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What are they and why do we need them?

Tractable classes

Search using soft consistency

Hybrid tree and local search

Toulbar2 solver demonstration

Cost Function Networks



Chapter 1. What are CFNs?

Motivation, 

Definitions,

Some general theorems



A unifying abstraction: CSP

= Talks to be scheduled at conference

Transmitters to be assigned frequencies

Amino acids to be located in space

Circuit components to be placed on a chip

Variables



A unifying abstraction: CSP

= All invited talks on different days

No interference between near transmitters

x + y + z > 0

Foundations dug before walls built

Constraints



A unifying abstraction: CSP

A solution is an assignment of values to variables that

satisfies all the constraints
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But what if…

There are lots of solutions, but some are better 
than others?

There are no solutions, but some assignments 
satisfy more constraints than others?

We don’t know the exact constraints, only 
probabilities, or fuzzy membership functions?

We’re willing to violate some constraints if we 
can get a better overall solution that way?
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Fragmentation of research

Constraint Optimisation Problem
Max-CSP
Max-SAT
WCSP
Fuzzy CSP
Pseudo-Boolean Optimisation
Bayesian Networks
Markov Random Fields
Integer Programming
…



A solution is an assignment of values to variables that

satisfies all the constraints

A unifying abstraction: CFN

now associate costs with each assignmentConstraints

A solution is an assignment of values to variables that

minimises the combined costs 
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Definition of a CFN instance

a set of n variables Xi with domains di

a set of valued constraints, where each   
constraint has a

 scope (list of variables)

 cost function (function from assignments 
to costs)

It only remains to specify what the possible costs are, 
and how to combine them
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Definition of a valuation structure

a set S of costs

a total order <

minimum and maximum elements:

we denote these by 0 and 

an aggregation operator  which is 
commutative, associative, monotonic, 
and such that , 0=
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Examples of valuation structures

If S = {0, },  then CFN  CSP

If S = non-negative reals  {}, and  is addition,

then CFN generalizes MAX-CSP.

And we can model MPE in Bayesian networks or MAP 
in Markov random fields, by calculating the sum of         
-log(P(x | parents(x))

If S = [0,1],  and  is max, then CFN  Fuzzy CSP

If S = {0, 1, …., k}, and  is bounded addition +k

where +k  = min {k, +}, then CFN  WCSP
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Families of valuation structures

A valuation structure is idempotent if      
, =

All idempotent valuation structures 
are equivalent to Fuzzy CSP
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Families of valuation structures

A valuation structure is strictly monotonic if
<, <,   < 

All strictly monotonic valuation structures 
can be embedded in a fair valuation structure

A valuation structure is fair if

aggregation has a partial inverse, that is, 

,  such that =
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Families of valuation structures

A valuation structure is discrete if between 
any pair of finite costs there are finitely many 
other costs

All discrete and fair valuation structures 
can be decomposed into 

a contiguous sequence of valuation structures 
with aggregation operator +k
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Chapter 2. Tractable classes

Structural restrictions,
Cost function languages,
Submodularity,
Weighted polymorphisms,
Hybrid tractability



General question

Having a unified formulation allows us to 
ask general questions about efficiency:

When is the CFN 

problem tractable?



Problem features

This picture illustrates the constraint scopes

The set of scopes is sometimes called the 
constraint hypergraph, or the scheme

Restricting the scheme can lead to 
tractability, as in the standard CSP
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Structural tractability

Tree-structured binary CFNs are tractable

x1

x2 x3

x4 x5 x6 x7

Project out leaf nodes by minimising over possible assignments

Proceed from the leaf nodes to a chosen root node

Time complexity O(e d2)
Space complexity O(n d)

n: number of variables
d: maximum domain size
e: number of cost functions



E1

E2

E3
E4

Bounded treewidth CFNs are tractable

Tree decomposition

E1

E2

E3

E4

Time complexity O(e dw+1)
Space complexity O(n ds)

w: bounded treewidth
= max |Ei| - 1

s: max {|Ei  Ej|: i≠j}

Finding a tree decomposition with minimum w* is NP-hard!

21



Tree decomposition example
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CELAR scen06r
n = 82
d = 44
e = 327

w = 26
s = 3

Benchmark problem
assigning frequencies
to transmitters
to minimise total interference



Problem features

We have seen that structural features of a  
problem can lead to tractability

This is very similar to the standard CSP

What about other kinds of restrictions to the CFN?



More problem features

The picture now emphasises the cost functions

Restricting the cost functions we allow can also 
lead to tractability

C1

C2

C3
C4
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Languages of cost functions

A set of cost functions is called a language of cost 
functions

CFN() represents the set of CFN instances whose 
cost functions belong to the language 

For some choices of  , CFN() is tractable

We consider examples where the valuation structure 
contains non-negative real values and infinity, and 
aggregation is standard addition
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Submodular functions

where min and max are applied component-wise, i.e. 

min(<s1,…,sk>,<t1,…,tk>)  = <min(s1,t1),…,min(sk,tk)>

CFN(submodular) is tractable

A cost function c is submodular if s,t

c(min(s,t)) + c(max(s,t))  c(s) + c(t)

A class of functions that has been widely studied in OR is
the class of submodular functions…



x y z

0 0 0 0

0 0 1 1

0 1 0 7

0 1 1 1

1 0 0 ∞

1 0 1 3

1 1 0 ∞

1 1 1 0

0 0 1 1

1 0 0 ∞

1 0 1 3 Maximum

0 0 0 0 Minimum

+        = 3

+        = ∞

s,t c(Min(s,t)) + c(Max(s,t))  c(s) + c(t) 

Definition of submodularity

s

t
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Examples of submodular functions

all unary functions

all linear functions (of any arity)

the binary Boolean function cut

where cut(a,b)=1 if (a,b)=(0,1)  (0 otherwise)

the rank function of a matroid

the Euclidean distance function between two 
points (x1, x2), (x3, x4) in the plane

(x,y)=(x-y)r if x ≥ y ( otherwise) for r ≥ 1 
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Example: Min-Cut

The s-t Min-Cut problem can be modelled using the 

single submodular binary cost function cut

t=1

s=0

00

00

0 0

Solution to CFN is a Min-Cut

cut(a,b)=1 if (a,b)=(0,1)

Valued constraints on 
all edges (both ways) 

with cost function cut

CFN with domain {0,1}
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Algorithms

The best known general algorithm for 
Boolean submodular function minimisation 

is O(e n3 logO(1) n), 

where e=number of cost functions

See Yin Tat Lee et al., “A Faster Cutting Plane Method and its 

Implications for Combinatorial and Convex Optimization”, FOCS, 2015

However, many special cases can be solved 
more efficiently by flow algorithms...



Boolean submodular functions
Many Boolean submodular functions can be 

expressed using the binary function cut

(these include all {0,1}-valued Boolean submodular 
functions, all binary and all ternary Boolean 
submodular functions, and many others)

(
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CFN({cut}) is O(n3)

See Živný & Jeavons, “Classes of submodular constraints 
expressible by graph cuts”, Constraints, 2010



Binary submodular functions

x1

x2

32

Binary CFN(submodular) is O(n3d3)

See Cohen et al, “A maximal tractable class of soft constraints”, JAIR 2004

Binary submodular functions 
over any finite domain 
can be expressed as a sum of
”Generalized Interval” functions

(they correspond to Monge matrices)



x y z

0 0 0 0

0 0 1 1

0 1 0 7

0 1 1 1

1 0 0 ∞

1 0 1 3

1 1 0 ∞

1 1 1 0

s,t c(Min(s,t)) + c(Max(s,t))  c(s) + c(t) 

By choosing other functions, 

we can obtain other tractable 

cost function languages…

We say that the cost function has 

the multimorphism (Min,Max)

Beyond submodularity



Known tractable cases

1) (Min,Max)

2) (Max,Max)

3) (Min,Min)

4) (Majority,Majority,Majority)

5) (Minority,Minority,Minority)

6) (Majority,Majority,Minority)

7) (Constant 0)

8) (Constant 1)

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable:

See Cohen et al, “The complexity of soft constraint satisfaction”, AIJ 2006



A dichotomy theorem

1) (Min,Max)

2) (Max,Max)

3) (Min,Min)

4) (Majority,Majority,Majority)

5) (Minority,Minority,Minority)

6) (Majority,Majority,Minority)

7) (Constant 0)

8) (Constant 1)

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable:

See Cohen et al, “The complexity of soft constraint satisfaction”, AIJ 2006

For Boolean cost 
functions…

In all other cases the 
cost functions have 
no significant 
common 
multimorphisms and 
the CFN problem is 
NP-hard.
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Benefits of a general approach

This dichotomy theorem immediately implies 
earlier results for SAT, MAX-SAT, Weighted 
Min-Ones and Weighted Max-Ones

Multimorphisms have also been used to show 
that not all submodular functions can be 
expressed using binary functions 
see Živný et al “The expressive power of binary submodular functions”, 
Discrete Applied Maths, 2009.

Multimorphisms (and its generalisations) 
allow submodularity to be generalised to 
larger classes of tractable languages.
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Generalising multimorphisms

Fractional/weighted polymorphism - each 
function has an associated rational weight >0

(in multimorphisms this weight is always 1)
see Cohen et al, “An Algebraic Theory of Complexity for Discrete   
Optimization”, SIAM J. Comput, 2013.

This generalisation has led to ground-
breaking results such as … 

https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp42.html


38

Recent theoretical results:

Identification of all tractable languages of 
finite-valued cost functions. 

J. Thapper and S. Živný, J.ACM 2016.

Necessary and sufficient condition for the 
tractability of any language (assuming the 
identification of all tractable crisp languages) 

V. Kolmogorov, A. Krokhin, M. Rolinek, SIAM J. Comput. 2017. 

https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp46.html
https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp46.html
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Recent theoretical results:

Identification of all tractable languages of 
finite-valued cost functions. 

J. Thapper and S. Živný, J.ACM 2016.

Necessary and sufficient condition for the 
tractability of any language (assuming the 
identification of all tractable crisp languages) 

V. Kolmogorov, A. Krokhin, M. Rolinek, SIAM J. Comput. 2017. 

Identification of all tractable crisp languages     
A. Bulatov, FOCS 2017   and   D. Zhuk, FOCS 2017.

https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp46.html
https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp46.html


Hybrid classes

Certain important properties of instances 
cannot be defined by purely structural or 
purely language restrictions.

For example: absence of saddle points 
implies a unique local minimum  (but this is
neither a structural nor a language property).



Truly hybrid tractability

Truly hybrid = independent restrictions on 
the language  and on the constraint graph.

For example: 

 + planar  no new tractable languages

P. Fulla & S. Živný, MFCS 2016



Tractability from local patterns

Example: JWP (Joint Winner Property)   

α ≥ min(β,γ)

+ arbitrary unary cost functions

Generalisation:  

cross-free convex (CFC) ≈ convex cardinality
cost functions on nested scopes

•

• •
α

γ β
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Chapter 3. Search
using problem transformations

Branch and Bound,
Equivalence-preserving operations, 
Soft local consistency (node, arc, 

existential, virtual, optimal),
Soft global constraints.



DepthFirst Branch and Bound (DFBB)

(LB) Lower Bound

(UB) Upper Bound

If        UB then prune

V
a
ri
a
b
le

s 
(d

y
n
a
m

ic
 o

rd
e
ri
n
g
)

= underestimate of the best 
solution in the sub-tree

= best solution found so far

Each node is a CFN subproblem
(on the unassigned variables)

c0

= c0

(Obtained by enforcing local consistency)
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Equivalence-preserving 
transformations (EPT)

An EPT transforms CFN instance P1 into 
another CFN instance P2

with the same objective function.

Examples of EPTs:

- Propagation of inconsistencies ( costs)

- UnaryProject

- Project/Extend
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UnaryProject(i,)

Precondition: 0    min{ci(a) : a  di} 

c0 := c0 +  ;

for all a  di  do

ci(a) := ci(a) -  ;

Increases the lower bound c0 if all unary 

costs ci(a) are non-zero.
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Project(M,i,a,)

Precondition: iM, adi, -ci(a)    min{cM(x): x[i]=a} 

ci(a) := ci(a) +  ;

for all x  labelings(M) s.t. x[i]=a do

cM(x) := cM(x) -  ;

If >0, this projects costs from cM to ci

If <0, this extends costs from ci to cM
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Node and soft arc consistency

Node consistent (NC) if i

no UnaryProject(i,) is possible for >0 and 
no propagation of  costs possible between ci

and c0 (value adi removed if ci(a)+c0  UB)

Soft arc consistent (SAC) if M,i,a

no Project(M,i,a,) is possible for >0
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Soft AC closure is not unique

1

1

1

1

1

1

••

•

•

•

•

•

•

•

••

•

OR

1 1

11

1 1
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Different soft AC notions:

Directional: send costs from Xj to Xi if i<j (in 
the hope that this will increase c0)

Existential: i, send costs to Xi

simultaneously from its neighbor variables if 
this increases c0

Virtual: no sequence of Projects/Extends 
increases c0

Optimal: no simultaneous set of 
Projects/Extends increases c0



52

Example instance

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100

200

300

200

600
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Example instance after NC

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100

200

300

200

600

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100 100

400

c0 = 400

→
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Example instance after SAC

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100

200

300

200

600

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•





100

300

c0 = 500

→
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Example instance after EDAC

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100

200

300

200

600

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•






200

c0 = 600

→

100

100
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Example instance after VAC

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•




100

200

300

200

600

Car•

•

•

•

Plane

Bike

Foot

Room

Hotel •

•





c0 = 700

→

200

200

100
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Directional Arc Consistency 

for all i<j, a  di b  dj such that

cij(a,b) = cj(b) = 0.

Solves tree-structured CFNs

DAC can be established in O(ed2) time
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Existential Arc Consistency

node consistent and i, adi such 
that ci(a) = 0 and for all cost functions 
cij , b  dj such that cij(a, b) = cj(b) =0

EDAC = Existential AC + Directional AC   

+ Soft AC

EDAC can be established in 

O(ed2 max{nd,UB}) time
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Virtual Arc Consistency (VAC)

If P is a CFN instance then Bool(P) is 
the CSP instance whose allowed tuples
are the zero-cost tuples in P-c0

If Bool(P) has a solution, then P has a 
solution of cost c0 (but usually Bool(P) 
has no solution)

Definition: P is VAC if Bool(P) is AC.
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Approximating VAC

If a sequence of AC operations in Bool(P) 
leads to a domain wipe-out, then a similar 
sequence of SAC operations in P increases c0

But, in this sequence, costs may need to be 
sent in more than one direction from the 
same cM  Introduction of fractional weights

VAC algorithm may converge to a local 
minimum (an instance P’ which is not VAC)
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Optimal Soft Arc Consistency

We can overcome this problem of 
convergence by solving a LP to find the set of 
simultaneous UnaryProject and Project 
operations which maximises c0.

The resulting CFN instance is OSAC (Optimal 
Soft Arc Consistent).

OSAC is strictly stronger than VAC.

Unfortunately, the LP has O(edr+n) variables 
and O(edr+nd) constraints, and hence only 
useful for pre-processing.



Example of OSAC

c
0 
= 0

a

bb

c

a c

c

ca

a

X
1

X
2

X
3

X
4
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1

1

1

1

1

1

1
1



c
0 
= 1

a

bb

c

a c

c

ca

a

X
1

X
2

X
3

X
4

OSAC
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1 1

1

1 1
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OSAC: Theoretical results 

The value c0 returned by OSAC is equal to 
the minimum expected cost of a locally 
(but not necessarily globally) coherent 

probabilistic assignment   (= dual of LP)

See M. Schlesinger, “Sintaksicheskiy analiz dvumernykh zritelnikh
signalov v usloviyakh pomekh” (Syntactic analysis of two-dimensional
visual signals in noisy conditions), Kibernetika (1976).

E.g. 2-colouring on 3 variables: the probabilistic assignment
Pri (0) = Pri (1) = 0.5,   Prik (01) = Prik (10) = 0.5

is locally but not globally coherent and has expected cost 0.
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OSAC: Theoretical results 

OSAC solves all tractable languages 
of finite-valued cost-functions

(including submodular functions)



Hierarchy

NC*

AC* DAC*

EDAC*

AC

NC

DAC

Special case: CSP 

VAC

OSAC

Solve tree-like
primal graphs

Solves all finite
-valued tractable

languages


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Some practical observations

For very hard-to-solve instances, maintaining
VAC provides a significant speed-up, however
for many problems, maintaining a simpler
form of soft arc consistency (EDAC) is faster.

Unary costs ci(a) useful for value and variable 
ordering heuristics.

Consistencies can be generalised to abitrary
arities but computational cost is high.
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AC for soft global constraints

Recent research has shown that many global 
cost functions allow projection/extension 
to/from unary cost functions in poly-time.

Examples: cost-function variants of AMONG, 
ALLDIFFERENT, GCC, GRAMMAR, REGULAR, 
SAME, SUM...

(See van Hoeve et al, J. Heur. 2006,    Lee & Leung, IJCAI 2009, 
Allouche et al. AIJ 2016)
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Example: AC for flow-based  
soft global constraints

Suppose that a global cost function cM can 
be coded as the minimum cost of a maximum 
flow in a network in which (a) there is a one-
to-one correspondence between max-flows 
and global labelings and (b) each assignment 
(xi,a) has a corresponding edge eia such that 
the max-flow is 1 in eia if xia (0 if xia). 

Then it is possible to project  from cM to 
ci(a) by reducing cost(eia) by .
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Network representing soft Alldiff
 Min number of variables with same value

variable-based costs (Beldiceanu & Petit, CPAIOR’04)

1

1

2

a

b

c

d

x1

x2

x3

x4

All edge capacities
are equal to 1

All edge costs are 0
if not indicated

The flow shown is a min-cost max-flow with x1=a.
We can project 1 from cM to c1(a) by reducing the 
cost of the light blue edge from 0 to –1.



Decomposition of global cost
functions

Rewrite the global cost function as a 
sum of smaller bounded scope cost 
functions (a sub-network)
(Schiex et al, AAAI 2012)

Polynomial transformation solved by 
DAC for AMONG, REGULAR, SUM…

DAC and VAC solves Berge-acyclic 
decomposed networks
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softRegular
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X1 X3 X5X2 X4

g (Qi-1, Xi, Qi) = 

0  if (qi-1, xi, qi)

softRegular(X1, X2, X3, X4, X5, (Q, , , q0, T))

(Hamming distance)

Q0=q0 Q2 Q4Q1 Q3 Q5T

+ otherwise

1  if (qi-1,v,qi),vxi

 Berge-acyclic decomposition

DXi Q

DQi 



1-softRegular

74toulbar2 version 0.9.5



Clique cuts



Clique cuts in CFN
(CP17)



Reparameterization for clique

1 2

0 0

w
Ø
=0

X1 X2

b

a

d

c

(CP17)

3

0

X3

f

e ≤ 1

C1



Reparameterization for clique

0 0

1 0

w
Ø
=3

X1 X2

b

a

d

c

(CP17)

1

0

X3

f

e ≤ 1

C1

w
123

(b,d,f)→ 2



Experimental Results
(CP17)

* Including bounded clique detection with Bron-Kerbosch algorithm

in preprocessing

*
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