
Proceedings of the Seventh International Workshop on
Preferences and Soft Constraints

(Soft-2005)

Held in conjunction with the 11th International Conference
on Principles and Practice of Constraint Programming (CP-2005)

October 1, 2005
Melia Sitges Hotel, Sitges, Spain

Organized by

Simon de Givry and Weixiong Zhang (Co-chairs)

Pedro Barahona, Stefano Bistarelli,
Martin Cooper, Rina Dechter,

Carmel Domshlak, Philippe Jegou,
Jerome Lang, Jimmy H. M. Lee,
Felip Manya, Bertrand Neveu,
Gilles Pesant, Francesca Rossi,

Hana Rudova, Martin Sachenbacher,
Marti Sanchez, Nic Wilson

and Hantao Zhang

Preface

The Seventh International Workshop on Preferences and Soft Constraints
(Soft 2005) continues the series of workshops on soft constraints that were
held in conjunction with the previous CP conferences. The aim of this work-
shop is to provide a forum where researchers in this area can exchange ideas,
discuss new developments and explore possible future directions.

As in 2004, Soft 2005 extends its scope to include formalisms and tech-
niques for dealing with preferences. Preferences are ubiquitous in real life;
most problems are over-constrained and would not be solved if we insist all
their requirements to be strictly met. Instead, many practical problems can
be naturally described via preferences rather than hard statements. The idea
of using soft constraints provides an effective way to extend the conventional
framework of constraints to support the concept of preferences. In parallel
to the framework of soft constraints, other frameworks for expressing pref-
erences have been proposed and developed in recent years in AI and other
related fields. These diverse frameworks have different features and have led
to many results. For example, both qualitative and quantitative preference
frameworks have been studied and used to model and solve real-life problems.

Each of the twelve papers in the following pages was reviewed by at least
two reviewers. These papers reflected upon the diversity of the active topics
that have been actively pursued. Some of the papers dealt with algorithmic
aspects of the existing soft constraint frameworks, in particular by taking
into account the structures of constraint graphs or the semantics of con-
straints, and some of the papers proposed new frameworks for dealing with
constraints, preferences, and uncertainties. Moreover, concrete applications
and solvers were also considered by some authors. We believe that these
papers provide a good coverage of the current research directions that have
been actively pursued and the status of the research activities related to rea-
soning under various soft constraints and preferences. We hope that these
papers can promote future research on soft constraints and preferences.

CP-nets and Nash equilibria

Krzysztof R. Apt1,2,3, Francesca Rossi4, and Kristen Brent Venable4

1 School of Computing, National University of Singapore
2 CWI, Amsterdam

3 University of Amsterdam, the Netherlands
4 Department of Pure and Applied Mathematics, University of Padova, Italy

Abstract. CP-nets are a natural way to express qualitative and conditional pref-
erences. Here we relate them to a natural extension of the classical notion of a
strategic game in which parametrized strict linear orderings are used instead of
payoff functions. We show then that the optimal outcomes of aCP-net are ex-
actly the Nash-equilibria of an appropriately defined strategic game in the above
sense. This allows us to use the techniques of game theory to search for optimal
outcomes of CP-nets and vice-versa, to use techniques developed for CP-nets
to search for Nash equilibria of the considered games. We believe this is a first
promising step towards a fruitful cross-fertilization between these two research
areas, from artificial intelligence and microeconomic theory.

1 Introduction

CP-nets(Conditional Preference nets) are an elegant formalism forrepresenting con-
ditional and qualitative preferences, see [4, 7, 3]. They model such preferences under a
ceteris paribus(that is, ‘all else being equal’) assumption. Preference elicitation in such
a framework appears to be natural and intuitive.

Research on CP-nets focused on its modeling capabilities and algorithms for solving
various natural problems related to their use. Also, computational complexity of these
problems was extensively studied. An outcome of a CP-net is an assignment of values
to its variables. One of the fundamental problems is that of finding an optimal outcome,
i.e., the one that cannot be improved in presence of the adopted preference statements.
This is in general a complex problem since it was found that finding optimal outcomes
and testing for their existence is NP-hard in general. In contrast, for acyclic CP-nets this
is an easy problem which can be solved by a linear time algorithm.

The aim of this paper to show the relationship between CP-nets and game theory,
and how game-theoretic techniques developed for the analysis of strategic games can
be fruitfully used to study CP-nets. To this end, we introduce a generalization of the
customary strategic games (see, e.g., [10],) in which each player has to his disposal a
strict preference relation on his set of strategies, parametrized by a joint strategy of his
opponents. We call such gamesstrategic games with parametrized preferences.

The cornerstone of our approach are two results closely relating CP-nets to such
games. They show that the optimal outcomes of a CP-net are exactly the Nash-equilibria
of an appropriately defined strategic game with parametrized preferences. This allows
us to transfer techniques of game theory to CP-nets. These results are based on the ob-
servation that the ceteris-paribus principle, typical of CP-nets, implies that any optimal

outcome is worsened if any worsening change to any variable is made. This is exactly
the idea of a Nash equilibrium, and thus the results follow easily once this is clear.

Notice that these results do not hold if we consider other ways to express prefer-
ences, for example soft constraints [2] rather than CP-nets. Consider for instance fuzzy
constraints [8], where the preference of a solution is the minimal preference over all the
constraints, and solutions with higher values are better. It is possible to show that, in a
fuzzy constraint problem, there can be optimal solutions which are not Nash equilibria
of corresponding games, and viceversa.

To find Nash equilibria in strategic games, many reduction techniques have been
studied which reduce the game by eliminating some players’ strategies, thus obtaining
a smaller game. We introduce a counterpart of one of such game-theoretic technique that
allows us to reduce a CP-net while maintaining its optimal outcomes. We also introduce
a method of simplifying a CP-net by eliminating so-called redundant variables from the
variables parent sets. Both techniques simplify the searchfor optimal outcomes of a
CP-net.

In the other direction, we can use the techniques developed to reason about optimal
outcomes of a CP-net in search for Nash equilibria of strategic games with parametrized
preferences. These techniques, as recently shown in [5, 12], involve the use of the cus-
tomary constraint solving techniques. In fact, it has been shown that the optimal out-
comes of any CP-nets, even a cyclic one, can be found by just solving a set of hard con-
straints. Thus hard constraint solving is enough to find alsoNash equilibria in strategic
games. In particular, when the CP-net corresponding to a given game is acyclic, we
know it has a unique optimal outcome that can be found in linear time. This allows us
to find easily the unique Nash equlibrium of the given game.

The paper is organized as follows. Section 2 provides the basic definitions of CP-
nets. Then, Section 3 introduces our generalized notion of games, Section 4 shows how
to pass from a CP-net to a game, and Section 5 handles the opposite direction. Then,
Section 6 introduces the concept of reduced CP-nets, and Sections 7 and 8 show how
to exploit techniques developed for CP-nets in games and vice-versa. Finally, Section
9 gives an informal idea of the relationship between soft constraints and game theory,
and 10 summarizes the main contributions of the paper and gives some hints for future
work.

2 CP-nets

CP-nets [4, 3] (for Conditional Preference nets) are a graphical model for compactly
representing conditional and qualitative preference relations. They exploit conditional
preferential independence by decomposing an agent’s preferences via theceteris paribus
(cp) assumption. Informally, CP-nets are sets ofceteris paribus (cp)preference state-
ments. For instance, the statement“I prefer red wine to white wine if meat is served.”
asserts that, given two meals that differonly in the kind of wine servedandboth con-
taining meat, the meal with a red wine is preferable to the meal with a white wine. On
the other hand, this statement does not order two meals with adifferent main course.
Many users’ preferences appear to be of this type.

CP-nets bear some similarity to Bayesian networks. Both utilize directed graphs
where each node stands for a domain variable, and assume a setof features(variables)
F = {X1, . . . , Xn} with the corresponding finite domainsD(X1), . . . ,D(Xn). For
each featureXi, a user specifies a (possibly empty) set ofparent featuresPa(Xi) that
can affect her preferences over the values ofXi. This defines adependency graphin
which each nodeXi hasPa(Xi) as its immediate predecessors.

Given this structural information, the user explicitly specifies her preference over
the values ofXi for each complete assignmentonPa(Xi). This preference is assumed
to take the form of a linear ordering overD(Xi) [4, 3]. Each such specification is called
below apreference statementfor the variableXi. These conditional preferences over
the values ofXi are captured by aconditional preference tablewhich is annotated with
the nodeXi in the CP-net. Anoutcomeis an assignment of values to the variables with
each value taken from the corresponding domain.

As an example, consider a CP-net whose features areA, B, C andD, with binary
domains containingf andf if F is the name of the feature, and with the following
preference statements:

d : a ≻ a, d : a ≻ a,
a : b ≻ b, a : b ≻ b,
b : c ≻ c, b : c ≻ c,
c : d ≻ d, c : d ≻ d.

Here the preference statementd : a ≻ a states thatA = a is preferred toA = a, given
thatD = d. ¿From the structure of these preference statements we see thatPa(A) =
{D}, Pa(B) = {A}, Pa(C) = {B}, Pa(D) = {C} so the dependency graph is
cyclic.

An acyclicCP-net is one in which the dependency graph is acyclic. As an example,
consider a CP-net whose features and domains are as above andwith the following
preference statements:

a ≻ a,
b ≻ b,
(a ∧ b) ∨ (a ∧ b) : c ≻ c, (a ∧ b) ∨ (a ∧ b) : c ≻ c,
c : d ≻ d, c : d ≻ d.

Here, the preference statementa ≻ a represents the unconditional preference forA = a

over A = a. Also each preference statement for the variableC is a actually an ab-
breviated version of two preference statements. In this example we havePa(A) =
∅, Pa(B) = ∅, Pa(C) = {A, B}, Pa(D) = {C}.

The semantics of CP-nets depends on the notion of aworsening flip. A worsening
flip is a transition between two outcomes that consists of a change in the value of a
single variable to one which is less preferred in the unique preference statement for that
variable. By analogy we define animproving flip. For example, in the acyclic CP-net
above, passing fromabcd to abcd is a worsening flip sincec is better thanc givena and
b. We say that an outcomeα is betterthan the outcomeβ (or, equivalently,β is worse
thanα), written asα ≻ β, iff there is a chain of worsening flips fromα to β. This
definition induces a strict preorder over the outcomes. In the above acyclic CP-net the
outcomeabcd is worse thanabcd.

An optimal outcome is one for which no better outcome exists. In general, a CP-
net does not need to have an optimal outcome. As an example consider two features
A andB with the respective domains{a, a} and{b, b} and the following preference
statements:

a : b ≻ b, a : b ≻ b,
b : a ≻ a, b : a ≻ a.

It is easy to see that then
ab ≻ ab ≻ ab ≻ ab ≻ ab.

Finding optimal outcomes and testing for optimality is NP-hard. However, in acyclic
CP-nets there is a unique optimal outcome and it can be found in linear time [4, 3].
We simply sweep through the CP-net, following the arrows in the dependency graph,
assigning at each step the most preferred value in the preference relation. For instance,
in the CP-net above, we would chooseA = a andB = b, thenC = c and thenD = d.
The optimal outcome is thereforeabcd.

Hard constraints are enough to find optimal outcomes of a CP-net and to test whether
a CP-net has an optimal outcome. In fact, given a CP-net one can define a set of hard
constraints (calledoptimality constraints) such that their solutions are the optimal out-
comes of the CP-net [5, 12].

Indeed, take a CP-netN and consider a linear ordering≻ over the elements of the
domain of a variableX used in a preference statement forX. Let ϕ be the disjunction
of the corresponding assignments used in the preference statements that use≻. Then
for each of such linear ordering≻ the corresponding optimality constraint isϕ →
X = aj , whereaj is the undominated element of≻. The optimality constraintsopt(N)
corresponding toN consist of the entire set of such optimality constraints, each for one
such linear ordering≻.

For example, the preference statementsa ≻ a and(a∧ b)∨ (a∧ b) : c ≻ c from the
above CP-net map to the hard constraintsA = a and(A = a∧B = b)∨ (A = a∧B =
b) → C = c, respectively.

It has been shown that an outcome is optimal in the strict preorder over the outcomes
induced by a CP-netN iff it is a satisfying assignment foropt(N).

A CP-net iseligible iff it has an optimal outcome. Even if the strict preorder induced
by a CP-net has cycles, the CP-net may still be useful if it is eligible. All acyclic CP-nets
are trivially eligible as they have a unique optimal outcome. We can thus test eligibility
of any (even cyclic) CP-net by testing the consistency of theoptimality constraints
opt(N). That is, a CP-netN is eligible iff opt(N) is consistent.

3 Strategic games with parametrized preferences

In this section we introduce a generalization of the notion of a strategic game used in
game theory, see, e.g., [10].

First we need the concept of apreferenceon a setA which in this paper denotes
a strict linear ordering onA. If ≻ is a preference, we denote by� the corresponding
weak preferencedefined by:a � b iff a ≻ b or a = b.

Given a sequence of non-empty setsS1, . . ., Sn ands ∈ S1 × . . . × Sn we denote
theith element ofs by si and use the following standard notation of game theory, where
I := i1, . . ., ik is a subsequence of1, . . ., n:

– s−i := (s1, . . ., si−1, si+1, . . ., sn),
– sI := (si1 , . . ., sik

),
– (s′i, s−i) := (s1, . . ., si−1, s

′

i, si+1, . . ., sn), where we assume thats′i ∈ Si,
– S−i := S1 × . . . × Si−1 × Si+1 × . . . × Sn,
– SI := Si1 × . . . × Sik

.

In game theory it is customary to study strategic games in which the outcomes are
numerical values provided by means of the payoff functions.A notable exception is
[11] in which instead of payoff functions the linear quasi-orderings on the sets of joint
strategies are used.

In our setup we adopt a different approach according to whicheach player has to
his disposal a strict preference relation≻(s−i) on his set of strategiesparametrizedby
a joint strategys−i of his opponents. So in our approach

– for eachi ∈ [1..n] playeri has a finite, non-empty, setSi of strategies available to
him,

– for eachi ∈ [1..n] ands−i ∈ S−i playeri has a preference relation≻(s−i) on his
set of strategiesSi.

In what follows such astrategic game with parametrized preferences(in short a
game with parametrized preferences, or just agame) for n players is represented by a
sequence

(S1, . . ., Sn,≻(s−1), . . .,≻(s−n)),

where eachs−i ranges overS−i.
It is straightforward to transfer to the case of games with parametrized preferences

the basic notions concerning strategic games. The following notions will be of im-
portance for us (for the original definitions see, e.g., [11]), whereG is a game with
parametrized preferences specified as above.

– A strategysi is abest responsefor playeri to a joint strategys−i of his opponents
if si �(s−i) s′i, for all s′i ∈ Si.

– A strategysi is never a best responsefor playeri if it is not a best response to any
joint strategys−i of his opponents.

– A joint strategys is a (pure)Nash equilibriumof G if eachsi is a best response to
s−i. Equivalently,s a Nash equilibrium if for alli ∈ [1..n] and alls′i ∈ Si

si �(s−i) s′i.

– A strategys′i is strictly dominatedby a strategysi if si ≻(s−i) s′i, for all s−i ∈ S−i.

To clarify these definitions consider the classical Prisoner’s dilemma strategic game
represented by the following bimatrix representing the payoffs to both players:

C2 N2

C1 3, 3 0, 4
N1 4, 0 1, 1

So each playeri has two strategies,Ci (cooperate) andNi (not cooperate), the payoff
to player 1 for the joint strategy(C1, N2) is 0, etc. To represent this game as a game
with parametrized preferences we simply stipulate that

≻(C2) := N1 ≻ C1, ≻(N2) := N1 ≻ C1,
≻(C1) := N2 ≻ C2, ≻(N1) := N2 ≻ C2.

These orderings reflect the fact that for each strategy of theopponent each player con-
siders his ‘not cooperate’ strategy better than his ‘cooperate’ strategy. So for each player
i his strategyCi is strictly dominated byNi, or (here) equivalently, his strategyCi is
never a best response. Further,(N1, N2) is a unique Nash equilibrium of this game with
parametrized preferences.

Given a game with parametrized preferences

G := (S1, . . ., Sn,≻(s−1), . . .,≻(s−n)),

where eachs−i ranges overS−i, and sets of strategiesS′

1, . . ., S
′

n such thatS′

i ⊆ Si for
i ∈ [1..n], we say that

G′ := (S′

1, . . ., S
′

n,≻(s−1), . . .,≻(s−n)),

where eachs−i now ranges overS′

−i, is asubgameof G, and identify in the context of
G′ each preference relation≻(s−i) with its restriction toS′

i.
We now introduce the following two notions of reduction between a game

G := (S1, . . ., Sn,≻(s−1), . . .,≻(s−n)),

where eachs−i ranges overS−i and its subgame

G′ := (S′

1, . . ., S
′

n,≻(s−1), . . .,≻(s−n)),

where eachs−i ranges overS′

−i:

– G →NBR G′

whenG 6= G′ and for alli ∈ [1..n] eachsi ∈ Si \ S′

i is never a best response for
playeri in G,

– G →S G′

whenG 6= G′ and for alli ∈ [1..n] eachs′i ∈ Si \ S′

i is strictly dominated inG by
somesi ∈ Si.

In the literature it is customary to consider more specific reduction relations in
which, respectively,all never best responses orall strictly dominated strategies are
eliminated. The advantage of using the above versions is that we can prove the relevant
property of both reductions by just one simple lemma, since by definition a strictly dom-
inated strategy is never a best response and consequentlyG →SG′ impliesG →NBRG′.

Lemma 1. Suppose thatG →NBRG′. Thens is a Nash equilibrium ofG iff it is a Nash
equilibrium ofG′.

Proof. (⇒) By definition eachsi is a best response tos−i to G. So nosi is eliminated
in the reduction ofG to G′.

(⇐) Supposes is not a Nash equilibrium ofG. So somesi is not a best response tos−i

in G. Let s′i be a best response tos−i in G. (s′i exists since≻(s−i) is a linear ordering.)
Sos′i is not eliminated in the reduction ofG to G′ ands′i is a best response tos−i

in G′. But this contradicts the fact thats is a Nash equilibrium ofG′. 2

Theorem 1. Suppose thatG → ∗

NBRG′, i.e.,G′ is obtained by an iterated elimination
of never best responses from the gameG.

(i) Thens is a Nash equilibrium ofG iff it is a Nash equilibrium ofG′.
(ii) If each player inG′ has just one strategy, then the resulting joint strategy is aunique

Nash equilibrium ofG.

Proof.
(i) By the repeated application of Lemma 1.

(ii) It suffices to note that(s1, . . .sn) is a unique Nash equilibrium of the game in which
each playeri has just one strategy,si. 2

The above theorem allows us to reduce a game without affecting its (possibly empty)
set of Nash equilibria or even, occasionally, to find its unique Nash equilibrium. In the
latter case one says that the original game wassolvedby an iterated elimination of never
best responses (or of strictly dominated strategies).

As an example let us return to the Prisoner’s dilemma game with parametrized pref-
erences defined above. In this game each strategyCi is strictly dominated byNi, so the
game can be solved by either reducing it in two steps (by removing in each step oneCi

strategy) or in one step (by removing bothCi strategies) to a game in which each player
i has exactly one strategy,Ni.

Finally, let us mention that [9] and [13] proved that all iterated eliminations of
strictly dominated strategies yield the same final outcome.An analogous result for the
iterated elimination of never best responses was established in [1].

4 From CP-nets to strategic games

Consider now a CP-net with the set of variables{X1, . . ., Xn} with the corresponding
finite domainsD(X1), . . .,D(Xn). We write each preference statement for the variable
Xi asXI = aI : ≻i, where for the subsequenceI = i1, . . ., ik of 1, . . ., n:

– Pa(Xi) = {Xi1 , . . ., Xik
},

– XI = aI is an abbreviation forXi1 = ai1 ∧ . . . ∧ Xik
= aik

,
– ≻i is a preference overD(Xi).

We also abbreviateD(Xi1) × . . . ×D(Xik
) toD(XI).

By definition, the preference statements for a variableXi are exactly all statements
of the formXI = aI : ≻(aI), whereaI ranges overD(XI) and≻(aI) is a preference
onD(Xi) that depends onaI .

We now associate with each CP-netN a gameG(N) with parametrized preferences
as follows:

– each variableXi corresponds to a playeri,
– the strategies of playeri are the elements of the domainD(Xi) of Xi.

To define the parametrized preferences, consider a playeri. SupposePa(Xi) =
{Xi1 , . . ., Xik

} and letI := i1, . . ., ik. SoI is a subsequence of1, . . ., i−1, i+1, . . ., n.
Given a joint strategya−i of the opponents of playeri, we associate with it the pref-
erence relation≻(aI) on D(Xi) whereXI = aI : ≻(aI) is the unique preference
statement forXi determined byaI .

In words, the preference of a playeri over his strategies, given the strategies chosen
by its opponents, saya−i, coincides with the preference given by the CP-net over the
domain ofXi given the assignment to his parentsaI which must coincide with the
projection ofa−i overI.

This completes the definition ofG(N).
As an example consider the first CP-net of Section 2. The corresponding game has

four playersA, B, C, D, each with two strategies indicated withf , f̄ for playerF . The
preference of each player on his strategies will depend onlyon the strategies chosen
by the players which correspond to his parents in the CP-net.Consider for example
player B. His preference over his strategiesb and b̄, given the joint strategy of his
opponentss−B = dac, is b ≻ b̄. Notice that, for example, the same ordering holds for
the opponents joint strategys−B = d̄ac̄, since the strategy chosen by the only player
corresponding to his parent,A, has not changed.

We have then the following result.

Theorem 2. An outcome of a CP-netN is optimal iff it is a Nash equilibrium of the
gameG(N).

Proof. (⇒) Take an optimal outcomeo of N . Consider a playeri in the gameG(N)
and the corresponding variableXi of N . SupposePa(Xi) = {Xi1 , . . ., Xik

}. Let I :=
i1, . . ., ik, and letXI = oI : ≻(oI) be the corresponding preference statement forXi.
By definition there is no improving flip fromo to another outcome, sooi is the maximal
element in the ordering≻(oI).

By the construction of the gameG(N), each outcome inN is a joint strategy in
G(N). Also, two outcomes are one flip away iff the corresponding joint strategies differ
only in a strategy of one player. Given the joint strategyo considered above, we thus
have that, if we modify the strategy of playeri, while leaving the strategies of the other
players unchanged, this change is worsening in≻(o−i), since≻(o−i) coincides with
≻(oI). So by definitiono is a Nash equilibrium ofG(N).

(⇐) Take a Nash equilibriums of the gameG(N). Consider a variableXi of N .
SupposePa(Xi) = {Xi1 , . . ., Xik

}. Let I := i1, . . ., ik, and letXI = sI : ≻(sI) be
the corresponding preference statement forXi.

By definition for every strategys′i 6= si of player i, we havesi ≻(s−i) s′i, so
si ≻(sI) s′i since≻(s−i) coincides with≻(sI). So by definitions is an optimal outcome
for N . 2

5 From strategic games to CP-nets

We now associate with each gameG with parametrized preferences a CP-netN (G) as
follows:

– each playeri corresponds to a variableXi,
– the domainD(Xi) of the variableXi consists of the set of strategies of playeri,
– we stipulate thatPa(Xi) = {X1, Xi−1, . . ., Xi+1, . . ., Xn}, wheren is the number

of players inG.

Next, for each joint strategys−i of the opponents of playeri we take the preference
statementX−i = s−i : ≻(s−i), where≻(s−i) is the preference relation on the set of
strategies of playeri associated withs−i.

This completes the definition ofN (G). As an example of this construction let us
return to the Prisoner’s dilemma game with parametrized preferences from Section 3.
In the corresponding CP-net we have then two variablesX1 and X2 corresponding
to players 1 and 2, with the respective domains{C1, N1} and{C2, N2}. To explain
how each parametrized preference translates to a preference statement take for example
≻(C2) := N1 ≻ C1. It translates toX2 = C2 : N1 ≻ C1.

We have now the following counterpart of Theorem 2.

Theorem 3. A joint strategy is a Nash equilibrium of the gameG iff it is an optimal
outcome of the CP-netN (G).

Proof. (⇒) AssumeG has a Nash equilibriums. Thus, for every playeri, joint strategy
s−i, and strategys′i 6= si for playeri, we havesi ≻(s−i) s′i. This means that, if we
only change the strategy of any playeri, this change is worsening for that player. In the
CP-netN (G), s is an outcome, and the ordering in the conditional preference table of
variableXi coincides with′ ≻(s−i). Thus all the flips froms are worsening. Thuss is
optimal forN (G).

(⇐) AssumeN (G) is eligible, and take an optimal outcomeo of N (G). By definition
of optimal outcome, for every other outcomeo′, o′ 6≻ o, which means that there is no
sequence of improving flips fromo to any other outcome. Thus there is no improving
flip from o to any other outcome. Therefore every flip modifying variable Xi in o is
worsening in the preference statement for the variableXi.

Given the construction from gameG to CP-netN (G), an outcome inN (G) is a
joint strategy inG. Also, two outcomes one flip away inN (G) are two joint strategies
of G which differ only for the strategy of one player. Given the joint strategyo, we
thus have that, if we modify the strategy of playeri, while leaving the strategies of the
other players unchanged, this change is worsening in≻i(o−i), since the preference of
variableXi giveno−i coincides with≻i(o−i).

2

6 Reduced CP-nets

The disadvantage of the above construction of the CP-netN (G) from a gameG is that
it always produces a CP-net in which all sets of parent features are of sizen − 1 where

n is the number of features of the CP-net. This can be rectified by reducing each set of
parent features to a minimal one as follows.

Given a CP-netN , consider a variableXi with the parentsPa(Xi), and take a
variableY ∈ Pa(Xi). Suppose that for all assignmentsa to Pa(X) − {Y } and any
two valuesy1, y2 ∈ D(Y), the orderings≻(a, y1) and≻(a, y2) onD(Xi) coincide.

We say then thatY is redundantin the set of parents ofXi. It is easy to see that by
removing all redundant variables from the set of parents ofXi and by modifying the
corresponding preference statements forXi accordingly, the strict preorder≻ over the
outcomes of the CP-nets is not changed.

Given a CP-net, if for all its variableXi the setPa(Xi) does not contain any redun-
dant variable, we say that the CP-net isreduced.

By iterating the above construction every CP-net can be transformed to a reduced
CP-net. As an example consider a CP-net with three features,X, Y andZ, with the re-
spective domains{a1, a2}, {b1, b2} and{c1, c2}. Suppose now thatPa(X) = Pa(Y) =
∅, Pa(Z) = {X, Y } and that

≻(a1, b1) = ≻(a2, b1), ≻(a1, b2) = ≻(a2, b2),
≻(a1, b1) = ≻(a1, b2), ≻(a2, b1) = ≻(a2, b2).

Then bothX andY are redundant, so we can reduce the CP-net by reducingPa(Z) to
∅. Z becomes an independent variable in the reduced CP-net with an ordering over its
domain which coincides with the unique one given in the original CP-net in terms of
the assignments to its parents.

In what follows for a CP-netN we denote byr(N) the corresponding reduced CP-
net. The following result summarizes the relevant properties ofr(N) and relates it to
the constructions ofG(N) andN (G).

Theorem 4.
(i) Each CP-netN and its reduced formN ′ = r(N) have the same ordering≻ over

the outcomes.
(ii) For each CP-netN and its reduced formN ′ = r(N) we haveG(N) = G(N ′).
(iii) Each reduced CP-netN is a reduced CP-net corresponding to the gameG(N).

Formally: N = r(N (G(N))).

Proof.
(i) ConsiderN andr(N), an outcomeo and an improving flip inN from o to o′ which
modifies the value of variableXi. Then this change is improving in the conditional
preference table ofXi in N . Let us now consider the conditional preference table of
Xi in r(N). In this table there could be a subsequence of parents but with the same
corresponding preference orderings. Thus the change is improving in this conditional
preference table as well. Thus any chain of improving flips inN remain a chain of
improving flips also inr(N), and therefore the orderings over the outcomes ofN and
r(N) are the same.

(ii) It follows directly from the construction of the game corresponding to a CP net,
since the preference of playeri over its strategies depends on the strategies of all the
other opponents, even if variableXi has just a few parents inN .

(iii) Given a reduced CP-netN , consider the CP-netN (G(N)). For each variableXi,
Pa(Xi) in N is a subset ofPa(Xi) in N (G(N)), which is the set of all variables except

Xi. However, by the construction of the game corresponding to aCP-net and of the CP-
net corresponding to a game, in each conditional preferencetable, if the assignments to
the common parents are the same, the preference orderings overXi are the same.

Let us now reduceN (G(N)) to obtainN ′ = r(N (G(N))). ThenPa(Xi) in N ′

coincides withPa(Xi) in N . In fact, assume there is a parent ofXi in N which is not
in N ′. SinceN is reduced, such a parent cannot be redundant inN . Thus the reduction,
when applied toN (G(N)), cannot remove it since the orderings in the conditional
preference tables ofN andN (G(N)) are the same. On the other hand, assume there
is a parent ofXi in N ′ which is not inN . SinceN ′ is reduced, such a parent cannot
be redundant inN ′. Thus it is not redundant inN (G(N)) as well. By construction of
N (G(N)), it cannot be redundant inN neither. 2

Part(i) states that the reduction procedure preserves the orderingover the outcomes.
Part (ii) states that the construction of a game corresponding to a CP-net does not
depend on the redundancy of the given CP-net. Finally, part(iii) states that the reduced
CP-netN can be obtained ‘back’ from the gameG(N).

7 Game theoretical techniques in CP-nets

Given the correspondence between CP-nets and games and its properties presented in
the previous sections, we can now use them to transfer standard techniques of game
theory, used to find Nash equilibria, to CP-nets to find their optimal outcomes, and
vice-versa.

To be more specific, given a CP-netN , consider the gameG(N). Let us now mod-
ify G(N) by an iterated elimination of never best responses, obtaining a gameG′. By
Theorems 1 and 2, an outcome ofN is optimal iff it is a Nash equilibrium ofG′. Now
modify N by

– reducing the variable domains to the corresponding sets of strategies inG′,
– removing all preference statements that refer to a removed element,

and call the resulting CP-netN ′.
By Theorem 1, the Nash equilibria ofG andG′ coincide. Also, by Theorem 3, a

joint strategy is a Nash equilibrium ofG iff it is an optimal outcome ofN , and a joint
strategy is a Nash equilibrium ofG′ iff it is an optimal outcome ofN ′. ThusN andN ′

have the same set of optimal outcomes.
It is useful to note that the elimination of never best responses, and consequently

also the elimination of strictly dominated elements, can becarried out directly on a
CP-net by introducing the following notions. Consider a CP-netN .

– We say that an elementdi from the domainD(Xi) of the variableXi is a best
responseto a preference statement

XI = aI : ≻i

for Xi if di �i d′i for all d′i ∈ D(Xi).

– We say that an elementdi from the domain of the variableXi is a never a best
responseif it is not a best response to any preference statement forXi.

– Given two elementsdi, d
′

i from the domainD(Xi) of the variableXi we say that
d′i is strictly dominatedby di if for all preference statementsXI = aI : ≻i for Xi

we have

di ≻i d′i.

By a subnetof a CP-netN we mean a CP-net obtained fromN by removing some
elements from some variable domains followed by the removalof all preference state-
ments that refer to a removed element.

Then we introduce the following relation between a CP-netN and its subnetN ′:

N →NBR N ′

whenN 6= N ′ and for each variableXi each removed element from the domain ofXi

is never a best response inN , and introduce an analogous relationN →S N ′ for the
case of strictly dominated elements.

By the same argument as in the case of Theorem 1 we get the following result. Part
(iii) can be established by repeating the argument of [1].

Theorem 5. Suppose thatN → ∗

NBRN ′, i.e., the CP-netN ′ is obtained by an iterated
elimination of never best responses from the CP-netN .

(i) Thens is an optimal outcome ofN iff it is an optimal outcome ofN ′.
(ii) If each variable inN ′ has a singleton domain, then the resulting outcome is a

unique optimal outcome ofN .
(iii) All iterated eliminations of never best responses from the CP-netN yield the same

final outcome.

To illustrate the use of this theorem reconsider the first CP-net from Section 2, i.e.,
the one with the preference statements

d : a ≻ a, d : a ≻ a,
a : b ≻ b, a : b ≻ b,
b : c ≻ c, b : c ≻ c,
c : d ≻ d, c : d ≻ d.

Denote it byN .
We can reason about it using the iterated elimination of strictly dominated strategies

(which coincides here with the iterated elimination of never best responses, since each
domain has exactly two elements).

We have the following chain of reductions:

N →SN1 →SN2 →SN3 →SN4,

where

– N1 results fromN by removinga (from the domain ofA) and the preference state-
mentsd : a ≻ a, d : a ≻ a, a : b ≻ b,

– N2 results fromN1 by removingb and the preference statementsa : b ≻ b, b : c ≻
c,

– N3 results fromN2 by removingc and the preference statementsb : c ≻ c c : d ≻
d,

– N4 results fromN3 by removingd from the domain ofD and the preference state-
mentc : d ≻ d.

Indeed, in each step the removed element is strictly dominated in the considered
CP-net. So using the iterated elimination of strictly dominated elements we reduced the
original CP-net to one in which each variable has a singletondomain and consequently
found a unique optimal outcome of the original CP-netN .

Finally, the following result shows that the introduced reduction relation on CP-nets
is complete for acyclic CP-nets.

Theorem 6. For each acyclic CP-netN a unique subnetN ′ with the singleton domains
exists such thatN → ∗

NBRN ′.

Proof. First note that ifN is an acyclic CP-net with some non-singleton domain, then
N →NBRN ′ for some subnetN ′ of N . Indeed, supposeN is such a CP-net. Then
a variableX exists with a non-singleton domain with no parent variable that has a
non-singleton domain. So there exists inN exactly one preference statement forX,
sayXI = aI : ≻i, whereXI is the sequence of parent variables ofX. Reduce the
domain ofX to the maximal element in≻i. Then for the resulting subnetN ′ we have
N →NBRN ′.

Uniqueness of the outcome is a consequence of Theorem 5(iii). 2

8 CP-net techniques in strategic games

The established relationship between CP-nets and strategic games with prioritized pref-
erences allows us also to exploit the techniques developed for the CP-nets when rea-
soning about such games. In particular, to find the Nash equilibria of such a game we
can proceed as follows. Take a gameG. Apply to it an iterated elimination of never best
responses. This yields a subgameG′. Now consider the corresponding CP-netN (G′).
Reduce it by eliminating redundant parents as described in Section 6, obtaining a CP-
netN ′ = r(N (G)). Next, apply to it an iterated elimination of never best responses.
This yields a CP-netN ′′. By the theorems established in this paper the Nash equilibria
of G coincide with the optimal outcomes ofN ′′.

If each variable inN ′′ has a singleton domain, then we found a unique Nash equilib-
rium of G. Otherwise we can construct the optimality constraintsopt(N ′′) discussed in
Section 2 and use the fact thatopt(N ′′) is consistent iff an optimal outcome ofN ′′ ex-
ists. So we can now use hard constraint solving techniques tosearch for Nash equilibria
of the original gameG, by focusing on solving the constraints inopt(N ′′).

As an example consider the following strategic gameG, in which there are two
players, Player 1 with the strategiesTop andBottomand Player 2 with the strategies
Left andRight.

L R

T 2, 2 1, 1
B 1, 1 2, 2

Note that in this game each strategy is a best response, so it cannot be reduced using
the elimination of never best responses.

The corresponding CP-net,N (G), has two variables, each corresponding to a player:
X1 andX2, with the domainsD(X1) = {T, B} andD(X2) = {L, R}. Moreover
Pa(X1) = {X2} andPa(X2) = {X1}. The preference statements are the following:

X1 = T : L ≻ R,
X1 = B : R ≻ L,
X2 = L : T ≻ B,
X2 = R : B ≻ T .
Notice thatN (G) is already reduced. In fact,X1 is not redundant as a parent ofX2

and vice-versa.
The optimality constraints corresponding to this CP-net are:
X1 = T → X2 = L, X1 = B → X2 = R,
X2 = L → X1 = T , X2 = R → X1 = B.
These constraints have two solutions:(X1 = T, X2 = L) and(X1 = B, X2 = R),

which are also the only two Nash equilibria of the initial game.
This approach can be used also to discover quickly that a CP-net has a unique Nash

equilibrium, and to find it. Given a gameG, we construct the reduced CP-netN ′ =
r(N (G)). If this CP-net is acyclic, we know that it has a unique optimal outcome which
can be found in linear time. By the Theorems of the previous sections we also know that
the Nash equilibria of gameG coincide with the optimal outcome of this CP-net. This
means thatG has a unique Nash equilibrium that can be found in linear timeby the
usual CP-net techniques applied toN ′.

GamesG such that the CP-netN ′ = r(N (G)) is acyclic are not uncommon. In
fact, they naturally represent multi-agent scenarios where agents (that is, players of the
game) can be partitioned into levels1, 2, . . . , n, such that agents at leveli can express
their preferences (that is, payoff function) without looking at what players at higher
levels do. Informally, agents at leveli are more important than agents at levelj is
j > i. In particular, agents at level1 can decide their preferences without looking at the
behavior of any other agent.

9 Soft constraints and Nash equilibria

The direct correpondence between the optimal solutions of aCP-net and the Nash equi-
libria of the corresponding game cannot be easily found in other preference modelling
formalisms. In this section we briefly give an informal account of the correspondence
between the soft constraint framework and game theory.

Soft constraints, see [2], model problems with preferencesvia:

– a set of variables with finite domains,
– a set of constraints; each constraint involves a set of variables and assigns to each

instantiation of its variables a preference level,

– the preference levelsthat are taken from a setA, over which a, possibly partial,
ordering≤ and a combination operator× are defined,

– the preferenceof a solution (that is, an instantiation of all the variables) is the
combination of all the preferences given by the constraintsto the subtuples of the
solution.

A widely used instance of this formalism is the class of fuzzyconstraints, see [8],
where the set of preference levelsA is [0, 1], the ordering is the usual≤ over the reals,
and the combination operator is the min operation. In other words, in fuzzy constraints
the optimal solutions are those that maximize the minimal preference.

A simple example of a fuzzy constraint problem is the following one:

– three variables:x, y, andz;
– two constraints:Cxy (overx andy) andCyz (overy andz);
– domains for all variables:{a, b};
– definition of the constraints:Cxy := {(aa, 0.4), (ba, 0.3), (ab, 0.1), (bb, 0.8)} and

Cyz := {(aa, 0.4), (ab, 0.3), (ba, 0.1), (bb, 0.8)}.

The only optimal solution of this problem isx = y = z = b, which has preference
0.8.

Given a fuzzy constraint problem, let us now consider a corresponding strategic
game as follows:

– the players: one for each variable;
– the strategies of a playerx: all values in the domain ofx;
– the payoff function for playerx: givens−x, which is an instantiation of all the vari-

ables of the problem minusx, and given a value forx, this complete instantiation
selects a tuple in each constraint. Take the minimum of the preferences over the
tuples selected in the constraints wherex appears.

Then one can prove that a Nash equlibrium of this game is not necessarily an optimal
solution of the original fuzzy problem. In the example above, x = y = z = a is
a Nash equilibrium of the game but it is not a fuzzy optimum. Onthe other hand,
x = y = z = b is both an optimal solution and a Nash equilibrium.

In general, if the× operator is strictly monotonic, then an optimal solution isa
Nash equilibrium. Since soft constraints always have optimal solutions, in this case the
corresponding games always have Nash equilibria.

In fuzzy constraints, we cannot use this result because the min operator is not stricly
monotonic. On the other hand, in weighted constraints (where× is + over the reals) we
can use this result. The same holds for the probabilistic constraints (× is max,+ is
multiplication and preferences drawn from[0, 1]).

10 Conclusions and future work

We showed that optimal outcomes in CP-nets are Nash equilibria in strategic games,
and we exploited this to inherit useful techniques from strategic games to CP-nets and
vice-versa.

In this paper we assume that payoff functions give a linear order over the strategies
of a player. It could be useful to see whether our results can be generalized to games in
which players’ strategies can be incomparable or indifferent to each other, thus using
partial orderings with ties. We are currently studying thisscenario.

This paper is just a first step towards what we think is a fruitful cross-fertilization
between preferences, constraint solving, and game theory.CP-nets appear to be very
amenable for being studied using the existing game theoretical techniques, and also to
provide strategic games with new and hopefully more efficient approaches to find Nash
equilibria or to solve other game-theoretical tasks. We have seen that unfortunately this
is not true in general for other preference modelling formalisms like soft constraints. We
are therefore studying the conditions under which soft constraints or other formalisms
can be related to game theory.

References

1. K. R. Apt. Rationalizability and order independence. InProc. 10th Conference on Theoreti-
cal Aspects of Reasoning about Knowledge (TARK). National University of Singapore, 2005.
To appear.

2. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and optimiza-
tion. Journal of the ACM, 44(2):201–236, Mar 1997.

3. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D.Poole. CP-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements.J. Artif.
Intell. Res. (JAIR), 21:135–191, 2004.

4. C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Reasoning with conditional ceteris
paribus preference statements. InUAI ’99, pages 71–80. Morgan Kaufmann, 1999.

5. R. Brafman and Y. Dimopoulos. Extended semantics and optimization algorithms for cp-
networks.Computational Intelligence, 20, 2:218–245, 2004.

6. H. Fargier D. Dubois and H. Prade. The calculus of fuzzy restrictions as a basis for flexible
constraint satisfaction. InIEEE International Conference on Fuzzy Systems, 1993.

7. C. Domshlak and R. I. Brafman. CP-nets: Reasoning and consistency testing. InKR-02,
pages 121–132. Morgan Kaufmann, 2002.

8. H. Fargier D. Dubois and H. Prade. The calculus of fuzzy restrictions as a basis for flexible
constraint satisfaction. InIEEE International Conference on Fuzzy Systems, 1993.

9. I. Gilboa, E. Kalai, and E. Zemel. On the order of eliminating dominated strategies.Opera-
tion Research Letters, 9:85–89, 1990.

10. R. B. Myerson.Game Theory: Analysis of Conflict. Harvard Univ Press, Cambridge, Mas-
sachusetts, 1991.

11. M. J. Osborne and A. Rubinstein.A Course in Game Theory. The MIT Press, Cambridge,
Massachusetts, 1994.

12. S. Prestwich, F. Rossi, K. B. Venable, and T. Walsh. Constraint-based preferential optimiza-
tion. In Proc. of the Twentieth National Conference on Artificial Intelligence (AAAI-05).
Morgan Kaufmann, 2005.

13. M. Stegeman. Deleting strictly eliminating dominated strategies. Working Paper 1990/6,
Department of Economics, University of North Carolina, 1990.

Positive and negative preferences

Stefano Bistarelli1,2, Maria Silvia Pini3, Francesca Rossi3, and K. Brent
Venable3

1 University “G’ D’Annunzio”, Pescara, Italy
bista@sci.unich.it

2 Istituto di Informatica e Telematica, CNR, Pisa, Italy
Stefano.Bistarelli@iit.cnr.it

3 University of Padova, Italy
{mpini,frossi,kvenable}@math.unipd.it

Abstract Many real-life problems present both negative and positive
preferences. We extend and generalize the existing soft constraints frame-
work to deal with both kinds of preferences. This amounts at adding a
new mathematical structure, which has properties different from a semir-
ing, to deal with positive preferences. Compensation between positive
and negative preferences is also allowed.

1 Introduction

Many real-life problems present both hard constraints and preferences. Moreover,
preferences can be of many kinds:

– qualitative (as in ”I like A better than B”) or quantitative (as in ”I like A
at level 10 and B at level 11”),

– conditional (as in ”If A happens, then I prefer B to C”) or not,
– positive (as in ”I like A, and I like B even more than A”), or negative (as in

”I don’t like A, and I really don’t like B”).

Our long-term goal is to define a framework where all such kinds of prefer-
ences can be naturally modelled and efficiently dealt. In the paper, we focus on
problems which present positive and negative, quantitative, and non-conditional
preferences.

Positive and negative preferences could be thought as two symmetric con-
cepts, and thus one could think that they can be dealt with via the same oper-
ators and with the same properties. However, it is easy to see that this could be
not reasonable in many scenarios, since it would not model what usually happens
in reality.

For example, when we have a scenario with two objects A and B, if we like
both A and B, then the preference of the overall scenario should be even more
preferred than both of them. On the other hand, if we don’t like A nor B, then
the preference of the scenario should be smaller than the preferences of A and
B. Thus combination of positive preferences should give us a higher preference,
while combination of negative preferences should give us a lower preference.

Also, when having both kinds of preferences, it is natural to have also a
element which models ”indifference”, stating that we express neither a positive
nor a negative preference over an object. For example, we may say that we like
peaches, we don’t like bananas, and we are indifferent to apples. The indifferent
element should also behave like the unit element in a usual don’t care operator.
That is, when combined with any preference (either positive or negative), it
should disappear. For example, if we like peaches and we are indifferent to eggs,
a meal with peaches and eggs would have overall a positive preference.

Notice that the assumption that composing two good things will give us even
better thing, and composing two bad things will give us an even worse thing could
be not true in general [7]. So for instance, we may like eating cakes and we may
like eating ice-cream, but we don’t like to eat them both (too heavy). Or, if we
like peaches and we are indifferent to eggs, could be not true that I should like
peaches AND eggs (e.g., think of these two sitting on the same plate).

Finally, besides combining positive preferences among themselves, and also
negative preferences among themselves, we also have the problem of combining
positive with negative preferences. For example, if we have a meal with meat
(which we like very much) and wine (which we don’t like), then what should
be the preference of the meal? To know that, we must combine the positive
preference given to meat to the negative preference given to wine.

Soft constraints [3] are a useful formalism to model problems with quantita-
tive preferences. However, they can model just one kind of preferences. In fact,
we will see that technically they can model just negative preferences. Informally,
the reason for this statement is that preference combination returns lower pref-
erences, as natural when using negative preferences, and the best element in the
ordering behaves like indifference (that is, combined with any other element a, it
returns a). Thus all the levels of preferences modelled by a semiring are indeed
levels of negative preferences.

Our proposal to model both negative and positive preferences consists of the
following ingredients:

– We use the usual soft constraint formalism, based on c-semirings, to model
negative preferences.

– We define a new structure, with properties different from a c-semiring, to
model positive preferences.

– We make the highest negative preference coincide with the lower positive
preference; this element models indifference.

– We define a new combination operator between positive and negative pref-
erence to model preference compensation.

In the framework proposed in [1, 5], positive and negative preferences are
dealt with by using possibility theory [4, 10]. This mean that preferences are
assimilated to possibilities. In this context, it is reasonable to model the negative
preference of an event by looking at the possibility of the complement of such
an event. In fact, in the approach of [5], a negative preference for a value or
a tuple is translated into a positive preference on the values or tuples different
from the one rejected. For example, if we have a variable representing the price

of an apartment with domain {p1 = low, p2 = medium, p3 = high} then a
negative preference stating that a high price (p3) is rejected with degree 0.9
(almost completely) is translated in giving a positive preference 0.9 to p1 ∨ p2.
In our framework, neither positive nor negative preferences are considered as
possibilities. Therefore, we do not relate the negative preference of an event to
the preference of the complement of such an event.

The paper is organized as follows: Section 2 recalls the main notions of
semiring-based soft constraints. Then, Section 3 describes how we model negative
preferences using usual soft constraints, Section 4 introduces the new preference
structure to model positive preferences, and Section 5 shows how to model both
positive and negative preferences. Finally, Section 6 defines constraint problems
with both positive and negative preferences, Section 7 summarizes the results of
the paper and gives some hints for future work.

2 Background: semiring-based soft constraints

A soft constraint [3] is just a classical constraint where each instantiation of
its variables has an associated value from a partially ordered set. Combining
constraints will then have to take into account such additional values, and thus
the formalism has also to provide suitable operations for combination (×) and
comparison (+) of tuples of values and constraints. This is why this formalization
is based on the concept of semiring, which is just a set plus two operations.

A c-semiring is a tuple 〈A,+,×,0,1〉 such that:

– A is a set and 0,1 ∈ A;
– + is commutative, associative, idempotente, 0 is its unit element, and 1 is

its absorbing element;
– × is associative, commutative, distributes over +, 1 is its unit element and

0 is its absorbing element.

Consider the relation ≤S over A such that a ≤S b iff a + b = b. Then it is
possible to prove that:

– ≤S is a partial order;
– + and × are monotone on ≤S ;
– 0 is its minimum and 1 its maximum;
– 〈A,≤S〉 is a lattice and, for all a, b ∈ A, a + b = lub(a, b).

Moreover, if × is idempotent, then 〈A,≤S〉 is a distributive lattice and × is
its glb.

Informally, the relation ≤S gives us a way to compare (some of the) tuples
of values and constraints. In fact, when we have a ≤S b, we will say that b is
better than a.

Given a c-semiring S = 〈A,+,×,0,1〉, a finite set D (the domain of the
variables), and an ordered set of variables V , a constraint is a pair 〈def, con〉
where con ⊆ V and def : D|con| → A. Therefore, a constraint specifies a set

of variables (the ones in con), and assigns to each tuple of values of D of these
variables an element of the semiring set A.

A soft constraint satisfaction problem (SCSP) is a pair 〈C, con〉 where con ⊆
V and C is a set of constraints over V .

A classical CSP is just an SCSP where the chosen c-semiring is: SCSP =
〈{false, true},∨,∧, false, true〉. On the other hand, fuzzy CSPs [8, 9] can be
modeled in the SCSP framework by choosing the c-semiring: SFCSP = 〈[0, 1],
max,min, 0, 1〉.

For weighted CSPs, the semiring is SWCSP = 〈ℜ+,min,+,+∞, 0〉. Prefer-
ences are interpreted as costs from 0 to +∞. Costs are combined with + and
compared with min. Thus the optimization criterion is to minimize the sum of
costs.

For probabilistic CSPs [6], the semiring is SPCSP = 〈[0, 1],max,×, 0, 1〉.
Preferences are interpreted as probabilities ranging from 0 to 1. As expected, they
are combined using × and compared using max. Thus the aim is to maximize
the joint probability.

Given two constraints c1 = 〈def1, con1〉 and c2 = 〈def2, con2〉, their com-
bination c1 ⊗ c2 is the constraint 〈def, con〉 defined by con = con1 ∪ con2 and
def(t) = def1(t ↓con

con1
) ×def2(t ↓con

con2
)4. In words, combining two constraints

means building a new constraint involving all the variables of the original ones,
and which associates to each tuple of domain values for such variables a semiring
element which is obtained by multiplying the elements associated by the original
constraints to the appropriate subtuples.

Given a constraint c = 〈def, con〉 and a subset I of V , the projection of c

over I, written c ⇓I , is the constraint 〈def ′, con′〉 where con′ = con ∩ I and
def ′(t′) =

∑
t/t↓con

I∩con
=t′ def(t). Informally, projecting means eliminating some

variables. This is done by associating to each tuple over the remaining variables
a semiring element which is the sum of the elements associated by the original
constraint to all the extensions of this tuple over the eliminated variables.

The solution of a SCSP problem P = 〈C, con〉 is the constraint Sol(P) =
(
⊗

C) ⇓con. That is, to obtain the solution constraint of an SCSP, we combine
all constraints, and then project over the variables in con. In this way we get
the constraint over con which is “induced” by the entire SCSP.

Given an SCSP problem P , consider Sol(P) = 〈def, con〉. A solution of P is
a pair 〈t, v〉 where t is an assignment to all the variables in con and def(t) = v.

Given an SCSP problem P , consider Sol(P) = 〈def, con〉. An optimal so-
lution of P is a pair 〈t, v〉 such that t is an assignment to all the variables in
con, def(t) = v, and there is no t′, assignment to con, such that v <S def(t′).
Therefore optimal solutions are solutions which have the best semiring element
among those associated to solutions. The set of optimal solutions of an SCSP P

will be written as Opt(P).
Figure 1 shows an example of a fuzzy CSP, two of its solutions one of which

(S2) is optimal.

4 By t ↓X

Y we mean the subtuple obtained by projecting the tuple t (defined over the
set of variables X) over the set of variables Y ⊆ X.

D(X)=D(Y)={a,b}
D(Z)={a,b,c}

<a,a> 0.1
<a,b> 0.5
<b,a> 0.5
<b,b> 0.3

<b,c> 0.1

 ZX Y
<a,a> 0.9
<a,b> 0.3
<a,c> 0.1
<b,a> 0.8
<b,b> 0.1

solution S1=<a,a,a> 0.1=min(0.1,0.9)

solution S2=<a,b,a> 0.5=min(0.5,0.8)

max(0.5,0.1)=0.5 implies S2>S1

Figure 1. A Fuzzy CSP, two of its solutions, one of which is optimal (S2).

3 Negative preferences

As anticipated in the introduction, we need two different mathematical struc-
tures to deal with positive and negative preferences. For negative preferences, we
use the standard c-semiring, while for positive preferences we need to define a
new structure. Such two structures are connected by a single element, which be-
longs to both, and which denotes indifference. Such an element is the best among
the negative preferences and the worst one among the positive preferences.

The structure used to model negative preferences is a c-semiring, as defined
in Section 2. In fact, in a c-semiring the element which acts as indifference is
the 1, since ∀a ∈ A, a × 1 = a. Element 1 is also the best in the ordering,
so indifference is the best preference we can express. This means that all the
other preferences are less than indifference, thus they are naturally interpreted
as negative preferences. Moreover, in a c-semiring combination goes down in the
ordering, since a × b ≤ a, b. This can be naturally interpreted as the fact that
combining negative preferences worsens the overall preference.

This interpretation is very natural when considering, for example, the weighted
semiring (R+,min,+,+∞, 0). In fact, in this case the real numbers are costs and
thus negative preferences. The sum of different costs is worse in general w.r.t.
the ordering induced by the additive operator (min) of the semiring.

Let us now consider the fuzzy semiring ([0, 1],max,min, 0, 1). According to
this interpretation, giving a preference equal to 1 to a tuple means that there
is nothing negative about such a tuple. Instead, giving a preference strictly less
than 1 (e.g., 0.6) means that there is at least a constraint which such tuple
doesn’t satisfy at the best. Moreover, combining two fuzzy preferences means
taking the minimum and thus the worst among them.

When considering classical constraints via the c-semiring SCSP = 〈{false, true},
∨,∧, false, true〉, we just have two elements to model preferences: true and false.
True is here the indifference, while false means that we don’t like the object. This

interpretation is consistent with the fact that, when we don’t want to say any-
thing about the relation between two variables, we just omit the constraint,
which is equivalent to having a constraint where all instantiations are allowed
(thus they are given value true).

In the following of this paper, we will use standard c-semirings to model
negative preferences, and we will usually write their elements with a negative
index n and by calling N the carrier set, as follows: (N,+n,×n,⊥n,⊤n).

4 Positive preferences

As said above, when dealing with positive preferences, we want two main proper-
ties: that combination brings to better preferences, and that indifference is lower
than all the other preferences. These properties can be found in the following
structure, that we will call a positive preference structure.

Definition 1. A positive preference structure is a tuple (P,+p,×p,⊥p,⊤p) such
that

– P is a set and ⊤p,⊥p∈ P ;
– +p, the additive operation, is commutative, associative, idempotent, with ⊥p

as is its unit element (∀a ∈ P, a+p ⊥p= a) and ⊤p as is its absorbing element
(∀a ∈ P, a +p ⊤p = ⊤p);

– ×p, the multiplicative operation, is associative, commutative and distributes
over +p (a×p (b +p c) = a×p b +p a×p c), ⊥p is its unit element and ⊤p is
its absorbing element.

Notice that the additive operation of this structure has the same properties
as the corresponding one in c-semirings, and thus it induces a partial order over
P in the usual way: a ≤p b iff a +p b = b. Also for positive preferences, we will
say that b is better than a iff a ≤p b. As for c-semirings, this allows to prove
that + is monotone over ≤p and it coincides with the least upper bound in the
lattice (P,≤p).

On the other hand, the multiplicative operation has different properties. More
precisely, the best lement in the ordering (⊤p) is now the absorbing element,
while the worst element (⊥p) is the unit element. This reflects the desired be-
havior of the combination of positive preferences. In fact, we can prove the
following properties.

First, ×p is monotone over ≤p.

Theorem 1. Given the positive preference structure (P,×p,+p,⊥p,⊤p), con-
sider the relation ≤p over P . Then ×p is monotone over ≤p. That is, a×p d ≤p

b ×p d, ∀d ∈ P .

Proof. Since a ≤p b, by definition, a +p b = b. Thus, ∀d ∈ P we have that
b×p d = (a+p b)×p d. Since ×p distributes over +p, b×p d = (a×p d)+p (b×p d),
and thus a ×p d ≤ b ×p d.

Also, combining positive preferences using the multiplicative operator gives
an element which is better or equal in the ordering.

Corollary 1. Given the positive preference structure (P,+p,×p,⊤p,⊥p). For
any pair a, b ∈ P , a ×p b ≥p a, b.

Proof. Since ∀a, b ∈ P , a ≥p⊥p and b ≥p⊥p. By monotonicity of ×p we have
a ×p b ≥p⊥p ×b = b and b ×p a ≥p⊥p ×a = a.

Notice that this is the opposite behaviour to what happens when combining
negative preferences, which brings lower in the ordering.

Since both +p and ×p obtain a higher preference, but +p is the least upper
bound, then the following corollary is an obvious consequence.

Corollary 2. Given the positive preference structure (P,+p,×p,⊥p,⊤p), for
any pair a, b ∈ P , a ×p b ≥p a +p b.

In a positive preference structure, ⊥p is the element modelling indifference.
In fact, it is the worst in the ordering and it is the unit element for the combina-
tion operator ×p. These are exactly the desired properties for indifference w.r.t.
positive preferences.

The role of ⊤p is to model a very high preference, much higher than all the
others. In fact, since it is the absorbing element of the combination operator,
when we combine any positive preference a with ⊤p, we get ⊤p and thus a disap-
pears. A similar interpretation can be given to ⊥n for the negative preferences.

5 Positive and negative preferences

In order to handle both positive and negative preferences we propose to combine
the two structures described above as follows.

Definition 2. A preference structure is a tuple (P ∪N,+p,×p,+n,×n,+,×,⊥
,2,⊤) where

– (P,+p,×p,2,⊤) is a positive preference structure;
– (N,+n,×n,⊥,2) is a c-semiring;
– + : (P ∪ N)2 −→ P ∪ N is an operator such that +|N = +n and +|P = +p,

and such that an + ap = ap for any an ∈ N and ap ∈ P .
– × : (P ∪ N)2 −→ P ∪ N is an operator such that ×|N = ×n and ×|P = ×p,

which respects properties P1, P2, and P3 defined later in this section.

Notice that a partial order on the structure (P ∪N) is defined by saying that
a ≤ b ⇐⇒ a + b = b. Easily we have ⊥≤ 2 ≤ ⊤. In details, there is a unique
maximum element coinciding with ⊤, a unique minimum element coinciding with
⊥, and the element 2, which is smaller than any positive preferences and greater
than any negative preference, and which is used to model indifference. Such an
ordering is shown in Figure 2.

N

P p +p

, +nn

,

Figure 2. A preference structure.

× is defined by extending the positive and negative multiplicative operator
in order to allow the combination of heterogeneous preferences. Its definition
have to take in account the possibility of a compensation between positive and
negative preferences. Informally, we will define a way to relate elements of P to
elements of N s.t. their combination could compensate and give as a result the
indifference element 2. To do that, we

– Partition both P and N in the same number of classes. Each of the class of P

(N) contains elements which behave similarly when combined with elements
of the “opposite” class in N (P). Such classes will be technically defined by
using an equivalence relation among elements with some specific properties.

– Define and ordering among the classes and a correspondence function map-
ping each class in its opposite. The result are two ordering, one among pos-
itive class and the other among negative ones, that are exactly the same
w.r.t. the correspondence function.

We consider two equivalence relations ≡p and ≡n over P and N respectively.
For any element a of P ∪N let us denote with [a] the equivalence class to which
a belongs. Such equivalence relations must satisfy the following properties:

– |N/ ≡n | = |P/ ≡p | (i.e. ≡n and ≡p have the same number of equivalence
classes).

– [a] ≤≡ [b] iff ∀x ∈ [a] and ∀y ∈ [b], x ≤ y.

– there must exist at least a bijection f such that f : N/ ≡n−→ P/ ≡p and
[a] ≤≡ [b] iff f([a]) ≥≡ f([b]) where [a] and [b] are classes built from negative
preferences.

Notice that for the case where the orders on N and P are total it’s natural
to define the equivalence classes to be intervals, so that ≤≡ is also a total order.

The multiplicative operator of the preference structure, written ×, must sat-
isfy the following properties:

P1. a × b = 2 iff f([b]) = [a];
P2. if [a] ≤≡ [b] then ∀c ∈ P ∪N , a× c ≤ b× c; that is, × is monotone w.r.t. the

ordering ≤≡;
P3. × is commutative.

Summarizing, to define a preference structure, we need the following ingre-
dients:

– P,×p,+p;
– N,×n,+n;
– ⊤,⊥,2;
– ×, defined by giving ≡p,≡n, and f .

Given these properties, it is easy to show that the combination of a positive
and a negative preference is a preference which is higher than, or equal to, the
negative one and lower than, or equal to, the positive one.

Theorem 2. Given a preference structure (P,N,+p,×p,+n,×n,+,×,⊥,2,⊤),
we have that, for any p ∈ P and n ∈ N , n ≤ p × n ≤ p.

Proof. By monotonicity of ×, and since n ≤ 2 ≤ p for any n ∈ N and p ∈ P ,,
we have the following chain: n = n × 2 ≤ n × p ≤ 2 × p = p.

This means that the compensation of positive and negative preferences must
lie in one of the chains between the two given preferences. Notice that all such
chains pass through the indifference element 2.

Moreover, we can be more precise: if we combine p and n, and we compare
f([n]) to [p], we can discover if p × n is in P or in N , as the following theorem
shows.

Theorem 3. Given a preference structure (P,N,+p,×p,+n,×n,+,×,⊥,2,⊤),
take any p ∈ P and any n ∈ N . Then we have:

– if f([n]) ≤≡ [p], then 2 ≤p p × n ≤p p’
– if f([n]) >≡ [p], then n ≤p p × n ≤p 2.

Proof. If f([n]) ≤≡ [p], then for any element c in f([n]), c ≤p p. By motononicity
of ×, we have 2 = n × c ≤p n × p. Similarly for p × n ≤p 2 when f([n]) >≡ [p].

Notice that the multiplicative operator × might be not associative. In fact,
consider for example the situation with two occurrences of a positive preference p

and one negative preference n such that [p] = f([n]). That is, p and n compensate
completely to indifference. Assume also that ×p is idempotent. Then, p×(p×n) =
p × 2 = p, while (p × p) × n = p × n = 2. This depends on the fact that we

are free to choose ×n and ×p as we want, and × concides with them when
used on preferences of the same kind. Certainly, if any one of ×p or ×n is
idempotent, then × is not associative. However, there are also cases in which both
×p and ×n are not idempotent, and still × is not associative. This means that,
when combining all the preferences in a problem, we must choose an association
ordering.

The preference structure we defined allows us to have different ways to model
and reason about positive and negative preferences.In fact, besides the combi-
nation operator, which has different properties by definition, we can also have
different lattices (P,≤p) and (N,≤n). This means that we can have, for example,
a richer structure for positive preferences w.r.t. the negative ones. This is nor-
mal in real-life problems, where not necessarily we want the same expressivity
when expressing negative statements and positive ones. For example, we could
be satisfied with just two levels of negative preferences, but we might want ten
levels of positive preferences. Of course our framework allows us also to model
the case in which the two structures are isomorphic.

Notice that classical soft constraints, as anticipated above, refer only to neg-
ative preferences in our setting. This means that, by using soft constraints, we
can express many levels of negative preference (as many as the elements of the
semiring), but only one level of positive preference, which coincide also with the
indifference element and also with the top element.

6 Bipolar preference problems

We can extend the notion of soft constraint allowing preference functions to
associate to partial instatiations either positive or negative preferences.

Definition 3 (bipolar constraints). Given a preference structure (P,N,+p,

×p,+n,×n,+,×,⊥,2,⊤), a finite set D (the domain of the variables), and an
ordered set of variables V , a constraint is a pair 〈def, con〉 where con ⊆ V and
def : D|con| → P ∪ N .

A Bipolar CSP (V,C) is defined as a set of variables V and a set of bipolar
constraints C.

A solution of a bipolar CSP can then be defined as follows.

Definition 4 (solution). A solution of a bipolar CSP (V,C) is a complete
assignment to all variables in V , say s, and an associated preference pref(s) =
(p1 ×p . . . ×p pk) × (n1 ×n . . . ×n nl), where for i := 1, . . . , k pi ∈ P and for
j := 1, . . . , l nj ∈ N and pi = defi(s ↓V

var(ci)
) where var(ci) are the variables

involved in the constraint ci ∈ C.

In words, the preference of a solution s is obtained by:

1. combining all the positive preferences associated to all its projections using
×p;

2. combining all the negative preferences associated to all its projections using
×n;

3. then, combining the positive preference obtained at steps 1 and the negative
preference obtained at step 2 using ×.

Notice that this way of computing the preference of a solution is by choosing
to combine all the preferences of the same kind together before combining them
with preferences of the other kind. Other choices could lead in general to different
results due to the possible non-associativity of the × operator.

Definition 5 (optimal solution). An optimal solution of a bipolar CSP (V,C)
is a pair 〈s, pref(s)〉 such that s is an assignment to all the variables in V , and
there is no s′, assignment to V , such that pref(s) < pref(s′).

Therefore optimal solutions are solutions which have the best preference
among those associated to solutions. The set of optimal solutions of a bipolar
CSP B will be written as Opt(B).

Figure 3 shows a bipolar constraint which associates positive and nega-
tive preferences to its tuples. In this example we use the weighted c-semiring
(R+,min,+, 0,+∞) for representing the negative preferences. For the positive
preferences, we consider separately two positive preference structures: (R+,max,

+,+∞, 0) and (R+,max,max,+∞, 0). Notice that the indifference element co-
incides with 0 in both the positive and negative preference structures. In the ex-
ample in Figure 3, we assume that every equivalence class is composed by a single
preference, and that function f is the identity. Moreover, when applied to one
positive and one negative preference, × is the arithmetic sum of positive/negative
numbers denoted as +p

n. Therefore we consider two preference structures: the
first one is (R+, R+,max,+,min, +,max − min,+p

n,+∞, 0,+∞), and the
second one is (R+, R+,max,max,min, +,max − min,+p

n,+∞, 0,+∞) where
max − min is the + operator of the structure (induced by the max and min

operators of the positive and negative preferences rispectively).
In Figure 3, preferences belonging to P have index p, while those belonging

to N have index n. The left part of Figure 3 shows the bipolar CSP, while the
right part shows the preference associated to each solution. For example, for
solution (x = a, y = b), we must combine 1p, 10p, and 10n. To do this, we must
compute (1p ×p 10p). If ×p = +, then the result is 11p. If instead ×p = max,
then the result is 10p. Then, such result must be combined with 10n, giving in
the first case 11p × 10n = 1p, and in the second case 10p × 10n = 0.

7 Future work

We have extended the semiring-based formalisms for soft constraints to be able
to handle both positive and negative preferences. We are currently studying
which properties are needed in order to obtain completely specular preference
structure where the times operator × satisfy the associativity property.

We are also studying the correlation between our work and the works on
non-monotonic concurrent constraints [2]. In this framework the language is

aa ... 3
ab ...10
ba ... 0

bb ... 4p

n

n

x y

a
b b
a ... 1

... 5
 ... 0
 ... 10

p
pn

Solutions

(max, max) (max, +)

aa p 2nn n

ab p... 11 10 n = 1p 0

ba n... 5 = 5n 5n

 pbb = 9p 5 p

... 1 3

 n... 14 5

 = 2

Figure 3. A bipolar CSP with both positive and negative preferences, and its
solutions.

enlarged with a get operator that remove constraints from the store. It seems
that removing a constraint could be equivalent to adding a positive constraint.

Further work will concern the possible use of constraint propagation tech-
niques in this framework, which may need adjustments w.r.t. the classical tech-
niques due to the possible non-associative nature of the compensation operator.

References

1. S. Benferhat, D. Dubois, S. Kaci, H. Prade. Bipolar representation and fusion of
preferences in the possibilistic logic framework. Proc. KR 2002, 158-169, 2002.

2. E. Best, F.S. de Boer, C. Palamidessi. Partial Order and SOS Semantics for Linear
Constraint Programs. Proc. of Coordination 97, vol. 1282 of LNCS, pages 256-273.
Springer-Verlag, 1997.

3. S. Bistarelli, U. Montanari and F. Rossi. Semiring-based Constraint Solving and
Optimization. Journal of the ACM, Vol.44, n.2, March 1997.

4. D. Dubois, H. Fargier, H. Prade. Possibility theory in constraint satisfaction prob-
lems: handling priority, preference and uncertainty. Applied Intelligence, 6, 287-
309, 1996.

5. D. Dubois, S. Kaci, H. Prade. Bipolarity in reasoning and decision - An introduc-
tion. The case of the possibility theory framework. IPMU 2004.

6. H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a prob-
abilistic approach. In Proc. European Conference on Symbolic and Qualita tive
Approaches to Reasoning and Uncertainty (ECSQARU), pages 97–104. Springer-
Verlag, LNCS 747, 1993.

7. S.O. Hansson. The Structure of Values and Norms. Cambridge University Press,
2001.

8. Zs. Ruttkay. Fuzzy constraint satisfaction. In Proc. 3rd IEEE International Con-
ference on Fuzzy Systems, pages 1263–1268, 1994.

9. T. Schiex, H. Fargier, and G. Verfaille. Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Proc. IJCAI95, pages 631–637. Morgan Kaufmann,
1995.

10. L.A. Zadeh. Fuzzy sets as a basis for the theory of possibility. Fuzzy Sets and
Systems, 13-28, 1978.

Combining tree decomposition and local

consistency in Max-CSPs

Simon de Givry1, Thomas Schiex1, Gérard Verfaillie2

1INRA - UBIA, 2ONERA - DCSD, Toulouse, France
{degivry,tschiex}@toulouse.inra.fr, verfaillie@cert.fr

Abstract. Most current state-of-the-art complete Max-CSP or weighted
CSP solvers can be described as a basic depth-first branch and bound
search (DFBB) that maintain some form of arc consistency during the
search. In this paper, we study some structural solving methods such
as BTD that have a better time complexity than DFBB. We introduce
state-of-the-art forms of arc consistency in BTD in order to reduce the
search effort and the memory space actually used. We show it can be the
case on random and real-world instances.

1 Introduction

Max-CSP is a well-known problem of finding a complete assignment with a min-
imum number of unsatisfied constraints. In general, this problem is NP-hard.
Max-CSP is usually solved by a depth-first branch and bound algorithm that
has a linear space complexity but has an exponential time complexity in the num-
ber of problem variables. Other solving methods that exploit the structure of the
constraint graph have their time complexity exponential in a given graph pa-
rameter whose value is often better than the number of variables. For instances,
Bucket Elimination [5] has a time complexity exponential in the induced width,
pseudo-tree search [6] and AND/OR tree search [12] have a time complexity
exponential in the tree-height, and the BTD algorithm [15, 7] has a time com-
plexity exponential in the tree-width, i.e. the size of the largest cluster of a tree
decomposition of the constraint graph, and a space complexity exponential in
the maximum separator size, i.e. the size of the largest intersection between two
clusters. Another important aspect is the way of computing the lower bound
during the search. Enforcing local consistency properties as defined in [13, 11, 2,
10, 4] produces a lower bound that can be used in a branch and bound algorithm
to reduce the search effort. However the current BTD algorithm uses a limited
form of local consistency only, i.e. forward checking. The goal of this paper is to
introduce stronger forms of local consistency such as soft arc consistency inside
BTD. Our aim is that local consistency will reduce the search effort of cluster
explorations and the memory space actually used by its recording mechanism.

2 Preliminaries

For simplicity reasons, we consider in the sequel a basic soft constraint frame-
work consisting of binary Max-CSPs, although all the methods presented in

2

this paper are also valid for weighted CSPs. A Max-CSP is a triplet (X, D, W).
X = {1, . . . , n} is a set of n variables. Each variable i ∈ X has a finite domain
Di ∈ D of values than can be assigned to it. The maximum domain size is d.
W is a set of k binary soft constraints. A binary soft constraint Wij ∈ W is a
function Wij : Di ×Dj 7→ {0, 1} such that the value 1 means the constraint is
violated with a cost one and 0 it is satisfied.

Before introducing soft local consistencies in Section 5, we add to our problem
definition a unary cost function for every variable such that Wi : Di 7→ {0, k}.
k corresponds to the maximum violation cost of a Max-CSP. Unary cost func-
tions initially return zero. A zero arity constraint W∅ is also introduced, which
initially returns zero. Wi and W∅ will be used during local consistency enforce-
ment. W∅ will store the current problem lower bound. The goal is to find a
complete assignment with minimum cost: min(a1,a2,...,an)∈D1×D2×···×Dn

{W∅ +∑n

i=1
Wi(ai)+

∑
Wij∈W Wij(ai, aj)}. In general, this combinatorial optimization

problem is NP-hard.
A tree decomposition of a graph G = (X, E) is a pair (C, T). C = {C1, . . . , Cm}

is a set of m subsets of X . T is a tree having m nodes which are the m clus-
ters of C. C and T verifies the following properties: (i)

⋃
Ce∈C Ce = X , (ii) for

each edge {i, j} ∈ E, there exists Ce ∈ C such that i, j ∈ Ce, and (iii) for all
Ce, Cf , Cg ∈ C, if Cg is on a path from Ce to Cf in T , then Ce ∩ Cf ⊆ Cg

(running intersection property). The tree-width of a tree decomposition (C, T)
is equal to maxCe∈C{|Ce|} − 1, denoted by w in the sequel. The tree-width w∗

of G is the minimal tree-width over all the tree decomposition of G. Finding a
minimal tree-width is NP-hard in general.

3 The BTD method

Given a Max-CSP P = (X, D, W), BTD [15, 7] exploits a tree decomposition
(C, T) of the constraint graph G = (X, {{i, j} s.t. Wij ∈ W}). We consider the
first cluster C1 ∈ C as the root of T in the sequel. Such a rooted cluster tree
allows to define a partition of the variables and the constraints. Although a
variable may belong to several clusters of C, we are interested in finding the
closest cluster from the root that contains the variable. N(i) denotes the index
of this cluster for the variable i. We note Ve = {i ∈ X s.t. N(i) = e} the set of
variables associated to the cluster Ce ∈ C. In the same manner, we associate each
constraint Wij to the closest cluster from the root that contains both variables.
Let Sons(Ce) be the set of son clusters of Ce ∈ C in the rooted tree T . Similarly,
Father(e) denotes the father cluster of Ce ∈ C in T .

For each cluster Ce ∈ C, we associate a subproblem Pe defined by the vari-
ables in Ve and all the variables Vf related to the descendants Cf of Ce in T , and
by all the constraints the scope of which belong to the variables of Pe. A first
property is that for any cluster Ce ∈ C, its subproblem Pe is constrained by the
rest of the problem P\Pe only by the assignment of variables in Ce ∩CFather(e).
It is possible to solve Pe for any assignment of Ce ∩CFather(e) and to record its
optimum value which avoids to solve Pe again for the same assignment. Secondly,

3

if Ce, Cf , Cg ∈ C such that Cf , Cg ∈ Sons(Ce), then, after the assignment of
Ve, Pf and Pg are two independent subproblems that can be solved sequentially
because they do not share any variable or constraint. BTD is based on these two
properties.

Function BTD(A,Ce,V ,clb,cub) : integer
if (V = ∅) then

S ←− Sons(Ce) ;
1 clb←− clb +

∑
Cf∈S

LBA[Cf] ;

2 while (S 6= ∅ and clb < cub) do

Choose Cf ∈ S ;
S ←− S\Cf ;
if (LBA[Cf] < UBA[Cf]) then

/* No information for A[Cf]: LBA[Cf] = 0 and UBA[Cf] = +∞ */ ;
3 clb

′ ←−BTD(A, Cf , Vf , 0, +∞) ;
clb←− clb + clb

′ ;
LBA[Cf] ←− clb

′ ;
UBA[Cf] ←− clb

′ ;

return clb ;

else

Choose i ∈ V ;
d←− Di ;
while (d 6= ∅ and clb < cub) do

Choose a ∈ d ;
d←− d\{a} ;

4 l ←−
∑

Wij∈W s.t. j assigned by A
Wij(a, A[j]) ;

if (clb + l < cub) then

cub←− min{cub,BTD(A ∪ {i←− a}, Ce, V \{i}, clb + l, cub) } ;

return cub ;

Algorithm 1: BTD algorithm [7]. First call is BTD(∅,C1,V1,0,+∞).

BTD explores the cluster tree T in a depth-first search manner, starting
from C1. For each visited cluster Ce ∈ C, a depth-first search is performed on
the variables Ve. Whenever a cluster Cf ∈ Sons(Ce) is visited, its associated
subproblem Pf will be completely solved before visiting another son of Ce.

The BTD algorithm is given in Fig. 1. BTD(A,Ce,Ve,0,+∞) returns the op-
timum value of subproblem Pe knowing the current partial assignment A of past
variables. clb (resp. cub) is a lower (resp. upper) bound of the current subprob-
lem. clb and cub are used to prune the search tree following the branch and bound
principle. For simplicity reasons, we present BTD using backward checking to
compute the lower bound (see line 4). A specific data structure LBA[Ce] (resp.
UBA[Ce]) records a lower (resp. upper) bound of Pe for a given assignment of
Ce ∩ CFather(e) (denoted by A[Ce]). Thanks to the branch and bound principle

4

and the lower bound computation, BTD may not visit all the assignments of
Ce ∩ CFather(e). LB and UB can be sparse data structures. In our implemen-
tation, we use hash tables. Initially, LB is set to zero and UB to +∞. In the
original BTD algorithm, each visited subproblem Pe is completely solved. Thus,
we have LBA[Ce] = UBA[Ce] equal to the optimum value of Pe for a given assign-
ment A[Ce]. In line 1, BTD uses the knowledge of previously solved subproblems
to possibly increase clb.

BTD has a time complexity in O(ms2k log(d)dw+1), where m is the number
of clusters, s is the size of the largest intersection between two clusters, k is the
number of constraints, d is the maximum domain size, and w is the tree-width
of the tree decomposition. And it has a space complexity in O(msds) [15].

4 Exploiting local cuts in BTD

Function BTD+(A,Ce,V ,clb,cub) : integer
if (V = ∅) then

S ←− Sons(Ce) ;
clb←− clb +

∑
Cf∈S

LBA[Cf] ;

5 while (S 6= ∅ and clb < cub) do

Choose Cf ∈ S ;
S ←− S\Cf ;
if (LBA[Cf] < UBA[Cf]) then

6 cub
′ ←− cub − clb + LBA[Cf] ;

7 clb
′ ←−BTD+(A, Cf , Vf , 0, cub

′) ;
clb←− clb + clb

′−LBA[Cf] ;
8 LBA[Cf] ←− clb

′ ;
9 if (clb′ < cub

′) then UBA[Cf] ←− clb
′ ;

return clb ;

else

Choose i ∈ V ;
d←− Di ;
while (d 6= ∅ and clb < cub) do

Choose a ∈ d ;
d←− d\{a} ;
l ←−

∑
Wij∈W s.t. j assigned by A

Wij(a, A[j]) ;

if (clb + l < cub) then

cub←− min{cub,BTD+(A ∪ {i←− a}, Ce, V \{i}, clb + l, cub) } ;

return cub ;

Algorithm 2: BTD+ algorithm. First call is BTD+(∅,C1,V1,0,+∞).

When BTD solves a subproblem in line 3, it does not impose any initial upper
bound. The resulting optimum value may be much greater than the current

5

allowed branch and bound gap cub − clb tested in line 2. In order to reduce
the search effort when solving a subproblem Pf such that Ce, Cf ∈ C, Cf ∈
Sons(Ce), we can impose an initial upper bound equal to the difference between
the parental upper bound of Pe and a lower bound of the remaining part of
the problem P\Pf . The corresponding algorithm called BTD+ is given in Fig.
2. The code is colored in gray and black in order to highlight the differences
between BTD+ and BTD. After solving a subproblem at line 7 with an initial
upper bound computed in line 6, either there exists a solution with a cost strictly
lower than this upper bound and this solution is optimal (then LB and UB are
updated in lines 8,9), or no solution has been found and only a lower bound can
be deduced and recorded for the subproblem (in line 8). In this case, the lower
bound LB is equal to the initial upper bound and UB remains equal to +∞.

Exploiting an initial upper bound when solving a subproblem has the poten-
tial drawback that the same subproblem can be solved several times in compar-
ison with the original BTD algorithm that never solves the same subproblem
more than once thanks to the memorization of its optimum value. However each
new lower bound found by BTD+ for a given subproblem is strictly greater
than the previous recorded lower bound for this subproblem (clb′ = cub′ =
cub− clb + LBA[Cf] > LBA[Cf] because cub− clb > 0), otherwise the test in the
while loop in line 5 would have failed. It means that the worst-case time com-
plexity of BTD+ is k (the maximum violation cost) times the time complexity
of BTD. Both algorithms have the same space complexity.

This approach of trying different upper bounds for the same problem is com-
mon in branch and bound optimization and can be effective in practice. For
instance, Iterative Deepening Search [8] uses increasing upper bounds starting
from zero until the problem optimum is found.

A possible way of reducing subproblem repetition is by providing a good value
ordering heuristic. By choosing a good value first, the current subproblem lower
bound clb is kept as small as possible in the left-most branch of the depth-first
search tree, resulting in a larger branch and bound gap cub−clb and higher initial
upper bounds when solving for the first time any subproblem Pe, e ∈ {1, . . . , m}.

Another observation is that we do not need to record the exact subproblem
upper bound (UB) but only the fact that we have found the optimum or just
a lower bound. We use this result in our implementation of all the algorithms
in order to save memory space by only recording LB associated to a boolean to
know if it is the optimum or not.

5 Combining BTD with local consistency restricted to
the current cluster subtree

In this paper, we are interested in combining BTD+ with local consistency in or-
der to reduce the search effort when exploring a cluster and also to save memory
space by recording less subproblem lower bounds. We consider the following lo-
cal consistencies developed in the soft constraint framework: soft arc consistency
(AC) [13, 9], soft directional arc consistency (DAC) [3, 2], soft full directional arc

6

consistency (FDAC) [3, 10, 2], and soft existential directional arc consistency
(EDAC) [4].

Two WCSPs defined over the same variables are said to be equivalent if
they define the same cost distribution on complete assignments. Enforcing local
consistency on a given problem is done by changing the values returned by its
cost functions. Projection and extension are the only two basic operations used
to transform a given problem into an equivalent but possibly more explicit one
(having a better lower bound W∅ and less values in the domains). See [13, 2] for
a definition and examples of projection and extension operations. An important
result of enforcing local consistency is to produce a problem lower bound in W∅

that can be used during the search as the current lower bound (stronger than
backward or forward checking).

The difficulty for BTD is that these transformations preserve the semantic of
the whole problem but can modify the semantic of some subproblems, by moving
cost from one subproblem to another one. During the search, the optimum of a
future subproblem can change due to local consistency enforcement, resulting in
useless recorded lower and upper bounds.

We now analyze how to combine the four basic local consistency operations
as described in [4] with BTD such that recorded lower and upper bounds are
used in a safe manner.

5.1 Binary projection and extension

A binary projection Project(i, a, j, α) moves cost α from binary cost function
Wij to unary cost function Wi:

a ∈ Di, ∀b ∈ Dj , Wij(a, b)←−Wij(a, b)− α, Wi(a)←−Wi(a) + α

If variables i, j are associated to the same cluster in the tree decomposition
(N(i) = N(j)), there is nothing to do. If N(i) 6= N(j), then clusters CN(i)

and CN(j) are on a common path from the root due to the running intersection
property of tree decomposition. Either cluster CN(j) is an ascendant of cluster
CN(i), then the binary and unary cost functions belong to the same cluster
CN(i) and thus the same subproblem. Or, CN(i) is an ascendant of CN(j), and
the binary projection results in decreasing Wij in the subproblem PN(j) and
increasing Wi in the subproblem PN(i). Because PN(i) already contains PN(j),
this does not change its optimum. On the contrary, the optimum of PN(j) is
decreased by α. This is also the case for all the subproblems Pe on the path
between CN(j) and CN(i) in the tree decomposition because their associated
cluster Ce contains variables i, j. We store these cost modifications in a specific
backtrackable data structure ∆W . Initially, ∆W is set to zero. The modified
function Project(i, a, j, α) does the following:

∀Ce ∈ C in the path from CN(j) included to CN(i) excluded,

∆W e
i (a)←− ∆W e

i (a) + α

7

During the search, we apply a correction to the recorded lower and upper
bounds thanks to the current ∆W information. ∆WA[Ce] represents the total
cost that has been moved out the subproblem Pe for a given assignment A[Ce]
of Ce ∩ CFather(e) variables: ∆WA[Ce] =

∑
{i,a}∈A s.t. i∈Ce∩CFather(e)

∆W e
i (a).

This total cost is subtracted to the recorded lower bound in order to obtain the
current true lower bound.

A binary extension Extend(i, a, j, α) moves cost α from unary cost func-
tion Wi to binary cost function Wij . It is equivalent to a binary projection
Project(i, a, j,−α). We apply the same modifications to Extend as previously
described for Project.

5.2 Unary projection

A unary projection ProjectUnary(i) moves the minimum cost mina∈Di
{Wi(a)}

from unary cost function Wi to the problem lower bound W∅. Instead of having
one zero-arity constraint for representing the problem lower bound, we split it
into one zero-arity constraint per cluster in the tree decomposition. W e

∅
is a lower

bound for the subproblem composed of Ve variables and the constraints whose
scopes are inside Ve. Thus, local consistency enforcement provides a current lower
bound W

e

∅
of subproblem Pe which is the sum of all the lower bounds of clusters

included in Pe. We have W
1

∅
= W∅. For any subproblem Pe, e ∈ {1, . . . , m} and

any assignment A[Ce ∩ CFather(e)], we have two lower bounds, one provided by
the BTD recording mechanism and the other one provided by local consistency.
In the following codes, we always use the maximum of these two bounds.

5.3 Value removal

Value removal PruneV ar(i) removes values a ∈ Di such that W∅+Wi(a) ≥ gub,
with gub, a global upper bound of the problem. We replace this global condition
by a local one W

e

∅
+ Wi(a) ≥ cub where W

e

∅
and cub are the current lower and

upper bounds of the currently visited cluster Ce. We apply this pruning rule
only to variables in the current subproblem Pe. By doing so, we ensure that any
removed value in a given subproblem Pe is also forbidden in all the subproblem
Pf included in Pe. Thus the set of removed values for one subproblem Pe, is
still valid in all the subproblems Pf such that Cf ∈ Sons(Ce), and all the
propagations made during the exploration of Ce are still valid when exploring
Cf ∈ Sons(Ce). The proof is obtained by the fact that cub−W

e

∅
is monotonically

decreasing when following a path in the cluster tree from the root to a leaf:

∀Ce ∈ C,∀Cf ∈ Sons(Ce),

cubCf
−W

f

∅ = cub− clb + max{LBA[Cf] −∆W A[Cf], W
f

∅} −W
f

∅

= cub−W
e

∅

−
∑

Cg∈Sons(Ce)\Cf

max{LBA[Cg] −∆W A[Cg], W
g

∅}

−W
f

∅

≤ cub−W
e

∅

8

Function LC-BTD+(A,Ce,V ,clb,cub) : integer
if (V = ∅) then

S ←− Sons(Ce) ;

10 clb←−W
e

∅ +
∑

Cf∈S
max{LBA[Cf] −∆W A[Cf], W

f

∅} ;

while (S 6= ∅ and clb < cub) do

Choose Cf ∈ S ;
S ←− S\Cf ;
if (LBA[Cf] < UBA[Cf]) then

cub
′ ←− cub − clb + max{LBA[Cf] −∆W A[Cf], W

f

∅} ;

11 clb
′ ←−LC-BTD+(A, Cf , Vf , W

f

∅ , cub
′) ;

clb←− clb + clb
′ −max{LBA[Cf] −∆W A[Cf], W

f

∅} ;

12 LBA[Cf] ←− clb
′+∆W A[Cf] ;

13 if (clb′ < cub
′) then UBA[Cf] ←− clb

′+∆W A[Cf] ;

return clb ;

else

Choose i ∈ V ;
d←− Di ;
while (d 6= ∅ and clb < cub) do

Choose a ∈ d ;
d←− d\{a} ;

14 Enforce LC with {i←− a} on subproblem Pe;
if (W

e

∅ < cub) then

cub←− min{cub,LC-BTD+(A ∪ {i←− a}, Ce, V \{i}, W
e

∅ , cub) } ;

return cub ;

Algorithm 3: LC-BTD+ algorithm. Initial problem is made LC consistent be-

forehand. First call is LC-BTD+(∅,C1,V1,W
1

∅
,+∞).

5.4 LC-BTD+ algorithm

The resulting algorithm called LC-BTD+ combines BTD+ with any local consis-
tency LC ∈ {NC, AC, DAC, FDAC, EDAC} and is described in Fig. 3 (again,
differences with BTD+ are highlighted). In line 10, the lower bound of the cur-
rent subproblem is the sum of assignment cost for cluster Ce (W e

∅
) plus the sum

of the maximum of the two lower bounds (obtained by lower bound recording
or by propagation) for each cluster son. In line 14, the local consistency LC is
enforced on the current subproblem Pe resulting in a new lower bound W

e

∅
of

Pe. In lines 12 and 13, we apply the right corrections in order to record valid
lower and upper bounds. Notice that in line 11, we already have a lower bound

9

W
f

∅
of Pf that is given as input to LC-BTD+. The rest of the code is identical

to BTD+.

The time and space complexities of LC-BTD+ are identical to BTD+. Time
complexity proof is based on the fact that when a new lower bound clb′ +
∆WA[Cf] is recorded, it is equal to cubCf

+∆WA[Cf] = cub−clb+max{LBA[Cf]−

∆WA[Cf], W
f

∅
}+ ∆WA[Cf] > LBA[Cf].

6 Combining BTD with unrestricted local consistency

In the previous algorithm, local consistency was restricted to the current sub-
problem in order to keep the set of forbidden values still valid when going down
from one cluster Ce to another cluster Cf ∈ Sons(Ce) during the search. Now,
we show how it is possible to remove this restriction by using local and global
bounds.

A value is removed if W
e

∅
+ Wi(a) ≥ cub or W

1

∅
+ Wi(a) ≥ gub. Recall that

W
e

∅
(resp. W

1

∅
) is the current lower bound of subproblem Pe (resp. problem P).

gub is a global upper bound of the whole problem. Although the second global
condition takes into account all the information produced by local consistency
enforcement, it does not necessarily imply the first local condition because cub

includes the knowledge of recorded lower bounds. So both conditions are needed.

A major difficulty when using two conditions during the exploration of a clus-
ter Ce is that we are not sure to find the optimum of Pe even if the initial upper
bound is greater than the optimum. This is due to the fact that propagation in

P\Pe can increase the current lower bound of P such that W
1

∅
≥ gub before a

solution is found in Pe. Moreover, even if a solution is found in Pe, there is no
guarantee that we will find the optimal solution of Pe. This surprising result is
due to the fact that soft local consistencies such as AC, FDAC or EDAC are
not confluent. Depending on the way W

e

∅
increases during the search, it can

result in different value removal orders in P\Pe conducting to different projec-

tion/extension operation orders and finally different W
1

∅
values. Our solution is

to collect during the exploration of a subproblem Pe its minimum lower bound
and the cost of the best solution found at all the leaf nodes of the search tree de-
veloped for solving Pe. Notice that this minimum lower bound cannot be greater
than the initial subproblem upper bound due to previous value removals. More-
over, value removals can occur during a cluster exploration, due to the global

cut W
1

∅
+ Wi(a) ≥ gub which is equal to W

e

∅
+

∑
Cg∈P\Pe

W
g
∅

+ Wi(a) ≥ gub.

Therefore, the minimum lower bound of Pe when a failure occurs (at a leaf node)

cannot be greater than W
e

∅
+Wi(a) = gub−

∑
Cg∈P\Pe

W
g
∅

= gub−W
1

∅
+W

e

∅
.

The resulting algorithm called LC-BTD∗ is presented in Fig. 4 (again, dif-
ferences with LC-BTD+ are highlighted). In line 21 and 22, the exploration of
the current cluster takes into account local and global bounds. This is also the
case for computing the initial upper bound of a subproblem in line 16. Instead
of returning a lower bound or the optimum of Pe as it is done in LC-BTD+,

10

Function LC-BTD∗(A,Ce,V ,clb,cub,glb,gub:in/out) : (integer,integer)
if (V = ∅) then

S ←− Sons(Ce) ;

clb←−W
e

∅ +
∑

Cf∈S
max{LBA[Cf] −∆W A[Cf], W

f

∅} ;

15 cub
′′ ←−W

e

∅ ;
while (S 6= ∅ and clb < cub) do

Choose Cf ∈ S ;
S ←− S\Cf ;
if (LBA[Cf] < UBA[Cf]) then

16 cub
′ ←− min{cub− clb + max{LBA[Cf] −∆W A[Cf], W

f

∅},

gub− glb + W
f

∅ , UBA[Cf]} ;

(clb′, cub
′)←−LC-BTD∗(A, Cf , Vf , W

f

∅ , cub
′) ;

clb←− clb + clb
′ −max{LBA[Cf] −∆W A[Cf], W

f

∅} ;
17 cub

′′ ←− cub
′′ + cub

′ ;
LBA[Cf] ←− max{LBA[Cf], clb

′ + ∆W A[Cf]} ;

UBA[Cf] ←− min{UBA[Cf], cub
′+∆W A[Cf]} ;

else

18 cub
′′ ←− cub

′′ + LBA[Cf] −∆W A[Cf]

19 return (clb, cub
′′) ;

else

20 (clb′, cub
′)←− (cub, +∞) ;

Choose i ∈ V ;
d←− Di ;

21 while (d 6= ∅ and clb < cub and glb < gub) do

Choose a ∈ d ;
d←− d\{a} ;
Enforce LC with {i←− a};

22 if (W
e

∅ < cub and W
1

∅ < gub) then

(l, u)←−LC-BTD∗(A ∪ {i←− a}, Ce, V \{i}, W
e

∅ , cub, W
1

∅ , gub) ;
23 clb

′ ←− min{clb′, l} ;
24 cub

′ ←− min{cub
′
, u} ;

cub←− min{cub, u} ;
if (Ce = C1) then gub←− min{gub, u} ;

else

25 clb
′ ←− min{clb′, W

e

∅ , gub−W
1

∅ + W
e

∅} ;

26 return (clb′, cub
′) ;

Algorithm 4: LC-BTD∗ algorithm. Initial problem is made LC consistent be-

forehand. First call is LC-BTD∗(∅,C1,V1,W
1

∅
,+∞,W

1

∅
,+∞).

11

LC-BTD∗ returns in lines 19 and 26 a lower bound and the cost of the best solu-
tion found after solving Pe. cub′′ represents the cost of the best solution found
in Pe and is the sum of the current cluster cost W e

∅
and the total cost of the

best solution found for each subproblem Pf such that Cf ∈ Sons(Ce) (see lines
15,17,18). When exploring the current cluster, we maintain the minimum lower
bound (clb′) and the cost of the best solution found (cub′) at all the leaf nodes
of the search tree in lines 20,23,24, and 25.

The space complexity of LC-BTD∗ is the same as for BTD. Its time complexity
is no more bounded by the tree-width because we don’t have the property that
the recorded lower bounds will increase monotonically. However, LC-BTD∗ has a
time complexity in O(dh), where h is the tree-height of the tree decomposition,
i.e. the maximum number of variables in a path from the root node to any leaf
node of the cluster tree. This time complexity is also valid for all the BTD-like
algorithms that follow a variable ordering compatible with the cluster tree and
exploit the independence property of subproblems.

7 Taking into account recorded lower bounds as soon as
possible

When exploring a cluster Ce, as soon as the variables in Cf∩Ce are assigned for a
given son cluster Cf ∈ Sons(Ce), it is possible to take into account the recorded

lower bound LBA[Cf] in the current subproblem an problem lower bounds W
e

∅

and W
1

∅
. This can result in further propagations and better pruning. More

precisely, we add to these lower bounds the cost LBA[Cf] − ∆WA[Cf] − W
f

∅

if it is positive, i.e. if the corrected recorded lower bound is better (optimal or
strictly greater) than the lower bound found by propagation. If it is the case,
then we must disconnect the subproblem Pf from the propagation in order to
avoid counting the same constraint cost twice. Moreover, after the complete
exploration of a subproblem Pf , s.t. Cf ∈ Sons(Ce), we can take into account
as previously the newly updated recorded lower bound when backtracking in Ce.
All these improvements have been done to enhance LC-BTD∗, resulting in the
algorithm called LC-BTDo in the following Section.

8 Experimental results

In this Section, we perform an empirical comparison of our various versions of
the BTD method with classic depth-first branch and bound (MFDAC [10]) and
Bucket Elimination (BE) [5] on random and real-world instances. For efficiency
reasons, our BTD methods are using forward checking for BTD and BTD+ and
soft full directional arc consistency (FDAC) for the other versions (FDAC-BTD+,
FDAC-BTD∗, and FDAC-BTDo). For comparison purpose, we examine the case
of not recording any lower bound (FDAC-PTS is derived from FDAC-BTDo), in
the spirit of pseudo-tree search [6]. For variable selection, we used the dom/deg

12

heuristics which selects the variable with the smallest ratio of domain size di-
vided by future degree. For value selection we consider values in increasing order
of unary cost Wi. The variable ordering for directional arc consistency is lexico-
graphic. The tree decomposition method is based on the maximum cardinality
search (MCS) ordering heuristic [14]. The root node is chosen such that the
tree-height is minimized.

For random instances, we limit to 5 minutes the time spent for solving a
given instance (for unsolved instances, we consider that the running time is 5
min). For real-world instances, the limit is 4 hours and 4 billion of visited nodes.
Our implementation of all the algorithms is based on a free weighted CSP solver
called ToolBar (C code)1. The experiments were all performed on a 2.4 GHz
Xeon computer with 4 GB.

8.1 Randomly generated instances

Random instances are clique trees. We use the following basic parametric model
(w, s, h′, d, t) such that each clique has w + 1 variables with domain size equal
to d, each separator has s variables, each binary constraint has the same tight-
ness equal to t (the ratio between the number of forbidden tuples and d2), and
the resulting clique tree is a complete binary tree composed of 2h′

− 1 cliques.
Depending on the parameters (w, s, h′), the total number of variables is equal
to n = s + (w + 1 − s)(2h′

− 1). Our tree decomposition method produces a
tree-width equal to w and a tree-height equal to h = h′(w + 1− s) + s. We have
generated and solved (w = 9, h′ = 3, d = 5) clique trees with varying separator
sizes s ∈ {2, 5, 7} and varying constraint tightness t ∈ [20, 80]%. Samples have
50 instances and we report average values. Time results in seconds and memory
space in number of recorded lower bounds are given in Fig. 1. Exploiting local
cuts as in FC-BTD+ saved time (except in s = 2, t = 60%) and space compared
with the original FC-BTD algorithm. Introducing stronger soft local consistency
such as FDAC in BTD had mainly the effect of reducing memory usage and the
number of visited nodes (not reported here for the lack of space) significantly
compared to FC-BTD. However, FDAC-BTD+ and FDAC-BTD∗ were slower than
FC-BTD for s ∈ {2, 5}. The reason for this is that the same subproblem can be
solved several times (up to 96 times and mean repetition in [0.0, 3.01] for all the
instances and BTD versions), and also FDAC time complexity is in O(knd3) [10]
compared to FC in O(kd). Taking into account recorded lower bounds as soon as
possible greatly improved the results. FDAC-BTDo algorithm got the best results
other all BTD-like algorithms, up to two-orders of magnitude for s = {2, 7} com-
pared with FC-BTD. Not using lower bound recording as in FDAC-PTS could
result in very poor performance (s ∈ {2, 5}). MFDAC was unable to solve the
instances with small separator size and large number of variables (s = 2, n = 58)
in less than 5 min. On the contrary, it performed the best with s = 7, n = 28.
Finally, bucket elimination took constant time and space (dw = 59 = 1.9106).

1
ToolBar is available at the Algorithms link of the SoftCSP web site
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP.

13

 0.1

 1

 10

 100

 1000

 30 35 40 45 50 55 60

cp
u

tim
e

(s
ec

)

constraint tightness (%)

n=58 d=5 c=19% s=2 h=26 w=9

MFDAC
FDAC-PTS
FDAC-BTD*
FDAC-BTD+
FC-BTD+
FC-BTD
BE
FDAC-BTDo

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 30 35 40 45 50 55 60

m
em

or
y

sp
ac

e
(#

 lo
w

er
 b

ou
nd

s)

constraint tightness (%)

n=58 d=5 c=19% s=2 h=26 w=9

FC-BTD
FC-BTD+
FDAC-BTD*
FDAC-BTD+
FDAC-BTDo

 1

 10

 100

 1000

 30 35 40 45 50 55 60

cp
u

tim
e

(s
ec

)

constraint tightness (%)

n=40 d=5 c=32% s=5 h=20 w=9

FDAC-PTS
FDAC-BTD+
FDAC-BTD*
FC-BTD
FC-BTD+
MFDAC
BE
FDAC-BTDo

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 30 35 40 45 50 55 60

m
em

or
y

sp
ac

e
(#

 lo
w

er
 b

ou
nd

s)

constraint tightness (%)

n=40 d=5 c=32% s=5 h=20 w=9

FC-BTD
FC-BTD+
FDAC-BTD*
FDAC-BTD+
FDAC-BTDo

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80

cp
u

tim
e

(s
ec

)

constraint tightness (%)

n=28 d=5 c=50% s=7 h=16 w=9

FC-BTD
FC-BTD+
BE
FDAC-BTD+
FDAC-BTD*
FDAC-BTDo
FDAC-PTS
MFDAC

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 20 30 40 50 60 70 80

m
em

or
y

sp
ac

e
(#

 lo
w

er
 b

ou
nd

s)

constraint tightness (%)

n=28 d=5 c=50% s=7 h=16 w=9

FC-BTD
FC-BTD+
FDAC-BTD+
FDAC-BTD*
FDAC-BTDo

Fig. 1. Time in seconds (y-axis in log-scale) and memory space in number of recorded
lower bounds (the theoretical maximum is given by an horizontal line) for solving
random clique trees with clique size equal to 10 and separator size equal to 2,5, and
7. Methods are sorted from the worst (top) to the best (bottom). c is the constraint
graph connectivity (100% means a complete graph).

14

8.2 Real-world instances

The Radio Link Frequency Assignment Problem (RLFAP) [1] is a resource allo-
cation problem where the goal is to assign frequencies to a set of radio links in
such a way that all the links may operate together without noticeable interfer-
ence. Some RLFAP instances can be naturally cast as weighted CSPs with binary
soft constraints. We focus on SCEN-06 and SCEN-07 sub-instances which have
constraint costs in {1, 10, 102, 103} and {1, 102, 104, 106} respectively. For effi-
ciency reasons, we provide the optimum value as the initial global upper bound
and we used the min degree heuristic for tree decomposition of SCEN-07-104-
30r. SUBCELARi instances contain a subset of the SCEN-06 variables. Instance
SCEN-06-30r has been obtained by removing 30 values per domain from the
original instance and relaxing the constraints such that the optimum is a lower
bound of SCEN-062. SCEN-07-104-30r has been obtained by the same process
and also by removing all the constraints with costs 1 and 102. In the following
Table, we give the results as a pair (time in seconds,number of recorded LB).
BTD methods using FDAC saved a lot of space compared to FC-BTD (e.g.
68 times for SCEN-06-30r). Moreover these methods were able to solve all the
instances within the time and node limits (with mean subproblem repetition
≤ 3.6), except SCEN-06-30r for FDAC-BTD∗ (max repetition was 7785, mean
was 546.9). Bucket elimination didn’t solve any instance due to the 4 GB limit.

Method SUBCELAR1 SUBCELAR2 SUBCELAR3 SCEN-06-30r SCEN-07-104-30r
n = 14, d = 44 n = 16, d = 44 n = 18, d = 44 n = 99, d = 14 n = 196, d = 14
w = 9, h = 14 w = 10, h = 14 w = 12, h = 15 w = 10, h = 37 w = 12, h = 32

time #goods time #goods time #goods time #goods time #goods

FC-BTD - 61784 1799 2232 - 39717 256 1664844 - 126332063
FC-BTD+ - 70698 1755 1528 - 6791398 289 59450 29 80514
FDAC-BTD+ 851 20346 70 0 994 47564 390 23535 39 8544
FDAC-BTD* 842 20346 70 0 1044 47564 - 3039 67 9083
FDAC-BTDo 103 20346 70 0 1022 47219 289 24173 21 5703
FDAC-PTS 6258 0 70 0 1071 0 - 0 8892 0
MFDAC 165 0 60 0 - 0 - 0 - 0

9 Conclusion

In this paper, we have progressively introduce state-of-the-art soft local con-
sistency in the BTD algorithm [15, 7] resulting in several new versions having
different time complexities. All versions have the same space complexity as BTD.
The combination of unrestricted soft local consistency with BTD makes the time
complexity exponential in the tree-height, instead of the tree-width in the orig-
inal BTD. However, it has been shown on randomly generated clique trees and
RLFAP subinstances (up to 196 variables) that these new versions using FDAC
can be several orders of magnitude faster than BTD using forward checking, es-
pecially when they take into account recorded lower bounds as soon as possible.

2 See http://www.inra.fr/bia/ftp/T/VCSP.

15

Moreover, FDAC-BTD algorithms offer important savings in terms of memory
space actually used by the recording mechanism.

Further experiments on other problems should be done in order to better
characterize the performance of FDAC-BTD compared to FC-BTD. In the fu-
ture, we want to study and limit subproblem repetition.

References

1. B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. Warners. Radio link fre-
quency assignment. Constraints Journal, 4:79–89, 1999.

2. M. Cooper and T. Schiex. Arc consistency for soft constraints. Artificial Intelli-
gence, 154:199–227, 2004.

3. M.C. Cooper. Reduction operations in fuzzy or valued constraint satisfaction.
Fuzzy Sets and Systems, 134(3):311 – 342, 2003.

4. S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency:
Getting closer to full arc consistency in weighted csps. In Proc. of IJCAI-05,
Edinburgh, Scotland, 2005.

5. Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1–2):41–85, 1999.

6. Eugene C. Freuder and Michael J. Quinn. Taking advantage of stable sets of
variables in constraint satisfaction problems. In Proc. of the 9th IJCAI, pages
1076–1078, Los Angeles, CA, 1985.

7. P. Jégou and C. Terrioux. Decomposition and good recording. In Proceedings of the
16th European Conference on Artificial Intelligence (ECAI-2004), pages 196–200,
2004.

8. R. E. Korf. Depth first iterative deepening : An optimal admissible tree search.
Artificial Intelligence, 27:97–109, 1985.

9. J. Larrosa. On arc and node consistency in weighted CSP. In Proc. AAAI’02,
pages 48–53, Edmondton, (CA), 2002.

10. J. Larrosa and T. Schiex. In the quest of the best form of local consistency for
weighted CSP. In Proc. of the 18th IJCAI, pages 239–244, Acapulco, Mexico,
August 2003. http://www.inra.fr/bia/T/schiex/Export/IJCAI03.pdf.

11. J. Larrosa and T. Schiex. Solving Weighted CSP by Maintaining Arc-consistency.
Artificial Intelligence, 159(1-2):1–26, 2004.

12. R. Marinescu and R. Dechter. And/or tree search for constraint optimization. In
CP-2004 workshop on Soft Constraints and Preferences, Toronto, Canada, 2004.

13. T. Schiex. Arc consistency for soft constraints. In Principles and Practice of Con-
straint Programming - CP 2000, volume 1894 of LNCS, pages 411–424, Singapore,
September 2000.

14. R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13(3):566–579, 1984.

15. C. Terrioux and P. Jégou. Bounded backtracking for the valued constraint satisfac-
tion problems. In Proceedings of the Ninth International Conference on Principles
and Practice of Constraint Programming (CP-2003), pages 709–723, 2003.

Bound arc consistency for weighted CSPs

Christine Gaspin, Thomas Schiex, Matthias Zytnicki

INRA Toulouse – BIA

Abstract. WCSP is a soft constraint framework with a wide range of
applications. Most current complete solvers can be described as a depth-
first branch and bound search that maintain some form of local consis-
tency during the search. However, the known consistencies are unable
to solve problems with huge domains because of their time and space
complexities. In this paper, we adapt a weaker form of arc consistency,
well-known in classic CSPs, called the bound arc consistency and we
provide several algorithms to enforce it.

1 Introduction

The weighted constraint satisfaction problem (WCSP) is a well-known exten-
sion of the CSP framework with many practical applications. Recently, several
generalizations of the CSP’s arc consistency have been proposed for soft con-
straints, like AC* in [1]. Unfortunately, the time complexity always increases
by a factor of d (the size of the largest domain) and the memory space is at
least proportional to d. This makes these consistencies useless for problems with
long domains like RNA detection or temporal constraints with preferences. We
present here an extension of the bound arc consistency, first described for classic
CSPs in [2]. Its time and space complexities are better than the complexities of
AC* by an order of d.

Bound arc consistency (BAC*) is based on a interval representation of the
sets of values and it can treat efficiently “easy” constraints, such as precedence

f(v1, v2) =

{

v2 − v1 − d if v2 − v1 − d > 0,

0 otherwise.

that often show up in problems with long domains (like scheduling). We also
propose several extensions of this consistency that take into account the se-
mantics of the function, like monotonicity or convexity and we define ∅-inverse
consistency that can boost the cost propagation on some conditions.

Finally, we compare BAC* with AC* on the problem of non-coding RNA
detection and show the superiority of our consistency for this kind of problems.

2 Preliminaries

Valuation structures are algebraic objects that specify costs [3]. For WCSP [4],
it is defined by a triple S = 〈E,⊕,≤〉 where

– E = [0..k] ⊆ N is the set of costs, k can possibly be ∞;
– ⊕, the addition on E, is defined by ∀(a, b) ∈ N

2, a⊕ b = min{a + b, k},
– ≤ is the usual operator on N.

It is useful to define the subtraction 	 of costs:

∀(a, b) ∈ N
2, a	 b =

{

a− b if a 6= k,

k otherwise.

A binary WCSP is a tuple P = 〈S,X ,D, C〉, where:

– S is the valuation structure,
– X = {x1, . . . , xn} is a set of n variables,
– D = {D(x1), . . . , D(xn)} is the set of the finite domains of each variable and

the size of the largest one is d,
– C = {c1, . . . , ce} is the set of e constraints.

A constraint c ∈ C can be either:

– a unary constraint: c : D(xi)→ E (we call it ci), or
– a binary constraint: c : D(xi)×D(xj)→ E (we call it cij).

We will restrict ourselves to binary WCSP, where no constraint has an arity
greater than 2. Results can easily be extended to higher arity constraints. Fur-
thermore, we assume the existence of a unary constraint ci for every variable,
and a zero-arity constraint (i.e. a constant), noted c∅ (if no such constraints are
defined, we can always define dummy ones: ci is the null function over D(xi),
c∅ = 0).

Given a pair (vi, wj) (resp. a value vi), cij(vi, wj) = k (resp. ci(vi) = k) means
that the constraint forbids the corresponding assignment. Another cost means
the pair (resp. the value) is permitted by the constraint with the corresponding
cost. The cost of an assignment t = (v1, . . . , vn), noted V(t), is the sum over all
the cost functions:

V(t) =
⊕

i,j

cij(vi, vj)⊕
⊕

i

ci(vi)⊕ c∅

An assignment t is consistent if V(t) < k. The usual task of interest is to
find a consistent assignment with minimum cost. This is a NP-hard problem.
Observe that, if k = 1, a WCSP reduces to classic CSP.

3 Some local properties

3.1 Existing local consistencies

WCSPs are usually solved with a branch-and-bound tree of which each node is
a partial assignment. To accelerate the search, local consistency properties are
widely used to transform the sub-problem at each node of the tree to an equiva-
lent, simpler one. The simplest local consistency property is the node consistency
(NC*, cf. [1]).

Definition 1. A variable xi is node consistent if:

– ∀vi ∈ D(xi), c∅ ⊕ ci(vi) < k and
– ∃vi ∈ D(xi), ci(vi) = 0 (this value vi is called the unary support of xi).

A WCSP is node consistent if every variable is node consistent.

This property can be enforced in time and spaceO(nd). Another famous stronger
local consistency is the arc consistency (AC*, cf. [1]).

Definition 2. The neighbours N(xi) of a variable xi is the set of the variables
xj such that there exists a constraint that involves xi and xj. More formally:

∀xi ∈ X , N(xi) = {xj ∈ X : cij ∈ C}

A variable xi is arc consistent if:

– ∀vi ∈ D(xi), ∀xj ∈ N(xi), ∃wj ∈ D(xj), cij(vi, wj) = 0 (this value wj is
called the support of xi in vi w.r.t. cij) and

– xi is node consistent.

A WCSP is arc consistent if every variable is arc consistent.

On a binary WCSP, arc consistency can be enforced in time O(n2d3) and in space
O(ed). The algorithm uses the operations ProjectUnary and Project described in
Alg. 1 to enforce the supports of the values and the unary supports respectively.

Algorithm 1: Operations enforcing AC*

Procedure ProjectUnary(xi) [Find the unary support of xi]

min← minvi∈I(xi){ci(vi)} ;
if (min = 0) then return ;
c∅ raised← true ;
foreach vi ∈ I(xi) do ci(vi)← ci(vi)	min ;1

c∅ ← c∅ ⊕min ;
if (c∅ ≥ k) then raise exception ;

Procedure Project(xi, vi, xj) [Find the support of vi w.r.t. cij]

min← minwj∈I(xj){cij(vi, wj)} ;

foreach wj ∈ I(xj) do cij(vi, wj)← cij(vi, wj)	min ;2

ci(vi)← ci(vi)⊕min ;

Example 1. Fig. 1(a) represents an instance of a small problem. It contains two
variables (x1 and x2) with two possible values for each one (a and b), a unary
constraint for each variable (the costs are written in the circles) and a binary
constraint (the costs are written on the edge that connects a pair of values; if
there is no edge between two values, the cost is 0). k is arbitrarily set to 4 and
c∅ is set to 0. As the cost of x1 = a is equal to k (first point of the definition

of NC*), this value is discarded (cf. Fig. 1(b)). Then, we notice that x2 has no
unary support (second point of the definition of NC*) and we project a cost of
1 to c∅ (cf. Fig. 1(c)). The instance is NC*. To enforce AC*, we project 1 from
the binary constraint to x1 = a as this value has no support (cf. Fig. 1(d)).
Finally, we project 1 from c1(b) to c∅, as seen on Fig. 1(e).

In practice, to reach the O(ed) space complexity, the algorithm uses extra
costs differences data structures as suggested in [5]. For each value vi of each
variable involved in each binary constraint cij , we create a new cost difference
∆vi

ij , initialized to 0. It stores the cost that has been projected to ci(vi) by the
binary constraint cij . Thus the line 2 can be replaced by

∆vi

ij ← ∆vi

ij ⊕min ;

and every occurrence of “cij(vi, wj)” should be replaced by “cij(vi, wj)	 (∆vi

ij ⊕

∆
wj

ij)”. Similarly, we use another cost difference in ProjectUnary for each variable:
∆i. It stores the cost that has been projected from ci to c∅. The line 1 can be
replaced by

∆i ← ∆i ⊕min ;

and every occurrence of “ci(vi)” should be replaced by “ci(vi)	 (∆i)”.

b

a a

b

x1 x2

1

2

14

2
0

1

C∅ = 0, k = 4

(a) original in-
stance

b

a

b

x1 x2

2

1

2
0

1

C∅ = 0, k = 4

(b) prune forbid-
den values (NC*)

b

a

b

x1 x2

2

0

10

1

C∅ = 1, k = 4

(c) find unary sup-
port using Project-
Unary(x2) (NC*)

b

a

b

x1 x2

0

1

C∅ = 1, k = 4

1
1

(d) find support
for x1 = b using
Project(x1, b, x2)
(AC*)

b

a

b

x1

0

1
1

x2

C∅ = 2, k = 4

0

(e) find unary sup-
port using Project-
Unary(x1)

Fig. 1. Steps to enforce AC*

3.2 Bound arc consistency

We present here a consistency which is weaker than AC*. It can be enforced
with lower time and space complexities and it is called bound arc consistency
(BAC*).

Definition 3. To apply bound arc consistency, we need to change the definition
of a WCSP: the domains are now intervals I. Each variable xi can take all the
values in I(xi) = [lbi..ubi] (lbi is the lower bound of the interval of xi and ubi

is its upper bound). A variable xi is bound node consistent (BNC*) if:

– (c∅ ⊕ ci(lbi) < k) ∧ (c∅ ⊕ ci(ubi) < k) and
– ∃vi ∈ I(xi), ci(vi) = 0.

A variable xi is bound arc consistent if:

– ∀xj ∈ N(xi), ∃(wj , w
′
j) ∈ I2(xj), cij(lbi, wj) = cij(ubi, w

′
j) = 0 and

– it is bound node consistent.

A WCSP is bound arc consistent if every variable is bound arc consistent.

The intervals initially range over all the possible values. We shall suppose
that all the values of the variables are sorted by an arbitrary order and ∀xi ∈
X , lbi = min{D(xi)}, ubi = max{D(xi)}. Changing the representation of the
set of the values to intervals alters the expressivity of the framework: it is not
possible to describe that a value which is inside an interval has been deleted. But
this allows us to decrease the space complexity as a domain is now represented by
only two values. The Alg. 2 provides an algorithm to enforce this consistency.

Example 2. Fig. 2(b) describes another problem. The values are supposed to be
sorted by the lexicographic order (a ≺ b ≺ c), thus lb1 = a and ub1 = c for x1 and
the same for x2. After a call of Project(x1, a), we get Fig. 2(c). As c∅⊕ ci(lb1) is
equal to k, x1 = a is discarded and the lower bound of x1 is updated to lb1 (cf.
Fig. 2(d)). This instance is BAC* but not AC* because x2 = b has no support.
This proves that BAC* is strictly weaker than AC*.

Theorem 1. Algorithm 2 enforces BAC* in time O(ed2 + knd) and in space
O(n + e).

Proof. Correction: We will consider the following invariants:

1. on line 2, all variables are BNC*,
2. if xi is not in Q, then ∀xj ∈ N(xi), lbi, ubi, lbj and ubj have a support w.r.t.

cij .

First, ProjectUnary(xi) finds the unary support of xi and SetBNC*(xi) loops
until it finds the allowed bounds of xi, so this function enforces BNC*. At the
beginning of the algorithm, as the variables may not have this property, we call
SetBNC*(xi) for each variable xi. Thus the second invariant is respected at the
beginning of the algorithm.

c

b

a a

b

c

x2

C∅ = 0, k = 4

0

0

1

1

3

2
2

2
2

0

lb1

ub1

lb2

ub2

x1

2

(a) original instance

c

b

a a

b

c

x1 x2

0

0

1

1

0

lb1

ub2ub1

lb2

C∅ = 1, k = 4

1

1

1

1
2

2

(b) enforce ∅IC using
ProjectBinary (∅IC)

c

b

a a

b

c

x1 x2

0

0

1

1
2

2
1

0

lb1

ub1 ub2

lb2

C∅ = 1, k = 4

3

(c) project to lb1 using
Project (BAC*)

c

b

a

b

c

x1 x2

0

0

1

1

0lb1

ub1 ub2

lb2

2

2

C∅ = 1, k = 4

(d) move lb1 (BAC*)

Fig. 2. Steps to enforce BAC* with ∅IC

This invariant may be broken by a projection from a binary constraint to a
bound of an interval; this may either lead to the fact that one of the bound is
now forbidden, or that a unary support (which was this bound) has disappeared.
This is why SetBNC* is called on xj and all its neighbours (lines 5 and 6) after
the projections of the line 4.

The first invariant could also be broken when c∅ increases: a bound can now
have a unary cost greater that k − c∅. This event can occur after the lines 5

and 6. This explains the if beginning at line 7.

Concerning the second invariant, it is true at the beginning of the algorithm
as all the variables are enqueued. Afterwards, Project(xi, vi, xj) finds the support
of vi w.r.t. cij , so SetBSupport(xi, xj) finds the supports of the bounds of xi w.r.t.
cij . Thus the line 4 enforces the second invariant.

This invariant can only be broken by SetBNC* and anytime this function is
called, the corresponding variable is enqueued. Finally, at the end of the algo-
rithm, the instance is BNC* (thanks to the first invariant) and every bound has
a support w.r.t. to each constraint in which it is involved (thanks to the second
invariant): the problem is now BAC*.

Time complexity: Thanks to [1], we know that Project and ProjectUnary

take time O(d). Thus SetBSupport also takes time O(d) and the complexity of
the line 1 is O(nd).

Algorithm 2: Algorithm enforcing BAC*

Procedure SetBAC*() [Enforce BAC*]

foreach xi ∈ X do SetBNC*(xi) ;1

Q← X ; c∅ raised← false ;
while (Q 6= ∅) do2

xj ← Q.pop() ;
foreach xi ∈ N(xj) do3

SetBSupport(xi, xj) ; SetBSupport(xj, xi) ;4

if (SetBNC*(xi)) then Q← Q ∪ {xi} ;5

if (SetBNC*(xj)) then Q← Q ∪ {xj} ;6

if (c∅ raised) then7

c∅ raised← false ;
foreach xi ∈ X do8

if (SetBNC*(xi)) then Q← Q ∪ {xi} ;9

Function SetBNC*(xi): boolean [Enforce NC*]

changed← false ;
while (bii ≤ bsi) ∧ (c∅ ⊕ (ci(bii)	∆i) ≥ k) do10

bii ← bii + 1 ; changed← true ;11

while (bii ≤ bsi) ∧ (c∅ ⊕ (ci(bsi)	∆i) ≥ k) do12

bsi ← bsi − 1 ; changed← true ;13

ProjectUnary(xi) ;
return changed ;

Procedure SetBSupport(xi , xj) [Find the supports of the bounds of xi w.r.t. cij]

Project(xi, bii, xj) ; Project(xi, bsi, xj) ;

Each variable can be pushed in at most O(d) times into Q, thus the overall
complexity of the line 6 is O(nd2). The program enters in the loop of line 3

at most O(ed) times (given a constraint cij , the program can enter O(d) times
because of xi and O(d) times because of xj) thus the overall complexity of lines 4

and 5 is O(ed2). The line 7 can be true at most k times (otherwise the problem is
detected as inconsistent) and the overall complexity of the line 9 is O(k×n×d).
To sum up, this algorithm takes time O(nd2 + ed2 + knd) = O(ed2 + knd).
However, as the while on line 2 can be true at mostO(nd) times, the foreach on
line 8 cannot loop more than O(n2d) times and the complexity of the line 9 is not
greater than O(n2d2). So the actual time complexity is O(ed2+min{k, nd}×nd),
and if k > nd then it is O(n2d2).

Space complexity: For each binary constraint, we need 4 cost differences
(one for each bound of each variable) and for each variable xi, a cost difference
∆i. Including the space for Q, the overall space complexity is O(e + n).

3.3 Strengthening BAC*

We may want to enforce a stronger local consistency that takes into account the
constraint costs involving values inside the intervals. To keep a reasonable space

complexity, this cost will be projected directly to c∅. Thus we add to the BAC*
property the ∅-inverse consistency (∅IC):

Definition 4. The constraint cij is ∅-inverse consistent if

∃(vi, wj) ∈ D(xi)×D(xj), cij(vi, wj) = 0

(this pair (vi, wj) is called the binary support of c∅). A WCSP is ∅-inverse
consistent if every constraint is ∅-inverse consistent.

Remark that ∅IC is a generalization to a higher arity of the second point of the
NC* property.

When BAC* finds a support wj for lbi w.r.t. cij , it projects the cost cij(lbi, wj)
to the unary constraint ci. The constraint is now ∅IC (the binary support is
(lbi, wj)), but this property is more relevant when enforced first: it directly in-
creases the c∅.

Example 3. Let us resume with the problem on Fig. 2(a). If no cost is men-
tionned on an edge, it is by default 1. We can see on this instance that for any
value of x1 and for any value of x2, the binary constraint yields to a cost not
less than 1. In this case, BAC* would project some binary costs to the bounds
but ∅IC directly projects all of this costs to c∅ (cf. Fig. 2(b)); this guarantees
an increase of the lower bound.

Algorithm 3: Algorithm enforcing BAC* with ∅IC

Procedure SetBSupport(xi , xj) [Add ∅IC to the previous procedure]

ProjectBinary(xi, xj) ;
Project(xi, bii, xj) ; Project(xi, bsi, xj) ;

Procedure ProjectBinary(xi, xj) [Find the binary support of cij]

min← min vi∈I(xi)
wj∈I(xj)

{cij(vi, wj)	 (∆vi
ij ⊕∆

wj

ij ⊕∆ij)} ;

if (min = 0) then return ;
c∅ raised← true ;
∆ij ← ∆ij ⊕min ;
c∅ ← c∅ ⊕min ;
if (c∅ ≥ k) then raise exception ;

Alg. 3 shows the differences with the previous algorithm to enforce BAC*
with ∅IC.

Theorem 2. Alg. 3 takes time O(ed3 + knd) and space O(n + e).

Proof. Correction: We add an invariant to the ones listed in the previous proof:

3. if xi is not in Q, then ∀xj ∈ N(xi), cij has a binary support.

Note that the prerequisite is the same as in the first invariant. This comes from
the fact that, once a binary support has been enforced, only the application of
SetBAC* can break it. As this invariant is enforced in the same time as the first
invariant, the same reasoning applies.

Time complexity: The procedure ProjectBinary takes time O(d2). Thus the
overall complexity of the algorithm becomes O(nd2+ed3+knd) = O(ed3+knd).

Space complexity: As we just store the cost difference, we only need O(e)
extra space to remember the cost that has been projected from a constraint
directly to c∅. The overall space complexity remains the same.

It could be possible to decrease the time complexity in d by using an appro-
priate structure that contains the sorted costs of a constraint. But this would
increase the space complexity by a factor at least of d2, which is unacceptable.
Another possibility to have a faster algorithm is to use the semantics of the
constraints to find the minimum of the function in less than O(d2) time, when
possible, to decrease the complexity. We need a definition to describe easily the
cost propagation:

Definition 5. Given a binary constraint cij , cij(vi, wj) is a border cost if vi =
lbi or vi = ubi or wj = lbj or wj = ubj. It is an interior cost otherwise.

Given a unary constraint ci, ci(vi) is a border cost if vi = lbi or vi = ubi. It
is an interior cost otherwise.

Theorem 3. If the minimum of the binary cost functions can be found in O(d)
time, the complexity of BAC* with ∅IC becomes O(ed2 + knd) with no memory
space increase.

Proof. The main difficulty is that the costs of the constraint can be projected
either to the unary constraints (BAC*) or to c∅ (∅IC). In the latter case, the
minimum is still attained by the same tuple as all costs have uniformly decreased.
In the former case, the actual minimum may be a border cost and each of them
must be checked. There are 4(d − 1) border costs and finding the minimum
amoung interior cost, by assumption, takes O(d) time. ProjectBinary now takes
time O(d) and thus the complexity of the whole algorithm is O(ed2 + knd).

This result is particularly interesting for semi-convex functions (well-known
in temporal constraints with preferences) w.r.t. a single variable, because the
minimum cost is reached by a value on the edge of the cost matrix and so can
be found in O(d) time.

Definition 6. A function ci (resp. cij) is semi-convex [6] iff: ∀e ∈ E, the set

{vi ∈ D(xi) : ci(vi) > e} (resp. {(vi, wj) ∈ D(xi)×D(xj) : cij(vi, wj) > e})

is an interval.

Informally speaking, semi-convex functions have only one peak. An example
of semi-convex function is described Fig. 3(a). The unary semi-convex functions

encompass monotonic functions (cf. Fig. 3(b)) and anti-functional constraints
[7] (cf. Fig. 3(c)). The function on Fig. 3(d) is not semi-convex. An example of
semi-convex function w.r.t. a single variable is x, y 7→ x2 − y2. It is semi-convex
w.r.t. x but not to y.

(a) semi-
convex

(b) semi-
convex

k

(c) anti-
functional

(d) not
semi-
convex

Fig. 3. Characteristics of some functions

If the costs functions are semi-convex w.r.t. every variable, like x, y 7→ x+ y,
the minima can be found in constant time because they are located in the corner
of the cost matrices and we have the following result:

Theorem 4. If the minimum of unary and binary cost functions can be found
in constant time, the complexity of BAC* with ∅IC becomes O(ed+kn) with no
memory space increase.

Proof. To find the binary support of cij in ProjectBinary rapidly, we need to
compute nine minima and compare them: the minimum of the interior of cij , the

minimum of the four borders (excluding the corners) cij(lbi, .)	∆lbi

ij , cij(ubi, .)	

∆ubi

ij , cij(., lbj)	∆
lbj

ij and cij(., ubj)	∆
ubj

ij , and the minimum of the four corners

cij(lbi, lbj)	∆lbi

ij 	∆
lbj

ij , cij(lbi, ubj)	∆lbi

ij 	∆
ubj

ij , cij(ubi, lbj)	∆ubi

ij 	∆
lbj

ij and

cij(ubi, ubj)	∆ubi

ij 	∆
ubj

ij . Thus, ProjectBinary and SetBSupport run in constant
time.

The same idea applies to ProjectUnary. The domain should be split in three
parts (the interior and the two bounds) and the minimum can be found and
projected to c∅ in constant time with the cost differences ∆i. Now we can notice
that the conditions at lines 10 and 12 are true, given a variable, at most d times,
so the overall complexity of lines 11 and 13 is O(nd).

Let us sum up the overall complexities:

– the line 4 takes O(ed),
– the line 5 takes O(ed + nd),
– the line 6 takes O(nd),
– the line 9 takes O(kn + nd),

This proves our theorem.

4 Discussion

Comparison with 2B-consistency: The definition of 2B-consistency, as de-
fined in [2] for numeric non-binary CSP (NCSP) is:

Definition 7. x ∈ X is 2B-consistent if ∀c : D(x)×D(x1)× . . .×D(xr) ∈ C if:

– ∃(v1, . . . vr) ∈ D(x1)× . . .×D(xr), c(lb, v1, . . . , vr) and
– ∃(v1, . . . vr) ∈ D(x1)× . . .×D(xr), c(ub, v1, . . . , vr).

A NCSP is 2B-consistent iff every variable is 2B-consistent.

Obviously, a WCSP such that k = 1 which is BAC* is 2B-consistent.
Besides, it is possible to express a WCSP in classic CSP by reifying the

costs [8].

Definition 8. Consider the WCSP P = 〈S,X ,D, C〉 Let P ′ = 〈X ′,D′, C′〉 be
the classic CSP such that:

– the set X ′ of variables is X augmented with a cost variable x.
E per constraint:

x
ij
E for the binary constraint cij , xi

E for the unary constraint ci;
– the domain of x is D(x) if x is in X , E if x is a cost variable x.

E; the set of
the domains is D′;

– the set C′ of constraints contains:
• the reified constraints c′ij defined by the set of tuples

{(vi, wj , e) : vi ∈ D(xi), wj ∈ D(xj), e = cij(vi, wj)}

• the reified constraints c′i defined by the set of tuples

{(vi, e) : vi ∈ D(xi), e = ci(vi)}

• an extra constraint c′E that applies on the cost variables x.
E

∑

cij∈C

x
ij
E +

∑

ci∈C

xi
E < k

The problem P ′ has a solution iff P has a solution. The aim of enforcing a
property is usually to find inconsistencies as soon as possible. This leads to a
definition of the strength of a consistency:

Definition 9. A property T is at least as strong as another property T ′ iff for
any problem P, when the enforcement of T ′ finds an inconsistency, then T finds
an inconsistency too.

Consider now the little WCSP defined by three variables (x1, x2 and x3) and two
binary constraints (c1,2 and c1,3). D(x1) = {a, b, c, d}, D(x2) = D(x3) = {a, b, c}
(we suppose a ≺ b ≺ c ≺ d) and the costs of the binary constraints are described
Fig. 4. We set k to 2.

The reader can check the reified problem is 2B-consistent. BAC* would detect
an unconsistency by projecting the costs to x1 and reducing little by little its
domain. This shows that BAC* is at least not comparable with 2B-consistency
for reified WCSPs. The existence of a more accurate comparison between these
consistencies is still an open problem.

(x2)

c

b 1

1

1

a b c d

120a

0 2 1

10 2

1

1

2

2

0

0

0

1

1

dc

b

c

(x3)

a 1 2

a b

1

(x1) (x1)

Fig. 4. Two cost matrices

Comparison with AC*: BAC* coupled with ∅IC can be strictly weaker than
AC* even for semi-convex functions. Consider for example the matrix cost in
Fig. 5. It represents the costs of a binary semi-convex function with domain
[a..c]. All the bounds have a support and thus the constraint is BAC* and ∅IC.
But the values b have no support and thus this instance is not AC*.

c

b

a 0 1 0

121

0 1 0

ba c

Fig. 5. A cost matrix

The advantage of BAC with ∅IC is that projecting the minimum of a con-
straint requires only one operation. For the same cost propagation, AC* must
project from the binary constraints to the unary constraints and to the unary
constraints to c∅. Moreover, if AC* does not project all the binary costs on the
same variable, c∅ may even not increase with the same amount.

To take advantage of the efficiency of BAC* with ∅IC and the strength of
AC*, both consistencies can be combined in the same algorithm. Initially, the
set of values is represented by intervals. When they are smaller than a given
value, intervals are transformed into domains and holes are possible. This needs
only minor changes in the code in SetBSupport and SetBNC*.

Extension of BAC* for piecewise functions: BAC* can also be extended
to efficiently handle piecewise monotonic function. It is called piecewise bound
arc consistency:

Definition 10. To apply piecewise bound arc consistency (PBAC*), an interval
I(xi) becomes a set of pi intervals I1(xi), . . . , I

pi(xi) with ∀q ∈ [1..pi], I
q(xi) =

[lbq
i ..ub

q
i]. We also have lb1

i = lbi, ub
pi

i = ubi and ∀q ∈ [1..pi−1], ub
q
i +1 = lb

q+1
i .

A variable xi is piecewise bound node consistent (PBAC*) if:

– ∀q ∈ [1..pi], (c∅ ⊕ ci(lb
q
i) < k) ∧ (c∅ ⊕ ci(ub

q
i) < k) and

– ∃vi ∈
⋃

q∈[1..pi]
Iq(xi), ci(vi) = 0.

A variable xi is piecewise bound arc consistent if:

– ∀q ∈ [1..pi], ∀xj ∈ N(xi), ∃(wj , w
′
j) ∈ I2(xj), cij(lb

q
i , wj) = cij(ub

q
i , w

′
j) = 0,

– it is piecewise bound node consistent.

A WCSP is piecewise bound arc consistent if every variable is piecewise bound
arc consistent.

Even for continuous function, dividing the long intervals into several smaller
ones could notably improve the cost propagation.

5 Experimental results

We have applied BAC* to the problem of non-coding RNA (ncRNA) detection.
RNA sequences can be considered as oriented texts (left to right) over the four
letter alphabet {A, C, G, U}. An RNA molecule can fold on itself through inter-
actions between the nucleotides G–C, C–G, A–U and U–A. Such a folding gives
rise to characteristic structural elements such as helices (a succession of paired
nucleotides), and various kinds of loops (unpaired nucleotides surrounded by
helices).

Thus, the information contained both in the sequence itself and the structure
can be viewed as a biological signal to exploit and search for. These common
structural characteristics can be captured by a signature that represents the
structural elements which are conserved inside a set of related RNA molecules.

We call motif the elements of the secondary structure that define a RNA
family. To a first approximation, a motif can be decomposed into strings (cf.
Fig. 6(a)) and helices (cf. Fig. 6(b)). Two elements can be separated by spacers
(cf. Fig. 6(c)). These elements of description are modeled by soft constraints
and the costs are given by the usual pattern matching algorithms (for strings
and helices) or analytic function (for spacers).

Our aim is to find all the occurrences in the sequence that match the given
motif, and the cost of these solutions. We have tried to detect the structure of
tRNA [10] (cf. Fig. 6(d)), modeled by 16 variables, 15 spacers, 3 strings and
4 helices as well as an IRE motif [11] (cf. Fig. 6(e)) modeled by 8 variables,
7 spacers, 2 strings and 2 helices on parts of the genome of Saccharomyces
Cerevisiæ of different sizes and on the whole genome of Escherichia coli. For
tRNA, we used two different models, the first being much tighter than the second.

For each soft constraint, there is an hard constraint that prunes all the uncon-
sistent values faster through bound arc consistency for classic CSPs. As the helix
is a 4-ary constraint, we used a generalized bound arc consistency to propagate
the costs. ∅IC has been enforced for spacers (which are semi-convex functions)
but not for strings nor for helices. We used a 2.4Ghz Intel Xeon with 8 GB RAM
to solve these instances. The results on our comparison between our algorithm
and the classic AC* are displayed on Fig. 7. For each instance of the problem,
we write its size (10k is sequence of 10.000 nucleotides and the genome of Es-
cherichia coli contains more than 4.6 millions nucleotides) and the number of
solutions. We also show the number of nodes explored and the time in seconds

xi

A G C A C G T T

(a) constraint
strings(xi, ACGT)

xi xj

xl xk

A

T

G

C

C

G

G

C

T

A

C

G

(b) constraint
helix(xi, xj , xk, xl)

xi xj

d nt.

(c) constraint
spacer(xi, xj , d)

x1

x2

x16

x15

x3x4

x5 x6

x13x14

x11

x7

x8 x9

x10

NU

x12

NUUC

NCCA

(d) tRNA

x1

x7

x5

NC

x4

x3 x6

x2

x8

NCAGNGN

(e) IRE

Fig. 6. A few motifs

tRNA, tight definition

Size /] solutions 10k / 16 50k / 16 100k / 16 500k / 16 1M / 24 ecoli / 140

AC* (nodes/time) 23 / 29 35 / 545 - - - -

BAC* (nodes/time) 32 / 0 39 / 0 51 / 0 194 / 1 414 / 2 1867 / 7

tRNA, loose definition

Size /] solutions 10k / 84 50k / 84 100k / 84 500k / 111 1M / 164 ecoli / 702

AC* (nodes/time) 215 / 401 495 / 7041 - - - -

BAC* (nodes/time) 347 / 0 1036 / 1 1775 / 2 8418 / 4 17499 / 8 83476 / 34

IRE

Size /] solutions 10k / 0 50k / 0 100k / 0 500k / 1 1M / 4 ecoli / 8

AC* (nodes/time) 0 / 3 0 / 57 0 / 223 - - -

BAC* (nodes/time) 0 / 0 0 / 0 0 / 0 20 / 0 44 / 2 237 / 8

Fig. 7. Number of nodes explored and time in seconds spent to solve several instances
of the ncRNA detection problem

spent. A “-” means the instance could not be solved due to memory reasons
despite all the memory optimizations.

The reason of the superiority of BAC* over AC* is twofold. First, AC* needs
to store all the unary cost for every variable to project cost from binary con-
straints to unary constraint. Thus, the space complexity of AC* is at leastO(nd).
For very long domains (in our experiment, greater than 50.000 values), the com-
puter cannot allocate sufficient memory and the program is aborted. For the

same kind of projection, BAC* only needs to store the costs of the bounds of
the domains, leading to a space complexity of O(n). A similar conclusion would
have been drawn after a comparison between BAC* and Max-CSP algorithms
like PFC-MRDAC (cf. [12]).

Second, the distance constraints dramatically reduce the size of the domains.
Concretely, when a single variable is assigned, and when all the distance costs
have been propagated, all the other domains have a size that is a constant with
respect to d. As BAC* behaves particularly well with this kind of constraints,
the instance becomes quickly tractable.

6 Conclusions and future work

In this paper we have presented a new local consistency for weighted CSPs, called
bound arc consistency. It is specially devoted to problems with large domains
and time and space complexities are lower than the well-known arc consistencies.
Several extensions have been proposed for constrains with good characteristics,
like semi-convex functions, and ∅IC seems particularly efficient for this kind of
functions. Finally, we showed that maintaining BAC* is much better than AC*
for the problem of ncRNA detection. In the future, we will try to implement
better heuristics for boosting the search.

References

1. Larrosa, J.: Node and arc consistency in weighted CSP. In: Proc. AAAI’02. (2002)
2. Lhomme, O.: Consistency techniques for numeric CSPs. In: Proc. IJCAI 1993.

(1993) 232–238
3. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard

and easy problems. In: Proc. IJCAI 1995. (1995)
4. Larrosa, J., Schiex, T.: Solving Weighted CSP by Maintaining Arc-consistency.

Artificial Intelligence 159 (2004) 1–26
5. Cooper, M., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence

154 (2004) 199–227
6. Khatib, L., Morris, P., Morris, R., Rossi, F.: Temporal constraint reasoning with

preferences. In: Proc. IJCAI 2001. (2001) 322–327
7. Hentenryck, P.V., Deville, Y., Teng, C.M.: A generic arc-consistency algorithm

and its specializations. Artificial Intelligence 57 (1992) 291–321
8. Petit, T., Régin, J.C., Bessière, C.: Meta-constraints on violations for over con-

strained problems. In: Proc. ICTAI’00. (2000) 358–365
9. Bessière, C., Régin, J.C.: Refining the basic constraint propagation algorithm. In:

Proc. IJCAI 2001. (2001) 309–315
10. Gautheret, D., Major, F., Cedergren, R.: Pattern searching/alignment with RNA

primary and secondary structures: an effective descriptor for tRNA. Comp. Appl.
Biosc. 6 (1990) 325–331

11. Gorodkin, J., Heyer, L.L., Stormo, G.D.: Finding the most significant common
sequence and structure motifs in a set of RNA sequences. Nucleic Acids Research
25 (1997) 3724–3732

12. Larrosa, J., Meseguer, P., Schiex, T.: Maintaining reversible DAC for Max-CSP.
Artificial Intelligence 17 (1999) 149–163

MYRIAD: a tool for Preferene ModelingAppliation to Multi-Objetive OptimizationChristophe Labreuhe1 & Fabien Le Hu�ed�e1THALES Researh and Tehnology Frane,Route D�epartementale 128, 91767 Palaiseau edex - Franeffabien.lehuede;hristophe.labreuheg�thalesgroup.omAbstrat. We present a software alled Myriad for MCDA, based on atwo-additive Choquet integral in the ontext of multi-riteria preferenehandling in optimization problems. The parameters of the model aredetermined from the preferential information provided by the deisionmaker. The model an be used in the Elair CP solver to solve multi-riteria ombinatorial problems. A solution an then be assessed by themodel in Myriad, the software helps the deision maker in understandingthe aws and assets of the solution.Keywords: Multi-Criteria Combinatorial Optimization, Choquet inte-gral.1 IntrodutionHandling omplex preferenes is still diÆult in ombinatorial optimization prob-lems. When preferenes between solutions an be taken from an expert aord-ing to the solutions values on a set of attributes, Multi-Criteria Deision Aiding(MCDA) proposes several approahes for expertise modeling. Reently, we inte-grated one of these models in CP in order enhane multi-riteria ombinatorialoptimization [9, 11℄. In this paper, we fous essentially on the tools that aredeveloped in Thales to enable both onstruting and using a preferene model.Multi-Criteria Deision Aiding (MCDA) aims at helping a deision maker(DM) in making up his mind about the assessment of an option or the seletionof the best option among several alternative options, on the basis of several de-ision riteria. This diÆult task requires the use of a preferene model and aproess. The model represents the way the options are assessed and ompared.It formalizes the expertise onstruted from the interview of a DM. The proessformalizes the interation between the DM and the preferene model. On the onehand, the DM provides some preferential information from whih the optimalvalues of the parameters of the preferene model are dedued. This is the disag-gregation phase. On the other hand, the preferene model is run on prototypialor real options, and the results are presented to the deision makers. This is theaggregation phase. These two phases need to be instrumented by a software.Within the Thales group, we deal with many MCDA appliations:� Evaluation problems suh as trainee's evaluation in whih one shall give anassessment of eah option together with a synthesis of its main assets andaws,

� Aquisition problems (produts' design) in whih one shall assess the qualityof a produt on the basis of some riteria and provide some reommendationsabout the most eÆient way to improve the produt,� Classi�ation problems suh as threat or risk assessment, or lassi�ationfrom information oming from several soures, in whih eah option shall beassigned to a ategory,� Optimization problems in whih the ost funtion depends on multiple ri-teria and the set of options is so wide that it is desribed by ombinatoritehniques.Sine these appliations onern mainly experts know-how, the underlying modelmust be versatile and elaborate enough to enompass most ommonly enoun-tered deisional behaviors. Conversely, the model shall not be too ompliatedso that the DM is able to understand the model and the reommendations madefrom it. This leaded us to onstrut an approah based on Multi-Attribute Util-ity Theory (MAUT) [2℄ where an overall utility is omputed for eah option,and the use of the two-additive Choquet integral as an aggregation funtion.The 2-additive Choquet integral is a good ompromise between versatility andease to understand. In addition, as the MAUT model establishes a sore fora solution, it o�ers good integration properties for multi-riteria optimizationtehniques. We present here a tool named MYRIAD developed at Thales forMCDA appliations based on a two-additive Choquet integral.Setion 2 desribes the model used. The disaggregation phase is dealt with inSetion 3 whereas the aggregation one is onsidered in Setion 4. The priniplesof the integration of the Choquet integral in CP are introdued in Setion 5.The last setion shows how these tools an be applied on a multi-riteria tripplanning problem.2 General frameworkFor the sake of simpliity, we assume in this part that the set N = f1; : : : ; ngof riteria is organized in a single level of aggregation. The set of attributes isdenoted by X1; : : : ; Xn. All the attributes are made ommensurate thanks to theintrodution of partial utility funtions ui : Xi ! [0; 1℄. The [0; 1℄ sale depitsthe satisfation of the DM regarding the values of the attributes. An option x isidenti�ed to an element of X = X1 � � � � �Xn, with x = (x1; : : : ; xn). Then theoverall assessment of x is given byU(x) = H(u1(x1); : : : ; un(xn)) (1)where H : [0; 1℄n ! [0; 1℄ is the aggregation funtion. The overall preferenerelation � over X is thenx � y () U(x) � U(y) :

The two-additive Choquet integral is de�ned for (z1; : : : ; zn) 2 [0; 1℄n by [5℄H(z1; : : : ; zn) =Xi 0�vi � 12Xj 6=i jIi;j j1A zi+ XIi;j>0 Ii;j zi ^ zj + XIi;j<0 jIi;j j zi _ zj (2)where vi is the relative importane of riterion i and Ii;j is the interation be-tween riteria i and j, ^ and _ denote the min and max funtions respetively.Assume that zi < zj . A positive interation between riteria i and j depits om-plementarity between these riteria (positive synergy) [5℄. Hene, the lower soreof z on riterion i oneals the positive e�et of the better sore on riterion j toa larger extent on the overall evaluation than the impat of the relative impor-tane of the riteria taken independently of the other ones. In other words, thesore of z on riterion j is penalized by the lower sore on riterion i. Conversely,a negative interation between riteria i and j depits substitutability betweenthese riteria (negative synergy) [5℄. The sore of z on riterion i is then savedby a better sore on riterion j.Figure 1 shows two representations of the Choquet integral on two riteria.The �rst urve represents a ase where the interation between the two riteriais positive (they are said to be omplementary). It models a preferene relationwhere a solution has to be good on both riteria to be onsidered good. Onthe ontrary, the right hand urve models substitutive riteria (i.e., negativeinteration). In this ase, a solution is onsidered good by the expert as soon asit is good on one riterion.

0 1

0

1u 2

u 1

C (u , u)=vµ 1 2

0 1

0

1u 2

u 1

C (u , u)=vµ 1 2

Complementary criteria modelled with
the Choquet integral

Substitutive criteria modelled with
the Choquet integralFig. 1. Level urves of the Choquet integral for the aggregation of two riteria

3 The disaggregation phaseAs said earlier, the aim of the disaggregation phase is to onstrut a preferenemodel suh as (1) ombined with (2) from interviews of the DM. Three stagesare needed.The �rst stage is the struturing phase. It onsists in determining the stakesthat are involved and identifying the potential viewpoints. Cognitive maps anbe used to help in making the right riteria emerge in a bottom-up approah.We obtain a hierarhy struture of the riteria where the root orresponds tothe overall aggregation (highest level of aggregation) and the leaves are theattributes. This hierarhy is entered in Myriad.The seond stage aims at onstruting the partial utility funtions ui. Whenaggregation funtionH is a weighted sum, the independene of the riteria makesit possible to separate the riteria and fous on a riterion i for the onstrutionof its assoiated utility funtion ui, forgetting the other riteria and the multi-riteria nature of the problem during this phase. The MACBETH approah [1℄is a method that is onsistent in a measurement standpoint for the onstrutionof the interval sale ui. Due to the use of an aggregation funtion allowinginteration between riteria, isolating the riteria annot be arried out so thatone annot ask to the DM, information regarding diretly ui. It has been showedin [8℄ that the utility funtions ui an be onstruted from information relatingon the overall preferene relation �, generalizing the MACBETH approah (seeFigure 2).Let us give a little bit more details on that. An interval sale is given upto a dilation and a shift. In order to �x the two degrees of freedom in eahutility funtion ui, the idea is to identify two elements of Xi that are perfetlysatisfatory for the DM (denoted by 1i) and unaeptable for the DM (denoted by0i), and to �x ui(1i) = 1, ui(0i) = 0. We have shown in [8℄ that asking questionsabout the di�erene of satisfation between the two ats (xi;0Nni) and (yi;0Nni),for all xi; yi 2 Xi enables us to onstrut ui whatever the interation betweenriteria may be. In the Mabeth methodology, the deision maker is asked to givean assessment of the di�erene of satisfation between any two ats (xi;0Nni)and (yi;0Nni) (for all xi; yi 2 Xi) in the ordinal sale omposed of 6 elements:fvery small, small, mean, large, very large, extremeg [1℄.The last stage onerns the determination of the parameters of the aggrega-tion model, that is the importane and interation indies of the two-additiveChoquet integral. The DM enters in MYRIAD preferential information abouteah aggregation level omposed of a mix of the following three types of data.� the DM prefers an option to another one;� the DM gives an overall assessment to an option;� the DM gives some information diretly the importane or the interationindies, for instane a riterion is more important than another one, a rite-rion is important (i.e. vi > 1=n), or the interation between two riteria ispositive.An algorithm then �nds the optimal parameters assoiated with previous infor-mation. The algorithm implemented in MYRIAD is lose to the method devel-oped by J.L. Marihal [5℄. The information provided by the DM may be inon-

sistent in the sense that there might be no value of the parameters satisfying theinformation provided by the DM. In this ase, the preferential information thatis at the origin of the inonsisteny are extrated and showed to the DM.One the model is thoroughly spei�ed, an interpretation of this model anbe displayed to the DM, in terms of the most/less important riteria, and thepairs of riteria for whih the interation is positive/negative. The DM has thena better insight on the preferene model obtained. He an turn bak to stage 2or 3 if he desires to hange the model.4 The aggregation phaseThe aggregation step is essential for Evaluation or Aquisition problems. It on-sists in applying the preferene model obtained previously on one or severaloptions. This step is not restrited to the omputation of the utilities of eahoption on all elementary riteria and aggregation funtions. In order that theassessments and omparisons arried out during the aggregation phase help theDM in validating or rejeting some preferene information, the results must beexplained. The DM wants to understand preisely the results of the omputa-tions by the model. The major point onerns the aggregation part.A graphial representation of the aggregation by the two-additive Choquetintegral is presented in MYRIAD. Let us look at expression (2). From the mono-toniity properties on the importane and interation indies, one has8i 2 N ; vi � 12Xj 6=i jIi;j j � 0 ;XIi;j>0 Ii;j + XIi;j<0 jIi;j j+Xi 0�vi � 12Xj 6=i jIi;j j1A = 1Hene all oeÆients appearing in (2) are non-negative and they sum-up to one.Expression (2) is thus a onvex sum H(z) =Pk �khk(z), where only three typesof deisional behaviors are present: zi ^ zj (intolerant behavior haraterizinga positive synergy between i and j), zi _ zj (tolerant behavior haraterizing anegative synergy between i and j), and zi (linear term orresponding to riterioni taken alone).One an \plot" the result ofH in a pie-hart in whih eah segment representsan elementary behavior hk (see Figure 6). The aperture of the segment relatedto hk is 2��k, and this segment is overed at rate hk(z). Hene, the surfaeovered by this segment is �khk(z) so that the overall overing of the disk ispreisely H(z). This graphial representation makes it easy to understand whyresult H(z) is rather high (the disk is pretty �lled up) or low (the disk is almostempty). This graphial representation is displayed in MYRIAD.A semanti explanation is also determined. This argumentation aims at pre-senting to the elementary deision behaviors that are really at the origin of theevaluation made [7℄. These arguments are returned in one or more sentenes inMYRIAD (see Figure 6).In some irumstanes, the options are not �xed and an be modi�ed andimproved in some ways. We an think of trainees that an improve themselves,

or of an industrial produt that we want to be as lose as possible to the us-tomers' needs. In this ase, the DM is not only interested in an assessment of theoptions. This appears essential in the aquisition yle. Some reommendationsshall provide the most promising improvement ways. We develop an approahbased on a sensitivity analysis performed on eah oalition of riteria [4, 6℄. Thedetermination of the riteria on whih it is the most rewarding to improve anoption is far more ompliated than just itemizing the riteria on whih theoption has bad marks. Atually, it depends on the aggregation funtion H . Ifthe aggregation is the minimum operator (the DM is very intolerant), it is learthat the only riterion on whih an at shall be improved is the riterion thathas the smallest sore. If the aggregation funtion is the maximum (the DM isvery tolerant), the option shall be improved �rst on the riterion that has thelargest sore. Finally, if the aggregation funtion is a weighted sum, ats shallbe improved �rst on the most important riterion. In [6℄, we have de�ned anindiator !A(H; x) whih measures the worth to improve option x w.r.t. H onsome riteria A as follows!A(H; x)=Z 10 H�(1� �)xA + �; xNnA��H(x)EA(�; x) d�where EA(�; x) is the e�ort to go from the pro�le x to the pro�le ((1� �)xA +�; xNnA). Funtion !A(H; x) depits the average improvement ofH when the ri-teria of oalition A range from xA to 1A divided by the average e�ort needed forthis improvement. We assume generally that EA is of order 1, that is EA(�; x) =�Pi2A(1�xi). The expression of !A(H; x) whenH is a Choquet integral is givenin [6℄. We reommend the DM to improve of oalition A for whih !A(H; x) ismaximum (see Figure 7).5 Optimization phaseFor ombinatorial optimization problems, the integration of the general Cho-quet integral in Constraint Programming has been introdued in [9℄. The samepriniples an be used to integrate any multi-riteria aggregation funtion [12℄.Integrating this model redues the multi-riteria optimization problem into amono-objetive maximization problem.In summary, we onsider n utility variables u1; : : : ; un 2 [0; 1℄ that are on-neted with the attributes of the problem by the utility funtions (modeled withpieewise linear onstraints in our ase). The global evaluation that will be op-timized is modeled by the variable y 2 [0; 1℄. We aim to establish and propagatethe equality between the y variable and the aggregation of u1; : : : ; un with afuntion H. Mathematially, we want to enfore:y = H(u1; : : : ; un)Let us denote Aggregation(H; y; fu1; : : : ; ung) a global onstraint that aims atenforing this relation. The propagation of Aggregation an be ahieved by main-taining the ar-B-onsisteny on this onstraint. Let us denote [x; x℄ the domainof a variable x.

De�nition 1. (Ar-B-onsisteny) [10℄Given a onstraint over q variables x1; : : : ; xq, and a domain di = [xi; xi℄for eah variable xi, is said to be \ar-B-onsistent" if and only if for anyvariable xi and eah of the bound values vi = xi and vi = xi, there exist val-ues v1; : : : ; vi�1; vi+1; : : : ; vq in d1; : : : ; di�1; di+1; : : : ; dq suh that (v1; : : : ; vq)holds.Ar-B-onsisteny is weaker than the ar-onsisteny property. This is veri�edwhen, for eah value in the domain of eah variable, there is a set of values inthe domain of the other variables that veri�es the onstraint.If we suppose the monotoniity and the ontinuity of the funtion H, wean verify that an Aggregation onstraint is ar-B-onsistent by heking twoonditions per variable:Proposition 1. (Ar-B-onsisteny with respet to the Aggregation onstraint)Let H be an inreasing ontinuous aggregation funtion and C =Aggrega-tion(H; y; fu1; : : : ; ung) be an Aggregation onstraint. C is Ar-B-onsistent ifand only if the following four onditions hold:(A) y � H(u1; : : : ; un)(B) y � H(u1; : : : ; un)(C) 8k 2 f1; : : : ; ng : H(u1; : : : ; uk�1; uk; uk+1; : : : ; un) � y(D) 8k 2 f1; : : : ; ng : H(u1; : : : ; uk�1; uk; uk+1; : : : ; un) � yNote that for suh a ontinuous funtion on numeri variables then hekingar-B-onsisteny also ensures that the onstraint is ar-onsistent [10℄.Nevertheless, integrating a multi-riteria aggregation funtion in a CP solverraises the problem of de�ning searh heuristis to quikly �nd good solutions.Sine riteria are often ontraditory, it is diÆult to �nd a single searh strat-egy that is good for all of them. In [11℄, we proposed a searh framework thatalternates various searh strategies (one per riterion) to build more eÆient androbust algorithms in multi-riteria optimization.6 Appliation to the trip planning problemWe present an appliation of the softwares on a trip planning problem. Thisproblem onsists in onstruting a tour in a ountry during a given number ofdays. A tour is omposed of ities (one ity per day in the tour), ativities in theities (two per day) and hostels. It has to verify maximum distane onstraintsbetween onseutive ities as well as an overall maximum distane onstraint forthe tour. Eah ativity is lassi�ed in one ategory among fSightseeing, Museum,Sport, Entertainmentg. The objetive here is to �nd a tour that o�ers variouskind of ativities, as muh omfort as possible in the hostels and minimizes theaommodation osts.The quality of a tour is given by a two level multi-riteria model. First ofall, a tour is assessed with respet to the diversity of its ativities. Then theoverall evaluation aggregates the ativities aspets with the ost and omfortonsiderations.

6.1 The disaggregation phaseThe riteria hierarhy is given in Figure 2. Letters u, and a denote universes(i.e. attributes), riteria and aggregation funtions respetively.

Fig. 2. Criteria hierarhy.Utility funtions The evaluation on an ativity riterion relies on the aver-age number of time this lass of ativity is planned per day. The same utilityfuntion is given for eah lass. For a given lass of ativity, the 0 element or-responds to no ourrene in the planning and the 1 element orresponds to oneourrene per day in average. For a lass of ativity i, the DM feels that thedi�erene between (0i;0�i) and (0:25;0�i) and the di�erene between (0:5;0�i)and (1i;0�i) are small. On the ontrary, the di�erene between (0:25;0�i) and(0:5;0�i) is onsidered large. Hene, onsidering for instane riterion \Sight-seeing", we obtain the following values : u1(0) = 0, u1(0:25) = 0:2, u1(0:5) = 0:8and u1(1) = 1 (see Figure 3). We obtain similar utility funtions on the otherativity riteria.Regarding the other riteria, the ost riterion relies on the average roomprie per day. For the omfort point of view, only the minimum of all hostelsategory in the tour is onsidered. Aording to these attributes, the seondstage of the disaggregation phase results in the utility funtions of Figure 4.Aggregation \Ativities" Considering the aggregation of the vetor of ativ-ity riteria (Sightseeing, Museum, Sport, Entertainment):

Fig. 3. The utility funtion on riterion \Sightseeing".� The DM �rst expresses a omplementarity between all riteria, givingfour examples of omparisons between virtual alternatives:8i 2 f1; : : : ; 4g; U((1i; 0�i)) < U((0:25; 0:25; 0:25; 0:25)� Then, the DM gives the following examples:U(1; 0; 1; 1) > U(0:5; 0:5; 1; 1)U(0; 1; 1; 1) > U(0:5; 0:5; 1; 1)to express redundany between Sightseeing and Museum. Two othersimilar omparisons are given to express redundany between Sport andEntertainment.This gives the preferential information used to ompute the parameters of the2-additive apaity (Figure 5).The following tables give respetively the Shapley index vi (relative impor-tane of riterion i) and the interation index Ii;j obtained.riterion viSight. 0.25Mus. 0.25Sport 0.25Ent. 0.25 Ii;j Sight. Mus. Sport Ent.Sight. 0 -0.15 0.175 0.175Mus. 0 0.175 0.175Sport 0 -0.15Ent. 0From these results we an onlude that all riteria are equally important.Considering the interation indies:� As required, the pairs of riteria (Sightseeing, Museum) and (Sport,Entertain-ment) are redundant. This means that the Ativities riterion will be wellsatis�ed if in the above pairs, one of the riteria is satis�ed.

Fig. 4. Utility funtions on riteria \Cost" and \Comfort".� Four pairs of riteria have a positive interation, whih means that for eahpair, both riteria need to be simultaneously satis�ed in order to get a goodevaluation for Ativities.� There is no veto nor favor among the set of riteria. This means that oneannot make a quik analysis to see whether the rihness is either good orbad, looking only at one or two riteria.Aggregation Evaluation Evaluation aggregates the Ativities, Cost and Com-fort riteria.� First of all, the DM stipulates that Ativities is a veto:U(0; 1; 1) = 0

Fig. 5. Example of preferential information.

In other words, a trip that does not propose any ativity is not interesting,whatever may be the sores on the other riteria.� This information also brings:U(0:3; 0:6; 0:6) < U(0:6; 0:3; 0:3)but, reduing the performane of riteria Cost and Comfort in the rightalternative auses the left one to be preferred:U(0:3; 0:6; 0:6) > U(0:6; 0; 0)� Then, the DM indiates the following relative importane for the riteria:Importane(Ativities) > Importane(Cost) > Importane(Comfort)� Finally, he spei�es the tradeo� between Cost and Comfort with thefollowing omparison on the attribute spae:(1; 1; 1; 1; 50; 2)� (1; 1; 1; 1; 90; 4)The parameters alulated for these examples are given in the following tables:riterion viAt. 0.64Cost 0.2Comf. 0.16 Ii;j At. Cost Comf.At. 0 0.4 0.32Cost 0 0Comf. 0As for the previous aggregation, Myriad provides an Analysis of these param-eters. Conerning the importane of riteria, it is lear that the most importantriterion is Ativities. The less important one is Comfort. The most omplemen-tary pairs of riteria are (At.,Cost) and (At.,Comf.). Ativities is a strit vetoand there are also lighter veto e�ets on Cost and Comfort. This mean thatas soon as one riterion is not well satis�ed (espeially if it is Ativities), thesolution annot be good.This analysis helps in knowing what are a priori the most important riteriaand ways to ombine riteria in order to �nd good solutions or design newproduts.6.2 Optimization phaseThe above preferene model is then implemented in the Elair solver. The im-plemented onstraint model is quite simple and mainly based on the elementonstraint. These models are run on an instane omposed of 11 ities and 2 to 6ativities and hostels per ity to �nd a 6 day trip planning. An optimal solutionis found for this evaluation in 40 s. with the following harateristis:Attribute ValueNb. Sightseeing ativities 3Nb. Museums 3Nb. Sport ativities 3Nb. Entertainment ativities 3Aommodation ost 410Minimum omfort 3
Criterion ValueSightseeing 0.8Museums 0.8Sport 0.8Entertainment 0.8Ativities 0.8Cost 0.62Comfort 0.8Evaluation 0.73

The DM an then simply take the solution if it is onsidered satisfatory,or he an operate an aggregation phase in Myriad to investigate further on thissolution.6.3 The aggregation phaseAs said before, the aggregation phase is mainly used on Evaluation or aquisitionproblems to ompare solutions.In optimization, the DM an go a little deeper in the solution. Figure 6shows an explanation of the overall assessment of the solution found with thesame tehnique as desribed in [7℄, together with the pie hart we told aboutin Setion 4. The pie hart learly shows the segment on whih the solutionbehaves well or not. The DM an reat on that. If he disagrees on some points,he an go bak to the disaggregation phase and hange or enrih the preferentialinformation. This is an interesting tool to make the DM reat about the model.

Fig. 6. Assessment of the optimization result.When the DM validates the evaluation made, he may be interested in thesensibility analysis so that to help him in enrihing his data to allow bettersolutions to be onstruted. He wants to know on whih riteria it is the mostrewarding to improve the solution in order to improve as muh as possible itsevaluation. To this end, we present the values of the worth indiator ! desribedin Setion 4. Coalitions worthCost 0.65Sightseeing & Museums & Sport & Entertainment & Comfort 0.37

The reommendation is that the solution should be improved �rst on \Cost".This may not always be the riterion on whih the solution has the worst sore.It has a strong positive synergy with Ativities and has a smaller sore thanthis riterion so this reommendation makes sense. All the other riteria havethe same satisfation level and are implied in many omplementarity phenom-ena. Hene, improving only one will not improve the onjuntive deision termsbetween them. It is more rewarding to improve them simultaneously than onlyone, even for a higher value.Thus, the DM has greater interest in looking for new 3* hostels with betterpries than for new ativities.

Fig. 7. Promising improvement reommendations for the solution7 ConlusionIn this paper we tried to introdue the modeling and solving of a multi-riteriaoptimization problems as it is performed in Thales. Although the followed multi-riteria methodology is not new in MCDM, we tried to illustrate it on a detailedase study in order to give a good view of its priniples to the CP ommunity.We also realled that this model integrates quite naturally in CP as it uses asingle objetive funtion that aggregates the problem riteria.Referenes1. C.A. Bana e Costa, and J.C. Vansnik. Appliations of the MACBETH approahin the framework of an additive aggregation model. J. of Multi-Criteria Deision

Analysis 6 (1997) 107-114.2. R.L. Keeney and H. Rai�a. Deision with Multiple Objetives. Wiley, New York,1976.3. M. Grabish and C. Labreuhe. Fuzzy measures and integrals in MCDA. J. Figuera,S. Greo, M. Erghott (Eds.), Multiple Criteria Deision Analysis: state of the artsurveys, Sringer, 2005.4. C. Labreuhe, and M. Grabish. How to improve ats: an alternative representationof he importane of riteria in MCDA. Intern. J. of Unertainty and KnowledgeBased Systems, 9(2):145-157, 2001.5. M. Grabish, T. Murofushi and M. Sugeno, Fuzzy measures and integrals, Physia-Verlag, Heidelberg, New York, 2000.6. C. Labreuhe. Determination of the riteria to be improved �rst in order to improveas muh as possible the overall evaluation. Conf. IPMU 2004, pp. 609-616, Perugia,Italy.7. C. Labreuhe. Argumentation of the results of a multiriteria evaluation model inindividual or group deision making. Conf. EUSFLAT 2005, submitted.8. C. Labreuhe, and M. Grabish. The Choquet integral for the aggregation of in-terval sales in multi-riteria deision making, Fuzzy Sets & Systems, 137:11-26,2003.9. Le Hu�ed�e, F., G�erard, P., Grabish, M., Labreuhe, C., Sav�eant, P.: Integrationof a Multiriteria Deision Model in Constraint Programming. In Brabble, B.,Koehler, J., Refanidis, I., eds.: Proeedings of the AIPS'02 Workshop on Planningand Sheduling with Multiple Criteria, Toulouse, Frane (2002) 15{2010. Lhomme, O.: Consisteny tehniques for numerial CSPs. In: Proeedings of IJCAI1993, Chambery, Frane (1993) 232{23811. Le Hu�ed�e, F., Grabish, M., Labreuhe, C., Sav�eant, P.: MCS - a new algorithm forMultiriteria Optimisation in Constraint Programming. Speial issue on Multiob-jetive Disrete and Combinatorial Optimization, Annals of OR (2005) (submitted)12. Le Hu�ed�e, F.: Int�egration d'un mod�ele d'Aide �a la D�eision Multirit�ere en Pro-grammation Par Contraintes. PhD thesis, Universit�ee Paris 6 (2003)

Relaxations of Semiring Constraint Satisfaction
Problems

Louise Leenen1, Thomas Meyer2, and Aditya Ghose1

1 Decision Systems Laboratory
School of IT and Computer Science
University of Wollongong, Australia

{ll916,aditya}@uow.edu.au
2 National ICT Australia

School of Computer Science and Engineering
University of New South Wales, Sydney, Australia

thomas.meyer@nicta.com.au | tmeyer@cse.unsw.edu.au

Abstract. The Semiring Constraint Satisfaction Problem (SCSP) frame-
work is a popular approach for the representation of partial constraint
satisfaction problems. In this framework preferences can be associated
with tuples of values of the variable domains. Bistarelli et al. [1] define
an abstract solution to a SCSP which consists of the best set of solution
tuples for the variables in the problem. Sometimes this abstract solu-
tion may not be good enough, and in this case we want to change the
constraints so that we solve a problem that is slightly different from the
original problem but has an acceptable solution. We propose a relaxation
of a SCSP, and use a semiring to give a distance measure between the
original SCSP and the relaxed SCSP.

1 Introduction

There has been considerable interest over the past decade in over-constrained
problems, partial constraint satisfaction problems and soft constraints. This has
been motivated by the observation that with most real-life problems, it is difficult
to offer a priori guarantees that the input set of constraints to a constraint solver
is solvable. In part, this is because many real-life problems are inherently over-
constrained. In part, this is also because it is difficult for human users to peruse
a given set of constraints that might have been obtained for a given problem to
determine if it is solvable. In the general case, constraint solvers must be able to
deal with problems that are potentially over-constrained. The key challenge in
dealing with an over-constrained problem is identifying appropriate relaxations
of the original problem that are solvable. Early approaches to such relaxations
largely focussed on finding maximal subsets (with respect to set cardinality) of
the original set of constraints that are solvable (such as Freuder and Wallace’s
work on the MaxCSP problem [2]). Subsequent efforts considered more fine-
grained notions of relaxation, where entire constraints did not have to be removed
from consideration. Examples of such efforts include the HCLP framework [3],
Fuzzy CSPs [4] and Probabilistic CSPs [5].

Bistarelli et al. [1] proposed an abstract semiring CSP scheme (henceforth re-
ferred to as the SCSP framework) that generalized most of these earlier attempts,
while making possible to define several useful new instance of the scheme. The
SCSP scheme assumes the existence of a semiring of abstract preference values,
such that the associated multiplicative operator is used for combining preference
values, while the associated additive operator is used for comparing preference
values. While a classical constraint defines which combinations of value assign-
ments to the variables in its signature are allowed, an SCSP constraint assigns
a preference value to all possible value assignments to the variables in its sig-
nature. These preferences implicitly define a relaxation strategy (“try to satisfy
the constraint using the most preferred tuples, else try the next most preferred
tuples” and so on). Note that the actual mechanism is somewhat more involved
than this informal expository description, because the semiring preference values
are partially ordered in the general case.

Our aim in this paper is to define how an SCSP might be relaxed. At first
blush, this might appear counter-intuitive, since an SCSP is intended to define
how soft constraints are relaxed. We will explain our motivations by describing it
in terms of a generic optimization problem (C,O), defined by a set of constraints
C and an objective function O. Assume that we have been given a lower bound
on the value of the optimal solution (e.g., a minimal threshold on profit by
a business unit set by management). Consider a situation where the optimal
solution obtained fails to meet this threshold (e.g., the optimal profit figure falls
short of the profit target). We are interested in seeking a new (and potentially
relaxed) set of constraints C ′ that is minimally different from the original set C
(under some notion of minimal difference that we will leave undefined for the time
being), such that the revised optimization problem (C ′, O) admits an optimal
solution that satisfies the threshold. The revised (or relaxed) set of constraints C ′

is potentially very useful, because it can point to minimal changes in the physical
reality being modeled by the constraints, which, if effected, would permit us to
meet the threshold on the value of the objective function.

In this paper, we attempt such an exercise in the context of SCSPs. A SCSP
does not have an explicit objective function. Objectives are implicitly articulated
(in a distributed fashion) via the preferences over tuples in each SCSP constraint.
Instead of an optimal solution, we are able to articulate the preference values of
the (potentially many) “best” solutions to an SCSP. The version of the problem
that we address in this paper is as follows. Consider an SCSP P and a threshold
β on the preference value of the “best” solution(s) to P . Assume that the “best”
solutions to P fall short of this threshold. We define a mechanism by which we
may “minimally” alter (i.e. relax) P to obtain a P ′ such that it admits a “best”
solution that meets this threshold. We will use as a running example a problem
involving a hotel that is currently unable to attain a five-star rating and that is
interested in determining the minimal changes required to its infrastructure in
order to achieve such a rating. In this example, the star rating of the hotel is
modeled via semiring preference values.

The rest of this paper is organized as follows. In Section 2 we describe the
SCSP framework. In Section 3 we describe our proposals by defining what a good
enough solution is, and how to find a suitable relaxation for a SCSP. In Section
4 we compare our proposal with the Metric SCSPs of [6]. Section 5 contains the
conclusion and a discussion of our future research.

2 The SCSP Framework

When we deal with constraints, the type of semirings that are used are called c-
semirings. Bistarelli et al. [1] define a c-semiring, a constraint system, a constraint
and a constraint problem w.r.t. c-semirings. They also define combination and
projection operations in order to define a solution to a SCSP. These definitions
follow below.

Definition 1. A c-semiring is a tuple S = 〈A, +, ×, 0, 1〉 such that

– A is a set with 0,1 ∈ A;
– + is defined over (possibly infinite) sets of elements of A as follows 3:

• for all a ∈ A,
∑

({a}) = a;
•

∑
(∅) = 0 and

∑
(A) = 1;

•
∑

(
⋃

Ai, i ∈ I) =
∑

({
∑

(Ai), i ∈ I}) for all sets of indices I (flattening
property);

– × is a commutative, associative, and binary operation such that 1 is its unit
element and 0 is its absorbing element;

– × distributes over + (i.e., for any a ∈ A and B ⊆ A, a ×
∑

(B) =∑
({a× b, b ∈ B})).

The elements of the set A are the preference values to be assigned to tuples
of values of the domains of constraints. The operator × is used to combine
constraints in order to find a solution (i.e. a single constraint) to a SCSP, and
the operator + is used to define the projection of a tuple of values for a set
of variables onto a tuple of values for the variables in a constraint. It is now
possible to derive a partial ordering 6S over the set A: α 6S β iff α + β = β.4

This partial ordering will be used to to distinguish the maximal solution(s) in
our constraint problems. The element 0 is the minimum element in the ordering,
while the element 1 is the maximum element.

Definition 2. A constraint system is a 3-tuple CS = 〈Sp, D, V 〉, where Sp =
〈Ap, +p, ×p, 0, 1〉 is a c-semiring, V is an ordered finite set of variables, and
D is a finite set containing the allowed values for the variables in V.

For each tuple of values (of D) for the involved variables of a constraint, a
corresponding element of Ap is assigned.

3 When + is applied to sets of elements, we will use the symbol
P

in prefix notation.
4 Singleton subsets of the set A are represented without braces.

Definition 3. Given a constraint system CS = 〈Sp, D, V 〉, where Sp=〈Ap,
+p,×p,0,1〉, a constraint over CS is a pair c = 〈defp

c , conc〉 where conc ⊆ V is
called the type of the constraint, and defp

c : Dk → Ap (where k is the cardinality
of conc) is called the value of the constraint.

We now have the building blocks required to define a SCSP.

Definition 4. Given a constraint system CS = 〈Sp, D, V 〉, a Semiring Con-
straint Satisfaction Problem (SCSP) over CS is a pair P = 〈C, con〉 where C is
a finite set of constraints over CS and con =

⋃
c∈C conc We also assume that

〈defp
c1

, conc〉 ∈ C and 〈defp
c2

, conc〉 ∈ C implies defp
c1

= defp
c2

.

Consider the following example that is used throughout this paper.

Example 1. A hotel chain acquires a star rating that is an accumulative rating
of the different branches. Currently it has a four star rating and it aims for a
five star rating. There are various renovations that can be done at branches to
increase the rating of the hotel: 1) Lay new carpets, 2) Upgrade a swimming
pool, or 3) Paint the building.

The manager of the hotel chain has to choose which (minimal) renovations to
do at which branches under certain restrictions (such as the budget, renovations
needed at each branch, and the constraints of the renovating teams). This prob-
lem can be expressed as a CSP. We can then add a semiring structure to allow
the manager to express his preferences for particular tuples of domain values
of the constraints. The hotel chain consist of three branches which are denoted
by X, Y and Z. To avoid unnecessary disruptions, the manager wants at most
one renovation job at a time to be performed at a particular branch, and as few
renovation jobs in total as possible.

This problem can be expressed as a SCSP: a constraint system CS = 〈Sp,
D,V 〉 and a SCSP P = 〈C, con〉, where V = con = {X, Y, Z}, D = {0, 1, 2, 3},
C = {c1, c2, c3}, and Sp = 〈{0, 0.25, 0.5, 0.75, 1},max,min, 0, 1〉.

The value of a decision variable indicates which job is to be done at a par-
ticular branch: let re-carpeting be represented by the value 1, pool renovation
by the value 2, and painting by the value 3. The value 0 represents no job being
done at a particular branch. A renovation job with a higher value will contribute
more towards a higher star rating. Assume there are three binary constraints,
c1 = 〈defp

c1
, {X, Y }〉, c2 = 〈defp

c2
, {Y, Z}〉, and c3 = 〈defp

c3
, {X, Z}〉. The tuples

in the domains of these constraints together with their preference values (i.e.
associated c-semiring values) are given in Table 1.

Note that the manager can assign any value in the set of the c-semiring to
a tuple. His choice of value represents the desirability of that particular tuple.
Consider the entry defp

c1
(〈0, 2〉) = 0.75. The tuple 〈0, 2〉 is a tuple of values for

constraint c1 that represents the case where no renovation is to be done at branch
X while branch Y is to be painted. The assigned preference value of 0.75 is high
and this indicates that it is an option that is preferred, for instance, to the one
represented by the tuple 〈1, 1〉 with its value of 0.5. This tuple (〈1, 1〉) represents
the case where both branches X and Y are to be re-carpeted. Also consider the

Table 1. Constraint Definitions

t defp
c1(t) defp

c2(t) defp
c3(t)

〈0, 0〉 0.25 0 0

〈0, 1〉 0.5 0 0

〈0, 2〉 0.75 0 0.75

〈0, 3〉 1 0.75 0

〈1, 0〉 0.5 0 0

〈1, 1〉 0.5 0 0.5

〈1, 2〉 0.75 0.25 0

〈1, 3〉 0 0.5 0

〈2, 0〉 0.75 0 0.75

〈2, 1〉 0.75 0.25 0

〈2, 2〉 0 0.5 0

〈2, 3〉 0 0.5 0

〈3, 0〉 1 0.75 0

〈3, 1〉 0 0.5 0

〈3, 2〉 0 0.5 0

〈3, 3〉 0 0.5 0

assigned preference values for constraint c3 (the values in the last column): the
manager prefers either one of the tuples 〈0, 2〉 or 〈2, 0〉 over any other tuples.
These tuples represent the cases where the swimming pool at either branch X
or branch Z is to be upgraded. Laying new carpets at both branches X and Z
is the only other acceptable choice for constraint c3. A tuple with an associated
value of 0 is highly undesirable.

The values specified for the tuples of each constraint are used to compute
values for the tuples of the variables in the set con according to the semiring
operations; multiplication and addition. The multiplicative operation is used
to combine the c-semiring values of the tuples of each constraint to get the c-
semiring value of a tuple for all the variables, and the additive operation is used
to obtain the value of the tuples of the variables in the type of the problem.

Definition 5. Given a constraint system CS = 〈Sp, D, V 〉 where V is totally
ordered via �, consider any k-tuple t = 〈t1, t2, . . ., tk〉 of values of D and two
sets W = {w1, . . ., wk} and W ′ = {w′

1, . . ., w′
m} such that W ′ ⊆ W ⊆ V and

wi � wj if i ≤ j and w′
i � w′

j if i ≤ j. Then the projection of t from W to W ′,
written t ↓W

W ′ , is defined as the tuple t′ = 〈t′1, . . ., t′m〉 with t′i = tj iff w′
i = wj.

The following definition defines the operation of combining two constraints to
form a single constraint. We will use this operation to combine all the constraints
in a problem into a single constraint.

Definition 6. Given a constraint system CS = 〈Sp, D, V 〉 where Sp = 〈Ap,
+p, ×p, 0, 1〉 and two constraints c1 = 〈defp

c1
, conc1〉 and c2 = 〈defp

c2
, conc2〉

over CS, their combination, written c1 ⊗ c2, is the constraint c = 〈defp
c , conc〉

with conc = conc1 ∪ conc2 and defp
c (t) = defp

c1
(t ↓conc

conc1
)×p defp

c2
(t ↓conc

conc2
).

The operation ⊗ is commutative and associative because × is. We can extend
the operation ⊗ to more than two arguments, say C = {c1, ..., cn}, by performing
c1 ⊗ c2 ⊗ ...⊗ cn, which we will denote by (

⊗
C).

Definition 7. Given a constraint system CS = 〈Sp, D, V 〉, where Sp = 〈Ap,
+p, ×p, 0, 1〉, a constraint c = 〈defp

c , conc〉 over CS, and a set I of variables
(I ⊆ V), the projection of c over I, written c ⇓ I, is the constraint c′ = 〈defp

c′ ,
conc′〉 over CS with conc′ = I ∩ conc and defp

c′(t
′) =

∑
{t|t↓conc

I∩conc
=t′} defp

c (t).

A solution to a SCSP can now be defined.

Definition 8. Given a SCSP P = 〈C, con〉 over a constraint system CS, the
solution of P is a constraint defined as Sol(P) = (

⊗
C).

A solution to a SCSP is a single constraint formed by the combination of
all the original constraints of the problem. Such a constraint provides, for each
tuple of values of D for the variables in con, a corresponding c-semiring value.
We now consider the definition of an abstract solution that consists of the set of
k-tuples of D whose associated c-semiring values are maximal w.r.t. 6Sp

.

Definition 9. Given a SCSP problem P = 〈C, con〉, consider Sol(P) = 〈defp
c ,

con〉. Then the abstract solution of P is the set
ASol(P) = {〈t, v〉 | defp

c (t) = v and there is no t′ such that v <Sp
defp

c (t′)}.
Let ASolV (P) = {v | 〈t, v〉 ∈ ASol(P)}.

Example 2. We now compute an abstract solution for our hotel chain example.
The first step is to combine the first and second constraints, c1 and c2. Table
2 shows the c-semiring values associated with each tuple in the constraint c′1 =
c1 ⊗ c2. Then we combine the constraint c′1 and the constraint c3: c′2 = c′1 ⊗ c3.
See Table 3. We now have an abstract solution, ASol(P) = {〈〈0, 2, 2〉, 0.5〉,
〈〈0, 3, 2〉, 0.5〉}, with ASolV (P) = {0.5}. Thus the best solution tuples provide
a preference value of 0.5.

3 A Relaxation of a SCSP

We are interested in the case of a SCSP for which the abstract solution is not con-
sidered to be good enough. For example, the manager in our hotel chain example
may require a better solution. For instance, a solution tuple with a preference
value of at least 0.75. The constraints of a problem model requirements that
may be relaxed. We attempt to find a satisfactory solution to a relaxed version
of the original problem. In this section we define when a solution is regarded
to be good enough, and how to find suitable relaxations of the constraints of a
SCSP.

Table 2. Definition of Constraint c′
1

t defp

c′1
(t)

〈0, 0, 3〉 0.25

〈0, 1, 2〉 0.25

〈0, 1, 3〉 0.5

〈0, 2, 1〉 0.25

〈0, 2, 2〉 0.5

〈0, 2, 3〉 0.5

〈0, 3, 0〉 0.75

〈0, 3, 1〉 0.5

〈0, 3, 2〉 0.5

〈0, 3, 3〉 0.5

〈1, 0, 3〉 0.5

〈1, 1, 2〉 0.25

〈1, 1, 3〉 0.5

〈1, 2, 1〉 0.25

〈1, 2, 2〉 0.5

〈1, 2, 3〉 0.5

〈2, 0, 3〉 0.75

〈2, 1, 2〉 0.25

〈2, 1, 3〉 0.5

〈3, 0, 3〉 0.75

all other tuples 0

Table 3. Definition of Constraint c′
2

t defp

c′2
(t)

〈0, 1, 2〉 0.25

〈0, 2, 2〉 0.5

〈0, 3, 2〉 0.5

〈1, 2, 1〉 0.25

all other tuples 0

Definition 10. [6] Let a good enough (abstract) solution for a SCSP P be such
that some element in ASolV(P) is in the region β̂ where β̂ = {γεA : β 6Sp γ}.

If ASolV (P)∩ β̂ 6= ∅ then we have found a good enough solution for a prob-
lem P . If this is not the case, we want to find a relaxation P ′ of P , such that
ASolV (P ′) ∩ β̂ 6= ∅. P ′ should be as close to the original P as possible, that is,
P ′ should be such that there does not exist any other relaxation of P that is
closer to P than P ′.

We first define a relaxation of a single constraint.

Definition 11. A constraint cj = 〈defp
j , conj〉 is called a ci-weakened constraint

of the constraint ci = 〈defp
i , coni〉 iff the following hold:

– coni = conj;
– for all tuples t, defp

i (t) 6S defp
j (t);

– for every two tuples t1 and t2, if defp
i (t1) 6Sp

defp
i (t2), then defp

j (t1) 6Sp

defp
j (t2).

Note that a constraint c is itself a c-weakened constraint.

We want to represent the closeness of a c-weakened constraint to the con-
straint c by associating a c-semiring value with the c-weakened constraint. Every
c-weakened constraint of a constraint c (including the constraint c) will be as-
signed such a distance value.

Definition 12. Given a constraint system CS = 〈Sp, V , D〉 and a SCSP P =
〈C, con〉, for each c ∈ C, let Wc be the set containing all c-weakened constraints,
i.e. Wc = {cj | cj is a c-weakened constraint}. Let Sd = 〈Ad, +d, ×d, 0, 1〉 be
a c-semiring and wdefd

c : Wc → Ad be any function such that

– wdefd
c (cj) = 0 iff cj = c;

– ∀ci, cj ∈ Wc, if for all tuples t defp
i (t) 6Sp

defp
j (t) then wdefd

c (ci) 6Sd

wdefd
c (cj);

– if there exists one tuple t such that defp
i (t) <Sp defp

j (t) and for all tuples s
we have defp

i (s) 6Sp
defp

j (s), then wdefd
c (ci) <Sd

wdefcd(cj).

Definition 12 describes a function wdefd
c that assigns c-semiring values (or

distance values) from the set of the c-semiring Sd to each c-weakened constraint.
This function is restricted by the preference values associated with the tuples
of the c-weakened constraints. If the assigned preference values of all the tuples
of a c-weakened constraint cj are at least as good as their assigned preference
values in another c-weakened constraint ci, then the function wdefd

c will assign
a distance value for cj that is at least as good as the distance value it assigns to
ci. If there is at least one tuple that has a better associated preference value in
cj than in ci (and all other tuples have associated preference values in cj that
are at least as good as those in ci), then wdefd

c will assign a better distance

value to cj than to ci. (We compare c-semiring values in terms of the partial
ordering on them.) This framework is deliberately broad so as to accommodate
any reasonable application.

We now define the concept of closeness w.r.t. a constraint c and a c-weakened
constraint.

Definition 13. – The c-weakened constraint ci is closer to c than the c-weakened
constraint cj, iff wdefd

c (ci) <Sd
wdefd

c (cj).
– The c-weakened constraint ci is no closer to c than the c-weakened constraint

cj, iff wdefd
c (cj) 6Sd

wdefd
c (ci).

– The c-weakened constraints ci and cj are incomparable w.r.t. closeness to c
iff wdefd

c (ci) �Sd
wdefd

c (cj) and wdefd
c (cj) �Sd

wdefd
c (ci).

Below we define a relaxation of a SCSP, and then we describe a way to
formalise “closeness” of relaxations.

Definition 14. A SCSP P ′ = 〈C ′, con〉 is a d-relaxation of the SCSP P = 〈C,
con〉 where Sd = 〈Ad, +d, ×d, 0, 1〉, iff there is a bijection f : C → C ′ and
∀c ∈ C, f(c) is a c-weakened constraint.

For every f(c) ∈ C ′ and c ∈ C, wdefd
c (f(c)) is an indication of the closeness

of f(c) to c. For every c ∈ C, C ′ contains one c-weakened constraint, i.e. every c
can be regarded as being replaced by a c-weakened constraint f(c). We want to
find a d-relaxation P ′ = 〈C ′, con〉 of P = 〈C, con〉 such that every c-weakened
constraint c′ ∈ C ′ is the closest possible to the constraint c ∈ C while the
abstract solution of P ′ is still good enough (w.r.t. β̂). It is necessary to place
some restrictions on the multiplicative operator ×d so that the distance of a d-
relaxation will indeed reflect the closeness of the relaxed problem to the original
problem.

Definition 15. Let cik be a ci-weakened constraint, and cjm and cjn be cj-
weakened constraints. If wdefd

cj
(cjm) <Sd

wdefd
cj

(cjn), then
wdefd

ci
(cik) ×d wdefd

cj
(cjm) <Sd

wdefd
ci

(cik) ×d wdefd
cj

(cjn).

Definition 16. Let R(P) = {P ′ | P ′ is a d-relaxation of P},
Rβ̂(P) = {P ′ ∈ R(P) | ASolV (P ′) ∩ β̂ 6= ∅}, and

ASolRβ̂(P) = {〈t, v〉 | 〈t, v〉 ∈ ASol(P ′) & P ′ ∈ Rβ̂(P)}.

Rβ̂(P) contains all those SCSPs that are weakened versions of P whose best
tuples intersect with β̂. ASolRβ̂(P) actually contains those best tuples. Note
that every tuple in ASol(P ′) is a tuple with a maximal c-semiring value.

The next step is to define a distance measure between a problem P and a
d-relaxation P ′.

Definition 17. Given a d-relaxation P ′ = 〈C ′, con〉 of a SCSP P = 〈C, con〉
such that P ′ ∈ Rβ̂(P), let d(P ′) = ×d c∈C (wdefd

c (f(c))) be the distance between
P and P ′.5

Now we have to find every P ′ ∈ Rβ̂(P) for which the distance between P ′

and P is minimal. Thus, let
MRβ̂(P) = {P ′ ∈ Rβ̂(P) | @ P ′′ ∈ Rβ̂(P) such that d(P ′′) <S d(P ′)}.

Example 3. In order to raise the hotel chain’s four star rating to a five star rating,
the manager has calculated that he needs an abstract solution that provides a c-
semiring value of at least 0.75. Our abstract solution to the hotel chain problem
is not good enough. We will now find a d-relaxation to this problem with a
better solution. We only consider relaxations of the second constraint. Some
of the possible c2-weakened constraints are shown as constraints c21, . . . , c28 in
Table 4.

Table 4. Definitions of the c2-weakened Constraints

t c2 c21 c22 c23 c24 c25 c26 c27 c28

〈0, 3〉 0.75 1 0.75 0.75 1 1 0.75 1 1

〈1, 2〉 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.5 1

〈1, 3〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

〈2, 1〉 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.5 1

〈2, 2〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

〈2, 3〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

〈3, 0〉 0.75 1 0.75 0.75 1 1 0.75 1 1

〈3, 1〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

〈3, 2〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

〈3, 3〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

all other tuples 0 0 0 0 0 0 0 0 0

Let Sd = 〈{1, 2, 3, 4, 5}, min, max, ∞, −∞〉. Then we can associate the
c-semiring values shown in Table 5 with each of the weakened constraints.

We aim to keep our d-relaxation as close as possible to the original problem.
Any one of the c2-weakened constraints with a c-semiring value of 1 would be a
good initial choice. Thus, one possible d-relaxation of the problem P is
P ′

1 = 〈C ′
1, con〉 with C ′

1 = {c1, c23, c3}. The combination of the constraints,
pc1 = c1 ⊗ c23 ⊗ c3 is shown in Table 6.

Now the abstract solution is ASol(P ′
1) = {〈〈0, 2, 2〉, 0.75〉, 〈〈0, 3, 2〉, 0.75〉},

with ASolV (P ′
1) = {0.75} and d(P ′

1) = 0 ×d 1 ×d 0 = 1. This means that our
abstract solution is good enough, and the manager can raise the star rating of

5 We use the symbol ×d in prefix notation when this binary operator is applied to
more than two arguments

Table 5. Distance values for the c2-weakened Constraints

wdefd
c2(c2) 0

wdefd
c2(c21) 1

wdefd
c2(c22) 1

wdefd
c2(c23) 1

wdefd
c2(c24) 2

wdefd
c2(c25) 3

wdefd
c2(c26) 3

wdefd
c2(c27) 4

wdefd
c2(c28) 5

Table 6. Definition of Constraint pc1.

t defp
pc1(t)

〈0, 1, 2〉 0.25

〈0, 2, 2〉 0.75

〈0, 3, 2〉 0.75

〈1, 2, 1〉 0.25

all other tuples 0

the hotel chain by selecting either one of the two tuples in the set ASol(P ′
1) as

a solution.

4 Related Work: Metric SCSPs

Ghose & Harvey [6] extended the SCSP framework by specifying a metric for
each constraint in addition to the preference values that are associated with the
tuples of values for that constraint. The metric provides real valued distances
between the preference values. Metric SCSPs are similar to our proposal in the
sense that both frameworks allow us to establish whether a solution is regarded as
being good enough. Both approaches obtain a measure of the deviation required
from a problem P to a relaxation of P that has a good enough solution.

For Metric SCSPs, the definition of a constraint (Definition 3) is modified by
including a metric dc : A×A → R+ expressing the perceived difference between
c-semiring values. Each constraint is a triple c = 〈defp

c , conc, dc〉 where conc are
the variables to be operated on, defp

c is a function matching tuples to values in
the set of a c-semiring, and a metric dc. The formal properties of the metric are
given in [6].

If a c-semiring Sp = 〈A,+p,×p,0,1〉 is used to assign preference values to the
tuples of values of constraints, the distance of a preference (or c-semiring) value
α to a region β̂ (see Definition 10) is defined as d(α, β̂) = inf{d(α, γ) : γ ∈ β̂}.

Note that given two c-semiring (preference) values, α and γ, with γ ≤Sp
α, we

have d(α, β̂) ≤ d(γ, β̂).
In the definition of a Metric SCSP which follows below, an additional function

f is added. This function will be used to combine distance values provided by
the metric functions of the constraints.

Definition 18. [6] Given a constraint system CS = 〈Sp, D, V 〉, a Metric SCSP
is a triple P = 〈C, con, f〉 where con is a set of variables, C = {c1, c2, . . . , cm} is
a finite set of constraints, and f : (R+)m → R+ is used for combining the results
of the functions dci for all i = 1, . . . ,m.

The following two properties are imposed on the function f in Definition
18: if f(x1, . . . , xm) = 0 ⇔ ∀i, xi = 0, and f is monotonic increasing in each
argument. The aim is to find solution(s) such that minimal deviation is required
from the SCSP while ensuring they are assigned a c-semiring value in a specified
region β̂. The value for a solution of a Metric SCSP, as defined for SCSPs, is
t = defp(t) = (defp

c1
(t ↓con

conc1
)⊗ . . .⊗ (defp

cm
(t ↓con

concm
). To ensure that the value

def(t)p is in β̂ we need only ensure that all defp
ci

are also within β̂.
Let fβ(t) = f(d1(defp

c1
(t ↓con

conc1
), β̂), ..., dm(defp

cm
(t ↓con

concm
), β̂)). The func-

tion fβ determines the deviation from P required to move defp(t) into the region
β̂. Let m∗

β = min{fβ : u ∈ ASol(P)} represent the minimum deviation from the
problem P required to find a complete tuple with a semiring value in β̂.

To summarise, the function fβ provides us with a measurement of how much
a problem P should be relaxed in order to provide a good enough solution. This
measurement is calculated by combining the distance between the maximal tuple
for each constraint and β̂.

In our work, we describe how to construct a relaxation that has a good enough
solution by relaxing constraints. We decide which tuple is a maximal choice for
each constraint by ensuring that the preference value of the combination of all
the relaxed (or weakened) constraints will lie in the region β̂ with the least
possible deviation from the original constraints.

5 Conclusion and Future Work

We have proposed an extension to the SCSP framework for solving Constraint
Satisfaction Problems where a relaxation of a SCSP is defined and solved in case
an acceptable solution for the original SCSP can not be found.

If the preference value associated with the solution of a SCSP is not regarded
as good enough, we showed how to find a suitable relaxation of the SCSP that
has a good enough solution. A relaxation to a SCSP is found by adjusting the
preferences associated with the tuples of some of the constraints of the original
SCSP. In other words, the constraints of the original problem are relaxed until
the resulting problem has a satisfactory solution. Distance values (i.e. c-semiring
values) are associated with each relaxed constraint so that different relaxations
of a problem can be compared in terms of their distance to the original problem.

Metric SCSPs are related to our work. A metric function calculates a real
valued distance between preference values. These distance values are used to
measure the deviation of a solution to a SCSP from some desired solution that
is good enough.

In this paper we have described how to construct acceptable relaxations for
a SCSP with an unsatisfactory solution. Our future work will focus on computa-
tional aspects of this process. We aim to develop techniques to calculate the best
relaxation for a SCSP efficiently. We want to impose structure on the definitions
that respectively assign preference values to tuples of values for constraints and
distance values to relaxed constraints, so that existing CSP algorithms can be
applied to find the best d-relaxation for a SCSP.

References

1. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44 (1997) 201–236

2. Freuder, E.C., Wallace, R.J.: Partial constraint staisfaction. Artificial Intelligence
58 (1992) 21–70

3. Wilson, M., Borning, A.: Hierarchical constraint logic programming. Journal of
Logic Programming 16 (1993) 277–318

4. Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis for
flexible constraint satisfaction. In: Proc. of IEEE Conference on Fuzzy Systems.
(1993)

5. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a probabilistic
approach. In: Proc. ECSQARU. (1993)

6. Ghose, A., Harvey, P.: Partial constraint satisfaction via semiring CSPs augmented
with metrics. In: Proceedings of the 2002 Australian Joint Conference on Artificial
Intelligence. Volume 2557 of Lecture Notes in Computer Science., Springer (2002)

Advances in AND/OR Branch-and-Bound Search for
Constraint Optimization

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{radum,dechter}@ics.uci.edu

Abstract. AND/OR search spaceshave recently been introduced as a unify-
ing paradigm for advanced algorithmic schemes for graphical models. The main
virtue of this representation is its sensitivity to the structure of the model, which
can translate into exponential time savings for search algorithms. In [1] we intro-
duced a linear space AND/OR Branch-and-Bound (AOBB) searchscheme that
explores the AND/OR search tree for solving optimization tasks. In this paper
we extend the algorithm by equipping it with a context-basedadaptive caching
scheme similar to good and nogood recording, thus it explores an AND/OR graph
rather than the AND/OR tree. We also improve the algorithm byusing a new
heuristic for generating close to optimal height pseudo-trees, based on a well
known recursive decomposition of the hypergraph representation. We illustrate
our results using a number of benchmark networks, includingthe very challeng-
ing ones that arise in genetic linkage analysis.

1 Introduction

Graphical models such as Bayesian networks or constraint networks are a widely used
representation framework for reasoning with probabilistic and deterministic informa-
tion. These models use graphs to capture conditional independencies between variables,
allowing a concise representation of the knowledge as well as efficient graph-based
query processing algorithms. Optimization tasks such as finding the most likely state of
a Bayesian network or finding a solution that violates the least number of constraints in
a constraint network, are typically tackled with eithersearchor inferencealgorithms.
Search methods (e.g. depth-first Branch-and-Bound, best-first search) are time expo-
nential in the number of variables and can operate in polynomial space. Inference al-
gorithms (e.g. variable elimination, tree-clustering) are time and space exponential in a
topological parameter calledtree width. If the tree width is large, the high space com-
plexity makes the latter methods impractical in many cases.

The AND/OR search space for graphical models [2] is a newly introduced frame-
work for search that is sensitive to the independencies in the model, often resulting in
exponentially reduced complexities. It is based on a pseudo-tree that captures indepen-
dencies in the graphical model, resulting in a search tree exponential in the depth of the
pseudo-tree, rather than in the number of variables.

In [1] we presented a linear space Branch-and-Bound scheme that explores the
AND/OR search tree for solving optimization tasks in graphical models, called AOBB.

In this paper we improve the AOBB scheme significantly by using caching schemes.
Namely, we extend the algorithm to explore the AND/OR graph rather than the AND/OR
tree, using a flexible caching mechanism that can adapt to memory limitations. The
caching scheme is based oncontextsand is similar to good and nogood recording and re-
cent schemes appearing in Recursive Conditioning and Valued Backtracking [3–5]. We
also introduce a new heuristic for generating close to optimal height pseudo-trees based
on the recursive decomposition of the problem’s hypergraphrepresentation. A similar
idea was already exploited in [4] for constructing low-width decomposition trees. The
efficiency of the proposed search methods also depends on theaccuracy of the guid-
ing heuristic function, which is based on the mini-bucket approximation or maintaining
soft arc-consistency. We focus our empirical evaluation ontwo common optimization
tasks such as solving Weighted CSPs [6] and finding the Most Probable Explanation in
Bayesian networks [7], and illustrate our results over a variety of benchmark networks,
including the very challenging ones that arise in the field ofgenetic linkage analysis.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization Problem(COP) is a six-tupleP = 〈X ,D,F ,⊗,⇓, Z〉,
whereX = {X1, ..., Xn} is a set of variables,D = {D1, ..., Dn} is a set of fi-
nite domains andF = {f1, ..., fm} is a set of constraints. Constraints can be either
soft (cost functions) orhard (sets of allowed tuples). Without loss of generality we
assume that hard constraints are represented as (bi-valued) cost functions. Allowed
and forbidden tuples have cost0 and∞, respectively. The scope of functionfi, de-
notedscope(fi) ⊆ X , is the set of arguments offi. The operators⊗ and⇓ can be
defined using the semi-ring framework [6], but in this paper we assume that:⊗ifi is
a combinationoperator,⊗ifi ∈ {

∏
i fi,

∑
i fi} and⇓Y f is aneliminationoperator,

⇓Y f ∈ {maxS−Y f, minS−Y f}, whereS is the scope of functionf andY ⊆ X . The
scope of⇓Y f is Y .

An optimization task is defined byg(Z) = ⇓Z⊗
m
i=1fi, whereZ ⊆ X . A global

optimizationis the task of finding the best global cost, namelyZ = ∅. For simplicity
we will develop our work assuming a COP instance withsummationandminimization
as combination and elimination operators, yielding a global cost function defined by
f(X) = minX

∑m

i=1
fi.

Given a COP instance, itsprimal graphG associates each variable with a node and
connects any two nodes whose variables appear in the scope ofthe same (hard or soft)
constraint.

2.2 AND/OR Search Spaces

The classical way to do search is to instantiate variables one at a time, following a
static/dynamic variable ordering. In the simplest case, this process defines a search tree,
whose nodes represent states in the space of partial assignments. The traditional search
space does not capture the structure of the underlying graphical model. Introducing

A

D

B

EC

F

(a)

AOR

0AND

BOR

0AND

OR E

OR F F

AND 0 1 0 1

AND 0 1

C

D D

0 1 0 1

0 1

1

1

(b)

AOR

0AND

BOR

0AND

OR E

OR F F

AND
0 1

AND 0 1

C

D D

0 1

0 1

1

EC

D D

0 1

1

B

0

E

F F

0 1

C

1

EC

(c)

Fig. 1. The AND/OR search space.

AND states into the search space can capture the structure decomposing the problem
into independent subproblems by conditioning on values [8,2]. The AND/OR search
space is defined using a backbonepseudo-tree.

Definition 1 (pseudo-tree).Given an undirected graphG = (V, E), a directed rooted
treeT = (V, E′) defined on all its nodes is calledpseudo-treeif any arc ofG which is
not included inE′ is a back-arc, namely it connects a node to an ancestor inT .

AND/OR Search TreesGiven a COP instanceP = (X ,D,F), its primal graphG and
a pseudo-treeT of G, the associated AND/OR search treeST has alternating levels
of OR nodes and AND nodes. The OR nodes are labeledXi and correspond to the
variables. The AND nodes are labeled〈Xi, xi〉 and correspond to value assignments
in the domains of the variables. The structure of the AND/OR tree is based on the
underlying pseudo-tree arrangementT of G. The root of the AND/OR search tree is an
OR node, labeled with the root ofT .

The children of an OR nodeXi are AND nodes labeled with assignments〈Xi, xi〉,
consistent along the path from the root,path(xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The
children of an AND node〈Xi, xi〉 are OR nodes labeled with the children of variable
Xi in T . In other words, the OR states represent alternative ways ofsolving the prob-
lem, whereas the AND states represent problem decomposition into independent sub-
problems, all of which need be solved. When the pseudo-tree is a chain, the AND/OR
search tree coincides with the regular OR search tree.

Example 1.Figure 1(a) shows the pseudo-tree arrangement of a primal graph of a
COP instance, together with the back-arcs (dotted lines). Figure 1(b) shows a partial
AND/OR search tree based on the pseudo-tree, for bi-valued variables.

The AND/OR search tree can be traversed by a depth-first search algorithm that is
guaranteed to have a time complexity exponential in the depth of the pseudo-tree and
can operate in linear time. The arcs fromXi to 〈Xi, xi〉 are annotated by appropri-
ate labelsof the cost functions inF . The nodes inST can be associated withvalues,
accumulating the result of the computation resulted from the subtree below.

Definition 2 (label). The label l(Xi, 〈Xi, xi〉) of the arc from the OR nodeXi to the
AND node〈Xi, xi〉 is defined as the sum of all the cost functions values whose scope
includesXi and is fully assigned alongpath(xi).

Definition 3 (value). Thevaluev(n) of a noden ∈ ST is defined recursively as fol-
lows: (i) if n = 〈Xi, xi〉 is a terminal AND node thenv(n) = l(Xi, 〈Xi, xi〉); (ii) if n =
〈Xi, xi〉 is an internal AND node thenv(n) = l(Xi, 〈Xi, xi〉)+

∑
n′∈succ(n)

v(n′); (iii)
if n = Xi is an internal OR node thenv(n) = minn′

∈succ(n)v(n′), wheresucc(n) are
the children ofn in ST .

Clearly, the value of each node can be computed recursively,from leaves to root.

Proposition 1. Given an AND/OR search treeST of a COP instanceP = (X ,D,F),
the valuev(n) of a noden ∈ ST is the minimal cost solution to the subproblem rooted
at n, subject to the current variable instantiation along the path from root ton. If n is
the root ofST , thenv(n) is the minimal cost solution toP .

AND/OR Search Graphs The AND/OR search tree may contain nodes that root iden-
tical subtrees. These are calledunifiable. When unifiable nodes are merged, the search
tree becomes a graph and its size becomes smaller. A depth-first search algorithm can
explore the AND/OR graph using additional memory. The algorithm can be modified
to cachepreviously computed results and retrieve them when the samenodes are en-
countered again. Some unifiable nodes can be identified basedon theircontexts.

Definition 4 (context).Given a COP instanceP = (X ,D,F) and the corresponding
AND/OR search treeST relative to a pseudo-treeT , the contextof any AND node
〈Xi, xi〉 ∈ ST , denoted bycontext(Xi), is defined as the set of ancestors ofXi in the
induced pseudo-tree, includingXi, that are connected to descendants ofXi.

It is easy to verify that the context ofXi d-separates [7] the subproblem below
Xi from the rest of the network. Thecontext-minimalAND/OR graph is obtained by
merging all the context unifiable AND nodes. For illustration, consider the context-
minimal graph in Figure 1(c) of the pseudo-tree from Figure 1(a). The contexts of the
nodes can be read from the pseudo-tree, as follows:context(A) = {A}, context(B) =
{B, A}, context(C) = {C, B, A}, context(D) = {D}, context(E) = {E, B, A}
andcontext(F) = {F} (for more information see [2]).

3 AND/OR Branch-and-Bound Search

AND/OR Branch-and-Bound (AOBB) was recently introduced in[1] as a depth-first
Branch-and-Bound that explores an AND/OR search tree for solving optimization tasks
in graphical models. Our empirical evaluation demonstrated clearly the improved per-
formance of the AND/OR tree search over the traditional OR tree search. In this section
we move from searching the AND/OR tree to searching AND/OR graphs. The new
algorithm, denoted here by AOBB(j), augments AOBB with a flexible context-based
caching scheme that stores the results in a cache after the first computation and retrieves
them when the same nodes are encountered again.

3.1 Caching Schemes

Traversing an AND/OR search graph requires caching some nodes during search and
the ability to recognize unifiable nodes. The caching schemeis based oncontexts, which
are precomputed from the pseudo-tree. As it was mentioned earlier, the context of an
AND node〈Xi, xi〉 is the set of ancestors ofXi in the induced pseudo-tree, including
Xi, that are connected to descendants ofXi. Algorithm AOBB(j) stores nodes at vari-
ables whose context size is smaller than or equal toj (called cache bound orj-bound).
It is easy to see that whenj equals the induced width of the pseudo-tree the algorithm
explores the minimal context AND/OR graph.

This rather straightforward scheme can be further improved. The second caching
scheme is inspired by the cutset conditioning ideas from [9]. Lets assume the con-
text of a nodeXk is context(Xk) = {X1, ..., Xk}, where|context(Xk)| > j. Dur-
ing the search, when variables{X1, ..., Xk−j} are assigned, they can be viewed as
a cutset. Therefore, the problem rooted atXk−j+1 can be solved in isolation, once
variables{X1, ..., Xk−j} are assigned. In the subproblem, conditioned on the values
{x1, ..., xk−j}, context(Xk) is {Xk−j+1, ..., Xk}, so it can be stored within thej-
bounded space restrictions. However, when AOBB(j) retracts toXk−j or above, all the
nodes cached at variableXk need to be discarded. This caching scheme requires only a
linear increase in additional memory.

The usual way of caching is to have a table for each variable, called cache table,
which records the context. However, some tables might neverget cache hits. We call
thesedead-caches. In the AND/OR search graph, dead-caches appear at nodes that
have only one incoming arc. AOBB(j) needs to record only nodes that are likely to
have additional incoming arcs, and these nodes can be determined by inspecting the
pseudo-tree. Namely, if the context of a node includes that of its parent, then there is no
need to store anything for that node, because it would be a dead-cache. For illustration,
consider the AND/OR search graph from Figure 1(c). NodeB is a dead-cache because
its context includes the context of nodeA, which is its parent in the pseudo-tree.

3.2 Lower Bounds on Partial Trees

At any stage during search, any noden along the current path roots a currentpartial
solution subtree, denoted byGsol(n), to the corresponding subproblem. By the nature
of the search process,Gsol(n) must be connected, must contain its rootn and will
have afrontier containing all those nodes that were generated but not yet expanded.
The leaves ofGsol(n) are calledtip nodes. Furthermore, we assume that there exists
a staticheuristic evaluation functionh(n) underestimatingv(n) that can be computed
efficiently when noden is first generated.

Given the current partially explored AND/OR search graphGT , the active path
AP(t) is the path of assignments from the root ofGT to the current tip nodet. Thein-
side contextin(AP) of AP(t) contains all nodes that were fully evaluated and are chil-
dren of nodes onAP(t). Theoutside contextout(AP) of AP(t), contains all the fron-
tier nodes that are children of the nodes onAP(t). Theactive partial subtreeAPT (n)
rooted at a noden ∈ AP(t) is the subtree ofGsol(n) containing the nodes onAP(t)
betweenn andt together with their OR children. We can define now adynamic heuristic
functionof a noden relative toAPT (n), as follows.

ALGORITHM : AOBB(j,P , T)
Input: A COPP = (X ,D,F , +, min), pseudo-treeT , rootX0, cache boundj.
Output: Minimal cost solution toP .
(1) Initialize OPEN by adding OR nodeX0 to it; PATH← φ;

Initialize cache tables for every variableXi such that|context(Xi)| ≤ j;
(2) if (OPEN ==φ)

return v(X0);
Remove the first noden in OPEN; Addn to PATH;

(3) Retrieve cached values as follows:
if (n is AND node, denoten = 〈Xi, xi〉)

if (|context(Xi)| ≤ j)
A← {fj | fj ∈ F ∧ (Xi ∈ var(fj)) ∧ (var(fj) ⊆ PATH)};
l(Xi, 〈Xi, xi〉)←

∑
A

fj ;
v(n)← cache(Xi, xi);
goto step(5);

(4) Try to prune the subtree belown as follows:
foreachm ∈ PATH , wherem is an ancestor ofn

if (fh(m) ≥ ub(m))
v(n)←∞; (dead-end)
goto step (4);

Expandn generating all its successors as follows:
succ(n)← φ;
if (n is OR node, denoten = Xi)

v(n)←∞;
foreach valuexi ∈ Di

h(〈Xi, xi〉)← LB(Xi, xi);
succ(n)← succ(n) ∪ {〈Xi, xi〉};

else(n is AND node, denoten = 〈Xi, xi〉)
A← {fj | fj ∈ F ∧ (Xi ∈ var(fj)) ∧ (var(fj) ⊆ PATH)};
v(n)← 0; l(Xi, 〈Xi, xi〉)←

∑
A

fj ;
foreach variableY ∈ chT (Xi)

h(Y)← LB(Y);
succ(n)← {Y };

Add succ(n) on top of OPEN;
(5) while succ(n) == φ

if (n is OR node)
v(Parent(n))← v(Parent(n)) + v(n);

else(n is AND node)
cache(Xi, xi)← v(n);
v(n)← v(n) + l(Xi, 〈Xi, a〉);
v(Parent(n))← min(v(Parent(n)), v(n));

succ(Parent(n))← succ(Parent(n))− {n};
PATH← PATH –{n};
n← Last(PATH);

(6) gotostep (2);

Fig. 2. AOBB(j): AND/OR Branch-and-Bound graph search.

Definition 5 (dynamic heuristic evaluation function). Given an active partial tree
APT (n), thedynamic heuristic evaluation functionof n, fh(n), is defined recursively
as follows: (i) ifAPT (n) consists only of a single noden, and if n ∈ in(AP) then
fh(n) = v(n) elsefh(n) = h(n); (ii) if n = 〈Xi, xi〉 is an AND node, having OR
childrenm1, ..., mk thenfh(n) = max(h(n), l(Xi, 〈Xi, xi〉) +

∑k

i=1
fh(mi)); (iii) if

n = Xi is an OR node, having an AND childm, thenfh(n) = max(h(n), fh(m)).

We can show that:

Theorem 1. (1) fh(n) is a lower boundon the minimal cost solution to the subproblem
rooted atn, namelyfh(n) ≤ v(n); (2) fh(n) ≥ h(n), namely the dynamic heuristic
function is tighter than the static one.

3.3 AND/OR Branch-and-Bound with Caching

A search algorithm traversing the AND/OR search space can calculate alower bound
on v(n) of a noden on the active path, by usingfh(n). It can also compute anupper
boundon v(n), based on the portion of the search space belown that has already been
explored. The upper boundub(n) on v(n) is the current minimal cost solution subtree
rooted atn.

The depth-firstAND/OR Branch-and-Boundgraph search algorithm withj-bounded
caching is described in Figure 2. A list called OPEN simulates the recursion stack. The
list PATH maintains the current assignment on the active path. Parent(n) refers to the
predecessor ofn in the AND/OR search graph,succ denotes the set of successors of
a node in the AND/OR search graph andchT (Xi) denotes the children of variableXi

in the pseudo-treeT . Procedure LB(n) computes the static heuristic estimateh(n) of
v(n) for any noden.

In the initialization step, AOBB(j) computes the context of every variable. A cache
table is created for every context whose size is less than or equal to the cache boundj.
In Step (3), the algorithm attempts to retrieve the results cached at the AND nodes. If a
valid cache entryα is found for noden = 〈Xi, xi〉, namely the subproblem rooted at
n has already been solved for the current instantiation of thevariables incontext(Xi),
thenv(n) is set toα and the search continues with Step (4), thus avoidingn’s expansion.

Step (4) is where the search goes forward and expands alternating levels of OR and
AND nodes. Upon the expansion ofn, the algorithm successively updates thelower
bound functionfh(m) for every ancestorm of n along the active path, and prunes the
subgraph belown if, for somem, fh(m) ≥ ub(m).

Step (5) is where the value functions are propagated backward. This is triggered
when a node has an empty set of successors and it typically happens when the node’s
descendants are all evaluated.

Theorem 2. AOBB(j) is sound and complete for COP.

4 Heuristics

In this section we describe briefly several schemes for generating static heuristic esti-
matesh(n), based on bounded inference and soft arc-consistency.

4.1 Mini-Bucket Heuristics

In this section we briefly describe two general schemes for generating heuristic es-
timates that can guide Branch-and-Bound search, and which are based on the Mini-
Bucket approximation. Mini-Bucket Elimination (MBE) [10]is an approximation al-
gorithm designed to avoid the high time and space complexityof Bucket Elimination
(BE) [11], by partitioning large buckets into smaller subsets, calledmini buckets, each
containing at mosti (calledi-bound) distinct variables, and which are processed inde-
pendently. The heuristics generators are therefore parameterized by the Mini-Bucket
i-bound, thus allowing for a controllable trade-off betweenheuristic strength and its
overhead.

Static Mini-Bucket Heuristics (sMB) In the past, [12] showed that the intermediate
functions generated by the Mini-Bucket algorithm MBE(i) can be used to compute a
heuristic function, that underestimates the minimal cost extension of the current partial
assignment in a regular OR search tree. In [1] we extended this idea to AND/OR search
spaces.

Dynamic Mini-Bucket Heuristics (dMB) The dynamic version of the mini-bucket
heuristics has been recently proposed in [1] for both OR and AND/OR search spaces.
The heuristic lower-bound estimate is computed by the Mini-Bucket algorithm MBE(i),
at each noden in the search space, restricted to the subproblem rooted atn and subject
to the current partial instantiation (for more details see [1]).

4.2 Directional Arc-Consistency Heuristics

Maintaining full directional arc-consistency (FDAC) [13]and the more recent existen-
tial directional arc-consistency (EDAC) [14] provide a powerful mechanism for gen-
erating high quality lower bound heuristic estimates of theminimal cost extension of
any partial assignment in a regular OR search tree. In the context of AND/OR search
spaces we showed in [1] that it is possible to maintain arc-consistency separately, on
independent components rooted at AND nodes, thus computinglocal lower-bounds on
the minimal cost solutions to the respective subproblems.

5 Finding a Pseudo-Tree

The performance of AND/OR tree/graph search algorithms is influenced by the quality
of the pseudo-tree. Finding the minimal depth/context pseudo-tree is a hard problem
[8, 15]. In the following we describe two heuristics for generating pseudo-trees with
relatively small heights/contexts.

5.1 Min-Fill Heuristic

Min-Fill [16] is one of the best and most widely used heuristics for creating small
induced width elimination orders. An ordering is generatedby placing the variable with

the smallestfill set (i.e. number of induced edges that need be added to fully connect the
neighbors of a node) at the end of the ordering, connecting all of its neighbors and then
removing the variable from the graph. The process continuesuntil all variables have
been eliminated. Once an elimination order is given, the pseudo-tree can be extracted
as a depth-first traversal of the min-fill induced graph, starting with the variable that
initiated the ordering, always preferring as successor of anode the earliest adjacent node
in the induced graph. An ordering uniquely determines a pseudo-tree. This approach
was first used by [15].

5.2 Hypergraph Separator Decomposition

An alternative heuristic for generating a low height balanced pseudo-tree arrangement
is based on recursive decomposition. Given a COP instanceP = (X ,D,F) we convert
it into a hypergraphH = (V, E) where each constraint inF is a vertexvi ∈ V and
each variable inX is an edgeej ∈ E connecting all the constraints in which it appears.

Definition 6 (separators).Given a hypergraphH = (V, E), a hypergraph separator
decompositionis a triple (H,S,R) where: (i)S ⊂ E, and the removal ofS separates
H into k disconnected components (subgraphs)H1, ...,Hk; (ii) R is a relation over the
size of the disjoint subgraphs (i.e. balance factor).

It is well known that the problem of generating optimal hypergraph partitions is
hard. However heuristic approaches were developed over theyears. A good approach is
packaged inhMeTiS1. We will use this software as a basis for our pseudo-tree genera-
tion. This idea and software were also used by [4] to generatelow width decomposition
trees. Generating a pseudo-treeT for P usinghMeTiS is fairly straightforward. The
vertices of the hypergraph are partitioned into two balanced (roughly equal-sized) parts,
denoted byHleft andHright respectively, while minimizing the number of hyperedges
across. A small number of crossing edges translates into a small number of variables
shared between the two sets of functions.Hleft andHright are then each recursively
partitioned in the same fashion, until they contain a singlevertex. The result of this
process is a tree of hypergraph separators which is also a pseudo-tree of the original
model since each separator corresponds to a subset of variables chained together.

In Table1 we computed the height of the pseudo-tree obtainedwith the hypergraph
and minfill heuristics for 10 belief networks from the UAI Repository2 and 10 constraint
networks derived from the SPOT5 benchmark [17]. For each pseudo-tree we also com-
puted the induced width of the elimination order obtained from the depth-first traversal
of the tree. We observe that the minfill heuristic generates lower-width elimination or-
ders, while the hypergraph heuristic produces much smallerheight pseudo-trees. The
hypergraph pseudo-trees appear to be favorable for tree search algorithms, while the
minfill pseudo-trees, which minimize the context size, are more appropriate for graph
search algorithms.

1 http://www-users.cs.umn.edu/ karypis/metis/hmetis
2 http://www.cs.huji.ac.il/labs/compbio/Repository

Network hypergraph min-fill Network hypergraph min-fill
width heightwidth height width heightwidth height

barley 7 13 7 23 spot 5 47 152 39 204
diabetes 7 16 4 77 spot 28 108 138 79 199
link 21 40 15 53 spot 29 16 23 14 42
mildew 5 9 4 13 spot 42 36 48 33 87
munin1 12 17 12 29 spot 54 12 16 11 33
munin2 9 16 9 32 spot 404 19 26 19 42
munin3 9 15 9 30 spot 408 47 52 35 97
munin4 9 18 9 30 spot 503 11 20 9 39
water 11 16 10 15 spot 505 29 42 23 74
pigs 11 20 11 26 spot 507 70 122 59 160

Table 1.Bayesian Networks Repository (left); SPOT5 benchmarks (right).

6 Experiments

In this section we evaluate the performance of the new AND/ORBranch-and-Bound
graph search schemes on two common optimization problems: solving Weighted CSPs
(WCSP) and finding the Most Probable Explanation (MPE) in Bayesian networks3.

Weighted CSP[6] extends the classic CSP formalism with so-calledsoft constraints
which assign a positive integer penalty cost to each forbidden tuple (allowed tuples have
cost 0). The goal is to find a complete assignment with minimumaggregated cost.

Bayesian Networksprovide a formalism for reasoning about partial beliefs under
conditions of uncertainty [7]. They are defined by a directedacyclic graph over nodes
representing variables of interest. The arcs indicate the existence of direct causal influ-
ences between linked variables quantified by conditional probability tables (CPTs) that
are attached to each family of parents-child nodes in the network. The MPE problem is
the task of finding a complete assignment with maximum probability that is consistent
with the evidence. It easy to see that MPE can be trivially expressed as a WCSP by
replacing the probability tables by their negative logarithm.

We consider three classes of AND/OR Branch-and-Bound tree search algorithms,
each one of them using a specific heuristics generator as follows. Classess-AOMB(i)
andd-AOMB(i) are guided by static/dynamic mini-bucket heuristics, while AOMFDAC
maintains full directional arc-consistency (FDAC). We also consider the graph versions
of these algorithms, denoted bys-AOMB(i,j), d-AOMB(i,j) and AOMFDAC(j), re-
spectively, which perform caching only at the variables forwhich the context size is
smaller than or equal to the cache boundj.

In all our experiments, the competing algorithms were restricted to a static variable
ordering resulted from a depth-first traversal of the pseudo-tree. We report the average
effort, as CPU time (in seconds) and number of visited nodes required for proving
optimality of the solution. For all test instances we recordthe number of variables (n),
domain size (d), number of functions (c), induced width (w*)and height of the pseudo-

3 Experiments were done on a 2.4GHz Pentium IV with 1GB of RAM, running Windows XP.

hypergraph minfill
Network Algorithm (w*,h) no cache cache (w*,h) no cache cache

time nodes time nodes time nodes time nodes
29b AOMFDAC (16,22)5.938 170,8231.492 40,428(14,42) 5.036 79,8663.237 34,123

(83,394) sAOMB(12) 1.002 8,4581.012 1,033 0.381 997 0.411 940
42b AOMFDAC (31,43)1,043 6,071,390884.1 3,942,942(18,62) - 22,102,050 - 17,911,719

(191,1151)sAOMB(16) 132.0 2,871,804127.4 2,815,503 3.254 11,6363.164 9,030
54b AOMFDAC (12,14)0.401 6,581 0.29 3,377 (9,19) 1.793 28,4920.121 2,087

(68,197) sAOMB(10) 0.03 74 0.03 74 0.02 567 0.02 381
404b AOMFDAC (19,23) 0.02 148 0.01 138 (19,57) 2.043 21,406 0.08 1,222

(101,595) sAOMB(12) 0.01 101 0.01 101 0.02 357 0.01 208
503b AOMFDAC (9,14) 0.02 405 0.01 307 (8,46) 1077.1 19,041,5520.05 701

(144,414) sAOMB(8) 0.01 150 0.01 150 0.03 1,918 0.01 172
505b AOMFDAC (19,32) 17.8 368,247 5.20 69,045(16,98) - 9,872,07815.43 135,641

(241,1481)sAOMB(14) 5.618 6836.208 683 4.997 1912 5.096 831

Table 2.Results for SPOT5 benchmarks.

tree (h). A ”-” indicates that a time limit was exceeded by therespective algorithm. The
best results are highlighted.

6.1 Weighted CSPs

For our first experiment, we consider the scheduling of an Earth observing satellite. The
original formulation of the problem states that given a set of candidate photographs,
select the best subset that the satellite will actually take. The selected subset of pho-
tographs must satisfy a set of imperative constraints and, at the same time, maximize
the importance of the selected photographs. We experimented with problem instances
from the SPOT5 benchmark [17] that can be trivially translated into the WCSP formal-
ism. These instances have binary and ternary constraints and domains of size 1 and 3.
For our purpose we consider a simplified binary MAX-CSP version of the problem (i.e.
0/1 binary cost functions) and search for a complete value assignment to all variables
that violates the least number of constraints.

Table 2 reports the results obtained for 6 SPOT5 networks. The first column identi-
fies the instance, the number of variables (n) and the number of binary constraints (c).
For each instance we ran two algorithms (given by the second column): AOMFDAC
ands-AOMB(i). For the latter we report only thei-bound for which we obtained the
best results. The remaining columns are divided into two vertical blocks, each corre-
sponding to a specific heuristic used for constructing the pseudo-tree (e.g. hypergraph,
min-fill). Each block reports the induced width (w∗), the height of the pseudo-tree (h),
the running time and number of nodes explored by the tree (no cache) as well as the
graph (cache) version of each algorithm. The cache boundj was set to 16. It can be
observed that caching improves considerably the performance of both algorithms, espe-
cially for AOMFDAC. On instance 505b for example, the graph version of AOMFDAC
is as much as 3.4 times faster than the tree version when running with a hypergraph
based pseudo-tree. The same instance could not be solved within a 1 hour limit by the
tree AOMFDAC using a min-fill based pseudo-tree, but it was solved in about 15 sec-
onds by the graph version of the algorithm. The effect of caching is not too prominent
for s-AOMB(i). This is most likely due to the very good quality of the heuristic esti-
mates which able to prune the search space very effectively.Regarding the quality of
the pseudo-trees we observe that the hypergraph heuristic generates lower height trees

(a) (b)

Fig. 3.Results for random Bayesian networks.

which appear to favor AOMFDAC. Alternatively, min-fill based trees produce lower
width orderings which can in turn generate more accurate mini-bucket heuristic esti-
mates.

6.2 Bayesian Networks

Our second experiment consists of uniform random Bayesian networks. The networks
were generated using parameters(n, d, c, p), wheren is the number of variables,d is
the domain size,c is the number of conditional probability tables (CPTs) andp is the
number of parents in each CPT. The structure of the network iscreated by randomly
picking c variables out ofn and, for each, randomly pickingp parents from their pre-
ceding variables, relative to some ordering. The entries ofeach probability table are
generated uniformly randomly, and the table is then normalized.

Figure 3 displays the results for a class of random Bayesian networks with parame-
ters (n=100,d=3,c=90,p=2). The pseudo-tree was constructed by the min-fill heuristic.
We consider two classes of algorithmss-AOMB(i,j) andd-AOMB(i,j), respectively.
Thei-bound of the mini-bucket heuristic ranged between 2 and 14,and we chose three
caching levels as follows:low (j = 2), medium(j = 8) andhigh (j = 14). It can
be observed that caching improvess-AOMB(i) (see Figure 3(a)) especially for smaller
i-bounds of the static mini-bucket heuristic (e.g.i = 8). When using the dynamic mini-
bucket heuristic (see Figure 3(b)) caching does not outweigh its overhead for all re-
portedi-bounds. This is due primarily to the accuracy of the heuristic which is able to
prune a substantial portion of the search space.

6.3 Genetic Linkage Analysis

For our third experiment we consider the problem of computing themaximum likelihood
haplotype configurationof a general pedigree. In human genetic linkage analysis [18],
thehaplotypeis the sequence of alleles at different loci inherited by an individual from
one parent, and the two haplotypes (maternal and paternal) of an individual constitute
this individual’sgenotype. When genotypes are measured by standard procedures, the

L11p L11m

X11

L21p L21m

X21

L31p L31m

X31

S11p S11m

L12p L12m

X12

L22p L22m

X22

L32p L32m

X32

S12p S12m

Fig. 4. A fragment of Bayesian network used in genetic linkage analysis.

hypergraph minfill
Pedigree Algorithm (w*,h) no cache cache (w*,h) no cache cache

(n,d) time nodes time nodes time nodes time nodes
bn2 7 sAOMB(14) (20,36) 2.273 42,276 0.83 11,358(18,43) 5.998 8,3645.979 8,077

(460,5) VE+C n/a
Superlink 1.140

bn2 9 sAOMB(14) (22,39) 8.222 169,9831.823 20,201(21,52) 8.532 80,0077.741 69,140
(566,5) VE+C n/a

Superlink 1.571
bn113 sAOMB(12) (17,27) 0.771 11,8990.551 3,706(15,41) 0.721 9,1470.681 8,294
(186,4) VE+C 11.98

Superlink 0.030
bn114 sAOMB(12) (22,33) 14.79 462,7016.660 167,333(20,55) 20.50 498,30522.32 490,003
(234,5) VE+C 17.41

Superlink 0.430
bnLB 3 sAOMB(18) (25,42) 26.72 467,6423.944 21,783(24,74) 33.47 357,3169.083 40,310
(642,4) VE+C 0.881

Superlink 0.110
bnLB 4 sAOMB(18) (26,45) 1,390 24,961,26923.79 289,914(21,90) 131.8 1,562,51022.34 215,793
(799,4) VE+C 1.011

Superlink 0.130
bnGB 27 1 sAOMB(14) (19,29) 28.28 863,07310.47 168,540(21,40) 67.75 1,726,23274.23 1,716,848

(178,4) VE+C 172.5
Superlink 32.88

bnGB 67 1 sAOMB(18) (24,39) 9.744 47,8699.564 36,715(25,50) 170.3 95,504225.2 94,587
(212,4) VE+C 597.5

Superlink 11.72

Table 3.Results for genetic linkage analysis networks.

result is a list of unordered pairs of alleles, one pair for each locus. The maximum
likelihood haplotype problem consists of finding a joint haplotype configuration for all
members of the pedigree which maximizes the probability of data.

The pedigree data can be represented as a Bayesian network with three types of ran-
dom variables:genetic locivariables which represent the genotypes of the individuals
in the pedigree (two genetic loci variables per individual per locus, one for the pater-
nal allele and one for the maternal allele),phenotypevariables, andselectorvariables
which are auxiliary variables used to represent the gene flowin the pedigree. Figure 4
represents a fragment of a network that describes parents-child interactions in a simple

2-loci analysis. The genetic loci variables of individuali at locusj are denoted byLi,jp

andLi,jm. VariablesXi,j , Si,jp andSi,jm denote the phenotype variable, the paternal
selector variable and the maternal selector variable of individual i at locusj, respec-
tively. The conditional probability tables that correspond to the selector variables are
parameterized by therecombination ratioθ [19]. The remaining tables contain only de-
terministic information. It can be shown that given the pedigree data, the haplotyping
problem is equivalent to computing the Most Probable Explanation of the correspond-
ing Bayesian network (for more details consult [19, 20]).

In Table 3 we show results for several hard genetic linkage problem instances4.
We experimented with three algorithms:s-AOMB(i) (tree and graph versions), VE+C
and Superlink. Superlink v1.5 is currently the most efficient solver for genetic linkage
analysis, is dedicated to this domain and uses a combinationof variable elimination
and conditioning, as well as a proprietary matrix multiplication scheme. VE+C is our
implementation of the elimination and conditioning hybrid, without the special multi-
plication scheme, and it uses the elimination order output by Superlink. Fors-AOMB(i)
we report only the besti-bound of the mini-bucket heuristic. For the graph version of
s-AOMB(i) the cache bound was equal to thei-bound. We observe that on this domain,
the hypergraph based pseudo-trees produced the best results for both the tree and graph
versions ofs-AOMB(i). In several instances, the hypergraph heuristic was also able to
produce orderings with widths smaller than those obtained with the min-fill heuristic
(e.g. bnGB27 1, bnGB67 1).

Caching improves dramatically the performance ofs-AOMB(i) in all test cases. On
the bnLB4 pedigree, the graph version ofs-AOMB(18) is about 58 times faster than the
tree version, reducing the size of the search space exploredfrom 25M to about 290K
nodes. The graphs-AOMB(i) is consistently better than VE+C, except on instances
bnLB 3 and bnLB4. In that case, the elimination order produced by Superlinkhad a
width of 13, which was much smaller than that obtained by boththe hypergraph and
min-fill heuristics. When comparing the graphs-AOMB(i) with Superlink we observe
that the graphs-AOMB(i) is better than Superlink in 3 out of the 8 instances (e.g.
bn2 7, bnGB27 1, bnGB67 1) and they are about the same order of magnitude on the
remaining instances.

7 Conclusion

This paper rests on two contributions. First, we extended the AND/OR Branch-and-
Bound tree search algorithm with a flexible context-based caching scheme allowing the
algorithm to explore an AND/OR search graph rather than a tree. The new graph search
algorithm was then specialized with heuristics based on either the mini-bucket approx-
imation or soft arc-consistency. Second, we introduced a new heuristic for generating
pseudo-trees based on the recursive decomposition of the problem’s hypergraph. Both
contributions are supported by experimental results for solving WCSPs and comput-
ing the MPE configuration in belief networks on a variety of synthetic and real-world
networks, including some very challenging networks from the field of genetic link-
age analysis. Finally, some new directions of research include combining the AND/OR

4 All networks are available at http://bioinfo.cs.technion.ac.il/superlink/

search algorithms with constraint propagation for efficiently handling the determinism
in Bayesian networks, as well as improving the heuristics that guide the search process.

Related Work: AOBB is related to the Branch-and-Bound method proposed by [21]
for acyclic AND/OR graphs and game trees, as well as the pseudo-tree search algorithm
proposed in [22] for boosting Russian Doll search. The optimization method developed
in [23] for semi-ring CSPs can also be interpreted as an AND/OR graph search algo-
rithm.

References

1. R. Marinescu and R. Dechter. And/or branch-and-bound forgraphical models.In IJCAI’05.
2. R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistic networks.In UAI’04.
3. R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning and

cutset decomposition.Artificial Intelligence, 41(3):273–312, 1990.
4. A. Darwiche. Recursive conditioning.Artificial Intelligence, 126(1-2):5–41, 2001.
5. F. Bacchus, S. Dalmao, and T. Pittasi. Value elimination:Bayesian inference via backtrack-

ing search.Proc. of UAI’03, pages 20–28, 2003.
6. S. Bistarelli, U. Montanari, and F. Rossi. Semiring basedconstraint solving and optimization.

Journal of ACM, 44(2):309–315, 1997.
7. J. Pearl.Probabilistic Reasoning in Intelligent Systems.Morgan-Kaufmann, 1988.
8. E. Freuder and M. Quinn. Taking advantage of stable sets ofvariables in constraint satisfac-

tion problems.Proc. of IJCAI’85, 1985.
9. R. Mateescu and R. Dechter. And/or cutset conditioning.In IJCAI’05.

10. R. Dechter and I. Rish. Mini-buckets: A general scheme for approximating inference.ACM,
2003.

11. R. Dechter. Bucket elimination: A unifying framework for reasoning.Artificial Intelligence,
1999.

12. K. Kask and R. Dechter. A general scheme for automatic generation of search heuristics
from specification dependencies.Artificial Intelligence, 2001.

13. J. Larrosa and T. Schiex. In the quest of the best form of local consistency for weighted csp.
Proc. of IJCAI’03, pages 631–637, 2003.

14. S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Existential arc consistency: getting closer
to full arc consistency in weighted csps.Proc. of IJCAI’05, 2005.

15. R. Bayardo and D. Miranker. On the space-time trade-off in solving constraint satisfaction
problems.Proc. of IJCAI’95, 1995.

16. U. Kjæaerulff. Triangulation of graph-based algorithms giving small total space.Technical
Report, University of Aalborg, Denmark, 1990.

17. E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation satellite management.Con-
straints, 4(3):293–299, 1999.

18. Jurg Ott.Analysis of Human Genetic Linkage. The Johns Hopkins University Press, 1999.
19. M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedigrees.

Bioinformatics, 2002.
20. M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihood haplotyping for general

pedigrees.Human Heredity, 2005.
21. L. Kanal and V. Kumar.Search in artificial intelligence.Springer-Verlag., 1988.
22. J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-tree search with soft constraints.Proc. of

ECAI’02, 2002.
23. P. Jegou and C. Terrioux. Decomposition and good recording for solving max-csps.In

ECAI’04.

Composite graphial models for reasoning aboutunertainties, feasibilities, and utilitiesC�edri Pralet1;3, G�erard Verfaillie2, and Thomas Shiex31 LAAS-CNRS, Toulouse, Frane pralet�laas.fr2 ONERA, Centre de Toulouse, Frane gerard.verfaillie�onera.fr3 INRA, Castanet Tolosan, Frane tshiex�toulouse.inra.frAbstrat. In this paper, we de�ne a generi algebrai framework thatovers several AI formalisms used to represent unertainties, feasibili-ties, or utilities. This inludes hard, soft, mixed, quanti�ed, or stohastionstraint satisfation problems, Bayesian and Gibbsian networks, haingraphs, inuene diagrams, probabilisti or possibilisti Markov deisionproesses. This is made possible by the fat that these formalisms anbe desribed as \graphial models", using loal relations to express aglobal knowledge. Composite graphial models inlude di�erent types ofrelations to model unertainties on the environment, feasibilities on de-isions, and utilities expressing preferenes or hard requirements. Usualqueries an then be interpreted in this framework as a sequene of quan-ti�ation/elimination of variables with dediated operators. Using theproposed framework, it will be possible to better understand the linksbetween existing formalisms and to develop generi eÆient parameter-ized algorithms.1 Existing frameworksIn the last deades, several representation frameworks have been developed inthe AI ommunity to reason about unertainties, feasibilities, and utilities. Con-straint satisfation problems (CSP [1℄) represent problems in whih loal on-straints between disrete variables express fats or requirements. Valued/semiringCSP [2℄ extend onstraint networks to represent unertain fats or soft require-ments (overing lassial, fuzzy, additive, lexiographi, probabilisti CSP. . .).Mixed CSP [3℄ introdue a distintion between ontrollable and unontrollablevariables. Similarly, quanti�ed CSP [4℄ and stohasti CSP [5℄ extend CSP withuniversally and randomly quanti�ed variables. Similar works exist in the SAT(boolean satis�ability) ommunity [6℄. Bayesian networks [7℄ represent prob-lems that involve loal oriented dependenies between random variables. Chaingraphs [8℄ extend Bayesian networks by adding non-oriented dependenies, as inGibbsian networks. In another diretion, inuene diagrams [9℄ extend Bayesiannetworks by adding non-random deision variables and utility variables. Markovdeision proesses (MDP), possibly partially observable [10, 11℄, an represent se-quential deision problems under unertainty. Finally, fatored MDP [12℄ extendMDP to variable-based representations. Related works use possibility theory [13,14℄, or Spohn's theory of epistemi beliefs [15℄.

2 MotivationsOne an observe signi�ant similarities between these frameworks, whih shareommon algebrai properties. We present some examples to illustrate this point.Graphial models Graphial models are de�ned by a �nite set of variablesV = fx1; : : : ; xng, eah variable having a �nite domain of values Dom(xi), andby a �nite set of loal funtions L = ff1; : : : ; fmg taking their values in a spei�domain. The ombination of these funtions with a spei� operator o�ers aspae-tratable de�nition of a global (joint) funtion on all variables.In the CSP (or SAT) framework [1℄, the set L ontains relations (or on-straints/lauses) mapping tuples of values to ftrue; falseg. A usual query on aCSP is to �nd an assignment of the variables satisfying all onstraints. It an beformulated as 9x19x2 : : : 9xn (f1 ^ f2 ^ : : : ^ fm) (or \does there exist a valuefor x1, x2, . . . xn suh that the onjuntion of the onstraints is satis�ed").Assuming true � false, heking onsisteny is equivalent to omputing:maxx1 maxx2 : : :maxxn (f1 ^ f2 ^ : : : ^ fm) (1)The values that optimize this query de�ne a solution. In this query, loal relationsare ombined with ^, and the elimination (or projetion) operator max is appliedto eah variable. Replaing ^ by their respetive ombination operator � (resp.�) in Query 1 yields the usual query of valued (resp. totally ordered semiring)CSP [2℄.Similarly, in a Bayesian network [7℄, L is a set of loal onditional probabil-ity distributions L = fP (xi j pa(xi)) ; xi 2 V g where pa(xi) is the set of parentvariables of xi de�ned by a direted ayli graph (DAG) G. Suh a networkrepresents a joint probability distribution P (V) on all variables as a ombina-tion of loal onditional probability distributions, exatly as the ombination ofloal onstraints in a CSP impliitly models a global onstraint on all variables.Various queries an be onsidered on a Bayesian network, suh as omputingP (x1), the probability distribution on x1, equal to:Xx2 : : :Xxn 0� Yxi2V P (xi j pa(xi))1A (2)In this ase, loal funtions are ombined with �, and elimination is done with+, instead of ^ and max respetively for heking onsisteny of a CSP.These graphial models are said to be simple beause they only involve onetype of variable (deision variables for CSP, random variables for Bayesian net-works), one type of funtion (onstraints for CSP, onditional probability distri-butions for Bayesian networks), one type of ombination operator (^ for CSP, �for Bayesian networks), and one type of elimination operator (max for hekingonsisteny of a CSP, + for omputing probabilities in a Bayesian network).However, many related formalisms have introdued several types of variables,funtions, ombination and elimination operators. Suh frameworks an infor-mally be denoted as omposite graphial models.

Composite graphial models Stohasti CSP [5℄ involves two kinds of vari-ables: deision variables di, and stohasti variables sj desribing the environ-ment. A global probability distribution on stohasti variables is expressed asa ombination of loal probability distributions that an be simply P (sj) if thestohasti variables are assumed to be mutually independent. A set of loal on-straints C = f1; : : : ; mg is also de�ned. An example of query with two deisionssteps is: maxd1 maxd2 Xs1 maxd3 maxd4 Xs2 (P (s1)� P (s2))� (1 � : : :� m) (3)Unertainties given by the loal probability distributions are ombined with �,utilities expressed by the onstraints are ombined with �, unertainties andutilities are ombined together with �, environment (stohasti) variables areeliminated with +, and deision variables are eliminated with max.Another example of a omposite graphial model is given by inuene di-agrams [9℄ or �nite horizon possibilisti and probabilisti MDP [10, 11, 14℄. AMDP desribes the evolution of the environment by time-steps. An environmentvariable st desribing the state of the environment is assoiated with eah time-step t, as well as a deision variable dt representing the deision made at time t.In the following, the initial state s1 is assumed to be known.In a probabilisti MDP, unertainties on the evolution of the environment aredesribed with loal probability distributions P (st+1 j st; dt) of being in state st+1at time t+1, given st and dt. Utilities on the environment and on the deisionsare spei�ed via loal additive rewards R(st; dt) assoiated with eah time-step.If there are T time-steps, the assoiated query is:maxd1 Xs2 maxd2 : : :XsT maxdT 0� Yt2[1;T�1℄P (st+1 j st; dt)1A�0� Xt2[1;T ℄R(st; dt)1A (4)to obtain an optimal poliy under unertainty. Unertainties given by the prob-abilities are ombined with �, utilities given by the rewards are ombined with+, unertainties and utilities are ombined with �, environment variables (thest) are eliminated with +, and deision ones (the dt) are eliminated with max.In a possibilisti MDP, unertainties on the evolution of the environment aredesribed with possibility distributions �(st+1 j st; dt) of being in state st+1 attime t+1, given st and dt. Utilities on the environment and on the deisions arespei�ed via loal preferenes �(st; dt) assoiated with eah time-step. If thereare T time-steps, the query assoiated with the pessimisti version of possibilistiMDP is:maxd1 mins2 maxd2 : : :minsT maxdT max�1� mint2[1;T�1℄�(st+1 j st; dt) ; mint2[1;T ℄�(st; dt)� (5)Unertainties given by the possibilities are ombined with min, utilities given bythe preferenes are ombined with min, an unertainty un and a utility ut areombined with max(1 � un; ut), environment variables (the st) are eliminatedwith min, and deision ones (the dt) are eliminated with max. It appears thatonly the ombination and elimination operators di�er between Equations 4 and 5.

In MDP, the environment may restrain the possible deisions, as in STRIPSplanning, where preonditions on ations are imposed. If f(st; dt) is a loalboolean relation expressing whether a deision dt is feasible or not in state st,Equation 4 beomes maxd1 = f(s1;d1)Ps2 maxd2 = f(s2;d2) : : :PsT maxdT = f(sT ;dT) �,where � = �Qt2[1;T�1℄ P (st+1 j st; dt)�� �Pt2[1;T ℄R(st; dt)�. To avoid indexedmax operations, it is also possible to write this equation as:maxd1 Xs2 maxd2 : : :XsT maxdT � ^t2[1;T ℄ f(st; dt)� ? � (6)with ? an operation used to ombine feasibilities and utilities, de�ned by true ?ut = ut, false ? ut = �, � being \ignored" by the elimination operators, i.e.max(ut;�) = min(ut;�) = ut + � = ut. Again, a sequene of variable elimina-tions is performed on a ombination of loal relations, loal feasibility onstraintsbeing ombined with ^, and ombined with unertainties and utilities with ?.Global objetive Equations 1 to 6 show that queries assoiated with existingframeworks all orrespond to a sequene of appliation of elimination opera-tors on a ombination of loal funtions. The only di�erenes between theseframeworks lies in the types of the loal funtions involved and in the way infor-mation is ombined and eliminated. The existing generi approah of valuationalgebras [16, 17℄ is suitable for simple graphial models, but, being restrited tosimple graphial models with one type of information, it annot be diretly usedto solve queries on omposite graphial models.In order to deal in the most general way with graphial models where onemay distinguish between environment variables (whose value is unertain) anddeision variables (whose value is hosen), between loal relations expressingunertainties, feasibilities and utilities, using several type of ombination oper-ators (for ombining unertainties, feasibilities, and utilities) and of eliminationoperators (typially min, max, or + may alternate in general queries), we de-signed a new algebrai framework, alled Unertainty-Feasibility-Utility networks(UFUs). Using suh networks, simple or omplex queries an be formulated uni-formly using elimination operators (ating as quanti�ers). This framework en-ables the integration of several algorithmi approahes independently exploredin eah framework: exat methods relying on tree searh or variable/buket elim-ination, approximate algorithms using sampling or loal searh, and loal infer-ene mehanisms suh as loal onsisteny enforing (now available on generallasses of funtions [19℄) and global onstraints. It will also bring to light andapitalize on the many ommon underlying algorithmi ideas, therefore avoidingreinventing similar methods.The Unertainty-Feasibility-Utility networks framework is based on threemain omponents that make the bakbone of this paper:{ a generi algebrai struture, presented in Setion 3, introdues operatorsspeifying how to ombine unertainties, feasibilities, utilities, how to om-bine unertainties with utilities, feasibilities with utilities, and how to elimi-nate on unertainties, feasibilities, and utilities;

{ a problem (Setion 4) is then de�ned as a set of loal funtions betweenvariables. Variables are either environment variables (with an unertaintymeasure on the value they take), or deision variables (when their value isdeisionally hosen by an agent). Three types of loal funtions are de�ned:unertainty relations (modeling unertainties on the environment variables),feasibility relations (modeling feasibility onstraints on deision variables),and utility relations (modeling preferenes or hard requirements, on anyvariable).{ queries on a problem (Setion 5) are �nally formulated as sequenes of vari-able eliminations, e.g. to ompute an optimal poliy under unertainty.Example To give esh to our de�nitions, we onsider the following example:Peter invites John and Mary (a divored ouple) to a business dinner in orderto onvine them to invest in his ompany. Peter knows that if John is presentat the end of the dinner, he will invest 10 k$. The same holds for Mary with 50k$. Peter knows that John and Mary will not ome together (one of them has tobaby-sit their hild), that at least one of them will ome, and that the ase \Johnomes and Mary does not" ours with a probability of 0:6. As for the menu,Peter an order �sh or meat for the main ourse, and white or red for the wine.However, the restaurant refuses to serve �sh and red wine together. John doesnot like white wine and Mary does not like meat. If the menu does not suit them,they will leave the dinner. If John omes, Peter does not want him to leave thedinner beause he is his best friend.3 De�nition of a generi algebrai strutureWe start by desribing the algebrai struture on whih unertainties, feasibili-ties, and utilities are de�ned. This struture involves ordered sets, ombinationand elimination operators, as well as spei� elements.Unertainties an be expressed in several forms, as shown in the examplesof probabilisti and possibilisti MDP (see Setion 2). A �rst well-known formuses probabilities, as in probabilisti MDP. In this ase, probabilities are om-bined with � (under independeny hypothesis), and elimination on probabilities(usually alled marginalisation) is done with +. But unertainties an also beexpressed as possibility degrees in [0; 1℄, as in possibilisti MDP. In this ase,possibilities are ombined with an operator that an be min, and are eliminatedwith max. An interesting subase appears when possibility degrees are either0 or 1, i.e. when the unertainties desribe whih world is ompletely possibleor impossible. Unertainties an then be ombined with ^, and eliminated with_. A last example is given by Spohn's theory of epistemi beliefs [15℄: in thisase, unertainties are surprise degrees in N [f+1g, 0 being assoiated withnon-surprising situations, and +1 being assoiated with ompletely surprising(impossible) situations. Surprise degrees are then ombined with + and elimi-nated with min.

To generalize those various frameworks reasoning about unertainties, wede�ne an unertainty struture as a tuple Sun= (Eun;�un;�un;
un) suh that:{ Eun is a set of elements alled unertainty degrees, totally ordered by �un,and with a minimal element 0un (0un will be assoiated with impossibility).{ �un is a binary, assoiative, ommutative, monotoni, losed operator onEun (elimination operator), with 0un as neutral element.{
un is a binary, assoiative, ommutative, monotoni, losed operator onEun (ombination operator), with a neutral element 1un 2 Eun and 0un asannihilator. Moreover,
un distributes over �un.It is a totally ordered ommutative semiring. The previously desribed uner-tainty modeling frameworks an easily be shown to be instanes of unertaintystrutures. Note that Dempster-Shafer belief funtions [20℄ are not subsumed.Feasibilities are used to express the fat that a deision is feasible or not.Therefore feasibilities are expressed on ftrue; falseg. This set is equipped withthe total order�f verifying false �f true. As a onjuntion of deisions is feasiblei� eah deision of the onjuntion is feasible, feasibilities are ombined with ^.As a disjuntion of deisions is feasible i� at least one deision of the disjuntionis feasible, feasibilities are eliminated with _. Thus, feasibilities are expressed ona struture alled a feasibility struture, whih is always Sf = (ftrue; falseg;�f;_;^). Note that Sf is also an unertainty struture.Utilities A usual approah to take into aount utilities and unertainty is thefamous probabilisti expeted utility theory [21℄, used e.g. in stohasti CSPand probabilisti MDP. In this theory, utilities are ombined with +, and theexpeted utility formula Pi pi � Ui ombines unertainties and utilities with �and eliminates utilities with +.But other options exist. If unertainties are possibility degrees as in pos-sibilisti MDP, the possibilisti pessimisti expeted utility theory [13℄ an beused: utilities are ombined with min (as a risk minimization), an unertainty unand a utility ut are ombined with max(1� un; ut), and utilities are eliminatedwith min. Last, if unertainties are surprise degrees, the qualitative utility the-ory for Spohnian beliefs [15℄ an be used: when only \positive" utilities exist, itorresponds to ombining utilities with +, ombining unertainties and utilitieswith +, and eliminating utilities with min.To generalize these examples, we de�ne �rst a utility struture, on whihutilities are expressed, and then a ombination operator between unertaintiesand utilities. A utility struture is a tuple Sut = (Eut;�ut;�ut;
ut) suh that:{ Eut is a set of elements alled utility degrees, totally ordered by �ut, andwhih ontains a minimal element ?ut, assoiated with unaeptability.{ �ut is a binary, assoiative, ommutative, monotoni, losed operator on Eut(elimination operator), with a neutral element 0ut 2 Eut denoting indi�er-ene, between positive and negative utilities.{
ut is a binary, assoiative, ommutative, monotoni, losed operator onEut (ombination operator), with a neutral element 1ut 2 Eut and ?ut asannihilator.

A utility struture is di�erent from an unertainty struture: 0un is the minimumelement of Eun whereas 0ut is not neessarily the minimum element of Eut; bothpositive and negative utilities may exist. Then, a ombination operator betweenunertainties and utilities is an operator
un=ut : Eun �Eut ! Eut suh that:{
un=ut is monotoni: for a given unertainty, the higher the utility, the better,and the more a positive utility is believed (and the less a negative one), thebetter: (ut1 �ut ut2)! (un
un=ut ut1 �ut un
un=ut ut2)((un1 �un un2) ^ (0ut �ut ut))! (un1
un=ut ut �ut un2
un=ut ut)((un1 �un un2) ^ (ut �ut 0ut))! (un2
un=ut ut �ut un1
un=ut ut){ utilities are \weighted" by unertainties. These linearity axioms give a usual\lottery" semantis [21℄ to ombined unertainties and utilities. These ax-ioms are also important for algorithmi reasons. Despite the strength of theseaxioms, they over all the previous frameworks (see Table 1):un1
un=ut (un2
un=ut ut) = (un1
un un2)
un=ut utun
un=ut (ut1 �ut ut2) = (un
un=ut ut1)�ut (un
un=ut ut2)(un1 �un un2)
un=ut ut = (un1
un=ut ut)�ut (un2
un=ut ut)1un
un=ut ut = ut, and 0un
un=ut ut = 0utFinally, to ombine feasibilities and utilities, we use, as in Equation 6, aombination operator between feasibilities and utilities ? : ftrue; falseg � (Eut [f�g) ! (Eut [f�g) suh that for any ut 2 Eut [f�g, true ? ut = ut andfalse ? ut = �, where � is a speial element ignored by elimination operators:max(ut;�) = min(ut;�) = ut�ut� = ut (imposing max(ut;�)= min(ut;�)= utis �ne sine �ut is a total order on Eut, and not on Eut [f�g). ? enables us towrite maxx;f(x)=true d(x) as maxx f(x) ? d(x), whih gives feasibilities the samestatus as unertainties and utilities. We also extend
un=ut by un
un=ut� = �,whih implies un
un=ut (f ? ut) = f ? (un
un=ut ut) = f ? un
un=ut ut.An unertainty-utility struture is de�ned as a triple (Sun; Sut;
un=ut)suh that Sun is an unertainty struture, Sut is a utility struture and
un=utis a ombination operator between unertainties and utilities. The struture forfeasibility onstraints is always Sf = (ftrue; falseg;�f ;_;^). Similarly, ? doesnot hange. Classial unertainty-utility strutures satisfying all the previousaxioms are shown in Table 1. Our dinner problem uses probabilisti expetedutility (row 1 in Table 1).Eun �un �un
un 0un; 1un Eut �ut �ut
ut ?ut; 0ut; 1ut
un=ut1 R+ � + � 0; 1 R [f�1g � + + �1; 0; 0 �2 R+ � + � 0; 1 R+ � + � 0; 0; 1 �3 [0; 1℄ � max min 0; 1 [0; 1℄ � max min 0; 0; 1 min4 [0; 1℄ � max min 0; 1 [0; 1℄ � min min 0; 1; 1 max(1�un; ut)5 N [f1g � min + 1; 0 N [f1g � min + 1;1; 0 +Table 1. Unertainty-utility struture in - 1. probabilisti expeted utility - 2. proba-bilisti expeted satisfation - 3. optimisti possibilisti expeted utility - 4. pessimistipossibilisti expeted utility - 5. non-bipolar qualitative utility for Spohnian beliefs.

4 De�nition of problemsWe an now ombine this algebrai struture with the notion of graphial modelsusing loal funtions as in Equations 1 to 6. Formally, a loal funtion on E isa funtion Li : Dom(S(Li)) ! E, where S(Li) is a set of variables alled thesope of Li. A loal funtion on Eun (the set of unertainty degrees) is alledan unertainty relation, a loal funtion on ftrue; falseg (the set of feasibilitydegrees) is alled a feasibility relation, and a loal funtion on Eut (the set ofutility degrees) is alled a utility relation. A feasibility relation an obviously bemodeled as a onstraint; an unertainty relation an be modeled as a onstraintif it takes its values in f0un; 1ung (forbidden tuples are mapped on 0un, allowedones on 1un); similarly, a utility relation an be modeled as a onstraint if it takesits values in f?ut; 1utg. Eliminating a variable x with an operator op from a loalfuntion Li on a set of variables S onsists of omputing, for eah assignmentA ofS�fxg, (opx Li)(A) = opa2Dom(x)Li(A:(x = a)), i.e. a funtion on S(Li)�fxg.Given a �nite set of variables V , partitioned into VE , the set of environmentvariables, and VD, the set of deision ones, we want to express:{ a global unertainty degree UnV on the environment variables as a om-bination of unertainty relations. UnV satis�es normalization onditions,aording to whih the disjuntion of all the situations gives the same un-ertainty degree 1un. The normalization will appear loally through loalnormalization onditions imposed on unertainty relations;{ a global feasibility degree FV on the deision variables as a ombinationof feasibility relations. FV satis�es normalization onditions, aording towhih one deision is feasible in any situation; this is semantially justi-�ed sine e.g. doing nothing is always possible (even if unaeptable). Thenormalizations will appear loally through loal normalization onditionsimposed on feasibility relations;{ a global utility degree UtV on all variables as a ombination of utility rela-tions. UtV expresses preferenes or hard requirements. No normalization isimposed here, beause loal utilities an always be ombined without gener-ating any impossibility; their ombination an only generate unaeptability.De�nition 1 A problem Pb on an unertainty-utility struture (Sun; Sut;
un=ut)is a tuple (V;G;UN; F; UT) where:{ V = fx1; x2; : : :g is a �nite set of variables. V is partitioned into VE (theset of environment variables) and VD (the set of deision variables). Eahvariable xi has a �nite domain Dom(xi). For S � V , Dom(S) denotes theCartesian produt of the domains of variables in S.{ G is a DAG whose verties are alled omponents. The omponents form apartition of V suh that eah omponent intersets only one of VE or VD.We note CE (resp. CD) the set of omponents inluded in VE (resp. VD) andpa() the variables belonging to a parent of in G.{ UN = fUN1; UN2; : : :g is a �nite set of unertainty relations; eah UNi is as-soiated with a omponent 2 CE noted (UNi), s.t. S(UNi) � ([pa()); forany 2 CE, the loal normalization �un �
un(UNi)=UNi� = 1un must hold.

{ F = fF1; F2; : : :g is a �nite set of feasibility relations; eah Fi is assoia-ted with a omponent 2 CD noted (Fi), s.t. S(Fi) � ([pa()); for any 2 CD, the loal normalization _ �^(Fi)=Fi� = true must hold.{ UT = fUT1; UT2; : : :g is a �nite set of utility relations.The DAG struture makes unertainty and feasibility relations impliitly ori-ented (between variables in pa() and variables in) or not (inside a omponent).Note that there annot be any undireted relation between an environment vari-able and a deision variable, as they annot belong to a same omponent: eithera deision inuenes the environment, or the environment restrains the possibledeisions. Intuitively, the DAG models independenes.The dinner problem an be modeled using six variables: bpJ and bpM (valuet or f), representing John's and Mary's presene at the beginning, epJ and epM(value t or f), representing their presene at the end, m (value fish or meat),for the main ourse hoie, and w (value white or red), for the wine hoie.VD = fm;wg and VE = fbpJ ; bpM ; epJ ; epMg.The DAG of omponents enoding independenes an be built using e.g.ausal reasoning. For example, it is possible to infer that bpJ and bpM arelinked by a orrelation relation and are not ausally inuened by other vari-ables, that epJ is ausally determined by bpJ and w, but not by epM (theorresponding links are oriented to epJ), that m and w are linked by a non-oriented feasibility relation expressing the impossibility to order �sh with redwine. . . The result is shown in Figure 1a. Impliitly, the DAG means that thejoint probability distribution P (bpJ ; bpM ; epJ ; epM jm;w) an be expressed asP (bpJ ; bpM)
unP (epJ j bpJ ; bpM ;m; w)
unP (epM j bpJ ; bpM ;m; w), and thatthe global feasibility degree an be expressed as F (m;w).The unertainty relations express P (bpJ ; bpM), P (epJ j bpJ ; bpM ;m; w), andP (epM j bpJ ; bpM ;m; w). A �rst unertainty relation UN1 expresses P (bpJ ; bpM),the probability of presene of John and Mary at the beginning: UN1(bpJ =t; bpM = f) = 0:6, UN1(bpJ = f; bpM = t) = 0:4, and UN1(bpJ = t; bpM = t) =UN1(bpJ = f; bpM = f) = 0. Then, P (epJ j bpJ ; bpM ;m; w) an be spei�ed asUN2
unUN3. UN2 expresses that if John is absent at the beginning, he will beabsent at the end: UN2(A)=0 if A=(epJ=t; bpJ=f), 1 otherwise. EquivalentlyUN2 is the onstraint (bpJ= f)! (epJ= f). UN3 is the onstraint (bpJ= t)!((epJ= t)$:(w= white)). Similarly, P (epM j bpJ ; bpM ;m; w) = UN4
unUN5with UN4 and UN5 de�ned as onstraints. Note that unlike Bayesian networks,one an speify the probability of a variable given its parents by several relations.Conerning feasibilities, F (m;w) is spei�ed as a unique feasibility relationF1, expressing that Peter annot order �sh with red wine: F1 : :((m = fish)^(w = red)). The assoiation of relations with omponents is shown in Figure 1a.As for utilities, a binary utility relation expresses that Peter does not wantJohn to leave the dinner: UT1 : (bpJ = t) ! (epJ = t). Two unary utilityrelations UT2 and UT3 on epJ and epM resp. express the gains expeted fromthe presenes at the end: for instane, UT2(epJ = t) = 10 and UT2(epJ = f) = 0.All the loal relations are drawn as a omposite graphial model in Figure 1b.

feasibilityrelationmw epJepMbpMF1 relation
UN3
UN5UN4; UN5UN2; UN3 UT3UT2UT1UN4UN1 UN2UN1m;wF1 environmentdeision

utilityunertaintyrelationbpJ ; bpMepMepJ bpJ
Fig. 1. (a) DAG of omponents (b) Unertainty-Feasibility-Utility network.Bak to existing frameworks Let us onsider the formalisms desribed inSetion 2 again. Representing a CSP (hard or soft) in our framework an beeasily done by de�ning a problem as Pb = (V;G; ;; ;; UT): all variables in V aredeision variables, G is redued to a unique deision omponent ontaining allvariables, and the onstraints an be onsidered as utility relations.A Bayesian network an be modeled as Pb = (V;G;UN; ;; ;): all variablesin V are environment variables (they are random variables), G is the DAG ofthe Bayesian network, and UN = fP (xi j pa(xi)); xi 2 V g. There are not anyfeasibility or utility relations. Chain graphs di�er from Bayesian networks in thatinstead of expressing onditional probabilities P (xi j pa(xi)) on variables, theyexpress onditional probability distributions P (i j pa(i)) on omponents i ofa DAG, eah P (i j pa(i)) being expressed in a fatored form. A hain graphan be modeled as Pb = (V;G;UN; ;; ;), with G the DAG of omponents of thehain graph, and UN the set of fators of eah P (i j pa(i)). Without the notionof omponents, suh a framework would not have been subsumed.One an model a stohasti CSP as Pb = (V;G;UN; ;; UT), where VE isthe set of stohasti variables, VD is the set of deision ones, G is a DAG whihdepends on the relations between the stohasti variables, UN is the set of prob-ability distributions on the stohasti variables, and UT is the set of onstraints.A �nite horizon probabilisti MDP an be modeled as Pb = (V;G;UN; F; UT).If there are T time-steps, then VE = fst; t 2 [1; T ℄g and VD = fdt; t 2 [1; T ℄g;G is a DAG of omponents suh that eah omponent ontains only one vari-able, suh that the parents of an environment omponent fst+1g are fstg andfdtg, and suh that the unique parent of a deision omponent fdtg is fstg;UN = fP (st+1jst; dt); t 2 [1; T � 1℄g, F = ff(st; dt); t 2 [1; T ℄g, and UT =fR(st; dt); t 2 [1; T ℄g. The modeling of a possibilisti MDP is similar.It is easy to prove that SAT, stohasti SAT, quanti�ed boolean formulas,quanti�ed CSP, fatored MDP, inuene diagrams or STRIPS planning are alsosubsumed by this formalism. Yet, frameworks suh as partially ordered semiringCSP [2℄ are not enompassed, beause of the assumption of a total order on Eut.Note that our example ould not have been modeled with inuene diagrams,whih do not inlude the notion of feasibility.Conditional independene This de�nition o�ers additional semanti prop-erties if the notion of onditional unertainty distributions is introdued. An

unertainty distribution S is an unertainty relation over S satisfying the nor-malization ondition �unS S = 1un. It an be extended to any subset S0 of Sby applying �un to eliminate variables in S�S0. As onditional probabilities arede�ned using division, onditional unertainties are de�ned via a onditioningoperator overEun denoted�un. When suh an operator de�ned on f(un1; un2) 2Eun�Eun jun1�un un2; 0un�un un2g and verifying (un1 �un un)�un (un2 �unun) = (un1 �un un2) �un un (linearity), 0un �un un = 0un, un �un un = 1un,(un1 �un un2)
un un2 = un1 and (un1 �un un)
un ((un2
un un)�un un) =(un1
un un2)�un un (simpli�ation) exists, the unertainty struture is said tobe onditionable. All strutures of Table 1 are onditionable.In a onditionable unertainty struture, let S be an unertainty distributionon S, and S0; S00 be disjoint subsets of S. S0[S00 �un S00 , noted S0 jS00 , is aonditional unertainty distribution on S0 given S00. It is an unertainty distri-bution on S0 for any assignment of S00, and veri�es S0[S00 = S0 jS00
S00 . If S1,S2 and S3 are disjoint subsets of S, then, S1 and S2 are onditionally independentw.r.t. given S3 i� S1[S2 jS3 = S1 jS3
un S2 jS3 : the problem an be splitinto one part depending on S1 [S3, and another one depending on S2 [S3.If a DAG of omponents is used to model onditional independenes of theglobal unertainty degree UnV , then UnV an be expressed as a ombination ofnormalized fators (one fator per omponent), and eah fator may be furtherfatorized. The same kind of fatorization an be obtained for FV . Conversely,it is possible to prove that the global unertainty degree de�ned from a problemPb = (V;G;UN; F; UT) as the ombination of the unertainty relations in UNis an unertainty distribution onditional independenes of whih are enodedby G. The same holds for feasibilities. See [22℄ for more details.5 De�nition of queriesGiven a problem, the goal is now to answer queries on it. As shown in Setion 2(see Equations 1 to 6), a query orresponds to a sequene of variable eliminationsapplied on a ombination of loal funtions. As the ombination of loal funtionsis de�ned by a problem, the only element not yet de�ned is the sequene ofeliminations; it orresponds to our de�nition of queries. A query will enableus to ask questions suh as: \how to maximize the investment if the restauranthooses the main ourse �rst and Peter is pessimisti about this hoie, and thenPeter hooses the wine before knowing who is present at the beginning and at theend". In this ase, the sequene of eliminations would be (min; fmg):(max; fwg):(�ut; fbpJ ; bpM ; epJ ; epMg)). Formally:De�nition 2 A query Q is a pair (Pb; Sov) where Pb = (V;G;UN; F; UT)is a problem and Sov is a sequene of operator-variables pairs, suh that theoperators are min, max or �ut, and suh that eah variable appears at mostone in Sov. Variables that appear in Sov are quanti�ed variables, the othersare alled free variables.A query is orret i�, if quanti�ed, environment variables are quanti�ed by�ut and deision ones by min or max (adequation between the nature of a vari-

able and its operator4),and i� for any variables x and y of di�erent nature (onedeision variable, one environment variable), when the omponent of x is an as-endant in the DAG G of the omponent of y, then x appears at the left of y inSov, or x is a free variable (respet of ausality).Thus, a query is orret if it satis�es onstraints on the elimination orderand on the type of eliminations. Note that adjaent sets of variables S1 and S2eliminated with the same operator op an be gathered with (op; S1):(op; S2) =(op; S1 [S2), beause elimination operators are assoiative and ommutative.Property 1 There exists at least one orret query without free variables on aproblem (beause of the DAG struture).Query meaning The answer Ans(Q) to a orret query Q = (Pb; Sov) an bede�ned indutively as a funtion of A, an assignment of the free variables:Ans((Pb; (op; fxig) : Sov0))(A0) = opa2Dom(xi) Ans((Pb; Sov0))(A0:(xi = a)) (7)Ans((Pb; ;))(A0) = �� ^Fi2F Fi� ?�
unUNi2UNUNi�
un=ut �
utUTi2UTUTi��(A0) (8)Equation 8 expresses that, if all the problem variables are assigned, the answerto the query is the ombination of the unertainty degree, the feasibility degree,and the utility degree of the orresponding omplete assignment. Equation 7expresses that, if the variables are not all assigned and xi is the �rst quanti�edvariable with op as an operator, the answer to the query is obtained by applyingthe elimination operator op to all the values of xi. When min/max operatorsare used on a deision variable, this means optimal deisions are sought. Allor part of the values that optimize the query an be reorded if needed duringthe evaluation of the answer to a query. Equivalently, Ans(Q) an be written:Ans(Q) = Sov �(^Fi2F Fi) ? (
unUNi2UN UNi)
un=ut (
utUTi2UT UTi)�.Queries enable us to onsider various situations in terms of observability. Ifan environment quanti�ed variable x appears at the left of a deision quanti�edvariable y (e.g. Sov = : : : (�ut; fxg) : : : (max; fyg) : : :), this means that the valueof x is known (observed) when a value for y is hosen. Conversely, if Sov =: : : (max; fyg) : : : (�ut; fxg) : : :, x is not observed before hoosing y.In another diretion, queries enable us to onsider various situations in termsof optimisti or pessimisti attitude, as eah deision variable an be quanti�edwith min or max. Assume that a deision is made by another agent via a deisionvariable y. It is possible to perform either (max; fyg) if one is optimisti aboutthe behavior of the other agent, or (min; fyg) if one is pessimisti.Semantial foundations based on the lottery theory [21℄ do exist for the def-inition of the query meaning: using onditional distributions, it is possible togive a seond de�nition of Ans(Q), where eah step involving a environmentvariable is onsidered as a lottery, and eah step involving a deision variable isonsidered as an optimization step among the feasible deisions.4 An environment variable an be quanti�ed by min or max, if �ut=min or max.

Theorem 1 The two de�nitions of Ans(Q) are equivalent if onditional uner-tainties an be de�ned (see [22℄ for a proof).With the seond (semanti) de�nition, omputationally expensive quantities areinvolved: the �rst (operational) de�nition is algorithmially more suitable.Queries on the dinner problem What is the maximum investment Peteran expet (and whih assoiated deision(s) should he make) if he hooses themenu without knowing who will ome ? The assoiated query is:(Pb; (max; fm;wg):(�ut; fbpJ ; bpM ; epJ ; epMg))The answer is 6 (k$) with f(m = meat); (w = red)g. But if Peter knows whoomes, the query beomes:(Pb; (�ut; fbpJ ; bpMg):(max; fm;wg):(�ut; fepJ ; epMg))The answer is 26 (k$) with a 20 (k$) gain from the observability of who is present.The deision is f(m = meat); (w = red)g if John is present and Mary is not,f(m = fish); (w = white)g otherwise. Consider now the query introdued atthe beginning of Setion 5:(Pb; (min; fmg):(max; fwg):(�ut; fbpJ ; bpM ; epJ ; epMg))The answer is ?ut= �1: in the worst main ourse ase, even if Peter hoosesthe wine, the situation an be unaeptable. Finally, the query(Pb; (�ut; fbpJ ; bpM ; epJ ; epMg):(max; fm;wg))is not orret: it runs ounter to ausality, as the menu has to be hosen beforeknowing who is present at the end. These examples show how a query enables usto onsider various situations in terms of observability, and in terms of optimistior pessimisti attitude.Bak to existing frameworks Let us onsider again the examples of Setion 2.Looking for a solution to a CSP (Equation 1) or to a totally ordered soft CSPorresponds to the query Q = (Pb; (max; V)), with Pb the expression of theCSP in our framework and V the set of variables of the CSP. Computing theprobability distribution on a variable x1 for a Bayesian network (Equation 2)modeled as Pb orresponds to Q = (Pb; (+; fx2; : : : ; xng). These examples aremono-operator queries, involving only one type of elimination operator.Let us now onsider multi-operator queries. The searh for an optimal poliyunder unertainty for a stohasti CSP (Equation 3) modeled as Pb, orrespondsto the query Q = (Pb; (max; fd1; d2g):(+; fs1g):(max; fd3; d4g):(+; fs2g)). Fora �nite horizon MDP with T time-steps (Equations 4 to 6), the query is Q =(Pb; (max; fd1g):(�ut; fs2g):(max; fd2g) : : : (�ut; fsT g):(max; fdT g)), where �utequals + with probabilisti MDP, and min with possibilisti pessimisti MDP.With a quanti�ed CSP, elimination operators min and max alternate. Withinuene diagrams, the unique query (prodution of a deision that maximizesexpeted utility) alternates max on deisions and �ut = + on random variables.

Answering queries For mono-operator queries on simple graphial models,generi algorithms as provided by valuation algebras [16, 17℄ or buket elimina-tion [18℄ an be onsidered. For multi-operator queries, we have:Theorem 2 Computing the answer to a query is a PSPACE-hard problem.Proof : Quanti�ed Boolean Formulas (QBF) is a PSPACE-omplete problemwhih an be easily redued to our framework: all variables are deision, lausesare utility relations ombined with ^, and the assoiated query alternates min (foruniversally quanti�ed variables) and max (for existentially quanti�ed variables).utThe �rst indutive de�nition of the meaning of a query Q atually de�nes anaive exponential time algorithm to ompute Ans(Q) using a tree-explorationproedure with a �xed variable ordering (the one of Sov) that ollets elementaryunertainties, feasibilities, and utilities. Aording to the nature of the operatorused, eah level in the tree onsists in applying a min, max or �ut operator onthe values olleted. This blunt approah, as existing approahes for quanti�edonstraints or formulas [4℄, uses Sov to �x the variable order. A better approahwould be to transform a multi-operator query into an optimized set of mono-operator queries bringing to light impliit parallelism and extra variable orderfreedom by taking into aount the problem and query struture as well asalgebrai operators properties.6 ConlusionIn the last deades, AI has witnessed the design and study of numerous frame-works for reasoning about unertainties, feasibilities and utilities. We have triedto rystallize their inherent mathematial struture to build a uni�ed formalismovering hard, valued, quanti�ed, mixed, and stohasti CSP, Bayesian networks,probabilisti or possibilisti MDP, inuene diagrams. . .Compared to related works [16, 18, 17℄, our proposal is the only one ableto deal with generi omposite graphial models, in whih there may be sev-eral types of variables (deision or environment), several types of loal relations(unertainties, feasibilities, utilities), and several types of ombination and elim-ination operators.From an algorithmi point of view, approximate algorithms using samplingand loal searh ould be onsidered. Anyway, the impliit tree-searh algorithmembodied in the �rst operational indutive de�nition of the value of a queryo�ers a �rst naive approah. The simultaneous use of loal onsistenies [19,23℄, global onstraints, branh and bound (and possibly game algorithms), vari-able/buket elimination algorithms [18℄, as well as ahing strategies that exploitthe problem-struture as in [24, 25℄, are obvious andidates to improve this basishema, provided that they are extended to take into aount the omposite na-ture of the Unertainty-Feasibility-Utility networks framework. In another dire-tion, so as to more preisely justify the algebrai struture used in the framework,works in deision theory suh as the one in [26℄ ould also be onsidered.

Referenes1. Makworth, A.: Consisteny in Networks of Relations. Arti�ial Intelligene 8(1977) 99{1182. Bistarelli, S., Montanari, U., Rossi, F., Shiex, T., Verfaillie, G., Fargier, H.:Semiring-Based CSPs and Valued CSPs: Frameworks, Properties and Compari-son Constraints 4 (1999) 199{2403. Fargier, H., Lang, J., Shiex, T.: Mixed Constraint Satisfation: a Framework forDeision Problems under Inomplete Knowledge. In Pro. of AAAI-964. Bordeaux, L., Monfroy, E.: Beyond NP: Ar-onsisteny for Quanti�ed Constraints.In Pro. of CP-025. Walsh, T.: Stohasti Constraint Programming. In Pro.of ECAI-026. Littman, M., Majerik, S., Pitassi, T.: Stohasti Boolean Satis�ability. Journalof Automated Reasoning 27 (2001) 251{2967. Pearl, J.: Probabilisti Reasoning in Intelligent Systems: Networks of PlausibleInferene. Morgan Kaufmann (1988)8. Frydenberg, M.: The Chain Graph Markov Property. Sandinavian Journal ofStatistis 17 (1990) 333{3539. Howard, R., Matheson, J.: Inuene Diagrams. In Readings on the Priniples andAppliations of Deision Analysis. 198410. Puterman, M.: Markov Deision Proesses, Disrete Stohasti Dynami Program-ming. John Wiley & Sons (1994)11. Monahan, G.: A Survey of Partially Observable Markov Deision Proesses: The-ory, Models, and Algorithms. Management Siene 28 (1982) 1{1612. Boutilier, C., Dearden, R., Goldszmidt, M.: Stohasti Dynami Programmingwith Fatored Representations. Arti�ial Intelligene 121 (2000) 49{10713. Dubois, D., Prade, H.: Possibility theory as a basis for qualitative deision theory.In Pro. of IJCAI-9514. Sabbadin, R.: A Possibilisti Model for Qualitative Sequential Deision Problemsunder Unertainty in Partially Observable Environments. In Pro. of UAI-9915. Giang, P., Shenoy, P.: A qualitative linear utility theory for Spohn's theory ofepistemi beliefs. In: Pro. of UAI-0016. P. Shenoy. Valuation-based Systems for Disrete Optimization. In Pro. of UAI-90.17. Kolhas, J.: Information Algebras: Generi Strutures for Inferene. Springer (2003)18. Dehter, R.: Buket Elimination: a Unifying Framework for Reasoning. Arti�ialIntelligene 113 (1999) 41{8519. Cooper, M and Shiex, T.: Ar onsisteny for soft onstraints. Arti�ial Intelli-gene 154 (2004) 199{22720. G. Shafer. A mathematial theory of evidene. Prineton University Press (1976)21. von Neumann, J., Morgenstern, O.: Theory of Games and Eonomi Behaviour.Prineton University Press (1944)22. C. Pralet, G. Verfaillie and T. Shiex. Belief-feasibility-desire networks.http://www.laas.fr/�pralet/tehreport.ps Tehnial report LAAS-CNRS 05129,2005.23. J. Larrosa and T. Shiex. In the quest of the best form of loal onsisteny forweighted CSP. In Pro. of IJCAI-03.24. A. Darwihe. Reursive onditioning. Arti�ial Intelligene 126 (2001) 5{4125. P. J�egou and C. Terrioux. Hybrid Baktraking bounded by Tree-deompositionof Constraint Networks. Arti�ial Intelligene 146 (2003) 43{7526. F.C. Chu and J.Y. Halpern. Great Expetations. Part I: On the Customizabilityof Generalized Expeted Utility. In Pro. of IJCAI-03.

Solving Soft Constraints by Separating
Optimization and Satisfiability

Martin Sachenbacher and Brian C. Williams

MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
{sachenba,williams}@mit.edu

Abstract. As many real-world problems involve user preferences, costs,
or probabilities, the constraint framework has been extended from satis-
faction to optimization by extending hard constraints to soft constraints.
However, techniques for constraint satisfaction, such as local consistency
or conflict learning, do not easily generalize to optimization. Thus, solv-
ing soft constraints appears more difficult than solving hard constraints.
In this paper, we present an approach to solving soft constraints that
exploits this disparity by re-formulating soft constraints into an opti-
mization part (with unary objective functions), and a satisfiability part.
We describe a search algorithm that exploits this re-formulation by enu-
merating subspaces with equal valuation, that is, plateaus in the search
space, rather than individual elements of the space. Experimental results
indicate that this hybrid approach can in some cases be more efficient
than other methods for solving soft constraints.

1 Introduction

Many real-world problems are naturally framed as optimization problems where
the task is to find assignments to variables that optimize user preference, cost,
or probability. Therefore, constraint satisfaction problems (CSPs) have been
extended from satisfaction to optimization by the notion of soft constraints.
One general framework for soft constraints are valued constraint satisfaction
problems (VCSPs) [20, 1], which augment CSPs with a valuation structure and
subsume many earlier notions such as fuzzy CSPs, probabilistic CSPs, or partial
constraint satisfaction.

For the case of solving CSPs, techniques such as local consistency filtering [16]
and conflict (nogood) learning [5] have proven to be very effective. Substantial
progress has been made in extending these techniques to the more general case
of soft constraints [2, 7]; however, the optimization case still appears far more
difficult than the satisfaction case.

In practical applications, the constraints often exhibit structure or regulari-
ties that can be exploited in order to make optimization feasible. For instance,
approaches based on tree decomposition [8, 12] exploit favorable properties of
the constraint graph (limited width) to break down the problem into lower-
dimensional subproblems.

In this paper, we present an approach to exploit a form of structure that
can occur only in VCSPs, but not in CSPs: namely that the valuations are not
distributed evenly across the space of assignments, but there rather exist large
sets of assignments that have equal valuation (corresponding to “plateaus” in
the search space).

Our approach exploits this by factoring optimization problems into a set of
soft constraints that carry all the information about valuations of assignments,
and a set of hard constraints that do not carry valuations but just need to be
satisfied. A special instance of such a re-formulation is taking the dual of the
problem [14], which yields a factorization into hard constraints and unary soft
constraints.

The benefit of this re-formulation is that it allows to apply optimization
techniques to the optimization part, and to apply satisfiability techniques to the
satisfiability part. In particular, if the soft constraint part is small enough, it
becomes feasible to use optimization techniques such as A* search [10], which is
optimal in the number of search nodes visited, but would be infeasible to apply
on the complete, original problem due to its memory requirements. For the hard
constraint part, it becomes possible to use state-of-the-art the techniques for
CSPs that exploit local consistency and conflicts.

This principled idea has been underlying algorithmic approaches in the area
of model-based reasoning and diagnosis [24, 9] for quite some time. Model-based
reasoning captures the behavior of physical systems in terms of constraint-based
models, where a (typically small) subset of variables capture preferences (such
as the failure probability of components, or the cost of repairing them), and
constraints capture consistency. [25] formally defines these problems as so-called
optimal CSPs and presents an algorithm called conflict-directed A* that solves
them using a mixture of optimization and satisfaction techniques. We generalize
upon these methods, and by coupling them with a method for transforming val-
ued CSPs into optimal CSPs, we extend their applicability to the general case of
soft constraints. Our resulting hybrid algorithm enumerates plateaus (parts of
the search space with the same valuation) in best-first order, and subsequently
checks if there exists a consistent solution within the plateau. This can be more
efficient than enumerating individual elements of the search space, because de-
pending on the problem, there can be much fewer plateaus than total elements
of the search space.

The remaining parts of the paper are organized as follows: We review the
definitions of valued CSPs [20] and optimal CSPs [25] and present a method
for transforming between them. The method is similar to dualization [14] in
that it yields a separation into hard constraints and unary soft constraints. We
then present a variant of conflict-directed A* that exploits this re-formulation
by searching over sets of assignment with equal valuation rather than searching
over individual assignments of the variables in the problem. We give experimental
results demonstrating that this algorithm sometimes outperforms other methods
for solving valued CSPs, and we indicate several directions for future work.

2 Valued CSPs

A classical constraint satisfaction problem (CSP) is a triple (X, D,C) with vari-
ables X = {x1, . . . , xn}, finite domains D = {d1, . . . , dn}, and constraints C =
{c1, . . . , cm}. Each constraint cj ∈ C is a relation cj ⊆ Πxi∈var(cj)di over vari-
ables var(cj) ⊆ X. An assignment t to variables var(cj) satisfies the constraint
if t ∈ cj , and violates it otherwise.

Definition 1 (Valuation Structure [20]). A valuation structure is a tuple
(E,≤,⊕,⊥,>) where E is a set of valuations, totally ordered by ≤ with a min-
imum element ⊥ ∈ E and a maximum element > ∈ E, and ⊕ is an associative,
commutative, and monotonic binary operation with identity element ⊥ and ab-
sorbing element >.

The set of valuations E expresses different levels of constraint violation, such
that ⊥ means satisfaction and > means unacceptable violation. The operation
⊕ is used to combine (aggregate) several valuations. A constraint is hard, if all
its valuations are either ⊥ or >.

Definition 2 (Valued Constraint Satisfaction Problem [20]). A valued
constraint satisfaction problem (VCSP) consists of a classical CSP (X, D,C)
with valuation structure (E,≤,⊕,⊥,>), and a mapping φ from C to E which
associates a valuation with each constraint.

For example, the problem of diagnosing the polycell circuit in Fig. 1 [25]
can be framed as a VCSP with variables X = {a, b, c, d, e, f, g, x, y, z}. Each
variable corresponds to a boolean signal and has domain {0, 1}. The VCSP
has five ternary constraints fo1, fo2, fo3, fa1, fa2 corresponding to the gates
in the circuit, and four unary constraints fc, fd, ff , fg corresponding to the
observations. The ternary constraints express that the gates are performing their
boolean functions. The unary constraints express that the variables c, d, and g
are observed to be 1, whereas variable f is observed to be 0. The valuation
structure (N+

0 ∪∞, +,≤, 0,∞) captures the cost of violating a constraint, which
we assume to be 1 for the constraints fo1, fo2, fo3, 2 for the constraints fa1 and
fa2, and ∞ for the constraints modeling the observations.

Given a VCSP, the problem is to find an assignment t to X which mimimizes
the combined valuation of all violated constraints,

⊕
{cj∈C|t[var(cj)]/∈cj} φ(c). For

the boolean polycell example, the minimum valuation of an assignment is 1,
corresponding to a fault of a single OR gate.

3 Optimal CSPs

Since solving VCSPs is more complex than solving classical CSPs, an algorith-
mic approach that is based on spliting the VCSP into a set of classical (hard)
constraints and a set of valued (soft) constraints can be useful.

In the following, we consider a specialization of this approach where the
constraints are divided into hard constraints and unary soft constraints. In [25],
this type of optimization problem is called optimal CSP:

Fig. 1. The boolean polycell example consists of three OR gates and two AND gates.
Variables c, d, f , and g are observed as indicated.

Definition 3 (Optimal CSP). An optimal CSP (OCSP) consists of a classical
CSP (X, D, C), with valuation structure (E,≤,⊕,⊥,>), and a set U of unary
functions uj : yj → E defined over a subset Y ⊆ X of the variables. The
variables in Y are called decision variables, and the variables in X \Y are called
non-decision variables.

An OCSP can be viewed as a special case of a VCSP where soft constraints
(constraints with valuation φ(cj) < >) must be unary. A solution to an OCSP is
an assignment to Y with minimal valuation such that there exists an extension
to all variables X that satisfies all constraints in the CSP. Hence, whereas a
solution to a VCSP is a single assignments to X, a solution to an OCSP is an
assignments to the decision variables Y that can stand for a whole collection of
assignments to X that have all the same valuation (plateau) and differ only with
respect to the non-decision variables X \ Y .

It is observed in [14] that a number of optimization problems can be directly
expressed with hard and unary soft constraints, that is, as OCSPs; an example
are combinatorial auctions [19].

4 Translation from Valued CSPs to Optimal CSPs

In general, a VCSP may have non-unary soft constraints and thus it does not
necessarily have the form of an OCSP. However, it is possible to transform a
VCSP into an OCSP with an equivalent optimal solution. This transformation
is based on viewing the constraints of the VCSP as decision variables of the
OCSP, similar to the hidden variable representation described [14]. The transla-
tion demonstrates that OCSPs, though syntactically more restricted than VC-
SPs, actually have the same expressive power as VCSPs. OCSPs could therefore
be viewed as a “normalization” of VCSPs that achieves the desired separation
into a hard constraint part and a soft constraint part.

Definition 4 (Translation of VCSP to OCSP). The translation of a VCSP
(X, D, C) with valuation structure (E,≤,⊕,⊥,>) and mapping φ into an OCSP

(X ′, D′, C ′) with unary functions U over decision variables Y ⊆ X ′ is defined
as follows:

– X ′ consists of X and one decision variable yj for each constraint cj ∈ C;
– D′ consists of D and the domain {true, false} for each decision variable yj;
– U consists of one unary function uj per decision variable yj. The function

maps the value true to ⊥ and the value false to φ(cj);
– C ′ consists of one constraint c′j for each cj ∈ C. Each c′j is a relation over

variables var(c′j) = var(cj) ∪ yj. An assignment t to var(c′j) satisfies c′j if
and only if t[var(cj)] ∈ cj and yj = true or t[var(cj)] /∈ cj and yj = false.

For example, the translation of the VCSP for the boolean polycell circuit
yields an OCSP with variables {a, b, c, d, e, f, g, x, y, z, y1, y2, . . . , y9}. Variables
y1 to y9 are decision variables, and variables {a, b, c, d, e, f, g, x, y, z} are non-
decision variables. There are nine unary functions u1, u2, . . . , u9 ∈ U , and nine
constraints fo1, fo2, fo3, fa1, fa2, fc, fd, ff , fg obtained by extending each
constraint of the original VCSP with a decision variable.

Theorem 1. A VCSP and its translation to an OCSP have the same optimal
solution.

The transformation as described in Def. 4 turns a VCSP with n variables and
m constraints into an OCSP with n + m variables and 2 ·m constraints. We can
further reduce the size of the OCSP by observing that for any hard constraint
cj in the VCSP (φ(cj) = >), choosing the value false for its corresponding
decision variable yj can never give rise to a solution of the OCSP because it will
immediately lead to the valuation >. Therefore, we do not need to introduce
decision variables for hard constraints in the VCSP.

Definition 5 (Reduced translation of VCSP to OCSP). A reduced trans-
lation of a VCSP (X,D, C) with valuation structure (E,≤,⊕,⊥,>) and map-
ping φ into an OCSP (X ′, D′, C ′) with unary functions U over decision variables
Y ⊆ X ′ is defined as follows:

– X ′ consists of X and one decision variable yj for each constraint cj ∈ C for
which φ(cj) < >;

– D′ and U are as in Def. 4;
– C ′ consists of one constraint c′j for each cj ∈ C. If φ(cj) = > then c′j = cj,

else c′j is defined as in Def. 4.

The equivalence of optimal solutions (Theorem 1) will also be preserved by
the translation in Def. 5. Note that for the special case of a VCSP that is actually
a CSP (a VCSP where φ(cj) = > for all cj ∈ C), the reduced translation is the
CSP itself. Therefore, solving a CSP as an OCSP does not incur any overhead.

For the boolean polycell example, the translation using Def. 5 no longer
introduces a decision variable for the hard constraints fc, fd, ff , fg corresponding
to observations, and thus the resulting OCSP has only five decision variables y1,
y2, . . . , y5 corresponding to the constraints fo1, fo2, fo3, fa1, fa2.

5 Solving OCSPs

The separation of valued CSPs into unary soft constraints and hard constraints
can be algorithmically exploited by coupling together specialized algorithms for
each part. In particular, for the hard constraint part, we can employ techniques
that are highly optimized for satisfaction problems, and for the soft constraint
part, we can employ techniques that work best for a relatively small optimization
problem but would be infeasible for the original, bigger problem. This hybrid al-
gorithmic approach can be more efficient than general solvers for soft constraints
that do not make assumptions about how the valuations are distributed over the
space of assignments.

5.1 Conflict-directed A* Search

Williams and Ragno [25] describe such a hybrid approach for solving a subclass of
OCSPs. The approach, called conflict-directed A*, uses backtracking search with
arc consistency and conflict-directed backjumping [5] on the hard constraints,
and A* search [10] on the unary soft constraints. Conflict-directed backjumping
is an instance of learning new constraints from inconsistencies that can be very
effective for real-world constraint satisfaction problems. A* search is an instance
of best-first search that uses a lower bound g for the partial assignment made so
far, and an optimistic estimate h of the value that can be achieved when com-
pleting the assignment; at each point in the search, A* expands the assignment
with the best combined value of g and h. A* search is run-time optimal [3] in
that it visits a minimum number of search nodes (among all search methods
having access to the same heuristics). Unfortunately, due to its memory require-
ments, A* search is hardly feasible as a solution method for general VCSPs. As
observed in [25], however, the memory requirements of A* search on OCSPs are
often much more modest, because only assignments to variables that have an
associated cost (decision variables) need to be stored in the search queue, and
conflicts from the CSP part can be exploited to further reduce the size of the
queue.

In the following, we present a simplified variant of conflict-directed A* that
is adapted to OCSPs obtained from VCSPs. The pseudo-code of the algorithm
is shown in Alg. 1. First, local consistency is established in the CSP part of the
OCSP. If an inconsistency arises during local propagation, then the OCSP has
no consistent solution (no assignment with valuation better than >). Otherwise,
the algorithm performs a best-first (A*) search over assignments to the decision
variables Y of the OCSP, using a priority queue of (partial) assignments to Y
that is ordered by their valuation. The A* search is based on two sub-procedures
updateAssignment() and switchAssignment(), shown in Proc. 2 and Proc. 3, re-
spectively. Procedure switchAssignment() establishes a (partial) assignment a to
the decision variables from the queue, trying to reuse as much as possible the
current search tree; it backtracks to the deepest point in the search tree up to
which the current assignment to Y and a are the same. If an inconsistency occurs
while trying to establish the assignment, then a conflict is extracted and added

to the set of constraints, and the assignment is discarded. Next, updateAssign-
ment() is used to assign decision variables that have only one value remaining,
and extend the assignment (and in particular, its valuation) accordingly. Since
this update might increase the valuation of the current assignment, it is now
possible that is no longer the best assignment; in this case, the assignment is
pushed back into the queue. Otherwise (if the current assignment is still the best
one), it is checked whether the assignment to the decision variables is complete.
If the assignment is incomplete, the algorithm chooses a next decision variable
yi to assign and enqueues the two possible branches yi ← true and yi ← false.
If the assignment to the decision variables is complete, then the algorithm uses
procedure consistentAssignment() to check if the assignment is consistent with
the CSP. To this end, consistentAssignment() tries to extend the assignment
to Y ⊆ X to an assignment to X by assigning the remaining (non-decision)
variables X \ Y . In Proc. 4, this is done using depth-first search with conflict-
directed backjumping. The current level of the search tree (which so far involves
only decision variables) is frozen in variable decisionLevel, and whenever a con-
flict occurs that would require to backup higher than this level (backtrackLevel
smaller than or equal to decisionLevel), the current assignment to the decision
variables must be inconsistent and is discarded. Otherwise, the assignment is
output as the next best solution.

Conflict-directed A* is thus a hybrid algorithm for OCSPs that exploits the
distinction between decision variables (which determine the valuation of an as-
signment) and non-decision variables (which determine only the consistency of
an assignment) by treating them separately: it enumerates the assignments to
the decision variables (corresponding to plateaus) in best-first order, and then
checks the consistency of these assignment (corresponding to the plateau being
empty or not). Depending on the problem structure, there can be fewer plateaus
than individual elements of the search space, and therefore this two-step ap-
proach can be more efficient than enumerating the individual elements of the
search space.

Theorem 2. The conflict-directed A* algorithm in Alg. 1 computes the optimal
solution of a given OCSP.

For instance, for the boolean polycell example and the OCSP encoding in
Def. 5, the algorithm has to assign five decision variables y1, y2, . . . , y5 corre-
sponding to the constraints fo1, fo2, fo3, fa1, fa2. Conflict-directed A* starts
with an empty assignment to the decision variables. Propagation does not prune
any values for the decision variables, so the algorithm assigns a decision vari-
able. Assume the decision variables are assigned in the order y1, y2, . . . , y5.
The algorithm thus creates two new assignments, 〈y1 ← true〉 with valuation
0 and 〈y1 ← false〉 with valuation 1, and puts them on the queue. The algo-
rithm pops the assignment 〈y1 ← true〉 from the queue and establishes it using
function switchAssignment(). Two new assignments, 〈y1 ← true, y2 ← true〉
with valuation 0 and 〈y1 ← true, y1 ← false〉 with valuation 1 are created and
enqueued. When establishing the best assignment 〈y1 ← true, y2 ← true〉 us-

Algorithm 1 Conflict-directed A* for OCSPs
1: if not (propagate() = conflict) then
2: queue ← 〈∅,⊥〉
3: while queue 6= ∅ do
4: 〈a, value〉 ← top(queue)
5: queue ← pop(queue)
6: if switchAssignment(a) then
7: updateAssignment(〈a, value〉)
8: if assignment with better value exists in queue then
9: queue ← push(queue, 〈a, value〉)

10: else
11: if exists yi ∈ Y , yi = unknown then
12: queue ← push(queue, 〈a ∪ (yi ← true), v〉)
13: queue ← push(queue, 〈a ∪ (yi ← false), v ⊕ φ(ci)〉)
14: else
15: if consistentAssignment() then
16: output value as best solution
17: exit
18: end if
19: end if
20: end if
21: end if
22: end while
23: end if
24: output no solution

ing switchAssignment(), propagation forces y3 to be false, and thus updateAs-
signment() refines the assignment to 〈y1 ← true, y2 ← true, y3 ← false〉 with
valuation 2. Since a better assignment exists in the queue, this assignment is
pushed back into the queue, and the next best assignment, say 〈y1 ← false〉
with valuation 1, is considered. Since this new assignment and the current as-
signment share no common prefix, switchAssignment() needs to backtrack up
to y1 in order to establish this assignment. After propagation, the updated as-
signment becomes 〈y1 ← false, y3 ← true〉 with valuation 1. The algorithm
proceeds by assigning y2 ← true and y4 ← true, at which point y5 ← true can
be derived by propagation, and therefore a complete decision variable assign-
ment 〈y1 ← false, y2 ← true, y3 ← true, y4 ← true, y5 ← true〉 with valuation
1 is obtained. Procedure consistentAssignment() determines that this assign-
ment is consistent (a satisfying assignment to the non-decision variables is e.g.
〈a ← 1, b ← 1, c ← 1, d ← 1, e ← 0, f ← 0, g ← 1, x ← 0, y ← 1, z ← 1〉), and
thus outputs value 1 as the optimal solution.

Conflict-directed A* search can be further refined in a number of ways. [25,
15] describe extensions that reduce the size of the search queue by generating
new entries only at a point where the current assignment to the decision vari-
ables becomes inconsistent, and an extension to the case of non-binary decision
variables that generates only next best child assignments instead of all children

Procedure 2 updateAssignment(〈a, value〉)
1: for all yi ∈ Y , yi /∈ a, yi 6= unknown do
2: if yi = true then
3: 〈a, value〉 ← 〈a ∪ (yi ← true), value〉
4: else
5: 〈a, value〉 ← 〈a ∪ (yi ← false), value⊕ φ(ci)〉
6: end if
7: end for

Procedure 3 switchAssignment(a)
1: level ← deepest level up to which a and current assignment are equal
2: backtrack(level)
3: for (yi ← val) ∈ a do
4: if yi 6= val then
5: return false
6: else if yi = unknown then
7: yi ← val
8: level ← level + 1
9: if propagate() = conflict then

10: CSP ← CSP ∪ conflict
11: return false
12: end if
13: end if
14: end for
15: return true

Procedure 4 consistentAssignment()
1: decisionLevel ← level
2: while exists xi ∈ X \ Y , xi = unknown do
3: choose val ∈ di

4: xi ← val
5: level ← level + 1
6: di ← di − val
7: if propagate() = conflict then
8: backtrackLevel ← analyze(conflict)
9: if backtrackLevel ≤ decisionLevel then

10: return false
11: else
12: CSP ← CSP ∪ conflict
13: backtrack(backtrackLevel)
14: level ← backtrackLevel
15: end if
16: end if
17: end while
18: return true

at once. It is also easy to extend the algorithm such that it enumerates the
solutions in best-first order, instead of computing only the optimal solution.

6 Implementation

We have implemented the transformation of VCSPs into OCSPs and the conflict-
directed A* search algorithm in C++. Conflict-directed A* search was imple-
mented on top of zChaff [17], one of the most efficient complete solvers for
boolean satisfiability (SAT) problems. The main reasons why we choose zChaff
is that it offers (1) a highly optimized data-structure for local consistency (unit
propagation), called two-literal watching scheme; (2) a method for extracting
small conflicts from inconsistencies, based on so-called unique implications points
(UIPs), which correspond to dominators in the implication graph; and (3) an
efficient variable and value ordering heuristic called variable state independent
decaying sum (VSIDS), which biases the search towards variables that occur in
recently learned clauses, i.e., conflicts. (In addition, zChaff uses other techniques
such as random restarts, which we do not exploit in our prototype).

Our prototypic implementation of conflict-directed A* adopts zChaff’s local
propagation scheme, its conflict extraction method, and its variable/value order-
ing heuristic for the non-decision variables. The decision variables are currently
assigned in no specific order. Using a SAT solver as the underlying satisfiability
engine means that the CSP part of the OCSP has to be first encoded as a SAT
problem, by mapping variables to boolean variables, and mapping constraints
to clauses in conjunctive normal form (CNF). For this purpose, we choose a
logarithmic SAT encoding of the CSP [11], although other encodings are equally
possible (see [23, 6] for two alternative encodings).

7 Experimental Results

We evaluated our prototype on various examples of valued CSPs, and compared
its performance against other algorithms for solving soft constraints.

The algorithms we compared against are branch-and-bound with maintaining
existential directional arc consistency (BB-MEDAC) [7], and cluster tree elim-
ination (CTE) [4]. BB-MEDAC is a recently proposed search algorithm that
combines depth-first branch-and-bound with a form of arc consistency general-
ized to soft constraints. In our experiments we used the implementation that is
part of the toolbar package [22]. CTE is an inference algorithm for both hard
constraints and soft constraints that is based on decomposing the constraint
graph into a tree structure, and solving it using dynamic programming. In our
experiments, the tree was computed using a greedy min-fill heuristic.

All the examples shown below (apart from the random problems) are taken
from the toolbar repository. All experiments were performed under Windows
XP using a 2.8 GHz Pentium 4 PC with 1 GB of Ram.

7.1 Academic Problems

First, we tried conflict-directed A* on three academic puzzles. Since these ex-
amples involve only hard constraints, the corresponding OCSPs do not contain
any decision variables, and thus conflict-directed A* can solve these problems as
efficiently as the underlying satisfiability engine (in our implementation, zChaff
with the given SAT encoding). For all three algorithms, we used a time bound
of 1 minute. Table 1 summarizes the results. Although these examples are rela-
tively small, note that CTE fails to solve all but one of them within the given
time bound.

Table 1. Results for academic puzzles (containing only hard constraints).

CDA* BB-MEDAC CTE

zebra (25 variables, 19 constraints) 0.188 sec 0.016 sec 0.047 sec

send (11 variables, 32 constraints) 0.312 sec 0.031 sec > 1 min

donald (15 variables, 51 constraints) 2.828 sec 0.156 sec > 1 min

7.2 Random Problems

Next, we compared the algorithms on random Max-CSP problems. Max-CSPs
are instances of VCSPs where each constraint has cost 1; thus, the task is to
minimize the number of violated constraints. To generate the examples, we used
a random binary constraint model with four parameters N , K, C, and T , where
N is the number of variables, K the domain size, C the number of constraints,
and T the tightness of each constraint (number of tuples having cost 1). Again,
we used a time bound of 1 minute. Table 2 summarizes the results for six classes
of random Max-CSP, averaged over 10 instances each.

Table 2. Results for random Max-CSPs (10 instances each).

(N , K, C, T) CDA* BB-MEDAC CTE

(40, 4, 60, 4) 0.0346 sec 0.0092 sec 1.461 sec

(40, 4, 60, 8) 2.184 sec 0.022 sec 4.136 sec

(40, 4, 60, 12) > 1 min 0.0468 sec 7.325 sec

(25, 4, 100, 4) 0.818 sec 0.0156 sec > 1 min

(25, 4, 100, 8) > 1 min 0.169 sec > 1 min

(25, 4, 100, 12) > 1 min 0.131 sec > 1 min

For all these examples, BB-MEDAC converges very fast towards the optimal
solution. Unfortunately, conflict-directed A* does not perform well for the denser
and tighter instances. Further analysis of these cases reveals that the algorithm

actually quickly finds small conflicts that could potentially guide the A* search
towards the optimal solution, but then tries many assignments to the decision
variables that are useless as they are not relevant to (i.e., do not resolve) those
conflicts. Thus, we expect that using a similar variable ordering heuristic for the
decision variables as for the non-decision variables (focusing on variables involved
in conflicts) could substantially improve the performance of conflict-directed A*
for these cases.

7.3 Real-world Problems

Finally, we evaluated the performance of our algorithm on four real-world cir-
cuit examples. These are obtained by turning SAT instances from the DIMACS
challenge into Max-CSPs by making each clause a constraint with cost 1. For
these examples, we used a time bound of 10 minutes. Table 3 summarizes the
results.

Table 3. Results for DIMACS circuit examples.

CDA* BB-MEDAC CTE

ssa0432-003 (435 variables, 1027 constraints) 14.547 sec > 10 min 1.219 sec

ssa7552-038 (1501 variables, 3575 constraints) 28.312 sec > 10 min 142.969 sec

ssa2670-141 (986 variables, 2315 constraints) 101.765 sec > 10 min 6.21 sec

ssa2670-130 (1359 variables, 3321 constraints) 233.89 sec > 10 min 53.203 sec

CTE performs best for most of these examples; however, the run-times for
CTE in Table 3 show only run-times of CTE itself and do not include the time for
computing the tree decomposition, which takes longer than the run-time of CTE
for some of the examples. Also, CTE requires significantly more memory than
the other algorithms for most of the examples. BB-MEDAC, which performed
best for the academic and random examples, cannot solve any of the DIMACS
examples within the given time bound. In fact, even after 10 minutes of compu-
tation, its lower bound (best valuation found so far) is often far off the optimal
solution. We suspect that this has to do with the fact that BB-MEDAC performs
local propagation (existential directional arc consistency) for binary constraints
only, and defers the propagation of non-binary constraints until they become
binary. Thus, the propagation scheme is not effective for the DIMACS exam-
ples where almost all constraints are non-binary. In contrast, conflict-directed
A* exploits efficient local propagation (zChaff’s two literal scheme) for any hard
constraints. In fact, for instance ssa7552-038, which has optimal cost 0, conflict-
directed A* requires only one call to the SAT engine (zChaff) in order to solve it.
The actual run-time of zChaff for this example is only a fraction of the run-time
given in Table 3, indicating that the current implementation of conflict-directed
A* wastes significant time constructing unnecessary search queue entries. We
therefore expect that further improvements to the algorithm to reduce the size

of the search queue by creating entries only as needed (as described in [25, 15])
will have a strong impact for these examples.

8 Discussion and Related Work

In [14], Larrosa and Dechter already observed that transforming soft constraints
into sets of hard and unary soft constraints may provide a useful starting point
for algorithmic development. Conflict-directed A* is an instance of such an ap-
proach; it ties together two algorithms specialized to optimization and satisfac-
tion (A* search and conflict-directed backjumping). The approach is inspired by
techniques from model-based reasoning and diagnosis [24, 9], where problems can
be naturally framed as a mixture of large hard constraints and unary objective
functions (i.e., OCSPs).

The transformation of a VCSP into an OCSP makes this hybrid approach
applicable to soft constraints. It can be viewed as a process of “pre-compiling” the
objective function, which makes the preferences more explicit and can thus make
the problem easier to solve. From this perspective, the separation into unary soft
constraints and hard constraints is only a special case; it is not actually required
by the approach that the soft constraints are unary. Another useful view of the
re-formulation into OCSPs is that of giving a “normal form” for soft constraints,
which makes the degree to which the problem is an optimization problem vs.
a satisfaction problem more explicit. It seems that research in soft constraints
has so far focussed on expressive, unifying frameworks, but much less on such
canonical representations. Optimal CSPs could provide a starting point in this
direction.

A drawback of our re-formulation technique is that it can increase the size
of the problem; since one decision variable is introduced for each soft constraint,
the resulting OCSP may be much bigger than the original VCSP, especially if it
has a high ratio of constraints to variables. However, even if the re-formulation
incurs an increase in the problem size, the benefit of applying dedicated solvers
to each part of the problem (as in conflict-directed A*) may still outweigh the
increase in the search space. The ratio up to which the re-formulation is beneficial
is a subject of further research.

As already indicated in Sec. 5.1, several improvements to conflict-directed A*
are possible, in particular for switchAssignment(), the procedure that is most
critical to the performance of the algorithm. The cost of switching between two
A* search nodes (corresponding to two different assignments to the decision
variables, i.e., two CSPs) could be reduced by incremental techniques that allow
for computing only the difference between two CSP instances. In model-based
reasoning and diagnosis, truth maintenance systems (TMS) [13], which keep
track of the dependencies in the implication graph, are frequently used for this
purpose. However, the additional bookkeeping necessitated by the TMS creates a
trade-off between between making the context switch more efficient and making
the satisfiability check more efficient.

Another direction for future work is to combine conflict-directed A* search
with structural (tree decomposition) methods. As can be seen from the exper-
iments, the two approaches are fairly complementary to each other, and de-
composing the problem into smaller subproblems can dramatically improve per-
formance on examples with low tree width. The combination would involve an
instance of conflict-directed A* running on every cluster in the tree, and a spe-
cial set of decision variables that capture the cost of assignments to variables
shared between clusters (separator variables). We are currently working on such
a decomposed version of conflict-directed A*. Some earlier work on combining
best-first search with tree decompositions can be found in [18], whereas [21] de-
scribes a method for (the simpler case of) combining depth-first search with tree
decompositions.

In our implementation, we used a SAT solver (zChaff) to check consistency of
the candidates (plateaus) enumerated by A* search, mainly for the reason that it
provides an efficient implementation of local propagation and conflict extraction.
Recently, the problem of extending SAT solvers to optimization counterparts
where either the number of satisfied clauses must be maximized (max-SAT) or
the clauses carry a weight to be maximized (weighted max-SAT) has received
considerable attention [26]. Much of this work still focuses on extending the basic
DPLL search algorithm that underlies most complete SAT solvers (especially the
unit propagation and variable ordering heuristic) to this case, and does not yet
exploit more advanced concepts like conflicts. Still, it would be interesting to
compare such approaches to our method.

9 Conclusion

We presented an approach for transforming VCSPs into hard constraints and
unary soft constraints (OCSPs), and an algorithm that exploits this re-formulation
by solving the optimization and satisfiability part separately using a combina-
tion of two specialized algorithms. Because it can exploit structure in the search
space by enumerating whole sets of assignments with equal valuations (plateaus)
rather than just individual assignments, this hybrid approach can be more effi-
cient than algorithms that work directly on the VCSP. We presented an instance
of this approach, called conflict-directed A*, and its prototypic implementation
on top of a SAT solver. The prototype can outperform other solvers for VCSPs on
some problems of practical importance. Promising directions for future research
include more sophisticated, incremental methods for the critical step of switching
between plateaus, and incorporating structural decomposition methods.

References

[1] Bistarelli, S., et al.: Semiring-based CSPs and Valued CSPs: Frameworks, Proper-
ties, and Comparison. Constraints 4 (3) (1999) 199–240

[2] Cooper, M., and Schiex, T.: Arc consistency for soft constraints. Artificial Intelli-
gence 154 (2004) 199-227

[3] Dechter, R., Pearl, J.: Generalized Best-First Search Strategies and the Optimality
of A*. Journal of the ACM 32 (3) (1985) 505–536

[4] Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence
38 (1989) 353–366

[5] Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learn-
ing and cutset decomposition. Artificial Intelligence 41 (1990) 273-312.

[6] Gent, I.P.: Arc consistency in SAT. Proc. ECAI-2002 (2002)
[7] de Givry, S., Zytnicki, M., Heras, F., and Larrosa, J.: Existential arc consistency:

Getting closer to full arc consistency in weighted CSPs. Proc. of IJCAI-2005, to
appear.

[8] Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artificial Intelligence 124 (2) (2000) 243–282

[9] W. Hamscher, W., Console, L., and de Kleer, J. (eds.): Readings in Model-Based
Diagnosis, Morgan Kaufmann (1992)

[10] Hart, P. E., Nilsson, N. J., and Raphael, B.: A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Sys. Sci. Cybern. SSC–4 (2)
(1968) 100-107.

[11] Iwama, K, and Miyazaki, S.: SAT-variable complexity of hard combinatorial prob-
lems. IFIP World Computer Congress (1994) 253-258

[12] Kask, K., et al.: Unifying Tree-Decomposition Schemes for Automated Reasoning.
Technical Report, University of California, Irvine (2001)

[13] de Kleer, J.: An Assumption based TMS, Artificial Intelligence 28 (1) (1986)
127–162

[14] Larrosa, J., and Dechter, R.: On the Dual Representation of non-binary Semiring-
based CSPs. Proceedings SOFT-2000 (2000)

[15] Li, H., and Williams, B.C.: Generalized Conflict Learning for Hybrid Dis-
crete/Linear Optimization, Proc. CP-2005, to appear.

[16] Mackworth, A.: Constraint satisfaction. Encyclopedia of AI (second edition) 1
(1992) 285–293

[17] Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., and Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In Proc. of the Design Automation Conference (DAC)
(2001)

[18] Sachenbacher, M., and Williams, B.C.: On-demand Bound Computation for Best-
First Constraint Optimization, Proc. CP-2004 (2004)

[19] Sandholm, T.: An algorithm for optimal winner determination in combinatorial
auctions. Proceedings IJCAI-1999 (1999)

[20] Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems:
hard and easy problems. Proc. IJCAI-95 (1995) 631–637

[21] Terrioux, C., Jégou, P.: Bounded Backtracking for the Valued Constraint Satis-
faction Problems. Proc. CP-2003 (2003)

[22] Toolbar http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro

[23] Walsh, T.: SAT vs. CSP. Proc. CP-2000 (2000) 441-456
[24] Weld, D.S., and de Kleer, J. (eds.): Readings in Qualitative Reasoning about

Physical Systems, Morgan Kaufmann (1989)
[25] Williams, B., Ragno, R.: Conflict-directed A* and its Role in Model-based Em-

bedded Systems. Journal of Discrete Applied Mathematics, to appear.
[26] Xing, Z., and Zhang, W.: MaxSolver: An efficient exact algorithm for (weighted)

maximum satisfiability. Artificial Intelligence 164 (1–2) (2005) 47-80

Conditional Lexicographic Orders in Constraint
Satisfaction Problems

Richard J. Wallace

Cork Constraint Computation Center and Department of Computer Science
University College Cork, Cork, Ireland

email: r.wallace@4c.ucc.ie

Abstract. The lexicographically-ordered CSP (“lexicographic CSP” for short)
combines a simple representation of preferences with the feasibility constraints
of ordinary CSPs. Preferences are defined by a total orderingacross all assign-
ments, such that a change in assignment to variablek is more important than any
change in assignment to any variable that comes after it in the ordering. In this
paper, we show how this representation can be extended to handle conditional
preferences. This can be done in two ways. In the first, for each conditional pref-
erence relation, the parents have higher priority than the children in the original
lexicographic ordering. In the second, the relation between parents and children
need not correspond to the basic ordering of variables. For problems of the first
type, any of the algorithms originally devised for ordinarylexicographic CSPs
can also be used when some of the domain orderings are dependent on the as-
signments to “parent” variables. For problems of the secondtype, we show that a
branch-and-bound algorithm originally devised for ordinary lexicographic CSPs
can be extended to handle CSPs with conditional domain orderings. Although
bounding is necessarily compromised to a degree, our experiments suggest that
this algorithm is still reasonably efficient.

1 Introduction.

An important contribution of artificial intelligence to thestudy of preferences has been
the development of methods for representing and handling conditional preferences. This
work is based on the assumption that preference orderings are often context-dependent.
Once one considers preferences in this way, many examples spring to mind. To take one
such: what I prefer to eat may depend on the country I am, especially if I am inclined to
‘go native’. So in Spain I may prefer paella and tortillas, while in Germany I may prefer
bratwurst and sauerkraut. Although it is not entirely clearthat contexts such as these
should always be treated as elements in a preference ordering, this is surely a viable
interpretation, especially with human beings who can represent contexts as entities.
(And it also seems to be a generally effective manouver within prescriptive contexts.)

Recently, we have investigated the properties oflexicographically ordered CSPs [1].
This is a special kind of soft constraint system in which a total ordering is imposed on
complete assignments, in terms of the variables and their assigned values. This ordering
is lexicographic in form, with the further stipulation thatvariable selection is the pri-
mary factor and value assignment is secondary. This means that a good assignment for a

more-preferred variable is more important than a good assignment for a less-preferred
variable in deciding the overall ranking of solutions. The preference ordering is as-
sumed to be independent of any constraints that may hold among these variables. The
latter, therefore, restrict the alternatives given by an ideal preference ordering to those
that can actually be realized.

Lexicographic CSPs are meant to represent problems in whichpreferences involve
multiple objectives and attributes and where feasibility constraints also impose restric-
tions on assignments that are actually possible. From the point of view of representation
as well as computation they offer significant benefits. This is due in part because of the
radical decoupling of the preference structure from the feasibility conditions (as noted
earlier by [1]; cf. a similar argument by [2] in connection with CP-nets).

While it is to be expected that there will be situations wheresimple lexicographic
CSPs do not capture all the nuances of the preference relations, in other cases this
may be a more appealing approach by virtue of its greater clarity and simplicity. This
is suggested by the fact that lexicographic orderings are sometimes used in decision-
making applications, despite their extreme assumptions, as noted by [3].

One of the appealing features of this form of lexicographic representation of pref-
erences for CSPs is that it offers wide scope for developing optimization algorithms [1]
[4]. In fact, ordinary CSP algorithms can be used as the foundation for such algorithms.
If the variable and value orderings follow the lexicographic ordering, then this is all that
is necessary because in this case the first solution found is guaranteed to be the optimal
one. Otherwise, the algorithm must search for all solutionsand by multiple comparisons
determine which solution is optimal. Since this is inefficient when there are many feasi-
ble solutions, we have also developed a version of branch andbound and shown this to
be reasonably effective. In addition, we have developed a specialized restart algorithm
(a version of Junker’s preference-based search [5]) in which on thekth restart, thekth
variable is instantiated in lexical order while better ordering heuristics are used for the
remaining variables; in this case, when the first solution isfound, itskth assignment
will be optimal. Finally, we have begun to consider specialized forms of weighted local
search, which can be efficient for finding optimal solutions,although they cannot prove
that a solution is optimal.

In this paper, this form of lexicographic ordering is extended toconditional lexico-
graphic orders, thereby extending this form of representation to allow forconditional
preferences. In this case, the same type of lexicographic ordering holds as in ordinary
lexicographic CSPs, but domain orderings are conditional on assignments chosen from
other domain. We consider two important classes of conditional lexicographic CSPs. In
the first class, conditionalities always respect the priority ordering of the variables; in
the second, they do not. As we will see, the latter extension greatly restricts the kinds
of algorithms that can be used; however, a variation on the branch and bound algo-
rithms not only remains sound but is also nearly as efficient in practice as the original
algorithm.

As a motivating (and clarifying) example, consider a situation in which a customer
is deciding among possible vacations. There are two seasonsin which he can travel:
spring and summer. And for simplicity we consider only two locations: Naples and
Helsinki. In the first scenario (first type of conditional lexicographic ordering), location

is more important than the time of travel and the preferred season depends on the loca-
tion chosen. This is shown in Figure 1a, where following [6] the conditional preference
is represented as a conditional preference table. The associated preference ordering is:h Naples, springi � h Naples, summeri � h Helsinki, summeri � h Helsinki, springi
In the second scenario (second type of conditional lexicographic ordering), location is
again the primary feature, but the preference for a locationdepends on the city chosen.
Thus, our customer prefers Naples in the spring but Helsinkiin the summer, but he
prefers to take his vacation in spring instead of summer. In this case, the preference
ordering is:h Naples, springi � h Helsinki, summeri � h Helsinki, springi � h Naples, summeri
It is of interest to note that the second ordering is intuitively at least as reasonable as the
first. fNaples,HelsinkigÆ��Naples� Helsinki?fspring,summerg Æ�� Naples: spring� summer

Helsinki: summer� spring

a.fNaples,HelsinkigÆ�� spring: Naples� Helsinki
summer: Helsinki� Naples?fspring,summerg Æ��spring� summer

b.

Fig. 1.Two examples of conditional lexicographic preference orderings. In (a) the conditions are
consistent with the priority of variables; in (b) the conditions oppose the priority ordering.

An alternative representation of conditional preferencesthat has received much at-
tention in recent years is the “CP-net” [6] [7]. Since CP-nets do not require total orders,
they are in some respects a more flexible form of representation. However, the present
formulation provides a novel kind of flexibility, in that it allows conditionalities to op-
pose the priority ordering. It may, therefore, be worth exploring the relations between
these two forms of representation as well as their relative strengths and weaknesses.

The remainder of the paper is organized as follows. Section 2gives formal defini-
tions of lexicographic CSPs and CSPs with conditional lexicographic orders, and pro-
vides a short discussion on the relations between these systems and the more general
soft constraint representations. Section 3 discusses relations to CP-nets and TCP-nets.
Section 4 gives a summary of algorithms for solving ordinarylexicographic CSPs. Sec-
tion 5 discusses algorithms that can handle conditional lexicographic CSPs of either
type. Section 6 gives conclusions.

2 Background and Definitions.

2.1 Definitions

Definition 1. Lexicographic CSP.A finite CSP is defined in the usual way as a triplehV;D;Ci, whereV is a set of variables,D is a set of domains each of which is asso-
ciated with a member ofV , andC is a set of constraints, or relations holding between
subsets of variables.

To specify a CSP as lexicographic, we introduce the following definitions. A la-
belling of setV is a bijection betweenf1; : : : ; jV jg andV . A lexicographic structureL overV is a pairh�; f>X : X 2 V gi, where the second component is a family of
total orders, with>X being a total order on the domain ofX , and� is a labelling ofV . We write the labeling�(i) of V asX1; : : : ; Xn. The associatedlexicographic order>L on (complete) assignments is defined as follows:� >L � if and only if � 6= � and�(Xi) >Xi �(Xi), whereXi is the first variable (i.e., with minimumi) such that� and� differ.

A lexicographic CSP is a tuplehV;D;C; �; f>X : X 2 V gi, wherehV;D; Ci is a
finite CSP andh�; f>X : X 2 V gi is a lexicographic structure overV .

A solution to a lexicographic CSP is an assignment�� such that

(i) �� is a satisfying assignment, that is, it is consistent with, or satisfies, all constraints
in C.

(ii) for any other satisfying assignment�, �� >L �.

Definition 2. Conditional lexicographic CSP.A conditional lexicographic structure
overV is defined as a tupleK = h�;G;CPT i, where� is a labelling ofV , with �(i)
being writtenXi, G is a directed acyclic graph onV which is compatible with�, i.e.,(Xi; Xj) 2 G impliesi < j. CPT is a function which associates a conditional prefer-
ence tableCPT (X) to eachX 2 V . Each conditional preference tableCPT (Xi) as-
sociates a total order>Xiu with each instantiationu of the parentsUi ofXi (with respect
toG). The associatedconditional lexicographic order �K on assignments is defined as
follows: � �K � if and only if � 6= � and�(Xi) >Xiu �(Xi), whereXi is the first
variable (i.e., with smallesti) such that�(Xi) 6= �(Xi), andu = �(Ui) = �(Ui). It is
easily seen that�K is a total order on assignments.

Definition 3. Extended Conditional Lexicographic CSP.An extended conditional
preference order involves a functionQ which assigns a numberQ(xju) for every valuex of Xi and assignmentu to Ui. The conditional preference order is then defined as
follows: to compare assignments� and� we find the firstXi whereQ(�(Xi)j�(Ui))

is not equal toQ(�(Xi)j�(Ui)). If Q(�(Xi)j�(Ui)) is less thanQ(�(Xi)j�(Ui)), we
prefer� to �; else we prefer� to�.

Another way of viewing this is that we are converting each assignment� = (x1;: : : ; xn) to ann-tuple of numbers�0 = (Q(x1ju1); : : : ; Q(xnjun)), whereui is the
assignment� makes toUi. The conditional lexicographic order>L is then just the
standard lexicographic order on thesen-tuples of numbers:� is preferred to� if and
only if �0 is lexicographically less than�0. Hence>L is a total order.

2.2 Lexicographic CSPs and soft constraints.

The lexicographically-orderedCSP is a special case of the “lexicographic CSP” or “lex-
VCSP” as defined in [8]. As these authors show, lex-VCSPs are in turn equivalent to a
kind of weighted CSP. However, because of the character of the ordering in our case,
we do not need to represent preferences numerically, and we can build up partial solu-
tions correctly without reference to numerical operationssuch as addition. So, while we
follow [8] and refer to it by their term, “lexicographic CSP”, it is a very special case of
the class that they describe, with implications both for itsusefulness as a representation
in the context of preferences and its ability to support efficient algorithms. For this rea-
son, we use the term “lex-VCSP” to refer to the more general category of CSPs whose
evaluations can be ordered lexicographically.

An evaluation structure for CSPs involving a lexicographicordering was originally
developed within the fuzzy CSP context to avoid the limited discriminability between
solution values due to the use of fuzzy min and max operationsfor combining and
comparing evaluations. In this formulation, preferences for k-tuples associated with a
given constraint are ordered by increasing magnitude, and two solutions are compared
beginning with the first members of each ordering and proceeding up the lists until a
difference is found [9]. In addition, constraint priorities can be incorporated by asso-
ciating a priority level with each constraint, and making the evaluation for a tuple the
maximum of its preference value and the complement of the priority value, i.e.�S(u1; : : : ; uk) = max(1� �C ; �R(u1; : : : ; uk))
where�S and�R are evaluations of the fuzzy relationsS andR associated with con-
straintC, and�C is C ’s priority level. A related and somewhat more general formu-
lation falling within the valued CSP framework is in terms oforderings of constraint
violations, where the combinator is multiset-union with anadditional top (>) value
that acts as an absorbing element and can be used to representviolations of hard con-
straints. Comparison then involves sorting the multisets associated with each solution
and comparing them lexicographically, beginning with the highest value and choosing
the evaluation with the smaller value for the first difference found [8]. These authors
also show that lexicographic CSPs of this form are equivalent to weighted CSPs, with
positive1 serving as the top value.

Lexicographic CSPs as we have defined them fall under the second class described
above (though not the first, in which priorities and preferences are balanced). For our
purposes (and perhaps in general), the weighted CSP formulation is more straightfor-
ward. In this case, one avoids the oddities of combining>with multisets and comparing

a single evaluation with a multiset when this element is involved. We can embed a lex-
icographic ordering within a weighted CSP framework as follows:

Lexicographic CSP as a weighted CSP.For eachi = 1; : : : ; n we define a unary
weighted constraintWi over variableXi, given byWi(x) = kbn�i, wherex is thekth
best value in the domain ofXi andb is the largest domain size. Then for assignments�
and�, the sum of the weights associated to� is less than the sum associated to� if and
only if � >L �.

3 Lexicographic CSPs and CP-nets.

In recent years, the most popular or at least the most advertised means of represent-
ing conditional preferences has been the conditional preference network withceteris
paribus assumptions, or CP-net [6]. A more recent variant, the TCP-net [10], includes
elaborations to handle relations of importance between thefeatures of user-selections.
This corresponds to the ranking of variables in lexicographic CSPs.

CP-net structures are based on assignments of values to variables, or “features”.
A conditional preference is encoded in a “conditional preference table” (CPT) associ-
ated with a particular variableXi. TCP-nets also encode importance relations between
variables in terms of an ordering with lexicographic features, as well as representing
conditional importance relations in a manner analagous to conditional preferences.

A critical feature of (T)CP-nets is that preferences are only defined under “ceteris
paribus” conditions. If, for example, featuresA andB each have two values,a1; a2 andb1; b2, respectively, anda1 >XA a2 andb1 >XB b2, then we can deduce fromceteris
paribus assumptions thata1b1 >N a2b1, a2b1 >N a2b2, etc, but we cannot ordera1b2
anda2b1 on this basis. As a result of this feature, preference orderscan be established
on the basis of “flipping sequences” (as illustrated in the last example). This is still true
of TCP-nets, although in some cases adjacent outcomes in a sequence can be separated
by two flips rather than one.

In this connection, it is worth noting that except in some trivial cases, the order on
assignments generated by a CP-net, or by a TCP-net, is never alexicographic order [11].
The reason for this is that flipping sequences require that consecutive elements in the
ordering differ by at most one (CP-nets) or two (TCP-nets) elements. However, consec-
utive elements in a lexicographic ordering can differ by up to jV j elements. In addition,
for acyclic networks in which conditional preferences correspond to the priority order-
ing, it can be shown that CP-nets are dominated by conditional lexicographic orderings
in that a given CP-net always implies a given conditional lexicographic ordering [4].

Perhaps the most important implication of these differences is that, while determin-
ing whether solutiono is (necessarily) preferred to solutiono0 is easy for lexicographic
orderings, since it is based on successive comparisons of indices, this can be difficult
with (T)CP-nets, since it depends on finding flipping sequences for transforming one
alternative into another [12]. On the other hand, CP-nets allow a weaker form of com-
parison, which indicates for two solutionso ando0, that the preference of the latter
over the former isnot entailed by the CP-net structure. This form of comparison can be
carried out in linear time [7].

Although (T)CP-nets do not encode feasibility constraintsdirectly, the orderings
that they represent can be combined with such constraints insomewhat the same way
that lexicographic CSPs combine a particular preference ordering with a constraint rep-
resentation. It has been shown that for CP-nets with feasibility constraints, a set of
Pareto-optimal solutions can be obtained using the weaker comparisons that were just
described [2]. In this case the CP-net implies a priority ordering that must be followed
during of search. As shown below, a comparable requirement can be lifted in the case
of some algorithms for conditional lexicographic CSPs.

4 Methods for Solving Ordinary Lexicographic CSPs

For reference, we outline four methods examined earlier in the context of ordinary
lexicographic CSPs. (We omit the incomplete methods.) We also present some results
of experimental tests with random problems to show comparative performance. We can
simulate total orders with these problems, where variablesand values are represented
by integers, by using these labels as the required indices. In both cases, lower integer
values represent preferred elements. Thus the solution, (1/1, 2/1, 3/1, ...,n/1), wherex/y is the variable/value labeling, is the most preferred, (1/1, 2/1, 3/1, ...,n/2) the next-
most preferred, etc. In keeping with the definition of a lexicographic ordering, a shift of
value fromk to k+1 for a given variable represents a greater change in preference than
a shift fromk to k + r for any variable with a higher index number. Since in previous
work a MAC-based algorithm proved to be much more effective than forward checking,
the former is used in all tests in this paper.

As noted before, ordinary CSP algorithms based on a simple lexicographic ordering
can be used to find optimal solutions to these problems. In addition, CSP algorithms
with variable ordering heuristics can also be used, but in this case the all-solutions
problem must be solved.

In addition to these two procedures, we consider a simple branch and bound pro-
cedure Here, we can also use effective CSP heuristics; in fact, this can be seen as a
method of improving the original CSP algorithm that is basedon these heuristics. The
cost function gives large values for any but very small problems, but we do not need to
calculate it directly. Rather, we simply compare successive values following the lexical
variable ordering until we encounter a difference. Specifically, suppose that variableXi is the variable currently being considered for instantiation, and this variable is thekth most important variable in the ordering. To evaluate the current partial solution, we
start from the first variable in the lexical ordering. If a variable has an assignment, we
check this against its instantiation in the best assignmentfound so far; if it does not yet
have an assignment, we check the best remaining value in its domain against the best
assignment. In either case, if we encounter a value greater than the best found so far,
then search can back up.

The final procedure is specialized for this type of preference ordering; we refer to
it as “staged lexical search”. Search is done repeatedly, ineach case until the first so-
lution is found, and for each repetition, or stage, of searchone more variable is chosen
in lexical order. Values are always chosen according to the lexical ordering. Thus, in
Stage 1 we first select variableX1 according to the lexical ordering, and then use any

Table 1.Search Efficiency Comparisons

hard problems easy problems
domain size 10 20 30 10 20 30

tightness 0.35 0.45 0.50 0.30 0.40 0.45
CSP lexical
median nodes 149 4631 30,959 26 85 292
mean nodes 347 9084 121,786 37 174 1027
mean solns 1 1 1 1 1 1

CSP min domain
median nodes 1402 7404 26,053373,260 - -
mean nodes 1599 7927 29,858410,654 - -
mean solns 193 35 8 196,731 - -

branch and bound
median nodes 165 1238 6252 322 945 2381
mean nodes 217 2020 9395 380 1189 2991
mean solns 2 1 1 6 6 6

staged lexical
median nodes 325 1511 7152 230 338 506
mean nodes 390 2330 9778 237 375 607
mean solns 20 20 20 20 20 20

Notes. Twenty-variable problems, sample size 100. MAC algorithm. “hard problems” are near
the critical complexity peak for lexical ordering. “easy problems” are near the edge of the hard
region for lexical. “solns” is number of solutions found during the entire search; for CSP min
domain this is the total number of solutions per problem. Branch and bound and staged lexical
algorithms employed the min domain ordering.

heuristic to select the others. When we have found a feasiblesolution, we know that the
assignment forX1 is optimal, so we retain it for the remainder of search. In Stage 2,
we first select variableX2, so the first feasible solution found will include an optimal
assignment for this variable. And so forth. Although developed independently, this al-
gorithm is, in fact, a special case of preference-based search [5], where the criteria on
which search is based form a total order.

Performance comparisons are given in Table 1. These are for problems with pa-
rameters<20,10,0.50,0.20>. (Note that the number of values per domain is large with
respect to problems normally considered in this context andthat there are numerous
hard constraints.) The results suggest that for hard problems either branch and bound or
staged lexical perform well, while throughout the range of easy problems an ordinary
CSP algorithm with lexical variable (and value) ordering isthe most efficient procedure.

5 Algorithms for Conditional Lexicographic CSPs.

When the parent-child order is compatible with the importance order of the variables,
any of our methods for constrained optimization can be used to return a solution that is
optimal for the conditional lexicographic CSP. However, results in the previous sections

show that, if the CSP is strongly constrained, finding a single optimal solution can be
made substantially more efficient by using an alternative algorithm such as the staged
lexical or branch and bound. In particular, the staged lexical algorithm can be applied
in exactly the same way as before to the conditional lexicographic case (since at stagei
we know the ordering of the values ofXi, as its parents have been instantiated already).
Either this algorithm or the branch and bound algorithm should be faster for highly
constrained problems (cf. Table 1).

Lexicographic CSPs based on extended conditional preference orders are probably
not amenable to search based on lexical ordering (and certainly not to any straightfor-
ward version of lexically-based search). This is because the preference ordering for a
domain may not be known at the time of instantiation, and in such cases each value
may potentially have any rank in the domain ordering. While one can select a value on
the basis of the conditional ordering for the best value of the primary ancestor, if the
latter becomes unavailable, then the original assignment must be revised. Under these
conditions, it is not clear that a lexical order of search canbe determined at all while
still ensuring completeness, let alone maintaining efficiency.

For branch and bound, however, flexibility of variable ordering in search can be
retained:

Proposition 1. A branch and bound procedure whose cost function is the lexicographic
ordering based on Q(xju) solves the (extended) conditional lexicographic CSP cor-
rectly under any order of variable instantiations.

Proof Sketch.We argue this as follows. As usual, we refer to variables whose pref-
erence order depends on other variables’ instantiations as“children”, and the variables
they depend on as their “parents”. Since multiple children can be treated independently,
treating the case of one child is sufficient. For more than oneparent, the cases depend
on the last parent instantiated, so it is sufficient to consider a singleton set. This gives
four basic cases:

1. parent� child
V

parent is instantiated first
2. parent� child

V
child is instantiated first

3. child� parent
V

parent is instantiated first
4. child� parent

V
child is instantiated first

(Here,Xi � Xj indicates that indexi < index j in the labeling�.) Case 1 needs no
comment. In Case 3, the child’s preference order will alwaysbe fixed at the time of in-
stantiation, so there is no special problem here, either. InCases 2 and 4 the child’s order
is unknown at the time of instantiation, but an assignment can be chosen consistent with
the best assignment of the parent. Then, if this assignment is available when the parent
is instantiated, there is no problem. In the other situation, the problem occurs when the
next assignment is considered for the child; here, if there is a possible assignment that>uXi the best-assignment-found, then search cannot be bounded.

The algorithm is complete because at any level of search all viable values of the
current domain are tested in a particular order.

In addition to restrictions on when bounding can occur, the major difference from
the branch and bound algorithm for simple lexicographically-ordered CSPs is that com-
parisons must use the rank for a value that held when the solution was found. The

algorithm can be also enhanced by testing for special cases where bounding can still
be done. For example, if the current variable being checked is uninstantiated and is a
child-variable in some relation, but the domains of the uninstantiated parents in all such
relations can be ordered, then the best values for those parents can be used to derive a
tentative ordering for the domain of the variable being checked that together with these
parent values gives a best partial solution.

To test the efficiency of a branch and bound algorithm for the extended lexico-
graphic CSP, a problem generator was written. This program starts with an existing
CSP and transforms it into a conditional lexicographic CSP by selecting variables for
conditional preferences and building a CPT for each relation. The user specifies the
following parameters:� number of preference relations� maximum number of parents per relation� maximum number of children per relation� maximum number of attempts to make a relation withp parents and children (If

this number is ever exceeded, the program writes a message tostandard-output, but
continues with the problem generation.)

In addition, the following restrictions are made during generation:

1. A child-variable only appears as such in one preference relation (otherwise the CPT
is ill-defined).

2. The graph of conditional relations is directed-acyclic,so there is nodirected path
from a node back to itself.

3. A variable occurs in no more than one single-parent relation. This is not a required
restriction, but it prevents selection from undermining the maximum-child speci-
fication sincek singleton-parent relations involving the same parent variable are
indistinguishable from a single relation with one variableandk children.

At present, there are two further restrictions that the usercan specify optionally:

1. That parent-child relations always correspond to the priority ordering of the vari-
ables. (This specifies that the conditional lexicographic CSP is of the simpler type.)

2. That the parents and children in a relation do not have parents in common.

The branch-and-bound procedure (Figure 2) relies heavily on the fact that for lexi-
cographic orderings, value orderings can be indexed. This allows it to check bounds in
terms of indexes, thereby comparing a candidate assignmentwith previous assignments
even when the preference ordering for the past assignment isdifferent from the present
ordering. (In the current implementation, indexes are not stored as such; comparisons
are made by comparing cardinalities of sublists beginning with the values compared.)
Bounds checking proceeds lexicographically; if a variablehas an assignment, this value
is compared with the value in the best solution found so far - in terms of their indexes. If
it does not have an assignment, a comparison can still be madebetween the best possi-
ble value in the current domain and the value in the best solution found. In addition, it is
sometimes possible to determine a best value for an uninstantiated variable as indicated
in the last two else-if clauses under the while in the bounds-check function.

conditional-bnb (partial-solution, remaining-variables)
if remaining-variables� nil

save new best-solution
and continue //backtrack

else
select next variable and remove from remaining-variables
for each value in its ordered domain

if new instantiation gives an arc consistent problem
and
bounds-check(next-variable, next-value) returns true //under bound

conditional-bnb (new-partial-solution, remaining-variables)
continue //backtrack

bounds-check (candidate-var, candidate-value)
while variables remain to be compared

select next-variable in order
get value next-best for this variable from current best-solution
if next-variable == candidate-var

curr-assign = candidate-value
else if next-variable is instantiated

curr-assign = current assignment of next-variable
if next-variable62 any child-set

compare curr-assign or best value in default-current-domain with next-best
else if there is no current-preference order

compare curr-assign or best value in default-current-domain with next-best
else if candidate-var is a remaining uninstantiated parent

get domain-order associated with parent values
compare curr-assign or best value according to domain-order with next-best (using indexes)

else if domains of remaining uninstantiated parents can be ordered
//parents not children or have current ordered domains

compare curr-assign or best possible value given best possible parent-tuple
with next-best (using indexes)

if comparison has succeeded break //one alternative was better
if comparison succeeded and bound was exceeded

return false
else

return true

Fig. 2. Pseudocode for branch and bound for CSP with conditional lexicographic orderings.

We present some preliminary results for problems derived from two sets of 20-
variable problems listed in Table 1: (i)jdj = 10, tightness = 0.35, (ii)jdj = 20, tightness
= 0.45. For generation, the maximum number of parents or children per relation was
limited to two, in the first cases to limit CPT size, in the second to allow a sufficiently
large number of relations (since the same variable cannot bea child in more than one
relation). The number of preference relations was 7, and these included 70-80% of the
variables in the problem. (This is probably a much more severe case than will be en-
countered in practice.) For problem set (i) the median and mean number of search nodes
was 274 and 384, respectively, and 3 solutions were found on average including the op-
timal one. For set (ii) the median and mean were 2672 and 3526,respectively, with 2
solutions found. Given the potential for search to blow up under these conditions in
comparison with ordinary lexicographic CSPs, these results are impressive. We con-
clude that this algorithm is still efficient despite the necessary restrictions on bounding.

6 Conclusions.

This work shows that conditional preferences can be incorporated into this type of lex-
icographic representation for CSPs, thus extending the scope of this form of represen-
tation in an important manner. This means that the desireable features of lexicographic
CSPs, such as ease of comparison between solutions and the strict decoupling of pref-
erences and feasibility constraints, can be carried over tothe case of conditional prefer-
ences.

Algorithms for ordinary lexicographic CSPs can be extendedto handle conditional
orderings; somewhat surprisingly, this can be done in one case even when the condition-
alities do not correspond to the ordering of variables. So toa large degree, efficiency of
search for combinatorial optimisation can be maintained despite the added complexity
of this form of representation.

Acknowledgment.This work was supported by Science Foundation Ireland underGrant
00/PI.1/C075. Definitions in Section 2 are from [4] and are largely due to N. Wilson.

References

1. Freuder, E.C., Wallace, R.J., Heffernan, R.: Ordinal constraint satisfaction. In: Fifth Internat.
Workshop on Soft Constraints - SOFT’02. (2003)

2. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H., Poole, D.: Preference-based con-
strained optimization with CP-nets. Computational Intelligence, Special Issue on Preferences
(2004) 137–157

3. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives. Preferences and Value Trade-
offs. Cambridge (1993)

4. Freuder, E.C., Heffernan, R., Prestwich, S., Wallace, R.J., Wilson, N.: Lexicographically-
ordered constraint satisfaction problems. unpublished (2005)

5. Junker, U.: Preference-based search and multi-criteriaoptimization. In: Proc. Eighteenth
Nat. Conf. on Artif. Intell., AAAI Press (2002) 34–40

6. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditionalceteris
paribus preference statements. In: Proc. Fifteenth Annual Conf. onUncertainty in Artif.
Intell., Morgan Kaufmann (1999) 71–80

7. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for
representing and reasoning with conditionalceteris paribus preference statements. Journal
of Artificial Intelligence Research (2004) 135–191

8. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard and
easy problems. In: Proc. Fourteenth Internat. Joint Conf. on Artif. Intell., Morgan Kaufmann
(1995) 631–637

9. Fargier, H., Lang, J., Schiex, T.: Selecting preferred solutions in fuzzy constraint satisfaction
problems. In: Proc. First European Conf. on Fuzzy and Intelligent Technologies - EUFIT’93.
(1993) 1128–1134

10. Brafman, R.I., Domshlak, C.: Introducing variable importance tradeoffs into CP-nets. In:
Proc. Eighteenth Annual Conf. on Uncertainty in Artif. Intell. (2002)

11. Wilson, N.: Extending CP-nets with stronger conditional preference statements. In: Proc.
Nineteenth Nat. Conf. on Artif. Intell. (2004)

12. Domshlak, C., Brafman, R.I.: CP-nets - reasoning and consistency testing. In: Proc. Eighth
Conf. on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann (2002)
121–132

Uncertain Constraint Optimisation Problems

Neil Yorke-Smith1 and Carmen Gervet2

1 Artificial Intelligence Center, SRI International, USA.nysmith@ai.sri.com
2 IC–Parc, Imperial College London, UK.cg6@icparc.ic.ac.uk

Abstract Data uncertainties are inherent in the real world. Theuncertain CSP
(UCSP) is an extension of classical CSP that models incomplete and erroneous
data by coefficients in the constraints whose values are unknown but bounded, for
instance by an interval. It resolution is aclosure, a set of potential solutions. This
paper extends the UCSP model to account for optimisation criteria, by defining
theuncertain CSOP. The challenge is to combine optimisation (preferences over
individual solutions) with a closure of a certain type (preference over sets of so-
lutions) to a UCSOP. Unlike traditional CSOPs we need to compare closures (i.e.
families of solutions) rather than just single solutions. We address this problem in
a two stage process. First, non-dominated closures present the choice of solutions
to a UCSOP; once one is chosen, second, its refinement to a redundancy-free
or optimal closure balances reliability and optimality as the user specifies. We
describe means to effectively perform these derivations by leveraging decision
analysis under uncertainty and multi-criteria optimisation theory.

1 Introduction

Data uncertainties are inherent in the real world. Across numerous applications, real-
world Large Scale Combinatorial Optimisation problems (LSCOs) are permeated by
data uncertainty. Despite its successes, and its extensions to account for soft constraints,
for example, the classical constraint satisfaction and optimisation problem (CSOP) is
recognised as inadequate as a model of LSCOs with uncertain data.

Theuncertain CSP(UCSP) was introduced in [19] to model LSCO problems with
incomplete and erroneous data, without approximation of data or potential solutions.
The resolution of a UCSP is a set of its potential solutions, called aclosure. Depending
on her application and the nature of the uncertainty, the user may be interested in one
or more aspects of the potential solutions. For planning the control of aerospace com-
ponents, for instance, which was modelled as a UCSP in [20], the resolution sought is a
plan of operation for each anticipated environmental uncertainty. This corresponds to a
covering set closure: a set of solutions that contains at least one solution (not necessarily
all potential solutions) for each anticipatedrealisationof the data parameters.

Previous work on the UCSP does not account for preferences or soft constraints;
or optimisation other than over the size of the closure or the number of realisations it
covers. Preferences to maximise solution quality in the aerospace planning problem, for
instance, were translated into hard satisfiability constraints on a minimum preference
level. For such problems, where the user demands not only a reliable solution, but also
one that meets specified, numerical objectives, the UCSP is incomplete as a model.

This paper introduces theuncertain CSOPto confront LSCOs with optimisation
criteria. The key challenge is to define the semantics of a reliable and relevant resolution
to the extended model, given preferences on individual potential solutions. On one hand

there is the resolution sought in respect of the data uncertainty; on the other hand there
are the user’s optimisation criteria orthogonal to the uncertainty. Thus multiple and
possibly conflicting criteria arise from the definition of a closure (in terms of supported
potential solutions) and the value of the closure (in terms of the preferences). Further,
this latter notion of the valuation of preferences over a closure must itself be defined.

After reviewing necessary background in Section 2, we extend the uncertain CSP
to define the uncertain CSOP in Section 3, and present our approach to resolving a
UCSOP: selecting first a type of closure, then the ‘best’ closure of that type (according
to the user’s optimisation criteria), and then, possibly, the ‘best’ elements of that closure.

The next two sections thus suppose the type of closure has been selected. To com-
pare different closures of the chosen type (discussed second, in Section 5) we define
objective functionsover closures, based on the user’s objective functions on potential
solutions. We adapt criteria from classical decision making under uncertainty to make
this definition. Then, when the sought closure is other than the full closure, comparing
closures may be a multi-criteria problem, with criteria arising from the definition of the
closure and from the objective functions over closures. Our approach is to compute the
non-dominatedclosures, which form a Pareto frontier over closures, by adapting meth-
ods from multi-criteria optimisation theory. Once a non-dominated closure is chosen,
its refinement to aredundancy-freeor optimalclosure (discussed in Section 4) balances
reliability and optimality as the user specifies.

The certainty closure framework, developed for reliable inference around the UCSP
model and closures, is distinguished by its enclosure approach to data uncertainty and
solutions. In contrast to a CSOP, where the ‘best’ solution is sought, for a UCSOP the
enclosure approach seeks the ‘best’ closure, i.e. we must reason about (sets of) sets
of solutions. While reasoning with a UCSOP is thus distinguished from CSOPs and
classical decision making under uncertainty, there are parallels between reasoning over
closures and multi-criteria optimisation. Where possible we exploit these parallels, and
adapt also CSOP algorithms as solving components. An overview of classical optimi-
sation under uncertainty is in [17]; while [9] discuss multi-criteria optimisation.

Related work in CP to uncertainty includes approximation models and stochastic
models [11] (where various metrics, including expected value, can be maximised for a
single solution or policy), and robust single solutions [7]. Closest to our work are possi-
bilistic approaches that simultaneously consider preferences and uncertainty [4,14]. The
enclosure approach has been used within Operational Research, where optimisation in
the context of uncertain data is addressed by [10], for instance.

2 Background

A classical CSP is a tuple〈V,D, C〉, whereV is a finite set of variables,D is the set of
corresponding domains, andC = {c1, . . . , cm} is a finite set of constraints. A solution
is a complete consistent value assignment. We represent a CSP by a conjunction of its
constraints

∧
i ci (as opposed to the set of its allowed tuples). Similarly, we represent a

solution or set of solutions to a CSP by a conjunction of constraints.
A constraint is a relation between constants, variables and function symbols. The

constants we refer to ascoefficients. A coefficient may becertain (its value is known)
or uncertain(value not known). In a classical CSP, all the coefficients are certain. We
call an uncertain coefficient aparameter. The set of possible values of a parameterλi

is its uncertainty set, denotedUi. We say anuncertain constraintis one in which some
coefficients are uncertain. Observe that the coefficients in an uncertain constraint are
still constants; merely as parameters their exact values are unknown. For example, if the
parameterλ1 has uncertainty setU1 = {0, 1, 2}, the constraintX < λ1 is uncertain. A
realisationof the data is a fixing of the parameters to values from their uncertainty sets.
We say that any certain constraint corresponding to a realisation is arealisedconstraint.

In a CSOP, solutions are ordered, partially or totally, by optimisation criteria. It is
usual for each criterion to be expressed as a (partial) function, the objective function
fi : S → A, whereA is a partially ordered set of values. Without loss of generality, so-
lutions are sought that satisfy all hard constraints andminimisethe objective functions.

Theuncertain CSPextends a classical CSP with an explicit description of the data
that allows us to reason with the uncertainty to derive reliable solution enclosures [19]:

Definition 1 (UCSP).Anuncertain constraint satisfaction problem〈V,D, Λ,U , C〉 is a
classical CSP〈V,D, C〉 in which some of the constraints may be uncertain. The finite
set of parameters is denoted byΛ, and the set of corresponding uncertainty sets byU .

We say that any certain CSP̂P , corresponding to a realisation of the parameters of
P , is arealised CSP. If r is a realisation and̂P is a corresponding realised CSP, for a
solutions of P̂ , we say that the realisationr supportss, ands coversr. For reasons
of space, in this paper we restrict ourselves to UCSPs with discrete data and logically
independent parameters. Our examples are mostly arithmetic constraints. The UCSP
model encompasses both continuous data and dependent parameters; as discussed in
[18], their impact is mostly orthogonal to the optimisation issues considered here.

Example 1.LetX1 andX2 both have domainsD1 = D2 = [1, 5] ⊆ Z. Let λ1 andλ2

be parameters with uncertainty setsU1 = {2, 3, 4} andU2 = {2} respectively. Consider
three constraints:c1 : X1 > λ1, andc2 : |X1−X2| = λ2, andc3 : X2−λ1 6= 1. Writing
V = {X1, X2}, D = {D1, D2}, Λ = {λ1, λ2}, U = {U1, U2}, andC = {c1, c2, c3},
then〈V,D, Λ,U , C〉 is a UCSP. Note thatc1 andc3 are both uncertain constraints.ut

Thecomplete solution setCl(P) of a UCSPP is the set of all solutions supported
by at least onerealisation. Each element ofCl(P) is called apotential solution. The
resolution to a UCSP model is aclosure: a set of potential solutions, i.e. a subset of
Cl(P). If the closure is the entire solution space, we say it is thefull closure.

At the heart of the UCSP model and its resolution is a demand forreliablesolutions,
by which, informally, we mean faithful relative to our knowledge of the state of the real
world. In concrete terms, the form that reliable inference takes depends on two, linked
issues: the requirements of the user and the nature of the uncertainty. In a diagnosis
problem, for example, the user simply might want to know whether there exist any re-
alisations at all with solutions (anygoodrealisations); while in a planning problem, she
might want to know which realisations support which solutions. We meet the varying
forms of reliable inference by providing closures of various types.

More specifically, suppose the user specifies that she is interested in particular in-
formation as the resolution of a UCSP. This corresponds to a particular aspect of the
potential solutions. Anadequatesolution is then one that (1) comprises at least this
information, and (2) faithfully reflects our knowledge about the real-world. Hence, we
say that anadequate closureis a subset of the full closure that provides at least the
information the user requires as the resolution of a UCSP. An adequate closure includes

all solutions relevant to the user’s interest; reliability is unaffected when we disregard
irrelevant potential solutions. Commonly-useful types of closures include [19]:

1. The full closure: the set of all solutions that each cover at least one realisation.
Example usage: behaviour guarantee across all possible solutions; diagnosis of the
reliability of other methods.

2. A covering set: a set of solutions that together cover all realisations. A covering set
closure isminimal if the cardinality of this set is minimal among all such sets. Ex-
ample usage: robust solution covering every eventuality, as in contingent planning.

3. A robust set: a set of solutions such that each coverall realisations (not just at least
one). A robust set closure is maximal if the cardinality of this set is maximal among
all such sets. Example usage: conformant planning.

4. A most robust solution: a single solution that covers the maximal number of reali-
sations, of all single solutions. Example usage: robust solution that must be a single
solution and not a set of solutions, e.g. schedule for a staff roster [11].

Example 2.Let P be the UCSP of Example 1. The full closure ofP in tuple notation
is (X1, X2) ∈ {(3, 1), (3, 5), (4, 2), (5, 3)}; a covering set closure of minimal size is
(X1, X2) ∈ {(3, 1), (5, 3)}, since this solution set covers all three realisations. ut

Remark.The most robust solution closure is a familiar concept in frameworks for un-
certainty. For example, it is the solution sought to a no-observability mixed CSP [5].
Maximising robustness — whether by the metric of number of covered realisations
(coverage), or by another, such as maximal expectation — is a common idea. Despite
the attraction of robustness, it is not uncommon for the robust set closure to be empty,
because of its strong requirement for solutions that coverall realisations.

A support operatortells us which realisations support which solutions. Its inverse
tells us, dually, which realisations are covered by which solutions. Knowledge of such
support information — the relationship between realisations and potential solutions —
not only formally defines the different types of closures, but is essential for deriving
them, which can be achieved by a variety of means, including one from another, trans-
formation of the UCSP, and enumeration over realisations [18].

With respect to a constraint domainD, letR be thespace of realisations, the set of
all possible realisations; and letS be thespace of solutions. Observe that for any UCSP
P , its complete solution setSP is a subspace ofS. Similarly, we define the complete
realisation setRP of P ; it is a subspace ofR. Recall that the power setP(S) of a set
S is the set of all subsets ofS: for example,P({1, 2}) = { ∅, {1}, {2}, {1, 2} }.

Definition 2 (Support operator). A support operatoris a mapΣ : P(S) → P(R)
such that∀S ⊆ S, Σ(S) = R, whereR ⊆ R is a set of realisations s.t. each supports
at least onesolution inS. If a support operator provides all realisations that support a
set of solutionsS, we sayΣ is completefor S. ut

Example 3.For Example 1, a support operatorΣ1 is defined by:(3, 1) 7→ 2, (3, 5) 7→
2, (4, 2) 7→ {2, 3}, and(5, 3) 7→ {3, 4}. Σ1 is complete: one can verify that, for in-
stance,Σ1(SP) = RP . A second support operatorΣ2 is defined by:(3, 1) 7→ 2,
(3, 5) 7→ 2, (4, 2) 7→ 2, and (5, 3) 7→ 3. Σ2 is not complete, because it never in-
cludesλ1 = 4 (for example) but this realisation supports solution(5, 3). ut

3 Uncertain CSOP

Not in every LSCO are all solutions equal. In a planning problem, for instance, the user
might judge plans of shorter length to be preferable. In an uncertain CSP, this discrimi-
nation between resolutions to the model is manifest as a preference for some elements
of a closure over others, or for some closures over others. Although we present a princi-
pled approach, much of the discussion cannot be specific, because optimisation criteria
tie in so closely to the user’s decision-making objective for a given LSCO problem.
While we restrict ourselves mostly to a single optimisation criterion in this paper, mov-
ing from one to many criteria is a relatively smaller step. We first extend the definition of
a UCSP in the natural way from a pure satisfaction problem to an optimisation problem:

Definition 3 (UCSOP).An uncertain constraint satisfaction and optimisation problem
〈V,D, Λ,U , C〉 is a classical CSOP〈V,D, C, A〉 in which some of the constraints may
be uncertain. That is, it is a UCSP with an objective functionf : S × R → A to be
minimised, and a partially ordered setA. ut

As in a CSOP, the objective function is a soft constraint; if we ignore it, a UCSOP
is a UCSP, and therefore the results known for UCSPs apply immediately for UCSOPs.
In particular, the definitions and derivations of the different closures apply. The com-
plexity of solving a UCSP depends on the closure sought: e.g. deriving the full closure
is Σp

2 -hard [19]. Solving a UCSOP involves comparing closures, which increases the
complexity up the polynomial hierarchy to the class PSPACE. Because of the uncer-
tainty, it is to be expected that UCSOPs are computationally more challenging than
CSOPs, which are in the class NP optimisation [3].

The user’s assessment of the value of a solution might depend not only on the so-
lution itself, but also on the realisations it covers. Thus the objective functionf in
Definition 3 is defined onS ×R, i.e. over both solution and realisation spaces.

Example 4.Let us consider adding an optimisation criterion to the discrete UCSP of
Example 1. Consider the criterion of minimising the value ofX2. For a solutions =
(X1, X2), this gives the simple objective functionf(s) = X2. Note thisf involvesS
only: it does not involve the realisations covered bys. The elements of the full clo-
sure are (in this case) totally ordered by the objective function:(3, 1) < (4, 2) <
(5, 3) < (3, 5). The solution with the best objective value isŝ = (3, 1). Observe
that ŝ covers only one realisation (λ1 = 2). There are two single solutions that cover
the greatest number of realisations,(4, 2) and(5, 3); they have support|Σ1((4, 2))| =
|Σ1((5, 3))| = 2. For them, observe that(4, 2) < (5, 3). ut

The objective function of a CSOP is defined on variables and constants. For a UC-
SOP it may also include parameters. In this paper we will restrict ourselves to ob-
jective functions without parameters, and assume all values occurring in the objective
are ground once the decision variables are chosen. However, it is worth noting that
uncertainty in the objective function of a UCSOP can sometimes be rewritten as an
(uncertain) constraint, so reducing the problem to one with certain objective function.
As one instance, consider an interval linear system, a UCSOP with linear constraints,
and with uncertainty sets given by real intervals. If we have a linear objective function
min

∑
i λiXi, uncertainty in the objective is easily removed by adding the additional

constraint
∑
i λiXi ≤ Z for an auxiliary variableZ, and optimisingminZ. The gen-

eral case, of course, will not reduce in this simple way.

3.1 Resolving a UCSOP

Given a single optimisation criterion, classical decision making [17] seeks one single
solution, chosen by the rationale of minimising the objective function. The central ten-
ant of solving a UCSP is that, unless specified by the user, no potential solution is a
priori excluded. Since a closure is thus the resolution of a UCSP, given a single optimi-
sation criterion, a rational approach is to seek a modified closure.

Deriving some types of closures is by itself already an optimisation problem: a min-
imal covering set, a maximal robust set, and a most robust solution. These closures have
in common a criterion based on the amount of support; we say they areoptimisation-
dependent. For minimal covering sets, the support criterion is to minimise the cardinal-
ity of the closure. For maximal robust sets and most robust solutions, the criterion is to
maximise the support of each element.

Thus, if we desire an optimisation-dependent closure, with even a single objective
function, a UCSOP has the potential to be a multi-criteria optimisation problem. The
two at best orthogonal and at worst competing criteria are: cardinality (the size of the
closure) or support (measured by the support operator), and optimality (measured by the
objective function). Analogously, multiple criteria are seen when seeking robust ‘super’
solutions to a CSOP [7]. The challenge is how to balance these two criteria.

Further, whether optimisation-dependent or not, all closures are defined formally in
terms of support operators: e.g. the full closure is the set of solutionseach supported by
at least one realisation. Thus foranyclosure, in general any optimisation criterion may
compete with reliability, which is defined in terms of support.

Our approach is the following: we give precedence to reliability, since, as part of the
definition of a closure, it is the more fundamental. In analogy with a classical CSOP,
firstly we desire solutions to the problem and only secondly do we evaluate them for op-
timality; so with a UCSOP, firstly we derive closures and only secondly do we evaluate
them. We give greater precedence to the optimality criterion only if the user deliberately
specifies a greater desire for optimality; only then is such a closure adequate.

In analogy, consider a soft temporal CSP with contingent events and preferences.
Here a suitable notion of controllability [15] might put precedence for reliability over
optimality. That is, we require hard temporal constraints to be satisfied, and secondly
prefer solutions of higher quality according to the soft constraints.

What this means in practice is that we first select the appropriate type of closure for
the problem, as if it were a UCSP with no optimisation criterion. We then consider the
impact of the optimisation criterion:

– Suppose we have derived a closure of the desired type. The optimisation criterion
means we can refine it by removing some elements. The more the user desires
optimality over reliability, the more elements can be removed.

– Suppose instead we have only selected the desired type of closure. The optimisa-
tion criterion means we have a principled way to prefer some closures of this type
to others of the type, if we extend the criterion to closures rather than individual po-
tential solutions. However, if the type of closure is optimisation-dependent, such as
a minimal covering set, then multiple criteria may arise when comparing closures.

A merit of this approach to optimisation under uncertainty is that we balance the
two extremes: on one hand, deterministic approaches based on the worst case, and on
the other, stochastic approaches based on probabilistic assumptions. As [1] point out,

the former favours robustness over optimality, while the latter favours optimality over
robustness. A relevant closure, to be established in the sequel, ensures a reliable solution
(subsuming the benefits of a robust single solution when one exists); and it ensures an
optimal solution, in the sense to be described.

4 Refining a Given Closure

In this section we suppose the type of closure has been chosen and one closure of the
type has been derived, and now we are given an optimisation criterion. The resulting
objective function means there is now a reason to prefer some elements of a closure to
others. Thus we describe how to refine a closure with respect to an objective function.

Unless the user specifies it, we cannot simply pick the most preferred element of
a closure according to the objective function. The reason is that it is the whole closure
that provides a reliable solution to the problem; any one element (or more generally,
any subset) need not necessarily be a reliable solution.

Nonetheless, the optimisation criterion still gives a potential reason to prune a clo-
sure: when one element makes anotherredundant. Definition 4 says that one solution
is made redundant by another if the latter covers at least the same realisations (support)
and is preferred according to the objective function (optimality).

Definition 4 (Redundant solution).Let S ⊆ Cl(P) be a closure of UCSOPP , and
s1, s2 ∈ S be elements ofS. LetΣ denote a complete support operator forP . s2 is
maderedundantbys1 if Σ(s2) ⊆ Σ(s1) andf(s1) < f(s2). ut

Example 5.In Example 4 the solutions(3, 1) and (3, 5) cover the same realisations.
Thus, with respect to the objective functionf(s) = X2, (3, 1) makes(3, 5) redundant.
Any covering set that includes(3, 1) gains nothing by also including(3, 5). Thus we can
refine such a covering set closure by removing(3, 5) without compromising reliability.

Redundancy applies to any closure, although for singleton closures clearly it is triv-
ial. Note that, as a consequence of their definitions, both a most robust solution and a
minimal covering set are redundancy-free. There is no need to retain redundant solu-
tions in a closure, unless the user specifies that regardless she wants all single solutions.
In the absence of any specification by the user to the contrary, we say that a closure is
an adequate solution to a UCSOP only if it contains no redundant elements:

Definition 5 (Redundancy-free).In the context of a UCSOP, we say that a closure is
redundancy-freeiff it contains no redundant elements; otherwise it isredundant. ut

Example 6.In Example 4, the covering set{(3, 1), (3, 5), (5, 3)} is a redundant closure,
since(3, 5) is made redundant by(3, 1); {(3, 1), (5, 3)} is redundancy-free. ut

Hence, given a closureS and an objective function, we prune the redundant ele-
ments from the closure to yield the redundancy-free refined closureS′ ⊆ S. S′ is the
smallest subset ofS that a priori is a reliable solution to the problem. Nonetheless, the
user may specify her primary desire for an optimal single solution (even though it might
not cover every realisation), in the same way as she might ask for a most robust solution
closure (even though it might not cover every realisation). As stated earlier, only with
such a specification can we give optimisation precedence over reliability, and say such

a solution is adequate. In particular, suppose the user desires the minimal elements of
the full closure according to the objective function, even though this minimal set will
not necessarily cover all realisations. Here is the trade-off between robustness and opti-
mality: between probability of covering all realisations and the value of the solution.

We can translate the user’s restriction on the full closure into a closure of another
type: theoptimal closure{s ∈ Cl(P) : f(s) minimal}. The optimal closure prefers
elements of the full closure with respect to the objective function, parallel to how a
robust set closure prefers elements with respect to their support.3 Generalising, if the
user requires the optimal elements of any closure, we can translate this requirement into
a demand for the optimal closure of that type:

Definition 6 (Optimal closure).Given a closureS of typet, anoptimalt closureis the
subset ofS of elements minimal under an objective functionf . ut

An optimal closure of a given type need not be a closure of that type. For exam-
ple, from a covering set closureS comes an optimal covering set closureS′, but S′

need not be a covering set. Note also that every optimal closure is redundancy-free, but
not every redundancy-free closure is optimal. In contrast to an optimal closure, which
places optimality before support, a general redundancy-free closure places support be-
fore optimality: it prunes only those elements whose omission does not ameliorate the
coverage of the closure, i.e. the number of realisations covered.

Example 7.In Example 4, the covering set{(3, 1), (5, 3)} is redundancy-free, but is not
an optimal covering set closure becausef((5, 3)) = 3 > 1 is not minimal. An optimal
covering set closure is{(3, 1)}, which is a singleton closure in this case. Since it does
not cover all realisations, it is not a covering set closure. ut

Example 8.Consider a problem arising in routing of uncertain traffic demands in a
network [1], suitable for modelling as a UCSOP. Here, the desired closure is a robust
set — each proposed routing must hold for all realisations of the demands within the
uncertainty set — and the routing should be of minimum cost. Thus an optimal robust
set is adequate to the user as a reliable solution for the problem. Operationally, [1]
compute one member of such a closure directly, using column generation. ut

5 Choosing Between Different Closures

To begin with in this section we again suppose the type of closure has been chosen.
The last section assumed one closure of the chosen type had been selected. We now ask
which closure should be selected: which closure of the type is ‘best’ given an optimisa-
tion criterion? In other words, having considered preferring some elements of a closure
to others, we now consider preferring some closures (as subsets ofCl(P)) to others.

There are two aspects to address: (1) how to define a criterion to evaluate a closure,
given the user’s preferences over individual potential solutions; and (2) how to compare
closures, given this criterion, which might be in conflict to the criterion that comes from
the definition of the type of closure, i.e. how to approach the multi-criteria optimisation
problem of choosing between closures.

3 Analogously, consider super solutions to a classical CSOP: an optimal closure corresponds to
the most robust optimal super solution, and a (non-optimal) redundancy-free closure corre-
sponds to the optimal robust super solution [7].

Example 9(Example 4 continued).In Example 4 the two minimal (and so redundancy-
free) covering sets areS1 = {(3, 1), (5, 3)} andS2 = {(4, 2), (5, 3)}. First, let us
compare them by the sum of the number of realisations covered.(3, 1) covers one re-
alisation (λ1 = 2); (4, 2) covers two realisations (λ1 = 1, λ1 = 2); and(5, 3) covers
two realisations (λ1 = 2, λ1 = 3). ThusS1 has a cumulative coverage (the number of
covered realisations) of1+2 = 3 andS2 of 2+2 = 4, soS2 is better. This comparison
focuses on the heuristic of maximising the amount of support.

Second, compare the minimal covering sets by the sum of the objective functionf
on their elements. ThenS1 has a cumulative value of1 + 3 = 4 andS2 of 2 + 3 = 5.
In contrast to the first, by this second ordering,S1 is better (since we minimisef). This
comparison focuses on the optimality criterion.

Third, compare the closures by the sum of the best solution they give for each
realisation.S1 coversλ1 = 2 by (3, 1) and the other realisations by(5, 3), scoring
1 + 3 + 3 = 7. S2 coversλ1 = 2 by (4, 2), λ1 = 3 by (4, 2) and(5, 3), andλ1 = 4
by (5, 3), scoring2 + 2 + 3 = 7. Now the two minimal covering sets are incomparable.
This comparison seeks to balance both reliability and optimality.

Lastly, consider the covering setS3 = {(3, 1), (4, 2), (5, 3)}. This set is not min-
imal, since its cardinality is three. However, according to the last metric, it scores
1 + 2 + 3 = 6, which makes it better thanS1 andS2. We callS3 the optimal for
each realisationclosure, since it contains the best solution for each closure with respect
to the objective function. It shows that the support criterion (minimise cardinality) and
the optimality criterion (minimise some lifted function off) are opposed, and so we
have a multi-criteria problem. ut

5.1 Extending an Objective Function to a Closure

We first must define means to ascribe numerical values to closures, so that we have
means to compare them with respect to the objective functionf specified by the user.
That is, we must liftf from single solutions to closures, i.e. fromS ×R toP(S)×R,
and project it fromP(S) × R to S. The basis for doing so is found by reviewing the
criteria known in decision making under uncertainty. We recall them briefly and then
present different means to definef on closures based upon them.

Recall from [17] that avaluation matrixthat associates a valuevij to each action
ai and each future outcomeΘj . The decision problem is to decide among the actions
(which we can assume are known) in the presence of a lack of knowledge about which
outcome will occur. In terms of a UCSOP, the actionsai are consistent tuples for the
variables, and the outcomesΘj are the feasible realisations of the parameters. Thus the
valuation matrix is nothing more than the objective function enumerated overS andR.

The literature contains many criteria for decisions under uncertainty, when seeking
a single solution rather than a set of solutions. For an actionai, the criteria specify
the value to assign to the action with respect to the objective function. Since we are
minimising f , the optimal action is the one that minimises this value, i.e.argminai .
The criteria, first, specify what value to give to a single solution in the light of the
uncertainty. In our notation, they specify how to projectf fromS×R toS. Second, they
specify how to select a single solutions that optimises the projected objective function
f(s). The criteria differ most importantly in how conservative they are. Beginning with

the most optimistic, simply suppose the most favourable outcome will occur. That is,

min
ai

min
Θj

vij (1)

TheLaplace criterion[17] is also optimistic. It assumes the outcomes are equally
likely, and converts the problem to a decision under risk, computing expected utility:

min
ai

(1
m

m∑
j=1

vij
)

(2)

The most pessimistic criterion supposes that the least favourable outcome will oc-
cur. Theminimax criterionacts conservatively to avoid the worst actions:

min
ai

max
Θj

vij (3)

The spreadtakes a middle ground, as the difference of the most pessimistic and
most optimistic criteria:

min
ai

(
max
Θj

vij −min
Θj

vij
)

(4)

Also neither purely optimistic nor pessimistic, theminimax regret criterioncom-
putes theregret matrixthat associates the opportunity cost of an action:rij = vij −
minak vkj . Regret expresses the difference, in hindsight, between the best decision and
the decision taken. The decision criterion is then to apply minimax to the regret matrix:

min
ai

max
Θj

rij (5)

Variants of regret, such as percentage regret, are defined in robust optimisation [10].
Finally, theHurwicz criterion [17] is parametrised by an index of optimismα ∈

[0, 1]: 0 is pessimistic,1 is optimistic:

min
ai

(
αmin

Θj
vij + (1− α) max

Θj
vij
)

(6)

We must extend these criteria in order to apply them to closures, because in general
a closure will have more than one element. Thus we need to lift the evaluation off
from a single solutions to a set of solutions, a closureS. It is clear there is more than
one answer: for example, as in Example 9, we could sum the values for the elements
or we could take the least value. The most suitable choice of the above means to adopt
depends on the criteria of user for the problem; we present eight such alternatives. Let
S = {s1, . . . , sN} be a set of potential solutions, andΣ be a complete support operator.

1. Take the minimum value off over the individual elements:

f(S) = min
i=1,...,N

f(si) (7)

This is× from the fuzzy semiring [2]; the egalitarian definition of welfare in util-
ity theory [13]. Since we minimisef , this means of liftingf ontoS is the most
optimistic; it corresponds to the most favourable criterion (1) above.

2. Take the maximum value off over the individual elements:

f(S) = max
i=1,...,N

f(si) (8)

This is the least optimistic alternative; it corresponds to the minimax criterion (3)
and gives us a hard upper bound on the optimum.

3. Take the spread of the values:

f(S) = min
i=1,...,N

f(si)− max
i=1,...,N

f(si) (9)

This corresponds to (4), and also (shown by rearranging the equation) to the regret
criterion (5).

4. Use the Hurwicz criterion with an index of optimismα ∈ [0, 1]:

f(S) = α min
i=1,...,N

f(si) + (1− α) max
i=1,...,N

f(si) (10)

This corresponds to (6).
5. Sum the support of the individual elements:

f(S) =
∑

i=1,...,N

1
|Σ(si)|+ 1

(11)

Since we are minimisingf but support is usually maximised, we use the reciprocal
of |Σ(si)|, the number of realisations that support solutionsi. Note the+1 in the
denominator to give correct results ifs has a support metric0. If lesser support is
preferred, we simply use|Σ(si)| rather than its reciprocal.

6. Sum the values off on the individual elements:

f(S) =
∑

i=1,...,N

f(si) (12)

This is× from theweighted semiring[2]; the utilitarian definition of welfare in
utility theory [13]. It corresponds to the Laplace criterion (2).

7. Sum the values off on the individual elements, weighted by their support:

f(S) =
∑

i=1,...,N

f(si)
|Σ(si)|+ 1

(13)

If we view the amount of support as defining a likelihood of occurrence (a possi-
bility distribution function), then (13) corresponds to an expected value criterion.

8. Take the best value off on the elements that cover each realisation:

f(S) =
∑

j=1,...,M

max
si coversrj

f(si) (14)

We call thisoptimal for each realisation. It defines an extension of the covering
set closure, where not only does the closure contain at least one solution for each
realisation, but at least one optimal solution for each.

Table 1.Comparison of closures by various metrics

cardinality min max spread Hurwicz (α=0.5) support sum weighted best

S1 2 1 3 2 2 1
3

4 5
2

7
S2 2 2 3 1 3

2
1
4

5 5
2

7
S3 3 1 3 2 2 1

5
6 7

2
6

To evaluate (11) and (13) we requireΣ(si) for eachsi, known asenumeration
support information[18]. To evaluate (14) we requireΣ-1(rj) for each realisation
rj ∈ Σ(S), whereΣ-1 is a relation inverse ofΣ; enumeration support information
is certainly enough for this.

Example 10(Example 9 revisited).In Example 9 we compared by different metrics
the three covering set closures:S1 = {(3, 1), (5, 3)} andS2 = {(4, 2), (5, 3)} (both
minimal), andS3 = {(3, 1), (4, 2), (5, 3)}. Table 1 evaluates the three closures by all of
the above metrics, and compares them also with the support criterion of the cardinality
of the sets. We see that there are metrics by which each of the closures are strictly best.
A decision between the three closures will depend on the criteria of the user. Moreover,
if we seek a minimal covering set, which is an optimisation-dependent closure, then we
have multiple criteria. If the optimality criterion isbest, for instance, then the support
criterion (cardinality) and optimality criterion are opposed to each other. ut

5.2 Comparing Closures of the Same Type

Summarising, based on the objective function of a UCSOP, we have defined means of
numerically comparing closures of any one type. This enables us to choose a ‘best’
closure, by deriving one or all closures of the type that minimise the corresponding
objective function (7)–(14). This is analogous to looking for the elements of a closure
that minimise the original objective function: it is the closure equivalent of the optimal
elements. As we stated, the most suitable choice of (7)–(14) depends on the criteria of
user for the specific LSCO problem at hand.

However, choosing the ‘best’ closure requires more than just minimisingf(S). Ex-
ample 10 illustrates, for minimal covering sets, how the addition of even one optimi-
sation criterion to a UCSP can lead to a multi-criteria optimisation problem. The two,
essentially orthogonal, sources of criteria arise from support (or cardinality) and op-
timality (defined by the chosenf(S)). As the example showed, when optimality and
support objectives are opposed, they generate a trade-off, resulting in a multi-criteria
optimisation problem to choose a closure. The multiple criteria are reflected by multi-
ple objective functions, which we write asfi, reservingf0 for the support criterion.

Of the approaches to multi-criteria optimisation [16], the Pareto frontier fits nat-
urally with the UCSP, because it is based on providing the user with information to
enable her to take an informed decision. A Pareto frontierof closuresis a plausible set
of closures which the user might examine for the trade-off of the criteria. The selected
closures can then be refined to their redundancy-free or optimal versions.

For a given type of closure, aPareto frontier of closuresis a set of non-dominated
closures. One closureS dominatesanotherS′ iff fi(S) ≤ fi(S′) for each objective
function fi and there exists at least onefk s.t.fk(S) < fk(S′); a closure isnon-

dominatedif there exists no closure that dominates it. A closure in the frontier cannot be
improved with respect to any criterion without deteriorating it with respect to another.4

The alternatives to the Pareto frontier translate the multi-objective problem into a
single-objective problem or problems. Widely used for instance is a weighted sum of
the criteria. It is perhaps less natural than a frontier, because (1) deciding the weights
beforehand is often unclear; and (2) it gives extremal solutions whereas the frontier
provides a range of balanced solutions.

Example 11(Example 9 concluded).Let us say the cardinalityf0(S) = |S|, the mini-
mum valuef1(S) = minsi f(si), and the sumf2(S) =

∑
si
f(si) are the three criteria

the user is concerned with in Example 9. Note that the former comes from the support
criterion, while the latter two come from explicit optimisation criteria. Referring to Ta-
ble 1, observe thatS2 is dominated byS1 but neitherS1 nor S3 dominate each other.
Thus the Pareto frontier is the set{S1, S3}. Refining both with respect tof , we see that
S1 is the redundancy-free form ofS3. Hence we offer the user the closureS1 as the
resolution of the UCSOP. ut

Computing the Frontier. To make the discussion more concrete, we now consider
how to perform an efficient comparison. We can compose the problem of evaluating
f(S) as a meta CSP. The sole variable is the closureS sought; its domain is the set of
all closures of the UCSP. The constraints specify thatS is a closure of the sought type,
and there is an objective function according to the criterion on closures, i.e.f(S).

Without domain-specific knowledge, the natural algorithm to use is branch-and-
bound. The search must be complete to ensure we find anf(S)-minimal closure; it may
be modified to give one or all such closures. To reduce the computational cost, we can
integrate problem decomposition methods: e.g. the hybrid of branch-and-bound and tree
decomposition [8]. If the cost is still too great, we may optionally give up completeness
(and so optimality) by using heuristics, or incomplete methods such as local search.
Below, we discuss further the minimal covering set and most robust solution closures.

Once we can computefi(S) for eachi, methods in the literature to compute Pareto
frontiers [16] apply directly, if we replace ‘solution’ by ‘closure’. A common approach
is to generate a sample of points on the frontier, by either defining a parameterised,
scalar objective (such as a weighted sum) called agenerator, and varying its parameters;
or by finding non-dominated points by local search; both are surveyed in [12]. Sampling
the frontier of closures leads to approximation, a topic for future work.

Since approximation might not be desired, we also highlight two methods that com-
pute the whole frontier. The first method is to employ generators in a CSP. Under suit-
able restrictions on the solution space, some carefully chosen generators are complete:
they generate the whole Pareto frontier as their parameters vary. Further, some genera-
tors have analytical form which can be expressed as a constraint. Thus if we add such
a generator constraint to our meta CSP defined above, we use the generator directly
as part of the CSP solving. The second set of methods are specific for CSPs; they can
be viewed as extensions of branch-and-bound. In particular, [6] combine branch-and-
bound and an efficient representation of the frontier with quadtrees.

4 Our definition of dominance is in line with the standard definition; it requires that the objec-
tive functions be scalar and monotone [9]. The idea of non-dominated closures is similar to
redundancy-free solutions (Definition 4), but differs in that there is no mention of support. In
fact, support is implicit because the definition is parametrised by the type of closure.

Covering set closuresExample 11 indicates that for covering set closures, the principle
trade-off is between the size of the set and its optimality. At one extreme is a covering set
closure of minimal size. This is favourable because: (1) it requires less space to store;
(2) fewer elements must mean each is more robust (on average); and (3) the closure
changes less when it is refined as knowledge about the realisations is acquired.

At the other extreme is a covering set that contains an optimal solution for each
realisation. This is favourable by the metric (14), and if the closure is refined as the
realisations are reduced to a single possibility, it gives us an optimal solution. However,
such anoptimal for each realisationclosure is often likely to be too large to be useful.
The aerospace planning problem is a case study of balancing the criteria [20].

Most robust solution closuresA most robust solution closure is a singleton closure (a
single potential solution) and as such there is work in the literature. First consider the
case where there is no objective function, i.e. a UCSP. To derive a most robust solu-
tion closure is a single-criteria optimisation problem where the objective is to maximise
robustness. In the discrete case, existing branch-and-bound and forward-checking algo-
rithms can be readily adapted by removing probabilities [5,11].

Second, the main case is a UCSOP where there is an objective function. This gives
a multi-criteria optimisation problem in which the criterion arising from support is the
number of covered realisations. Since the sought closure is a singleton, classical multi-
criteria optimisation methods directly apply: the Pareto frontier of closures reduces to
the classical Pareto frontier of solutions. Local search methods such as multi-objective
simulated annealing are known to be effective.

5.3 Comparing Closures of Different Types

So far we have supposed the type of closure has been chosen. We now briefly discuss
comparing closures of different types. From an optimisation criterion, the objective
function assigns a numerical value to each closure, according to one of the above means.
Closures of different types can be compared with respect to their values, just as closures
of the same type. Moreover, we can go on to define domination between closures.

The advantage is a well-founded, quantitative comparison of heterogeneous types of
closure. It means we can resolve a UCSOP without deciding what types of closure might
best meet the user’s requirements and then trying each; by analogy, rather than generate-
and-test we integrate the evaluation with the generation. However, the important caveat
is that different types of closure provide very different types of reliable solution to a
LSCO, in general, and care must be taken that their comparison is coherent.

6 Conclusion and Future Work

The uncertain CSP extends the classical CSP to model incomplete and erroneous data.
Its resolution is a closure, a set of potential solutions. In this paper we extended the
UCSP model to the uncertain CSOP, to account for user preferences and other criteria
that can be modelled with an objective function. To do so, we extended the notion of a
closure to confront LSCOs with optimisation criteria. Non-dominated closures present
the choice of solutions to a UCSOP; once one is chosen, its refinement to a redundancy-
free or optimal closure balances reliability and optimality as the user specifies. Conse-
quently, we can model problems where the user demands not only a reliable solution,
but also one that meets specified, numerical objectives.

As an extension of the classical CSP, rather than e.g. valued CSP [2], the UCSOP
model presented is focused on hard constraints. Future work is to consider soft con-
straints within a UCSOP. However, the UCSOP can already accommodate softness in
as far as it can be described by an objective function, e.g. minimising the weight of vi-
olated constraints. Similarly, future work includes uncertainty in the objective function
of a UCSOP, beyond what can be rewritten out of the objective into a constraint.

Acknowledgement. The authors thank Mark Wallace for constructive suggestions and much
helpful discussion, and the reviewers for their comments. This work was performed while the
first author was at IC–Parc, partially supported by the EPSRC under grant GR/N64373/01.

References

1. W. Ben-Ameur and H. Kerivin. Routing of uncertain demands.Optimization and Engineer-
ing, 3:283–313, 2005.

2. S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie. Semiring-based
CSPs and valued CSPs: Basic properties and comparison. InLNCS 1106. 1996.

3. N. Creignou, S. Khanna, and M. Sudan.Complexity classifications of Boolean constraint
satisfaction problems. SIAM Press, Philadelphia, PA, 2001.

4. D. Dubois, H. Fargier, and H. Prade. Possibility theory in constraint satisfaction problems:
Handling priority, preference and uncertainty.Applied Intelligence, 6:287–309, 1996.

5. H. Fargier, J. Lang, and T. Schiex. Mixed constraint satisfaction: A framework for decision
problems under incomplete knowledge. InProc. of AAAI-96, pages 175–180, Aug. 1996.

6. M. Gavanelli. An algorithm for multi-criteria optimization in CSPs. InProc. of ECAI-02,
pages 136–140, Lyon, France, July 2002.

7. E. Hebrard, B. Hnich, and T. Walsh. Robust solutions for constraint satisfaction and opti-
mization. InProc. of ECAI-04, pages 186–190, Valencia, Spain, 2004.

8. P. J́egou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint
networks.Artificial Intelligence, 146(1):43–75, 2003.

9. R. L. Keeney and H. Raiffa.Decisions with Multiple Objectives. Cambridge, 1993.
10. P. Kouvelis and G. Yu.Robust Discrete Optimization and its Applications. Kluwer, 1996.
11. S. Manandhar, A. Tarim, and T. Walsh. Scenario-based stochastic constraint programming.

In Proc. of IJCAI’03, pages 257–262, Acapulco, Mexico, Aug. 2003.
12. P. Meseguer, N. Bouhmala, T. Bouzoubaa, M. Irgens, and M. Sánchez. Current approaches

for solving over-constrained problems.Constraints, 8(1):9–39, 2003.
13. H. Moulin. Axioms for Cooperative Decision Making. Cambridge University Press, 1988.
14. M. S. Pini, F. Rossi, and K. B. Venable. Possibility theory for reasoning about uncertain soft

constraints. InProc. of ECSQARU 2005, Barcelona, Spain, July 2005.
15. F. Rossi, K. B. Venable, and N. Yorke-Smith. Controllability of soft temporal constraint

problems. InProc. of CP’04, LNCS 3258, pages 588–603, Toronto, Canada, Sept. 2004.
16. R. Steuer.Mulitple Criteria Optimization. Wiley, New York, 1986.
17. H. Taha.Operations Research: An Introduction. Prentice Hall, New Jersey, 1997.
18. N. Yorke-Smith.Reliable Constraint Reasoning with Uncertain Data. PhD thesis, IC-Parc,

Imperial College London, June 2004.
19. N. Yorke-Smith and C. Gervet. Certainty closure: A framework for reliable constraint rea-

soning with uncertainty. InProc. of CP’03, LNCS 2833, pages 769–783, Sept. 2003.
20. N. Yorke-Smith and C. Guettier. Towards automatic robust planning for the discrete com-

manding of aerospace equipment. InProc. of 18th IEEE Intl. Symposium on Intelligent
Control (ISIC’03), pages 328–333, Houston, TX, Oct. 2003.

Conflict based Backjumping for Constraints
Optimization Problems

Roie Zivan and Amnon Meisels?

{zivanr,am}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

Abstract. Constraints Optimization problems are commonly solved using a Branch
and Bound algorithm enhanced by a consistency maintenance procedures [WF93]
[LM96,LMS99,LS04]. All these algorithms traverse the search space in a chrono-
logical order and gain their efficiency from the quality of the consistency mainte-
nance procedure.
The present study introduces Conflict-based Backjumping (CBJ) in Branch and
Bound algorithms. The proposed algorithm maintainsConflict Setswhich include
only assignments whose replacement can lead to a better solution and backtracks
according to these sets. CBJ can be added to Branch and Bound which uses the
most advanced consistency maintenance heuristics,NC∗ andAC∗. The exper-
imental evaluation of ofB&B CBJ on randomMax-CSPsshows that the per-
formance of the algorithms are improved by a large factor.

1 Introduction

In standard CSPs, when the algorithm detects that a solution to a given problem does
not exist, the algorithm reports it and the search is terminated. In many cases, although a
solution does not exist we wish to produce the best complete assignment, i.e. the assign-
ment to the problem which includes the smallest number of conflicts. Such problems are
the scope of Max-Constraint Satisfaction Problems (Max-CSPs) [LM96]. Max-CSPs
are a special case of the more general Weighted Constraints Satisfaction Problem (WC-
SPs) [LS04] in which each constraint is assigned with a weight which defines its cost
if it is included in a solution. The weight of a solution is the sum of the weights of
all conflicts (i.e. broken constraints) included in the solution (In Max-CSPs all weights
are equal to 1). The requirement in solving WCSPs is to find the minimal cost (opti-
mal) solution.WCSPsandMax-CSPsare therefore termedConstraints Optimization
Problems.

In this paper we focus for simplicity onMax-CSPproblems. SinceMax-CSPis an
optimization problem with a limited search tree, the immediate choice for solving it is
to use aBranch and Boundalgorithm [Dec03]. In the last decade, various algorithms
were developed for Max and Weighted CSPs [WF93,LM96,LMS99,LS04]. All of these
algorithms are based on standard backtracking and gain their efficiency from the quality

? Supported by the Lynn and William Frankel center for Computer Sciences.

of the heuristic function (consistency maintenance procedure) they use. The best result
for Max-CSPswas presented in [LMS99]. This result was achieved using a complex
method which generates higher lower bounds by manipulating the order in which di-
rectional arc consistency is performed. In [LS04], the authors present new consistency
maintenance procedures,NC* andAC* which improve on former versions ofForward-
checkingandArc-consistency. However the performance of the resulting algorithms are
close but do not outperform the Forward-checking method presented in [LMS99].

The present paper improves on previous results by addingConflict-based Backjump-
ing to the Branch and Bound algorithms presented in [LS04]. Conflict-based Backjump-
ing (CBJ) is a method which is known to improve standardCSP algorithms [Dec03]
[Gin93,ZM03]. In order to performCBJ , the algorithm stores for each variable the set
of assignments which caused the removal of values from its domain. When a domain
empties, the algorithm backtracks to the last assignment in the corresponding conflict
set.

Performing back-jumping forMax-CSPsis a much more complicated task than for
standardCSPs. In order to generate a consistent conflict set all conflicts that have con-
tributed to the current lower bound must be taken in to consideration. Furthermore,
additional conflicts with unassigned values with equal or higher costs must be added to
the conflict set in order to achieve completeness.

The results presented in this paper show that the above effort is worth while. Adding
Conflict based Backjumping to Branch and Bound withNC∗ andAC∗ improves the
runtime by a large factor.

Max-CSPsare presented in Section 2. A description of the standardBranch and
Boundalgorithm along with theNC∗ andAC∗ algorithm is presented in Section 3. The
addition ofCBJ to Branch and Boundwith NC∗ andAC∗ is presented in Section 4.
Section 7 introduces a correctness and completeness proof forB&B CBJ with NC∗
and AC∗. An extensive experimental evaluation, which comparesB&B with NC∗
andAC∗ to B&B CBJ is presented in Section 8. The experiments were conducted on
randomly generatedMax-CSPs.

2 Distributed Constraint Satisfaction

A Max - Constraint Satisfaction Problem(Max-CSP) is composed, like a standard
CSP , of a set ofn variablesX1, X2, ..., Xn. Each variable can be assigned a single
value from a discrete finite domain. Constraints orrelations R are subsets of the Carte-
sian product of the domains of constrained variables. For a set of constrained variables
Xik

, Xjl
, ..., Xmn , with domains of values for each variableDik

, Djl
, ..., Dmn , the

constraint is defined asR ⊆ Dik
×Djl

× ...×Dmn
. A binary constraint Rij between

any two variablesXj andXi is a subset of the Cartesian product of their domains;
Rij ⊆ Dj ×Di.

An assignment (or a label) is a pair< var, val >, wherevar is a variable and
val is a value fromvar’s domain that is assigned to it. Apartial solution is a set of
assignments of values to an set of variables. Thecost of a partial solution in aMax-
CSPis the number of conflicts included in it. An optimalsolution to aMax-CSPis a

partial solution that includes all variables and which includes a minimum number of
unsatisfied constraints, i.e. a solution with a minimal cost.

3 The Branch and Bound algorithm

Optimization problems with a finite search-space are often solved using a Branch and
Bound (B&B) algorithm. BothWeighted CSPsandMax-CSPsfall into this category.
The overall framework of aB&B algorithm is rather simple. Two bounds are constantly
maintained by the algorithm, anupper bound and alower bound. Theupper bound
is initialized to infinity and thelower bound to zero. In each step of the algorithm, a
partial solution,current solution, is expanded by assigning a value to a variable which
is not included in it. After adding the new assignment, thelower bound is updated with
the cost of the updatedcurrent solution. Thecurrent solution is expanded as long
as thelower bound is smaller than theupper bound. If a full solution is obtained,
i.e. thecurrent solution includes assignments to all variables, theupper bound is
updated with the cost of the solution. If thelower bound is equal or higher than the
upper bound, the algorithm attempts to replace the most recent assignment. If all val-
ues of a variable fail, the algorithm backtracks to the most recent variable assigned.

The naive and exhaustiveB&B algorithm can be improved by usingconsistency
maintenancefunctions which increase the value of thelower bound of acurrent solution.
After each assignment, the algorithm performs a consistency maintenance procedure
that updates the costs of future possible assignments and increases its chance to detect
early a need to backtrack. Two of the most successfulconsistency maintenancefunc-
tions are described next.

3.1 Node Consistency and NC*

Node Consistency (or Forward-checking) is a very standard consistency maintenance
method in standardCSPs [Tsa93,Dec03]. The main idea is to ensure that in the do-
mains of each of the unassigned variables there is at least one value which is consistent
with the current partial solution. In standardCSPs this would mean that a value has no
conflicts with the assignments in thecurrent solution. In Max-CSPs, for each value
in a domain of an unassigned variable, one must determine if assigning it to its vari-
able will increase thelower bound beyond the limit of theupper bound. To this end,
the algorithm maintains for every value acost which is its number of conflicts with
assignments in thecurrent solution. After each assignment, the costs of all values
in domains of unassigned variables are updated. When the sum of a value’s cost and
the cost of thecurrent solution is higher or equal to theupper bound, the value is
eliminated from the variable’s domain. An empty domain triggers a backtrack.

The down side of this method inMax-CSPsis that the number of conflicts counted
and stored at the value’scost, does not contribute to the globallower bound, and it
affects the search only if it exceeds theupper bound. In [LS04], the authors suggest an
improved version of Node Consistency they termNC*. In NC* the algorithm maintains
a global costCφ which is initially zero. After every assignment, all costs of all values
are updated as in standardNC. Then, for each variable, the minimal cost of all values

Fig. 1.Values of a variable before and after running NC*

in its domainci is added toCφ, and all value costs are decreased byci. This means that
after the method is completed in every step, the domain of every unassigned variable
includes one value whose cost is zero. The globallower bound is calculated as the sum
of thecurrent solution’s cost andCφ.

Figure 1 presents an example of the operation of theNC∗ procedure on a single
variable. On the left hand side, the values of the variable are presented with their cost
before the procedure. The value of the global costCφ is 6. The minimal cost of the
values is 2. On the RHS, the state of the variable is presented after theNC∗ procedure.
All costs were decreased by 2 and the global valueCφ was raised by 2.

Any value whoselower bound, i.e. the sum of thecurrent solution′s cost,Cφ

and its own cost, exceeds the limit of theupper bound, is removed from the variable’s
domain as in standardNC [LS04].

3.2 Arc Consistency and AC*

Another consistency maintenance procedure which is known to be effective forCSPs
is Arc Consistency. In standardCSPs, Arc-Consistency is more restricted thanNC, for
eliminating inconsistent values from future variables. The idea of standardAC [BR95]
is that if a valuev of some unassigned variableXi, is in conflict with all values of
another unassigned variableXj thenv can be removed from the domain ofXi since
assigning it toXi will cause a conflict.

In Max-CSPsArc-Consistency is used to project costs of conflicts between unas-
signed variables, over values costs. As for standardCSPs, a value in a domain of

Fig. 2.Values of a variable before and after running NC*

an unassigned variable, which is in conflict with all the values of another unassigned
variable, will cause a conflict when it is assigned. This information is used in order to
increment the cost of the value. Values for which the sum of their cost and the global
lower bound exceeds theupper bound, are removed from their variable’s domain.
However, inAC every removal of a value can cause an increase in the cost of another
value. Therefore, an additional check has to be made.

AC∗ combines the advantages ofAC andNC∗. After performingAC, the updated
cost of the values are used by theNC∗ procedure to increase the global costCφ. Values
are removed as inNC∗ and their removal initiates the rechecking forAC.

Figures 2 and 3 present an example of the AC* procedure. On the LHS of Figure 2
the state of two unassigned variables,Xi and Xj is presented. The center value of
variableXi is constrained with all the values of variableXj . Taking these constraints
into account, the cost of the value is incremented and the result is presented on the RHS
of Figure 2. The left hand side of Figure 3 presents the state after the process of adding
the minimum value cost toCφ and decreasing the costs of values of bothXi andXj .
Since the minimal value ofXi was 2 and ofXj was 1,Cφ was incremented by 3. After
the incrementation ofCφ, the values for which the sum ofCφ and their cost is equal
to theupper bound are removed from their domains and the procedure ends with the
state on the RHS of Figure 3.

Fig. 3.Values of a variable before and after running NC*

4 Branch and Bound with CBJ

The addition of Backjumping to standard CSP search is known to improve the run-time
performance of the search by a large factor [Dec03,Gin93]. The various algorithms
which perform backjumping differ by the method of resolution which is used to deter-
mine the selected variable for the algorithm to backjump to. The common choice is to
maintain a set of conflicts for each variable, which includes the assignments that caused
a removal of a value from the variable’s domain. When a backtrack operation is per-
formed, the variable selected to backtrack to is the last variable in the conflict set of the
backtracking variable. In order to keep the algorithm complete during backjumping, the
conflict set of the target variable, is updated with the union of its conflict set and the
conflict set of the backtracking variable [Pro93].

The data structure of conflict sets which was described above forCBJ on stan-
dard CSPs can be used for theB&B algorithm, for solvingMax-CSPs. However,
the construction and maintenance of these conflict sets are a much more complicated
task. In the simplest version ofB&B, the lower bound of a current solution is its
current cost (i.e. the number of conflicts it contains). The algorithm backtracks only
when this cost is larger or equal to theupper bound. When a backtrack operation is
performed, the goal is to decrease the cost by replacing an assignment. More specifi-
cally, every binary constraint is between anearlier variable, which is the variable that
was assigned first and the second variable of the constraint which was assignedlater. If
we assume that for every variable the first value to be assigned is the one with minimal
number of conflicts (i.e. the value with a minimal cost), then backtracking to alater

variable cannot improve the cost of thecurrent solution (see the proof in section 7).
The only way that the cost of acurrent solution can be lowered is by backtracking to
anearlier variable and replacing its assignment. In order to keep the completeness of
the algorithm, the backtrack operation must be performed to the last assigned variable
in the group of candidateearlier assignments

Fig. 4.Values of a variable before and after running NC*

Figure 4 presents a partial solution with 5 variables and cost 3. The conflict set of
this partial solution includes the assignments ofX1 that is in conflict with the assign-
ment ofX3 andX5, andX2 which is in conflict with the assignment ofX4. Although
there are three conflicts in this example, only variablesX1 andX2 areearlier in all
three conflicts. Therefore the conflict set of this partial solution must include both of
them. In standardCSPs, when backtracking from variableX5, it would be enough
to check itsconflict setin order to choose the variable to backtrack to. This example
shows why generating the conflict set only according to the last variable state as done
in standardCSPs in not sufficient in the case ofMax-CSPs. VariableX5 is in conflict
only with the assignment ofX1 however, the cost of the partial solution can be lowered
by backtracking toX2.

Unfortunately, generating the conflict set out of allearlier assignments of the con-
flicts in thecurrent solution is not enough. In everylater assigned variable in each
conflict, unassigned values may have conflicts with differentearlier assignments. For
example, if the value assigned to a variableXi, i > 2, in thecurrent solution has a
cost1, and theearlier assignment with whom it has a conflict is the assignment ofX1,
X1 is added to the conflict set. However if there is an unassigned value in the domain
of Xi also with cost1 but whose conflict is with the assignment of variableXi−1, the
algorithm must backtrack toXi−1 which was assigned later thanX1. In order to give
a formal description of the construction of the conflict set, the following definitions are
needed:

Definition 1 A conflict list of valuevj from the domain of variableX i, is the list of
assignments in thecurrent solution of variables which were assigned beforei, and
vj has conflicts with. The assignments in the conflict list are in the same order the
assignments in thecurrent solution were performed.

Definition 2 Thecurrent cost of a variable is the cost of its assigned value, in the
case of an assigned variable, and the minimal cost of a value in itscurrent domain
in the case of an unassigned variable.

Definition 3 Theconflict set of variableXi with costci is the union of the firstci

assignments in theconflict list of all its values.

Definition 4 A global conflict set is the set of assignments such that the algorithm
back-jumps to the latest assignment of the set.

In the case of simpleB&B, theglobalconflict set is the union of all theconflict sets
of all assigned variables. Another way to explain this need of adding the conflicts of all
values and not just the conflicts of the assigned value, is that in order to decrease the
cost of thecurrent solution, a value which has less conflicts should be able to be as-
signed. Therefore, the latest assignment that can be replaced, and possibly decrease the
cost of one of the variables values to be smaller than the variables current cost should
be considered.

Fig. 5.A conflict set of anassigned variable

Figure 5 presents the state of three variables which are included in thecurrent solution.
VariablesX1, X2 andX3 were assigned valuesv1, v2 andv1 respectively. All costs of
all values of variableX3 are 1. Theconflict set of variableX3 includes the assign-
ments ofX1 andX2 even though its assigned value is not conflicted with the assignment
of X2 since replacing it can lower the cost of valuev2 of variableX3.

5 Node Consistency with CBJ

In order to perform conflict based backjumping in aB&B algorithm using node consis-
tency maintenance, theconflict sets of unassigned variables must be maintained. To
achieve this goal, for every value of a future variable aconflict list is initialized and
maintained. Theconflict list includes all the assignments in thecurrent solution
which conflict with the corresponding value. The length of theconflict list is equal to
the cost of the value. Whenever theNC∗ procedure adds the costci of the value with
minimum cost in the domain ofXi to the global costCφ, the firstci assignments in
each of theconflict lists of Xi’s values are added to theglobal conflictsetand re-
moved from the value’sconflict lists. This includes all the values ofXi including the
values removed from its domain since backtracking to the head of their list can cause
their return to the variablescurrent domain. This means that after each run of the
NC* procedure, theglobal conflictset includes the union of theconflict sets of all
assigned and unassigned variables.

Fig. 6.A conflict set of anunassigned variable

Figure 6 presents the state of an unassigned variableXi. The current solution
includes the assignments of three variables as in the previous example. Valuesv1 and
v3 of variableXi are both in conflict only with the assignment of variableX1. Valuev2

of Xi is in conflict with the assignments ofX2 andX3. Xi’s cost is 1 since that is the
minimal cost of its values. Its conflict set includes the assignments ofX1 since it is the
first in theconflict list of v1 andv3, andX2 since it is the first in theconflict list of

v2. After theNC∗ procedure,Cφ will be incremented by one and the assignments of
X1 andX2 will be added to theglobal conflictset.

6 Arc Consistency with CBJ

Adding CBJ to aB&B algorithm that includes arc consistency is very similar to the
case of node consistency. Whenever a minimum cost of a future variable is added to the
global costCφ, the prefixes of all of its value’sconflict lists are added to theglobal
conflict set. However, inAC∗, costs of values can be incremented by conflicts with
other unassigned values and the correlation between the value’s cost and the number
of conflicts it has with the assignments in thecurrent solution (i.e. the length of its
conflic list) does not hold. In order to find the right conflict set in this case one must
keep in mind that except for an emptycurrent solution ,a cost of a valuevk of variable
Xi is increased due to arc consistency only if there was a removal of a value which is not
in conflict with vk, in some other unassigned variableXj (see Section 7). This means
that replacing the last assignment in thecurrent solution would return the value which
is not in conflict withvk, to the domain ofXj . This is enough to decrease the cost of the
valuevk. Whenever a cost of a value is raised by arc consistency, the last assignment
in the current solution must be added to the end of the value’sconflict list. By
maintaining this property in theconflict list the variablesconflict set and theglobal
conflict setcan be generated in the same way as forNC∗.

7 Correctness ofB&B CBJ

In order to prove the correctness of theB&B CBJ algorithm it is enough to show
that theglobal conflictsetmaintained by the algorithm is correct. First we prove the
correctness for the case of simpleB&B CBJ with no consistency maintenance pro-
cedure. Consider the case that acurrent solution has a lengthk and the index of the
variable of the latest assignment in thecurrent solution’s correspondingconflict set
is l. Assume in negation, that there exists an assignment in thecurrent solution with
a variable indexj > l, that by replacing it the cost of acurrent solution of sizek
with an identical prefix of sizej− 1 can be decreased. Since the assignmentj is not in-
cluded in theglobal conflictsetthis means that for every value of variablesXj+1...Xk,
assignmentj is not included in the prefix of sizecost of all their value’sconflict lists.
Therefore, replacing it would not decrease the cost of any value of variablesXj+1...Xk

to be lower than their current cost. This means that the variables costs stay the same and
the cost of thecurrent solution too in contradiction to the assumption.�

Next, we prove the consistency of theglobal conflictset in B&B CBJ with the
NC∗ consistency maintenance procedure. The above proof holds for the assignments
added due to conflicts within thecurrent solution. For assignments added to the
global conflictset due to conflicts of unassigned variables with assignments in the
current solution we need to show that all conflicting assignments which can reduce
the cost of any unassigned variable are included in theglobal conflictset. After each as-
signment and run of theNC∗ procedure, the costs of all unassigned variables is zero. If
some assignment of variableXj in thecurrent solution was not added to theglobal

Fig. 7. Number of constraints checks performed byNC∗ andNC ∗ BJ on low density Max-
CSPs (p1 = 0.4)

conflict set it means that it was not a prefix of anyconflict list of size equal to the
cost added toCφ. Consequently, changing an assignment which is not in theglobal
conflict setcannot affect the globallower bound. �

Having established the correctness of theconflict set for the current solution
of a Branch and Bound algorithm and for theNC∗ procedure, the consistency of the
global conflictsetfor AC∗ is immediate. The only difference betweenNC∗ andAC∗
is the addition of the last assignment in thecurrent solution to theglobal conflictset
for an increment of the cost of some value which was caused by an arc consistency
operation. A simple induction which is left out of the paper, proves that at any step of
the algorithm, only a removal of a value can cause an increment of some value’s cost
due to arc consistency.�

8 Experimental Evaluation

The common approach in evaluating the performance ofCSP algorithms is to measure
time in logic steps to eliminate implementation and technical parameters from affecting
the results. Two measures of performance are used by the present evaluation. The total
number of assignments and the total number of constraints checks [Dec03].

Experiments were conducted on random constraints satisfaction problems ofn vari-
ables,k values in each domain, a constraints density ofp1 and tightnessp2 (which are
commonly used in experimental evaluations of CSP algorithms [Smi96]). In all of the
experiments theMax-CSPsincluded 10 variables (n = 10), 10 values for each variable
(k = 10). Two values of constraints densityp1 = 0.4 andp1 = 0.7 were used to gener-
ate theMax-CSPs. The tightness valuep2, was varied between 0.72 and 0.99, since the
hardest instances ofMax-CSPsare for highp2 [LM96]. For each pair of fixed density

Fig. 8. Number of assignments performed byAC∗ andAC* BJ on low density Max-CSPs (p1 =
0.4)

Fig. 9. Number of constraints checks performed byAC∗ andAC* BJ on low density Max-CSPs
(p1 = 0.4)

and tightness (p1, p2), 50 different random problems were solved by each algorithm
and the results presented are an average of these 50 runs.

In order to evaluate the contribution ofConflict based Backjumpingto Branch and
Boundalgorithms using consistency maintenance procedures theB&B algorithm with
NC∗ andAC∗ procedures were implemented. The results presented show the perfor-
mance of these algorithms with and withoutCBJ .

Figure 7 presents the computational effort in number of constraints checks to find a
solution, performed byNC∗ andNC* BJ. For the hardest instances, wherep2 is higher

Fig. 10.Number of assignments performed byAC∗ andAC* BJ on low density Max-CSPs (p1

= 0.4)

Fig. 11.Number of constraints checks performed byAC∗ andAC* BJon high density Max-CSPs
(p1 = 0.7)

than0.9, AC* BJ outperformsAC∗ by a factor of between 5 atp2 = 0.93 and 2 at
p2 = 0.99. Figure 8 shows similar results in the number of assignments performed by
the algorithms.

Figure 9 presents the computational effort in number of constraints checks to find a
solution, performed byAC∗ andAC* BJ. For the hardest instances, wherep2 is higher
than0.9, AC* BJ outperformsAC∗ by a factor of 5. Figure 10 shows similar results in
the number of assignments performed by the algorithms.

Fig. 12.Number of assignments performed byAC∗ andAC* BJ on high density Max-CSPs (p1

= 0.7)

Figure 11 and 12 show similar results for theAC∗ algorithms solving high den-
sity Max-CSPs(p1 = 0.7). Interestingly although the scale is much higher the factor
remains the same.

9 Discussion

Conflict based Backjumping is a powerful technique used to improve the run-time of
standardCSP algorithms [Pro93,Dec03,Gin93]. The experimental results, show that
this is true for Branch and Bound algorithms with consistency maintenance procedures.
These results might come as a surprise because unlike in standardCSPs, the conflict
sets inB&B CBJare constructed by the union of conflicts of unassigned values as well
as assigned values. This means that the number of values which their conflicts are taken
into consideration is larger than when performingCBJ for standardCSPs. Noting this
fact, one could expect the maintainedglobal conflictsetto be larger and consequentially
have a smaller effect. This assumption is proven wrong by the result presented in this
paper.

A possible explanation is the properties of the hard instances ofMax-CSPs. In con-
trast to standardCSPs, where the hardest instances are approximately in the center
of the range ofp2 (about 0.5, depends on the exact value ofp1) [Smi96], the hardest
instances ofMax-CSPsare whenp2 is close to1.0 [LM96]. For high values ofp2 when
some assignment is added to theconflict list of some value, it is very probable that
it would also be added to theconflict lists of the other values of the same variable.
Therefore when we add the prefix of sizeci of all values in the domain ofXi to the
variable’sconflict set in many cases these prefixes are very similar if not identical.
This keeps theconflict set small and generates non-trivial jumps.

10 Conclusions

Branch and Bound is the most common algorithm used for solvingMax-CSPs. Former
studies improved the results of the Branch and Bound algorithms by improving the con-
sistency maintenance procedure used by the algorithm [WF93,LM96,LMS99,LS04]. In
this study we adjustedConflict-based Backjumpingwhich is a common technique in
standardCSP algorithms to Branch and Bound with extended consistency mainte-
nance procedures. The results presented in Section 8 are striking.CBJ improves the
performance of theMax-CSPalgorithm by a large factor. The factor of improvement
does not decrease for problems with higher density.

References

[BR95] C. Bessiere and J.C. Regin. Using bidirectionality to speed up arc-consistency pro-
cessing.Constraint Processing (LNCS 923), pages 157–169, 1995.

[Dec03] Rina Dechter.Constraints Processing. Morgan Kaufman, 2003.
[Gin93] M. L. Ginsberg. Dynamic backtracking.J. of Artificial Intelligence Research, 1:25–46,

1993.
[LM96] J. Larrosa and P. Meseguer. Phase transition in max-csp. InProc. ECAI-96, Budapest,

1996.
[LMS99] J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible dac for max-csp.Arti-

ficial Intelligence, 107:149–163, 1999.
[LS04] J. Larrosa and T. Schiex. Solving weighted csp by maintaining arc consistency.Artifi-

cial Intelligence, 159:1–26, 2004.
[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.Computational

Intelligence, 9:268–299, 1993.
[Smi96] B. M. Smith. Locating the phase transition in binary constraint satisfaction problems.

Artificial Intelligence, 81:155 – 181, 1996.
[Tsa93] E. Tsang.Foundations of Constraint Satisfaction. Academic Press, 1993.
[WF93] R. J. Wallace and E. C. Freuder. Conjunctive width heuristics for maximal constraint

satisfaction. InProc. AAAI-93, pages 762–768, 1993.
[ZM03] R. Zivan and A. Meisels. Synchronous vs asynchronous search on discsps. InProc.

1st European Workshop on Multi Agent System, EUMAS, Oxford, December 2003.

