c0 (but usually Bool(P)
has no solution)

Definition: P is VAC if Bool(P) is AC.

60

Approximating VAC

If a sequence of AC operations in Bool(P)
leads to a domain wipe-out, then a similar
sequence of SAC operations in P increases c0

But, in this sequence, costs may need to be
sent in more than one direction from the
same cM  Introduction of fractional weights

VAC algorithm may converge to a local
minimum (an instance P’ which is not VAC)

61

Optimal Soft Arc Consistency

We can overcome this problem of
convergence by solving a LP to find the set of
simultaneous UnaryProject and Project
operations which maximises c0.

The resulting CFN instance is OSAC (Optimal
Soft Arc Consistent).

OSAC is strictly stronger than VAC.

Unfortunately, the LP has O(edr+n) variables
and O(edr+nd) constraints, and hence only
useful for pre-processing.

Example of OSAC

c
0
= 0

a

bb

c

a c

c

ca

a

X
1

X
2

X
3

X
4

62

1

1
1 1

1

1

1

1

1

1

1
1

c
0
= 1

a

bb

c

a c

c

ca

a

X
1

X
2

X
3

X
4

OSAC

63

1 1

1

1 1

64

OSAC: Theoretical results

The value c0 returned by OSAC is equal to
the minimum expected cost of a locally
(but not necessarily globally) coherent

probabilistic assignment (= dual of LP)

See M. Schlesinger, “Sintaksicheskiy analiz dvumernykh zritelnikh
signalov v usloviyakh pomekh” (Syntactic analysis of two-dimensional
visual signals in noisy conditions), Kibernetika (1976).

E.g. 2-colouring on 3 variables: the probabilistic assignment
Pri (0) = Pri (1) = 0.5, Prik (01) = Prik (10) = 0.5

is locally but not globally coherent and has expected cost 0.

65

OSAC: Theoretical results

OSAC solves all tractable languages
of finite-valued cost-functions

(including submodular functions)

Hierarchy

NC*

AC* DAC*

EDAC*

AC

NC

DAC

Special case: CSP

VAC

OSAC

Solve tree-like
primal graphs

Solves all finite
-valued tractable

languages



66

Some practical observations

For very hard-to-solve instances, maintaining
VAC provides a significant speed-up, however
for many problems, maintaining a simpler
form of soft arc consistency (EDAC) is faster.

Unary costs ci(a) useful for value and variable
ordering heuristics.

Consistencies can be generalised to abitrary
arities but computational cost is high.

67

68

69

AC for soft global constraints

Recent research has shown that many global
cost functions allow projection/extension
to/from unary cost functions in poly-time.

Examples: cost-function variants of AMONG,
ALLDIFFERENT, GCC, GRAMMAR, REGULAR,
SAME, SUM...

(See van Hoeve et al, J. Heur. 2006, Lee & Leung, IJCAI 2009,
Allouche et al. AIJ 2016)

70

Example: AC for flow-based
soft global constraints

Suppose that a global cost function cM can
be coded as the minimum cost of a maximum
flow in a network in which (a) there is a one-
to-one correspondence between max-flows
and global labelings and (b) each assignment
(xi,a) has a corresponding edge eia such that
the max-flow is 1 in eia if xia (0 if xia).

Then it is possible to project  from cM to
ci(a) by reducing cost(eia) by .

71

Network representing soft Alldiff
 Min number of variables with same value

variable-based costs (Beldiceanu & Petit, CPAIOR’04)

1

1

2

a

b

c

d

x1

x2

x3

x4

All edge capacities
are equal to 1

All edge costs are 0
if not indicated

The flow shown is a min-cost max-flow with x1=a.
We can project 1 from cM to c1(a) by reducing the
cost of the light blue edge from 0 to –1.

Decomposition of global cost
functions

Rewrite the global cost function as a
sum of smaller bounded scope cost
functions (a sub-network)
(Schiex et al, AAAI 2012)

Polynomial transformation solved by
DAC for AMONG, REGULAR, SUM…

DAC and VAC solves Berge-acyclic
decomposed networks

72

softRegular

73

X1 X3 X5X2 X4

g (Qi-1, Xi, Qi) =

0 if (qi-1, xi, qi)

softRegular(X1, X2, X3, X4, X5, (Q, , , q0, T))

(Hamming distance)

Q0=q0 Q2 Q4Q1 Q3 Q5T

+ otherwise

1 if (qi-1,v,qi),vxi

 Berge-acyclic decomposition

DXi Q

DQi 

1-softRegular

74toulbar2 version 0.9.5

Clique cuts

Clique cuts in CFN
(CP17)

Reparameterization for clique

1 2

0 0

w
Ø
=0

X1 X2

b

a

d

c

(CP17)

3

0

X3

f

e ≤ 1

C1

Reparameterization for clique

0 0

1 0

w
Ø
=3

X1 X2

b

a

d

c

(CP17)

1

0

X3

f

e ≤ 1

C1

w
123

(b,d,f)→ 2

Experimental Results
(CP17)

* Including bounded clique detection with Bron-Kerbosch algorithm

in preprocessing

*

Bibliography
For an overview of soft local consistencies, see
“Soft arc consistency revisited”,
Cooper, de Givry, Sanchez, Schiex, Zytnicki &
Werner, AIJ 2010.

For soft global constraints (flow, dp, dec), see
“Tractability-preserving transformations of global

cost functions”, Allouche et al, AIJ 2016.

“Clique Cuts in Weighted Constraint Satisfaction”,
Katsirelos et al, CP2017. 80

