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Preface

The Seventh International Workshop on Preferences and Soft Constraints
(Soft 2005) continues the series of workshops on soft constraints that were
held in conjunction with the previous CP conferences. The aim of this work-
shop is to provide a forum where researchers in this area can exchange ideas,
discuss new developments and explore possible future directions.

As in 2004, Soft 2005 extends its scope to include formalisms and tech-
niques for dealing with preferences. Preferences are ubiquitous in real life;
most problems are over-constrained and would not be solved if we insist all
their requirements to be strictly met. Instead, many practical problems can
be naturally described via preferences rather than hard statements. The idea
of using soft constraints provides an effective way to extend the conventional
framework of constraints to support the concept of preferences. In parallel
to the framework of soft constraints, other frameworks for expressing pref-
erences have been proposed and developed in recent years in Al and other
related fields. These diverse frameworks have different features and have led
to many results. For example, both qualitative and quantitative preference
frameworks have been studied and used to model and solve real-life problems.

Each of the twelve papers in the following pages was reviewed by at least
two reviewers. These papers reflected upon the diversity of the active topics
that have been actively pursued. Some of the papers dealt with algorithmic
aspects of the existing soft constraint frameworks, in particular by taking
into account the structures of constraint graphs or the semantics of con-
straints, and some of the papers proposed new frameworks for dealing with
constraints, preferences, and uncertainties. Moreover, concrete applications
and solvers were also considered by some authors. We believe that these
papers provide a good coverage of the current research directions that have
been actively pursued and the status of the research activities related to rea-
soning under various soft constraints and preferences. We hope that these
papers can promote future research on soft constraints and preferences.
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Abstract. CP-nets are a natural way to express qualitative and conditpref-
erences. Here we relate them to a natural extension of tissictd notion of a
strategic game in which parametrized strict linear ordgyiare used instead of
payoff functions. We show then that the optimal outcomes GPanet are ex-
actly the Nash-equilibria of an appropriately defined sfyat game in the above
sense. This allows us to use the techniques of game theoeatotsfor optimal
outcomes of CP-nets and vice-versa, to use techniquesogextfor CP-nets
to search for Nash equilibria of the considered games. Weueethis is a first
promising step towards a fruitful cross-fertilization Wween these two research
areas, from artificial intelligence and microeconomic tlyeo

1 Introduction

CP-nets(Conditional Preference nets) are an elegant formalismejpresenting con-
ditional and qualitative preferences, see [4, 7, 3]. Thedehsuch preferences under a
ceteris paribugthat is, ‘all else being equal’) assumption. Preferenadtation in such
a framework appears to be natural and intuitive.

Research on CP-nets focused on its modeling capabilitebalgorithms for solving
various natural problems related to their use. Also, coatparial complexity of these
problems was extensively studied. An outcome of a CP-net saignment of values
to its variables. One of the fundamental problems is thanhalifig an optimal outcome,
i.e., the one that cannot be improved in presence of the adgpeference statements.
This is in general a complex problem since it was found thatiffig optimal outcomes
and testing for their existence is NP-hard in general. Irirast, for acyclic CP-nets this
is an easy problem which can be solved by a linear time algurit

The aim of this paper to show the relationship between CB-amad game theory,
and how game-theoretic techniques developed for the daalf/strategic games can
be fruitfully used to study CP-nets. To this end, we intraglacgeneralization of the
customary strategic games (see, e.g., [10],) in which e&mfephas to his disposal a
strict preference relation on his set of strategies, patdred by a joint strategy of his
opponents. We call such ganmstsategic games with parametrized preferences

The cornerstone of our approach are two results closelyingl&P-nets to such
games. They show that the optimal outcomes of a CP-net acleitze Nash-equilibria
of an appropriately defined strategic game with parametnweferences. This allows
us to transfer techniques of game theory to CP-nets. Thestigare based on the ob-
servation that the ceteris-paribus principle, typical 8-@ets, implies that any optimal



outcome is worsened if any worsening change to any variahieeide. This is exactly
the idea of a Nash equilibrium, and thus the results follogilg@ance this is clear.

Notice that these results do not hold if we consider othersantayexpress prefer-
ences, for example soft constraints [2] rather than CP-@etssider for instance fuzzy
constraints [8], where the preference of a solution is thammal preference over all the
constraints, and solutions with higher values are bettés.gossible to show that, in a
fuzzy constraint problem, there can be optimal solutiongtwhare not Nash equilibria
of corresponding games, and viceversa.

To find Nash equilibria in strategic games, many reducti@hngues have been
studied which reduce the game by eliminating some play#&nategjies, thus obtaining
a smaller game. We introduce a counterpart of one of such-glaeweetic technique that
allows us to reduce a CP-net while maintaining its optimatomes. We also introduce
a method of simplifying a CP-net by eliminating so-calleduedant variables from the
variables parent sets. Both techniques simplify the sefmcbptimal outcomes of a
CP-net.

In the other direction, we can use the techniques develapeshton about optimal
outcomes of a CP-net in search for Nash equilibria of stiatggmes with parametrized
preferences. These techniques, as recently shown in [5n¥@]ve the use of the cus-
tomary constraint solving techniques. In fact, it has bdews that the optimal out-
comes of any CP-nets, even a cyclic one, can be found by jltga@ set of hard con-
straints. Thus hard constraint solving is enough to find Bliash equilibria in strategic
games. In particular, when the CP-net corresponding to @ngj)ame is acyclic, we
know it has a unique optimal outcome that can be found in fitigze. This allows us
to find easily the unique Nash equlibrium of the given game.

The paper is organized as follows. Section 2 provides thie loladinitions of CP-
nets. Then, Section 3 introduces our generalized notiomaisg, Section 4 shows how
to pass from a CP-net to a game, and Section 5 handles theitpgiosction. Then,
Section 6 introduces the concept of reduced CP-nets, arttb8&@ and 8 show how
to exploit techniques developed for CP-nets in games arewacsa. Finally, Section
9 gives an informal idea of the relationship between sofst@ints and game theory,
and 10 summarizes the main contributions of the paper am$ gome hints for future
work.

2 CP-nets

CP-nets [4, 3] (for Conditional Preference nets) are a dgcapimodel for compactly
representing conditional and qualitative preferencetimeia. They exploit conditional
preferential independence by decomposing an agent’srprefes via theeteris paribus
(cp) assumption. Informally, CP-nets are setsetieris paribus (cppreference state-
ments. For instance, the statem&nprefer red wine to white wine if meat is served.”
asserts that, given two meals that difterly in the kind of wine serve@nd both con-
taining meat, the meal with a red wine is preferable to thelméh a white wine. On
the other hand, this statement does not order two meals wdtfiement main course.
Many users’ preferences appear to be of this type.



CP-nets bear some similarity to Bayesian networks. Botlizetdirected graphs
where each node stands for a domain variable, and assumefdeatures(variables)
F = {Xy,...,X,} with the corresponding finite domair3(X;),...,D(X,). For
each featureX;, a user specifies a (possibly empty) sepafentfeaturesPa(X;) that
can affect her preferences over the valueXpf This defines alependency grapln
which each nod&; hasPa(X;) as its immediate predecessors.

Given this structural information, the user explicitly sies her preference over
the values ofX; for each complete assignment Pa(X;). This preference is assumed
to take the form of a linear ordering ovEx(X;) [4, 3]. Each such specification is called
below apreference statemerfor the variableX;. These conditional preferences over
the values ofX; are captured by eonditional preference tablhich is annotated with
the nodeX; in the CP-net. Aroutcomeis an assignment of values to the variables with
each value taken from the corresponding domain.

As an example, consider a CP-net whose featurestarg, C' and D, with binary
domains containing’ and f if F' is the name of the feature, and with the following
preference statements:

d:a>a,d:a>a,

a:b>=b, a:b>b,

b:c>=¢ b:¢>c,

c:d>d, ¢:d>d.

Here the preference statementa > a states thatl = a is preferred tod = @, given
that D = d. ¢ From the structure of these preference statements waatdea( A) =
{D}, Pa(B) = {A}, Pa(C) = {B},Pa(D) = {C} so the dependency graph is
cyclic.

An acyclicCP-net is one in which the dependency graph is acyclic. Axample,
consider a CP-net whose features and domains are as aboweithnitie following
preference statements:

a > a,

b= b,

(aAb)V(@Ab):c=¢ (aAb)V(@AD):C=c,

c:d>d, ¢:d>d.

Here, the preference statement @ represents the unconditional preferencedot a
over A = a. Also each preference statement for the variablles a actually an ab-
breviated version of two preference statements. In thisngla we havePa(A) =
0, Pa(B) =0, Pa(C) = {A, B}, Pa(D) = {C}.

The semantics of CP-nets depends on the notionvedrsening flip A worsening
flip is a transition between two outcomes that consists ofangh in the value of a
single variable to one which is less preferred in the uniqeégpence statement for that
variable. By analogy we define amproving flip. For example, in the acyclic CP-net
above, passing frombced to abed is a worsening flip sinceis better thare givena and
b. We say that an outcomeis betterthan the outcomg (or, equivalently,5 is worse
thana), written asa > g, iff there is a chain of worsening flips from to 5. This
definition induces a strict preorder over the outcomes. énathove acyclic CP-net the
outcomeabed is worse thambed.

I Sle



An optimal outcome is one for which no better outcome exists. In genpar@lP-
net does not need to have an optimal outcome. As an exampsideortwo features
A and B with the respective domaing:, @} and {b, b} and the following preference
statements:

a:b>=b, a:b>b,

b:a>a, b:a > a.

Itis easy to see that then

ab = ab = ab >~ @b > ab.

Finding optimal outcomes and testing for optimality is N&dh However, in acyclic
CP-nets there is a unique optimal outcome and it can be foutidear time [4, 3].
We simply sweep through the CP-net, following the arrowshimm dependency graph,
assigning at each step the most preferred value in the preferelation. For instance,
in the CP-net above, we would choade= a and B = b, thenC' = ¢ and thenD = d.
The optimal outcome is therefotgcd.

Hard constraints are enough to find optimal outcomes of a€R#d to test whether
a CP-net has an optimal outcome. In fact, given a CP-net amelefine a set of hard
constraints (calledptimality constraint3 such that their solutions are the optimal out-
comes of the CP-net [5, 12].

Indeed, take a CP-né¥ and consider a linear ordering over the elements of the
domain of a variableX used in a preference statement r Let ¢ be the disjunction
of the corresponding assignments used in the preferenterstats that use-. Then
for each of such linear ordering the corresponding optimality constraint ¢s —
X = aj, whereq; is the undominated element ef The optimality constraintspt(N)
corresponding t@V consist of the entire set of such optimality constraintshear one
such linear ordering-.

For example, the preference statements @ and(a Ab) V (@A D) : € = ¢ from the
above CP-net map to the hard constraifits: a and(A = aAB =b)V(A=aAB =
b) — C = ¢, respectively.

It has been shown that an outcome is optimal in the strictrdeg@ver the outcomes
induced by a CP-neV iff it is a satisfying assignment fampt (V).

A CP-netiseligibleiff it has an optimal outcome. Even if the strict preordenindd
by a CP-net has cycles, the CP-net may still be useful if tiggtde. All acyclic CP-nets
are trivially eligible as they have a unique optimal outcolive can thus test eligibility
of any (even cyclic) CP-net by testing the consistency ofdpgmality constraints
opt(N). That is, a CP-neN is eligible iff opt(V) is consistent.

3 Strategic games with parametrized preferences

In this section we introduce a generalization of the notiba etrategic game used in
game theory, see, e.g., [10].

First we need the concept ofpmeferenceon a setd which in this paper denotes
a strict linear ordering odl. If > is a preference, we denote bythe corresponding
weak preferencelefined bya = biff a - bora =b.



Given a sequence of non-empty s8ts. .., S, ands € S; x ... x S, we denote
theith element ok by s; and use the following standard notation of game theory, &her
I:=1iy,...,1; IS asubsequence of. .., n:

- S = (817 ey Si—15Si+1 - - ~75n)
— S1:=(Siys- - Sip)s

— (8,8-4) = (S1y- s Si=1, 844 Sit+1, - - -, Sn ), Where we assume thaft € S;,
- S,i 2251 X...XS,L',l XSZ‘+1 ><...><Sn,

- S[ ::Sil X...XSik.

In game theory it is customary to study strategic games irchvttie outcomes are
numerical values provided by means of the payoff functighsiotable exception is
[11] in which instead of payoff functions the linear quasilerings on the sets of joint
strategies are used.

In our setup we adopt a different approach according to whaith player has to
his disposal a strict preference relatiefs_;) on his set of strategiggarametrizecoy
a joint strategys _; of his opponents. So in our approach

— for eachi € [1..n] playeri has a finite, non-empty, s&t of strategies available to
him,

— for eachi € [1..n] ands_; € S_; playeri has a preference relatior(s_;) on his
set of strategies;.

In what follows such atrategic game with parametrized preferenc@s short a
game with parametrized preferences just agame for n players is represented by a
sequence

(S], RS Sn, >(S,1), R %(S,n)),

where eacly_; ranges ovet_;.

It is straightforward to transfer to the case of games wittapeetrized preferences
the basic notions concerning strategic games. The follgwiotions will be of im-
portance for us (for the original definitions see, e.g., [1tjhereG is a game with
parametrized preferences specified as above.

— A strategys; is abest responséor playeri to a joint strategy_; of his opponents
if s; =(s—;) s;, forall s; € S;.

— A strategys; is never a best responder player: if it is not a best response to any
joint strategys_; of his opponents.

— Ajoint strategys is a (pure)Nash equilibriumof G if eachs; is a best response to
s—;. Equivalently,s a Nash equilibrium if for ali € [1..n] and alls] € S;

s; =(5_4) sh.
— Astrategys; is strictly dominatedoy a strategy; if s; >(s_;) s}, foralls_; € S_,.

To clarify these definitions consider the classical Prissriilemma strategic game
represented by the following bimatrix representing thegffayto both players:



Cy N,
C1 [3,370,4
N [4,0]1,1

So each player has two strategieg,; (cooperate) andv; (not cooperate), the payoff
to player 1 for the joint strateg§C', N2) is 0, etc. To represent this game as a game
with parametrized preferences we simply stipulate that

P(Cg) = Ny > (1, >-(N2) = Ny = C1,

P(Cl) := Ny > Oy, >-(N1) = Ny = (5.
These orderings reflect the fact that for each strategy obpip@nent each player con-
siders his ‘not cooperate’ strategy better than his ‘coagéstrategy. So for each player
1 his strategyC; is strictly dominated byV;, or (here) equivalently, his strateg@y; is
never a best response. FurthéY;, Vo) is a unique Nash equilibrium of this game with
parametrized preferences.

Given a game with parametrized preferences

G:=(51,..,Sn, = (5-1)s- ., >=(5-n)),

where eacls_; ranges ovef_;, and sets of strategiéd, . . ., S;, such thatS] C S, for
i € [1..n], we say that

G =Sy, 8, = (5-1)s .. = (5_0)),

where eacly_; now ranges ove$’ ,, is asubgameof GG, and identify in the context of

G’ each preference relatior(s_;) with its restriction toS/.
We now introduce the following two notions of reduction beem a game

G:=(51,..., 50, =(521),- ., >=(52n)),
where eacly_; ranges ovef_; and its subgame
G = (S1,...8,, = (5-1), -, =(5-0)),

where eacly_; ranges ovef’ ;:

- G —nBrG'
whenG # G’ and for alli € [1..n] eachs; € S; \ S; is never a best response for
player: in G,

- G—s5G'
whenG # G’ and for alli € [1..n] eachs; € S; \ S} is strictly dominated irG by
somes; € S;.

In the literature it is customary to consider more specifidudion relations in
which, respectivelyall never best responses all strictly dominated strategies are
eliminated. The advantage of using the above versionstiswhaan prove the relevant
property of both reductions by just one simple lemma, siryogdfinition a strictly dom-
inated strategy is never a best response and conseqGertlyG’ impliesG —yprG'.

Lemma 1. Suppose thaf —ygrG’. Thens is a Nash equilibrium of7 iff it is a Nash
equilibrium ofG’.



Proof. ( = ) By definition eacts; is a best response ta ; to G. So nos; is eliminated
in the reduction of7 to G”.

(<) Suppose is not a Nash equilibrium aff. So some; is not a best response4a;

in G. Let s; be a bestresponse#a; in G. (s} exists since-(s_;) is a linear ordering.)
So s’ is not eliminated in the reduction ¢f to G’ ands’, is a best response to ;

in G’. But this contradicts the fact thatis a Nash equilibrium ofs". ]

Theorem 1. Suppose thatr — 3 ;3G , i.e.,G’ is obtained by an iterated elimination
of never best responses from the gathe

(i) Thens is a Nash equilibrium of7 iff it is a Nash equilibrium of=’.
(i) If each playerinG’ has just one strategy, then the resulting joint strategylsigue
Nash equilibrium of7.

Proof.
(1) By the repeated application of Lemma 1.

(i7) It suffices to note thdtsy, . . .s,, ) is a unique Nash equilibrium of the game in which
each playei has just one strategy;. ]

The above theorem allows us to reduce a game without aftgitsiipossibly empty)
set of Nash equilibria or even, occasionally, to find its ueidNash equilibrium. In the
latter case one says that the original game sedhgedby an iterated elimination of never
best responses (or of strictly dominated strategies).

As an example let us return to the Prisoner’s dilemma gantepeitametrized pref-
erences defined above. In this game each strategystrictly dominated byv;, so the
game can be solved by either reducing it in two steps (by rémydwa each step on€’;
strategy) or in one step (by removing bathstrategies) to a game in which each player
i has exactly one strategy;.

Finally, let us mention that [9] and [13] proved that all &d eliminations of
strictly dominated strategies yield the same final outcohmeanalogous result for the
iterated elimination of never best responses was establisih1].

4 From CP-nets to strategic games

Consider now a CP-net with the set of variab{és,, . . ., X,, } with the corresponding
finite domainsD(X,), ..., D(X,,). We write each preference statement for the variable
X, asX; = ay : »=;, where for the subsequenée= iy, ...,i; of 1,... n:

- PG(XZ) = {Xil, .. .,Xik},
— X1 = ay is an abbreviation foX;, = a;;, A ... AN X, = a;,,
— >, is a preference ovéP(X;).

We also abbreviat®(X;,) x ... x D(X;,) to D(X).

By definition, the preference statements for a variabjere exactly all statements
of the formX; = a; : =(a;), wherea; ranges oveD(X;) and-(a;) is a preference
onD(X;) that depends oa; .



We now associate with each CP-iéta gamej (V) with parametrized preferences
as follows:

— each variableX; corresponds to a player
— the strategies of playérare the elements of the doma{ X;) of X;.

To define the parametrized preferences, consider a playgupposePa(X;) =
{Xi,..,X;, }andletl :=iq,..., ix. Sol isasubsequence of...,i—1,i+1,...,n.
Given a joint strategy._; of the opponents of player we associate with it the pref-
erence relation-(ay) on D(X;) whereX; = ay : >(as) is the unique preference
statement forX; determined byi;.

In words, the preference of a playiover his strategies, given the strategies chosen
by its opponents, say_;, coincides with the preference given by the CP-net over the
domain of X; given the assignment to his parents which must coincide with the
projection ofa_; overl.

This completes the definition of(IV).

As an example consider the first CP-net of Section 2. The sporeding game has
four playersA, B, C, D, each with two strategies indicated with f for playerF. The
preference of each player on his strategies will depend onlyhe strategies chosen
by the players which correspond to his parents in the CP@mtsider for example
player B. His preference over his strategiesand b, given the joint strategy of his
opponents_p = dac, isb = b. Notice that, for example, the same ordering holds for
the opponents joint strategy 5 = daé, since the strategy chosen by the only player
corresponding to his parem, has not changed.

We have then the following result.

Theorem 2. An outcome of a CP-neYV is optimal iff it is a Nash equilibrium of the

gamegG(N).

Proof. ( = ) Take an optimal outcome of N. Consider a player in the gamej (V)
and the corresponding variablg of N. SupposeéPa(X;) = {X;,, ..., X;, }. Let] :=
i1,...,1k, and letX; = oy : >(os) be the corresponding preference statementfpr
By definition there is no improving flip from to another outcome, sg is the maximal
element in the ordering (o).

By the construction of the gam@(N), each outcome iV is a joint strategy in
G(N). Also, two outcomes are one flip away iff the correspondinigtjstrategies differ
only in a strategy of one player. Given the joint strategyonsidered above, we thus
have that, if we modify the strategy of playgmwhile leaving the strategies of the other
players unchanged, this change is worsening-{n_;), since-(o_;) coincides with
—(or). So by definitiorp is a Nash equilibrium of (V).

(<« ) Take a Nash equilibriuns of the gameG (V). Consider a variableX; of N.
SupposePa(X;) = {X;,,..., X;, }. Let] :=iy,...,ix, and letX; = s; : >(sy) be
the corresponding preference statementXor

By definition for every strategy, # s; of playeri, we haves; > (s_;) s, so
si >(s1) s} sincex(s_;) coincides with—(s;). So by definitions is an optimal outcome
for N. O



5 From strategic games to CP-nets

We now associate with each gaiffewith parametrized preferences a CP-N{G) as
follows:

— each playei corresponds to a variablg;,

— the domainD(X;) of the variableX; consists of the set of strategies of player

— we stipulate thaPa(X;) = { X1, X; 1, ..., X;11, ..., Xn }, Wheren is the number
of players inG.

Next, for each joint strategy._; of the opponents of playémwe take the preference
statementX_; = s_; : =(s_;), wherex(s_;) is the preference relation on the set of
strategies of playerassociated witls_;.

This completes the definition 0¥’ (G). As an example of this construction let us
return to the Prisoner’s dilemma game with parametrizeéepeaces from Section 3.
In the corresponding CP-net we have then two variablesand X, corresponding
to players 1 and 2, with the respective domajiig, N, } and{C>, N>}. To explain
how each parametrized preference translates to a preéestaitement take for example
=(Cy) :== Ny = C1. lttranslates toX, = Cy : Ny = C.

We have now the following counterpart of Theorem 2.

Theorem 3. A joint strategy is a Nash equilibrium of the garGeiff it is an optimal
outcome of the CP-nét'(G).

Proof. ( = ) Assume has a Nash equilibrium Thus, for every player, joint strategy
s_;, and strategy, # s; for playeri, we haves; =(s_;) s;. This means that, if we
only change the strategy of any playethis change is worsening for that player. In the
CP-net\/(G), s is an outcome, and the ordering in the conditional prefez¢able of
variable X; coincides with' =~(s_;). Thus all the flips froms are worsening. Thusis
optimal for A (G).

(<) AssumeN (G) is eligible, and take an optimal outcormef A/ (G). By definition
of optimal outcome, for every other outcorie o’ % o, which means that there is no
sequence of improving flips fromto any other outcome. Thus there is no improving
flip from o to any other outcome. Therefore every flip modifying vamall; in o is
worsening in the preference statement for the variahle

Given the construction from gam@ to CP-netN (G), an outcome inV(G) is a
joint strategy inG. Also, two outcomes one flip away K (G) are two joint strategies
of G which differ only for the strategy of one player. Given thénjostrategyo, we
thus have that, if we modify the strategy of playewhile leaving the strategies of the
other players unchanged, this change is worsening;in_;), since the preference of
variable X; giveno_; coincides with-,(o_;).

|

6 Reduced CP-nets

The disadvantage of the above construction of the CRM{éf) from a game?' is that
it always produces a CP-net in which all sets of parent featare of size. — 1 where



n is the number of features of the CP-net. This can be rectiffe@dhucing each set of
parent features to a minimal one as follows.

Given a CP-netV, consider a variableX; with the parentsPa(X;), and take a
variableY € Pa(X;). Suppose that for all assignmentso Pa(X) — {Y'} and any
two valuesy,, y2 € D(Y'), the orderings—(a, y1) and—(a, y2) onD(X;) coincide.

We say then thaY” is redundantin the set of parents oXj;. It is easy to see that by
removing all redundant variables from the set of parentX p&ind by modifying the
corresponding preference statementsXgraccordingly, the strict preorder over the
outcomes of the CP-nets is not changed.

Given a CP-net, if for all its variabl&; the setPa(X;) does not contain any redun-
dant variable, we say that the CP-netagluced

By iterating the above construction every CP-net can bestoamed to a reduced
CP-net. As an example consider a CP-net with three featires,and Z, with the re-
spective domaingay, as }, {b1, b2} and{cy, c2}. Suppose now thata(X) = Pa(Y) =
0, Pa(Z) = {X,Y} and that

>—(CL1, b]) = >—(CL2, bl), >—(CL1, bg) = >—(CL2, 62),

>—(CL1, b]) = >—(CL1, 62), >—(CL2, bl) = >—(CL2, bg)

Then bothX andY are redundant, so we can reduce the CP-net by redutiiig) to
(0. Z becomes an independent variable in the reduced CP-net withdgring over its
domain which coincides with the unique one given in the oa$jiCP-net in terms of
the assignments to its parents.

In what follows for a CP-nelV we denote by:(N) the corresponding reduced CP-
net. The following result summarizes the relevant propertifr(N) and relates it to
the constructions of (N) and N\ (G).

Theorem 4.
(i) Each CP-netN and its reduced forniV’ = r(N') have the same ordering over

the outcomes.
(i) For each CP-netV and its reduced forrV’ = r(N) we haveG(N) = G(N').
(iii) Each reduced CP-nelV is a reduced CP-net corresponding to the gagieV).
Formally: N = r(N(G(N))).

Proof.

(i) ConsiderN andr(N), an outcome and an improving flip inV from o to o’ which
modifies the value of variablé&’;. Then this change is improving in the conditional
preference table oK; in N. Let us now consider the conditional preference table of
X, in 7(N). In this table there could be a subsequence of parents bltthét same
corresponding preference orderings. Thus the change i®inmg in this conditional
preference table as well. Thus any chain of improving flipsvirremain a chain of
improving flips also in*(N), and therefore the orderings over the outcomed aind
r(N) are the same.

(#2) It follows directly from the construction of the game copesding to a CP net,
since the preference of playéover its strategies depends on the strategies of all the
other opponents, even if variah} has just a few parents iN'.

(ii7) Given a reduced CP-né{, consider the CP-neé¥'(G(N)). For each variable;,
Pa(X;)in N isasubsetofa(X;)in N (G(N)), which is the set of all variables except



X,;. However, by the construction of the game corresponding3B-aet and of the CP-
net corresponding to a game, in each conditional preferette, if the assignments to
the common parents are the same, the preference orderiagX pare the same.

Let us now reduceV(G(N)) to obtainN’ = r(N(G(N))). ThenPa(X;) in N’
coincides withPa(X;) in N. In fact, assume there is a parentdfin N which is not
in /. SinceN is reduced, such a parent cannot be redundait ifihus the reduction,
when applied taV'(G(N)), cannot remove it since the orderings in the conditional
preference tables oW and V' (G(N)) are the same. On the other hand, assume there
is a parent ofX; in N’ which is not inN. Since N’ is reduced, such a parent cannot
be redundant inV’. Thus it is not redundant iV (G(V)) as well. By construction of
N (G(N)), it cannot be redundant iN neither. O

Part() states that the reduction procedure preserves the order@mghe outcomes.
Part (i¢) states that the construction of a game corresponding to aeEBees not

depend on the redundancy of the given CP-net. Finally,(paitstates that the reduced
CP-netV can be obtained ‘back’ from the garg€¢N).

7 Game theoretical techniques in CP-nets

Given the correspondence between CP-nets and games andpiésties presented in
the previous sections, we can now use them to transfer sthtgleghniques of game
theory, used to find Nash equilibria, to CP-nets to find theitiroal outcomes, and
vice-versa.

To be more specific, given a CP-n¥t consider the gamé(N). Let us now mod-
ify G(N) by an iterated elimination of never best responses, obigiaigame’. By
Theorems 1 and 2, an outcome/fis optimal iff it is a Nash equilibrium ofz’. Now
modify N by

— reducing the variable domains to the corresponding setsaitgies inG’,
— removing all preference statements that refer to a remolesdent,

and call the resulting CP-né{f’.

By Theorem 1, the Nash equilibria 6f andG’ coincide. Also, by Theorem 3, a
joint strategy is a Nash equilibrium @f iff it is an optimal outcome ofV, and a joint
strategy is a Nash equilibrium ¢¥ iff it is an optimal outcome ofV’. Thus N and N’
have the same set of optimal outcomes.

It is useful to note that the elimination of never best resgsn and consequently
also the elimination of strictly dominated elements, carcagied out directly on a
CP-net by introducing the following notions. Consider a @GR .

— We say that an element; from the domainD(X;) of the variableX; is abest
responsedo a preference statement

Xr=ay:>=;

for X, if d; »; d} for all d; € D(X;).



— We say that an elememnt from the domain of the variabl&’; is a never a best
responsdf it is not a best response to any preference statemen¥ for

— Given two elementg;, d; from the domairD(X;) of the variableX; we say that
d; is strictly dominatedby d; if for all preference statemenf§; = a; : >; for X;
we have

By asubnetof a CP-net’V we mean a CP-net obtained fralWby removing some
elements from some variable domains followed by the remafvall preference state-
ments that refer to a removed element.

Then we introduce the following relation between a CP/ieind its subneiv’:

N —nypr N’

whenN # N’ and for each variablé&’; each removed element from the domain’gf
is never a best response i), and introduce an analogous relatidh—g N’ for the
case of strictly dominated elements.

By the same argument as in the case of Theorem 1 we get thwiiodjoesult. Part
(7i7) can be established by repeating the argument of [1].

Theorem 5. Suppose thalV — 3 ;zN', i.e., the CP-nefV’ is obtained by an iterated
elimination of never best responses from the CPMet

(i) Thens is an optimal outcome oV iff it is an optimal outcome o’.
(i) If each variable in N’ has a singleton domain, then the resulting outcome is a
unique optimal outcome dY.
(iii) All iterated eliminations of never best responsegiirthe CP-netV yield the same
final outcome.

To illustrate the use of this theorem reconsider the firsm&Pfrom Section 2, i.e.,
the one with the preference statements

d:a>a, d:a>a,

a:bs=b, a:b=b,

b:c>=7¢ b:C>c,

c:d>d, ¢:d=d.

Denote it byN.

We can reason about it using the iterated elimination aftbgrdominated strategies
(which coincides here with the iterated elimination of mevest responses, since each
domain has exactly two elements).

We have the following chain of reductions:

N —gNy —gNy —gN3 —5Ny,
where

— N results fromV by removinga (from the domain of4) and the preference state-
mentsd:a >a, d:a>a, a:b> b,



— N, results fromN; by removingb and the preference statemeatsh = b, b : ¢ >
C,

— Nj results fromN, by removinge and the preference statemebitsc = ¢ ¢: d >
d)

— Ny results fromV; by removingd from the domain ofD and the preference state-
mentc : d > d.

Indeed, in each step the removed element is strictly domdihat the considered
CP-net. So using the iterated elimination of strictly doatéd elements we reduced the
original CP-net to one in which each variable has a singldtonain and consequently
found a unique optimal outcome of the original CP-Net

Finally, the following result shows that the introduceduetibon relation on CP-nets
is complete for acyclic CP-nets.

Theorem 6. For each acyclic CP-ne¥ a unique subneW’ with the singleton domains
exists such thatv — 5 5, V'

Proof. First note that ifV is an acyclic CP-net with some non-singleton domain, then
N —pyprN’ for some subnefV’ of N. Indeed, supposé’ is such a CP-net. Then
a variable X exists with a non-singleton domain with no parent variablat thas a
non-singleton domain. So there existsihexactly one preference statement for
say X; = ay : =;, whereX; is the sequence of parent variables)of Reduce the
domain of X to the maximal element ig-;. Then for the resulting subnéf’ we have
N _’NBRN/-

Uniqueness of the outcome is a consequence of Theof&m).5 O

8 CP-nettechniques in strategic games

The established relationship between CP-nets and sttagagies with prioritized pref-
erences allows us also to exploit the techniques developethé CP-nets when rea-
soning about such games. In particular, to find the Nashibgailof such a game we
can proceed as follows. Take a gatieApply to it an iterated elimination of never best
responses. This yields a subga6ie Now consider the corresponding CP-nétG’).
Reduce it by eliminating redundant parents as describe@dtich 6, obtaining a CP-
net N’ = r(N(G)). Next, apply to it an iterated elimination of never best mees.
This yields a CP-neN"”. By the theorems established in this paper the Nash edailibr
of G coincide with the optimal outcomes &f”'.

If each variable inV" has a singleton domain, then we found a unique Nash equilib-
rium of G. Otherwise we can construct the optimality constraiptg N'') discussed in
Section 2 and use the fact thatt(N"') is consistent iff an optimal outcome 8" ex-
ists. So we can now use hard constraint solving techniquasatiach for Nash equilibria
of the original game&?, by focusing on solving the constraintsdpt(N").

As an example consider the following strategic gafhein which there are two
players, Player 1 with the strategiésp and Bottomand Player 2 with the strategies
LeftandRight



L R
T[22
BI1,1

b

1,1
12,2

Note that in this game each strategy is a best response,amibtbe reduced using
the elimination of never best responses.

The corresponding CP-net(G), has two variables, each corresponding to a player:
X, and X5, with the domainsD(X;) = {7, B} andD(X»2) = {L, R}. Moreover
Pa(X;) = {X>} andPa(Xs) = {X;}. The preference statements are the following:

X1 =T:L >R,

X1=B:R>1L,

Xo=L:T%> B,

Xo=R:B>T.

Notice that\'(G) is already reduced. In fack; is not redundant as a parentX&i
and vice-versa.

The optimality constraints corresponding to this CP-net ar

Xi=T—Xo=1L, X;=B— Xo=R,

XQZL—>X1:T, XQZR—>X1:B

These constraints have two solutiof&’; = 7', X, = L) and(X; = B, X5 = R),
which are also the only two Nash equilibria of the initial gam

This approach can be used also to discover quickly that agtRas a unique Nash
equilibrium, and to find it. Given a gam@&, we construct the reduced CP-ngt =
r(N(G)). If this CP-net is acyclic, we know that it has a unique optiodcome which
can be found in linear time. By the Theorems of the previoui@es we also know that
the Nash equilibria of gamé@ coincide with the optimal outcome of this CP-net. This
means thatz has a unique Nash equilibrium that can be found in linear taypé¢he
usual CP-net techniques applied\o.

GamesG such that the CP-néV’ = r(N(G)) is acyclic are not uncommon. In
fact, they naturally represent multi-agent scenarios w/lagents (that is, players of the
game) can be partitioned into levdls2, . . ., n, such that agents at levetan express
their preferences (that is, payoff function) without loodtiat what players at higher
levels do. Informally, agents at levelare more important than agents at leyek
j > . In particular, agents at levélcan decide their preferences without looking at the
behavior of any other agent.

9 Soft constraints and Nash equilibria

The direct correpondence between the optimal solutionsdét-met and the Nash equi-
libria of the corresponding game cannot be easily found lewopreference modelling
formalisms. In this section we briefly give an informal acebaf the correspondence
between the soft constraint framework and game theory.

Soft constraints, see [2], model problems with preferences

— a set of variables with finite domains,
— a set of constraints; each constraint involves a set of bimsaand assigns to each
instantiation of its variables a preference level,



— the preference levelshat are taken from a set, over which a, possibly partial,
ordering< and a combination operator are defined,

— the preferenceof a solution (that is, an instantiation of all the variablesthe
combination of all the preferences given by the constramtbie subtuples of the
solution.

A widely used instance of this formalism is the class of fugzepstraints, see [8],
where the set of preference levelss [0, 1], the ordering is the usual over the reals,
and the combination operator is the min operation. In othends; in fuzzy constraints
the optimal solutions are those that maximize the minimelgyence.

A simple example of a fuzzy constraint problem is the follogvbne:

— three variablest, y, andz;

— two constraintsC,,, (overz andy) andC,,, (overy andz);

— domains for all variablesfa, b};

— definition of the constraints,,, := {(aa,0.4), (ba,0.3), (ab, 0.1), (bb,0.8)} and
Cy. = {(aa,0.4), (ab,0.3), (ba,0.1), (bb,0.8)}.

The only optimal solution of this problem is= y = z = b, which has preference
0.8.

Given a fuzzy constraint problem, let us now consider a spoading strategic
game as follows:

— the players: one for each variable;

— the strategies of a playet all values in the domain aof;

— the payoff function for player: givens_,, which is an instantiation of all the vari-
ables of the problem minus, and given a value fat, this complete instantiation
selects a tuple in each constraint. Take the minimum of tieéepences over the
tuples selected in the constraints wherappears.

Then one can prove that a Nash equlibrium of this game is ro@ssarily an optimal
solution of the original fuzzy problem. In the example ahave= y = 2z = a is
a Nash equilibrium of the game but it is not a fuzzy optimum. tBe other hand,
x =y = z = bis both an optimal solution and a Nash equilibrium.

In general, if thex operator is strictly monotonic, then an optimal solutiorais
Nash equilibrium. Since soft constraints always have ogitgolutions, in this case the
corresponding games always have Nash equilibria.

In fuzzy constraints, we cannot use this result becauseithemperator is not stricly
monotonic. On the other hand, in weighted constraints (e/keis + over the reals) we
can use this result. The same holds for the probabilististraimts (& is max,+ is
multiplication and preferences drawn frdm 1]).

10 Conclusions and future work

We showed that optimal outcomes in CP-nets are Nash edailibbistrategic games,
and we exploited this to inherit useful techniques fromtetye games to CP-nets and
vice-versa.



In this paper we assume that payoff functions give a linedeioover the strategies
of a player. It could be useful to see whether our results eagelmeralized to games in
which players’ strategies can be incomparable or indiffete each other, thus using
partial orderings with ties. We are currently studying $dgnario.

This paper is just a first step towards what we think is a fulitfoss-fertilization
between preferences, constraint solving, and game th€fhnets appear to be very
amenable for being studied using the existing game theatd@gchniques, and also to
provide strategic games with new and hopefully more effica@proaches to find Nash
equilibria or to solve other game-theoretical tasks. Weetsmen that unfortunately this
is not true in general for other preference modelling foismas like soft constraints. We
are therefore studying the conditions under which soft tairgs or other formalisms
can be related to game theory.
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Abstract Many real-life problems present both negative and positive
preferences. We extend and generalize the existing soft constraints frame-
work to deal with both kinds of preferences. This amounts at adding a
new mathematical structure, which has properties different from a semir-
ing, to deal with positive preferences. Compensation between positive
and negative preferences is also allowed.

1 Introduction

Many real-life problems present both hard constraints and preferences. Moreover,
preferences can be of many kinds:

— qualitative (as in ”I like A better than B”) or quantitative (as in "I like A
at level 10 and B at level 117),

conditional (as in "If A happens, then I prefer B to C”) or not,

positive (as in "I like A, and I like B even more than A”), or negative (as in
"I don’t like A, and I really don’t like B”).

Our long-term goal is to define a framework where all such kinds of prefer-
ences can be naturally modelled and efficiently dealt. In the paper, we focus on
problems which present positive and negative, quantitative, and non-conditional
preferences.

Positive and negative preferences could be thought as two symmetric con-
cepts, and thus one could think that they can be dealt with via the same oper-
ators and with the same properties. However, it is easy to see that this could be
not reasonable in many scenarios, since it would not model what usually happens
in reality.

For example, when we have a scenario with two objects A and B, if we like
both A and B, then the preference of the overall scenario should be even more
preferred than both of them. On the other hand, if we don’t like A nor B, then
the preference of the scenario should be smaller than the preferences of A and
B. Thus combination of positive preferences should give us a higher preference,
while combination of negative preferences should give us a lower preference.



Also, when having both kinds of preferences, it is natural to have also a
element which models ”indifference”, stating that we express neither a positive
nor a negative preference over an object. For example, we may say that we like
peaches, we don’t like bananas, and we are indifferent to apples. The indifferent
element should also behave like the unit element in a usual don’t care operator.
That is, when combined with any preference (either positive or negative), it
should disappear. For example, if we like peaches and we are indifferent to eggs,
a meal with peaches and eggs would have overall a positive preference.

Notice that the assumption that composing two good things will give us even
better thing, and composing two bad things will give us an even worse thing could
be not true in general [7]. So for instance, we may like eating cakes and we may
like eating ice-cream, but we don’t like to eat them both (too heavy). Or, if we
like peaches and we are indifferent to eggs, could be not true that I should like
peaches AND eggs (e.g., think of these two sitting on the same plate).

Finally, besides combining positive preferences among themselves, and also
negative preferences among themselves, we also have the problem of combining
positive with negative preferences. For example, if we have a meal with meat
(which we like very much) and wine (which we don’t like), then what should
be the preference of the meal? To know that, we must combine the positive
preference given to meat to the negative preference given to wine.

Soft constraints [3] are a useful formalism to model problems with quantita-
tive preferences. However, they can model just one kind of preferences. In fact,
we will see that technically they can model just negative preferences. Informally,
the reason for this statement is that preference combination returns lower pref-
erences, as natural when using negative preferences, and the best element in the
ordering behaves like indifference (that is, combined with any other element a, it
returns a). Thus all the levels of preferences modelled by a semiring are indeed
levels of negative preferences.

Our proposal to model both negative and positive preferences consists of the
following ingredients:

— We use the usual soft constraint formalism, based on c-semirings, to model
negative preferences.

— We define a new structure, with properties different from a c-semiring, to
model positive preferences.

— We make the highest negative preference coincide with the lower positive
preference; this element models indifference.

— We define a new combination operator between positive and negative pref-
erence to model preference compensation.

In the framework proposed in [1, 5], positive and negative preferences are
dealt with by using possibility theory [4,10]. This mean that preferences are
assimilated to possibilities. In this context, it is reasonable to model the negative
preference of an event by looking at the possibility of the complement of such
an event. In fact, in the approach of [5], a negative preference for a value or
a tuple is translated into a positive preference on the values or tuples different
from the one rejected. For example, if we have a variable representing the price



of an apartment with domain {p; = low,ps = medium,ps = high} then a
negative preference stating that a high price (ps) is rejected with degree 0.9
(almost completely) is translated in giving a positive preference 0.9 to p; V pa.
In our framework, neither positive nor negative preferences are considered as
possibilities. Therefore, we do not relate the negative preference of an event to
the preference of the complement of such an event.

The paper is organized as follows: Section 2 recalls the main notions of
semiring-based soft constraints. Then, Section 3 describes how we model negative
preferences using usual soft constraints, Section 4 introduces the new preference
structure to model positive preferences, and Section 5 shows how to model both
positive and negative preferences. Finally, Section 6 defines constraint problems
with both positive and negative preferences, Section 7 summarizes the results of
the paper and gives some hints for future work.

2 Background: semiring-based soft constraints

A soft constraint [3] is just a classical constraint where each instantiation of
its variables has an associated value from a partially ordered set. Combining
constraints will then have to take into account such additional values, and thus
the formalism has also to provide suitable operations for combination (x) and
comparison (+) of tuples of values and constraints. This is why this formalization
is based on the concept of semiring, which is just a set plus two operations.

A c-semiring is a tuple (A, +, x, 0, 1) such that:

— Aisasetand 0,1 € A;

— + is commutative, associative, idempotente, 0 is its unit element, and 1 is
its absorbing element;

— X is associative, commutative, distributes over +, 1 is its unit element and
0 is its absorbing element.

Consider the relation <g over A such that a <g b iff a +b = b. Then it is
possible to prove that:

— <y is a partial order;

+ and x are monotone on <g;

0 is its minimum and 1 its maximum;

— (4, <g) is a lattice and, for all a,b € A, a + b = lub(a,b).

Moreover, if x is idempotent, then (A, <g) is a distributive lattice and X is
its glb.

Informally, the relation <g gives us a way to compare (some of the) tuples
of values and constraints. In fact, when we have a <g b, we will say that b is
better than a.

Given a c-semiring S = (4,+, x,0,1), a finite set D (the domain of the
variables), and an ordered set of variables V| a constraint is a pair (def,con)
where con C V and def : Dlc°"l — A. Therefore, a constraint specifies a set



of variables (the ones in con), and assigns to each tuple of values of D of these
variables an element of the semiring set A.

A soft constraint satisfaction problem (SCSP) is a pair (C, con) where con C
V and C' is a set of constraints over V.

A classical CSP is just an SCSP where the chosen c-semiring is: Scsp =
({ false,true}, Vv, A, false,true). On the other hand, fuzzy CSPs [8,9] can be
modeled in the SCSP framework by choosing the c-semiring: Spcsp = ([0, 1],
max, min, 0, 1).

For weighted CSPs, the semiring is Swosp = (R', min, +, +00,0). Prefer-
ences are interpreted as costs from 0 to +o0o. Costs are combined with + and
compared with min. Thus the optimization criterion is to minimize the sum of
costs.

For probabilistic CSPs [6], the semiring is Spcsp = ([0, 1], maz, x,0,1).
Preferences are interpreted as probabilities ranging from 0 to 1. As expected, they
are combined using x and compared using maz. Thus the aim is to maximize
the joint probability.

Given two constraints ¢; = (defi, coni) and ca = (defs, consy), their com-
bination c¢; ® co is the constraint (def, con) defined by con = con; U cony and
def(t) = defi(t |20 ) xdefa(t |27 )*. In words, combining two constraints
means building a new constraint involving all the variables of the original ones,
and which associates to each tuple of domain values for such variables a semiring
element which is obtained by multiplying the elements associated by the original
constraints to the appropriate subtuples.

Given a constraint ¢ = (def, con) and a subset I of V, the projection of ¢
over I, written ¢ |, is the constraint (def’,con’) where con’ = con NI and
def'(t') = Zt/tl?%ﬂéon:t/ def(t). Informally, projecting means eliminating some
variables. This is done by associating to each tuple over the remaining variables
a semiring element which is the sum of the elements associated by the original
constraint to all the extensions of this tuple over the eliminated variables.

The solution of a SCSP problem P = (C, con) is the constraint Sol(P) =
(Q C) Jeon- That is, to obtain the solution constraint of an SCSP, we combine
all constraints, and then project over the variables in con. In this way we get
the constraint over con which is “induced” by the entire SCSP.

Given an SCSP problem P, consider Sol(P) = (def, con). A solution of P is
a pair (t,v) where ¢t is an assignment to all the variables in con and def(t) = v.

Given an SCSP problem P, consider Sol(P) = (def, con). An optimal so-
lution of P is a pair (¢,v) such that ¢ is an assignment to all the variables in
con, def(t) = v, and there is no ', assignment to con, such that v <g def(t).
Therefore optimal solutions are solutions which have the best semiring element
among those associated to solutions. The set of optimal solutions of an SCSP P
will be written as Opt(P).

Figure 1 shows an example of a fuzzy CSP, two of its solutions one of which
(S2) is optimal.

4 By ¢ |¥ we mean the subtuple obtained by projecting the tuple ¢ (defined over the
set of variables X') over the set of variables Y C X.



D(X)=D(Y)={a,b}

D(Z)={ab,c}
< ¥ @)
<ga> 0.1 <aa> 09
<a,b> 0.5 <a,b> 0.3
<b,a> 0.5 <a.c> 0.1
<b,b> 0.3 <b,a> 0.8
<b,b> 0.1
<b,c> 0.1

solution S1=<a,a,a> 0.1=min(0.1,0.9)
solution S2=<a,b,a> 0.5=min(0.5,0.8)
max(0.5,0.1)=0.5 implies S2>S1

Figure 1. A Fuzzy CSP, two of its solutions, one of which is optimal (S2).

3 Negative preferences

As anticipated in the introduction, we need two different mathematical struc-
tures to deal with positive and negative preferences. For negative preferences, we
use the standard c-semiring, while for positive preferences we need to define a
new structure. Such two structures are connected by a single element, which be-
longs to both, and which denotes indifference. Such an element is the best among
the negative preferences and the worst one among the positive preferences.

The structure used to model negative preferences is a c-semiring, as defined
in Section 2. In fact, in a c-semiring the element which acts as indifference is
the 1, since Va € A, a x 1 = a. Element 1 is also the best in the ordering,
so indifference is the best preference we can express. This means that all the
other preferences are less than indifference, thus they are naturally interpreted
as negative preferences. Moreover, in a c-semiring combination goes down in the
ordering, since a X b < a,b. This can be naturally interpreted as the fact that
combining negative preferences worsens the overall preference.

This interpretation is very natural when considering, for example, the weighted
semiring (R*, min, +, +00,0). In fact, in this case the real numbers are costs and
thus negative preferences. The sum of different costs is worse in general w.r.t.
the ordering induced by the additive operator (min) of the semiring.

Let us now consider the fuzzy semiring ([0, 1], max, min, 0, 1). According to
this interpretation, giving a preference equal to 1 to a tuple means that there
is nothing negative about such a tuple. Instead, giving a preference strictly less
than 1 (e.g., 0.6) means that there is at least a constraint which such tuple
doesn’t satisfy at the best. Moreover, combining two fuzzy preferences means
taking the minimum and thus the worst among them.

When considering classical constraints via the c-semiring Scsp = ({ false, true},
V, A, false, true), we just have two elements to model preferences: true and false.
True is here the indifference, while false means that we don’t like the object. This



interpretation is consistent with the fact that, when we don’t want to say any-
thing about the relation between two variables, we just omit the constraint,
which is equivalent to having a constraint where all instantiations are allowed
(thus they are given value true).

In the following of this paper, we will use standard c-semirings to model
negative preferences, and we will usually write their elements with a negative
index ,, and by calling N the carrier set, as follows: (N, 4+, Xp, Ly, Ty).

4 Positive preferences

As said above, when dealing with positive preferences, we want two main proper-
ties: that combination brings to better preferences, and that indifference is lower
than all the other preferences. These properties can be found in the following
structure, that we will call a positive preference structure.

Definition 1. A positive preference structure is a tuple (P, +p, Xp, Ly, Tp) such
that

— Pisasetand Ty, L,e P;

— +p, the additive operation, is commutative, associative, idempotent, with L,
as is its unit element (Va € P,a+, L,= a) and T, as is its absorbing element
(Va € Pia+, T, ="T,);

— Xp, the multiplicative operation, is associative, commutative and distributes
over +, (a X, (b+pc) =axpb+,a x,c¢), L, is its unit element and T, is
its absorbing element.

Notice that the additive operation of this structure has the same properties
as the corresponding one in c-semirings, and thus it induces a partial order over
P in the usual way: a <, b iff a +, b = b. Also for positive preferences, we will
say that b is better than a iff a <, b. As for c-semirings, this allows to prove
that 4 is monotone over <, and it coincides with the least upper bound in the
lattice (P, <,).

On the other hand, the multiplicative operation has different properties. More
precisely, the best lement in the ordering (T,) is now the absorbing element,
while the worst element (L,) is the unit element. This reflects the desired be-
havior of the combination of positive preferences. In fact, we can prove the
following properties.

First, x,, is monotone over <.

Theorem 1. Given the positive preference structure (P, X, +p, Lp, Tp), con-
sider the relation <, over P. Then x, is monotone over <,. That is, a X, d <,

bx,d,VdeP.

Proof. Since a <, b, by definition, @ 4+, b = b. Thus, ¥d € P we have that
bx,d = (a+,b) x,d. Since x,, distributes over +,, bx,d = (a x,d) +, (b x,d),
and thus a x, d < b x, d.



Also, combining positive preferences using the multiplicative operator gives
an element which is better or equal in the ordering.

Corollary 1. Given the positive preference structure (P,~+p,, Xp, Tp, Lp). For
any pair a,b € P, a X, b >, a,b.

Proof. Since Va,b € P, a >,1, and b >,1,. By monotonicity of x, we have
aXpb>,l,xb=band bx,a>,1, xa=a.

Notice that this is the opposite behaviour to what happens when combining
negative preferences, which brings lower in the ordering.

Since both +, and X, obtain a higher preference, but +, is the least upper
bound, then the following corollary is an obvious consequence.

Corollary 2. Given the positive preference structure (P,4+p,, Xp, Ly, Tp), for
any pair a,b € P, a X, b >, a+,b.

In a positive preference structure, L, is the element modelling indifference.
In fact, it is the worst in the ordering and it is the unit element for the combina-
tion operator x,. These are exactly the desired properties for indifference w.r.t.
positive preferences.

The role of T, is to model a very high preference, much higher than all the
others. In fact, since it is the absorbing element of the combination operator,
when we combine any positive preference a with T, we get T, and thus a disap-
pears. A similar interpretation can be given to L,, for the negative preferences.

5 Positive and negative preferences

In order to handle both positive and negative preferences we propose to combine
the two structures described above as follows.

Definition 2. A preference structure is a tuple (PUN, +p, Xp, +n, X, +, X, L
,0,T) where

— (P, +p, Xp,0,T) is a positive preference structure;

— (N, +n, Xp,L,0) is a c-semiring;

— 4 :(PUN)?> — PUN s an operator such that +y = 4y and +|p = +p,
and such that a, + a, = a, for any a, € N and ap € P.

X :(PUN)* — PUN is an operator such that Xy = Xy, and X|p = X,
which respects properties P1, P2, and P38 defined later in this section.

Notice that a partial order on the structure (PUN) is defined by saying that
a<b < a+0b=0. Easily we have 1 < 0O < T. In details, there is a unique
maximum element coinciding with T, a unique minimum element coinciding with
L, and the element O, which is smaller than any positive preferences and greater
than any negative preference, and which is used to model indifference. Such an
ordering is shown in Figure 2.
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Figure 2. A preference structure.

x is defined by extending the positive and negative multiplicative operator
in order to allow the combination of heterogeneous preferences. Its definition
have to take in account the possibility of a compensation between positive and
negative preferences. Informally, we will define a way to relate elements of P to
elements of IV s.t. their combination could compensate and give as a result the
indifference element O. To do that, we

— Partition both P and N in the same number of classes. Each of the class of P
(N) contains elements which behave similarly when combined with elements
of the “opposite” class in N (P). Such classes will be technically defined by
using an equivalence relation among elements with some specific properties.

— Define and ordering among the classes and a correspondence function map-
ping each class in its opposite. The result are two ordering, one among pos-
itive class and the other among negative ones, that are exactly the same
w.r.t. the correspondence function.

We consider two equivalence relations =, and =,, over P and N respectively.
For any element a of PUN let us denote with [a] the equivalence class to which
a belongs. Such equivalence relations must satisfy the following properties:

— |N/ =, | =|P/ =, | (ie =, and =, have the same number of equivalence
classes).

— [a] <= [b] iff V& € [a] and Vy € [b], z < y.

— there must exist at least a bijection f such that f: N/ =,— P/ =, and
[a] <= [b] iff f([a]) >= f([b]) where [a] and [b] are classes built from negative
preferences.



Notice that for the case where the orders on N and P are total it’s natural
to define the equivalence classes to be intervals, so that <— is also a total order.

The multiplicative operator of the preference structure, written x, must sat-
isfy the following properties:

Pl. ax b=0iff f([b]) = [al];

P2. if [a] <= [b] then Ve € PUN, a x ¢ < b x ¢; that is, x is monotone w.r.t. the
ordering <—;

P3. x is commutative.

Summarizing, to define a preference structure, we need the following ingre-
dients:

P, X p, +p;

= N, Xp, +n;

- T7J~7D;

— X, defined by giving =,,=,,, and f.

Given these properties, it is easy to show that the combination of a positive
and a negative preference is a preference which is higher than, or equal to, the
negative one and lower than, or equal to, the positive one.

Theorem 2. Given a preference structure (P, N, +p, Xp, +n, Xpn, +, X, L, 0, T),
we have that, for anyp € P andn € N, n <pxn <p.

Proof. By monotonicity of x, and since n < O < p for any n € N and p € P,,
we have the following chain: n=nx0<nxp<0OXp=p.

This means that the compensation of positive and negative preferences must
lie in one of the chains between the two given preferences. Notice that all such
chains pass through the indifference element O.

Moreover, we can be more precise: if we combine p and n, and we compare
f([n]) to [p], we can discover if p x n is in P or in N, as the following theorem
shows.

Theorem 3. Given a preference structure (P, N, +p, Xp, +n, Xn, +, X, L, 0, T),
take any p € P and any n € N. Then we have:

— if f([n]) <= [p], then O <, pxn <, p’
— if f([n]) >= [p], then n <, pxn <, O.

Proof. It f([n]) <= [p], then for any element c in f([n]), ¢ <, p. By motononicity

of x, we have O =n x ¢ <, n x p. Similarly for p x n <, O when f([n]) >= [p].

Notice that the multiplicative operator x might be not associative. In fact,
consider for example the situation with two occurrences of a positive preference p
and one negative preference n such that [p] = f([n]). That is, p and n compensate
completely to indifference. Assume also that x,, is idempotent. Then, px (pxn) =
px O = p, while (p x p) x n = p x n = O. This depends on the fact that we



are free to choose X, and x, as we want, and X concides with them when
used on preferences of the same kind. Certainly, if any one of X, or X, is
idempotent, then x is not associative. However, there are also cases in which both
Xp and X, are not idempotent, and still x is not associative. This means that,
when combining all the preferences in a problem, we must choose an association
ordering.

The preference structure we defined allows us to have different ways to model
and reason about positive and negative preferences.In fact, besides the combi-
nation operator, which has different properties by definition, we can also have
different lattices (P, <,) and (N, <,,). This means that we can have, for example,
a richer structure for positive preferences w.r.t. the negative ones. This is nor-
mal in real-life problems, where not necessarily we want the same expressivity
when expressing negative statements and positive ones. For example, we could
be satisfied with just two levels of negative preferences, but we might want ten
levels of positive preferences. Of course our framework allows us also to model
the case in which the two structures are isomorphic.

Notice that classical soft constraints, as anticipated above, refer only to neg-
ative preferences in our setting. This means that, by using soft constraints, we
can express many levels of negative preference (as many as the elements of the
semiring), but only one level of positive preference, which coincide also with the
indifference element and also with the top element.

6 Bipolar preference problems

We can extend the notion of soft constraint allowing preference functions to
associate to partial instatiations either positive or negative preferences.

Definition 3 (bipolar constraints). Given a preference structure (P, N, +,,
Xpy Fns Xn,+, X, L,0,T), a finite set D (the domain of the variables), and an
ordered set of variables V', a constraint is a pair (def, con) where con CV and
def : D"l - PUN.

A Bipolar CSP (V,C) is defined as a set of variables V' and a set of bipolar
constraints C.
A solution of a bipolar CSP can then be defined as follows.

Definition 4 (solution). A solution of a bipolar CSP (V,C) is a complete
assignment to all variables in V, say s, and an associated preference pref(s) =
(p1 Xp ... Xp PE) X (M1 X ... Xy ), where fori:=1,....k p; € P and for
j=1,...,ln; € N and p; = def;(s LXM(C”) where var(c;) are the variables
inwvolved in the constraint c; € C.

In words, the preference of a solution s is obtained by:

1. combining all the positive preferences associated to all its projections using

Xp;



2. combining all the negative preferences associated to all its projections using
X

3. then, combining the positive preference obtained at steps 1 and the negative
preference obtained at step 2 using X.

Notice that this way of computing the preference of a solution is by choosing
to combine all the preferences of the same kind together before combining them
with preferences of the other kind. Other choices could lead in general to different
results due to the possible non-associativity of the x operator.

Definition 5 (optimal solution). An optimal solution of a bipolar CSP (V,C)
is a pair (s,pref(s)) such that s is an assignment to all the variables in V', and
there is no s', assignment to V', such that pref(s) < pref(s’).

Therefore optimal solutions are solutions which have the best preference
among those associated to solutions. The set of optimal solutions of a bipolar
CSP B will be written as Opt(B).

Figure 3 shows a bipolar constraint which associates positive and nega-
tive preferences to its tuples. In this example we use the weighted c-semiring
(R*, min,+,0,+00) for representing the negative preferences. For the positive
preferences, we consider separately two positive preference structures: (R*7 max,
+,+00,0) and (R*, max, maz,+00,0). Notice that the indifference element co-
incides with 0 in both the positive and negative preference structures. In the ex-
ample in Figure 3, we assume that every equivalence class is composed by a single
preference, and that function f is the identity. Moreover, when applied to one
positive and one negative preference, x is the arithmetic sum of positive/negative
numbers denoted as +2. Therefore we consider two preference structures: the
first one is (RT, R, max,+,min, +,max — min,+2,+oco, 0,+0cc), and the
second one is (RY, RY, maz, max, min, +, max — min,+P, +00,0, +00) where
max — min is the + operator of the structure (induced by the maz and min
operators of the positive and negative preferences rispectively).

In Figure 3, preferences belonging to P have index p, while those belonging
to N have index n. The left part of Figure 3 shows the bipolar CSP, while the
right part shows the preference associated to each solution. For example, for
solution (z = a,y = b), we must combine 1,, 10,, and 10,,. To do this, we must
compute (1, x,, 10,). If x,, = +, then the result is 11,. If instead x, = maxz,
then the result is 10,. Then, such result must be combined with 10,,, giving in
the first case 11, x 10,, = 1,,, and in the second case 10, x 10,, = 0.

7 Future work

We have extended the semiring-based formalisms for soft constraints to be able
to handle both positive and negative preferences. We are currently studying
which properties are needed in order to obtain completely specular preference
structure where the times operator x satisfy the associativity property.

We are also studying the correlation between our work and the works on
non-monotonic concurrent constraints [2]. In this framework the language is
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Figure 3. A bipolar CSP with both positive and negative preferences, and its
solutions.

enlarged with a get operator that remove constraints from the store. It seems
that removing a constraint could be equivalent to adding a positive constraint.

Further work will concern the possible use of constraint propagation tech-

niques in this framework, which may need adjustments w.r.t. the classical tech-
niques due to the possible non-associative nature of the compensation operator.
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Abstract. Most current state-of-the-art complete Max-CSP or weighted
CSP solvers can be described as a basic depth-first branch and bound
search (DFBB) that maintain some form of arc consistency during the
search. In this paper, we study some structural solving methods such
as BTD that have a better time complexity than DFBB. We introduce
state-of-the-art forms of arc consistency in BTD in order to reduce the
search effort and the memory space actually used. We show it can be the
case on random and real-world instances.

1 Introduction

Max-CSP is a well-known problem of finding a complete assignment with a min-
imum number of unsatisfied constraints. In general, this problem is NP-hard.
Max-CSP is usually solved by a depth-first branch and bound algorithm that
has a linear space complexity but has an exponential time complexity in the num-
ber of problem variables. Other solving methods that exploit the structure of the
constraint graph have their time complexity exponential in a given graph pa-
rameter whose value is often better than the number of variables. For instances,
Bucket Elimination [5] has a time complexity exponential in the induced width,
pseudo-tree search [6] and AND/OR tree search [12] have a time complexity
exponential in the tree-height, and the BTD algorithm [15,7] has a time com-
plexity exponential in the tree-width, i.e. the size of the largest cluster of a tree
decomposition of the constraint graph, and a space complexity exponential in
the maximum separator size, i.e. the size of the largest intersection between two
clusters. Another important aspect is the way of computing the lower bound
during the search. Enforcing local consistency properties as defined in [13,11, 2,
10, 4] produces a lower bound that can be used in a branch and bound algorithm
to reduce the search effort. However the current BTD algorithm uses a limited
form of local consistency only, i.e. forward checking. The goal of this paper is to
introduce stronger forms of local consistency such as soft arc consistency inside
BTD. Our aim is that local consistency will reduce the search effort of cluster
explorations and the memory space actually used by its recording mechanism.

2 Preliminaries

For simplicity reasons, we consider in the sequel a basic soft constraint frame-
work consisting of binary Max-CSPs, although all the methods presented in



this paper are also valid for weighted CSPs. A Max-CSP is a triplet (X, D, W).
X ={1,...,n} is a set of n variables. Each variable i € X has a finite domain
D; € D of values than can be assigned to it. The maximum domain size is d.
W is a set of k binary soft constraints. A binary soft constraint Wi; € W is a
function W;; : D; x D; — {0,1} such that the value 1 means the constraint is
violated with a cost one and 0 it is satisfied.

Before introducing soft local consistencies in Section 5, we add to our problem
definition a unary cost function for every variable such that W; : D; — {0, k}.
k corresponds to the maximum violation cost of a Max-CSP. Unary cost func-
tions initially return zero. A zero arity constraint Wy is also introduced, which
initially returns zero. W; and Wy will be used during local consistency enforce-
ment. Wy will store the current problem lower bound. The goal is to find a
complete assignment with minimum cost: min g, a,.....a,)eD, x Dy x---x Do AW +
>ie1 Wilai) + 22w, ew Wij(ai, a;)}. In general, this combinatorial optimization
problem is NP-hard.

A tree decomposition of a graph G = (X, E) is apair (C,T).C = {C1,...,Cn}
is a set of m subsets of X. T is a tree having m nodes which are the m clus-
ters of C. C' and T' verifies the following properties: (i) Uy co Ce = X, (ii) for
each edge {i,j} € E, there exists C. € C such that i,j € C,, and (iii) for all
Ce,Cy,Cy € C, if Cy is on a path from C. to Cy in T, then C. N Cy C C
(running intersection property). The tree-width of a tree decomposition (C,T)
is equal to maxc, ec{|Ce|} — 1, denoted by w in the sequel. The tree-width w*
of G is the minimal tree-width over all the tree decomposition of G. Finding a
minimal tree-width is NP-hard in general.

3 The BTD method

Given a Max-CSP P = (X, D, W), BTD [15,7] exploits a tree decomposition
(C,T) of the constraint graph G = (X, {{i,j} s.t. W;; € W}). We consider the
first cluster Cy € C as the root of T in the sequel. Such a rooted cluster tree
allows to define a partition of the variables and the constraints. Although a
variable may belong to several clusters of C', we are interested in finding the
closest cluster from the root that contains the variable. N (i) denotes the index
of this cluster for the variable i. We note V, = {i € X s.t. N(i) = e} the set of
variables associated to the cluster C, € C. In the same manner, we associate each
constraint W;; to the closest cluster from the root that contains both variables.
Let Sons(Ce) be the set of son clusters of C. € C' in the rooted tree T'. Similarly,
Father(e) denotes the father cluster of C. € C'in T

For each cluster C, € C, we associate a subproblem P, defined by the vari-
ables in V, and all the variables V; related to the descendants C'y of C¢ in T', and
by all the constraints the scope of which belong to the variables of P,. A first
property is that for any cluster C, € C, its subproblem P, is constrained by the
rest of the problem P\ P, only by the assignment of variables in Ce N Cpather(e)-
It is possible to solve P, for any assignment of Ce N Cpaper(e) and to record its
optimum value which avoids to solve P, again for the same assignment. Secondly,



it C.,Cy,Cy € C such that Cy,Cy € Sons(C.), then, after the assignment of
Ve, Py and P, are two independent subproblems that can be solved sequentially
because they do not share any variable or constraint. BTD is based on these two
properties.

Function BTD(A,C.,V ,clb,cub) : integer
if (V =0) then
S «—— Sons(C.) ;
clb «— clb + Zcfes LBajcy ;
while (S # 0 and clb < cub) do
Choose Cj e S
S — S\C/ N
if (LBA[Cf] < UBA[Cf]) then
/* No information for A[Cy]: LBajc,) =0 and UBac,) = +o0 ¥/ ;
clt) «——BTD(A, Cy, Vi, 0, +00) ;
clb «—— clb+ clb’ ;
LBA[Cf] — Clbl 3
UBA[Cf] — Clbl 3

return clb ;

else

Choose i€V ;

d«— Di 3

while (d # 0 and clb < cub) do
Choose a €d ;

d«— d\{a};

le— ZWUEW s.t. j assigned by 4
if (clb+1 < cub) then

| cub «— min{cub,BTD(A U {i < a}, Ce, V\{i}, clb+ 1, cub) } ;

Wij(a, Alj]) ;

| return cub ;

Algorithm 1: BTD algorithm [7]. First call is BTD(0,C1,V1,0,+0).

BTD explores the cluster tree T in a depth-first search manner, starting
from C;. For each visited cluster C, € C, a depth-first search is performed on
the variables V.. Whenever a cluster Cy € Sons(C,) is visited, its associated
subproblem Py will be completely solved before visiting another son of C.

The BTD algorithm is given in Fig. 1. BTD(A,C,,Ve,0,400) returns the op-
timum value of subproblem P, knowing the current partial assignment A of past
variables. clb (resp. cub) is a lower (resp. upper) bound of the current subprob-
lem. clb and cub are used to prune the search tree following the branch and bound
principle. For simplicity reasons, we present BTD using backward checking to
compute the lower bound (see line 4). A specific data structure LB jc,) (resp.
UBjc,]) records a lower (resp. upper) bound of P, for a given assignment of
Ce N Crather(e) (denoted by A[C]). Thanks to the branch and bound principle



and the lower bound computation, BTD may not visit all the assignments of
Ce N CFrather(e)- LB and UB can be sparse data structures. In our implemen-
tation, we use hash tables. Initially, LB is set to zero and UB to +oo. In the
original BTD algorithm, each visited subproblem P, is completely solved. Thus,
we have LB y(c,) = UB4[c,) equal to the optimum value of P, for a given assign-
ment A[C.]. In line 1, BTD uses the knowledge of previously solved subproblems
to possibly increase clb.

BTD has a time complexity in O(ms%klog(d)d**!), where m is the number
of clusters, s is the size of the largest intersection between two clusters, k is the
number of constraints, d is the maximum domain size, and w is the tree-width
of the tree decomposition. And it has a space complexity in O(msd®) [15].

4 Exploiting local cuts in BTD

Function BTD'(A,C.,V ,clb,cub) : integer
if (V =0) then
S «—— Sons(Ce) ;
clb «—— clb + Z(ﬁ'fES LB/—'\[Cf] 3
while (S # 0 and clb < cub) do
Choose Cy € S ;
S «— S\Cy ;
if (LB;—'\[Cf] < UBA[(}/]) then
cub’ «—— cub — clb + LBajc,
cb' «——BTDT (A, Cf, Vi, 0, cub’) ;
clb — clb+ clb ~LBaic,) ;
LB/—'\[Cf] — clt 5
if (clb’ < cub’) then UB.c )« clb’;

return clb ;

else

Choose 1€V ;

d«— D, ;

while (d # () and clb < cub) do

Choose a € d ;

d «— d\{a} ;

be— Z\/\f,,‘,ew s.t. j assigned by a Wij(a, Alj]) ;

if (clb+1 < cub) then

| cub «— min{cub,BTD' (AU {i «— a}, Ce, V\{i}, clb+1, cub) } ;

| return cub ;

Algorithm 2: BTD™T algorithm. First call is BTD*(0,C4,V1,0,400).

When BTD solves a subproblem in line 3, it does not impose any initial upper
bound. The resulting optimum value may be much greater than the current



allowed branch and bound gap cub — clb tested in line 2. In order to reduce
the search effort when solving a subproblem P; such that C.,C; € C,Cy €
Sons(C.), we can impose an initial upper bound equal to the difference between
the parental upper bound of P. and a lower bound of the remaining part of
the problem P\Pj. The corresponding algorithm called BTD™ is given in Fig.
2. The code is colored in gray and black in order to highlight the differences
between BTD' and BTD. After solving a subproblem at line 7 with an initial
upper bound computed in line 6, either there exists a solution with a cost strictly
lower than this upper bound and this solution is optimal (then LB and UB are
updated in lines 8,9), or no solution has been found and only a lower bound can
be deduced and recorded for the subproblem (in line 8). In this case, the lower
bound LB is equal to the initial upper bound and U B remains equal to +oc.

Exploiting an initial upper bound when solving a subproblem has the poten-
tial drawback that the same subproblem can be solved several times in compar-
ison with the original BTD algorithm that never solves the same subproblem
more than once thanks to the memorization of its optimum value. However each
new lower bound found by BTD™ for a given subproblem is strictly greater
than the previous recorded lower bound for this subproblem (clb’ = cub’ =
cub — clb+ LBajc;) > LBajc,) because cub — clb > 0), otherwise the test in the
while loop in line 5 would have failed. It means that the worst-case time com-
plexity of BTDY is k (the maximum violation cost) times the time complexity
of BTD. Both algorithms have the same space complexity.

This approach of trying different upper bounds for the same problem is com-
mon in branch and bound optimization and can be effective in practice. For
instance, Iterative Deepening Search [8] uses increasing upper bounds starting
from zero until the problem optimum is found.

A possible way of reducing subproblem repetition is by providing a good value
ordering heuristic. By choosing a good value first, the current subproblem lower
bound ¢lb is kept as small as possible in the left-most branch of the depth-first
search tree, resulting in a larger branch and bound gap cub—clb and higher initial
upper bounds when solving for the first time any subproblem P, e € {1,...,m}.

Another observation is that we do not need to record the exact subproblem
upper bound (UB) but only the fact that we have found the optimum or just
a lower bound. We use this result in our implementation of all the algorithms
in order to save memory space by only recording LB associated to a boolean to
know if it is the optimum or not.

5 Combining BTD with local consistency restricted to
the current cluster subtree

In this paper, we are interested in combining BTDT with local consistency in or-
der to reduce the search effort when exploring a cluster and also to save memory
space by recording less subproblem lower bounds. We consider the following lo-
cal consistencies developed in the soft constraint framework: soft arc consistency
(AC) [13,9], soft directional arc consistency (DAC) [3, 2], soft full directional arc



consistency (FDAC) [3,10,2], and soft existential directional arc consistency
(EDAC) [4].

Two WCSPs defined over the same variables are said to be equivalent if
they define the same cost distribution on complete assignments. Enforcing local
consistency on a given problem is done by changing the values returned by its
cost functions. Projection and extension are the only two basic operations used
to transform a given problem into an equivalent but possibly more explicit one
(having a better lower bound Wy and less values in the domains). See [13,2] for
a definition and examples of projection and extension operations. An important
result of enforcing local consistency is to produce a problem lower bound in Wy
that can be used during the search as the current lower bound (stronger than
backward or forward checking).

The difficulty for BTD is that these transformations preserve the semantic of
the whole problem but can modify the semantic of some subproblems, by moving
cost from one subproblem to another one. During the search, the optimum of a
future subproblem can change due to local consistency enforcement, resulting in
useless recorded lower and upper bounds.

We now analyze how to combine the four basic local consistency operations
as described in [4] with BTD such that recorded lower and upper bounds are
used in a safe manner.

5.1 Binary projection and extension

A binary projection Project(i,a,j, ) moves cost « from binary cost function
Wi; to unary cost function Wj:

a € D;,Vb e Dj;, Wij(a,b) «— Wij;(a,b) — a, W;(a) «— W;(a) + «

If variables i,j are associated to the same cluster in the tree decomposition
(N(i) = N(j)), there is nothing to do. If N(i) # N(j), then clusters Cy;
and Cy ;) are on a common path from the root due to the running intersection
property of tree decomposition. Either cluster Cy ;) is an ascendant of cluster
Cn(i), then the binary and unary cost functions belong to the same cluster
Cn(iy and thus the same subproblem. Or, Cy(;) is an ascendant of Cy;), and
the binary projection results in decreasing W;; in the subproblem Py ;) and
increasing W; in the subproblem Py ;. Because Py ;) already contains Py;),
this does not change its optimum. On the contrary, the optimum of Py ;) is
decreased by «. This is also the case for all the subproblems P, on the path
between Cy(;) and Cy(;) in the tree decomposition because their associated
cluster C, contains variables i, j. We store these cost modifications in a specific
backtrackable data structure AW. Initially, AW is set to zero. The modified
function Project(i,a, j, ) does the following:

VCe € C' in the path from Cy ;) included to Cy ;) excluded,
AWE(a) «— AWE(a) +



During the search, we apply a correction to the recorded lower and upper
bounds thanks to the current AW information. AW 4(¢,] represents the total
cost that has been moved out the subproblem P, for a given assignment A[C.]
of Ce N Crather(e) variables: AW 410 = Z{i,a}eA 8.t 1€C.NCratnerte AWE(a).
This total cost is subtracted to the recorded lower bound in order to obtain the
current true lower bound.

A binary extension Eztend(i,a,j,«) moves cost a from unary cost func-
tion W; to binary cost function Wj;. It is equivalent to a binary projection
Project(i,a, j, —a). We apply the same modifications to Extend as previously
described for Project.

5.2 Unary projection

A unary projection ProjectUnary(i) moves the minimum cost mingep,{W;(a)}
from unary cost function W; to the problem lower bound Wy . Instead of having
one zero-arity constraint for representing the problem lower bound, we split it
into one zero-arity constraint per cluster in the tree decomposition. W§ is a lower
bound for the subproblem composed of V. variables and the constraints whose
scopes are inside V.. Thus, local consistency enforcement provides a current lower
bound W; of subproblem P, which is the sum of all the lower bounds of clusters

included in P,. We have ng = Wg. For any subproblem P,,e € {1,...,m} and
any assignment A[Ce N Cpather(e)], We have two lower bounds, one provided by
the BTD recording mechanism and the other one provided by local consistency.
In the following codes, we always use the maximum of these two bounds.

5.3 Value removal

Value removal PruneVar(i) removes values a € D; such that Wy +W;(a) > gub,
with gub, a global upper bound of the problem. We replace this global condition
by a local one W, 4+ W;(a) > cub where W, and cub are the current lower and
upper bounds of the currently visited cluster C.. We apply this pruning rule
only to variables in the current subproblem P.. By doing so, we ensure that any
removed value in a given subproblem P, is also forbidden in all the subproblem
Py included in P.. Thus the set of removed values for one subproblem F, is
still valid in all the subproblems Pj such that Cy € Sons(C.), and all the
propagations made during the exploration of C are still valid when exploring
C € Sons(C.). The proof is obtained by the fact that cub— Wy, is monotonically
decreasing when following a path in the cluster tree from the root to a leaf:

VC. € C,VCy € Sons(C.),

cubc, — Wé = cub — clb + max{LBajc,) — AWA[Cbeé} - Wé
= cub — Wg
- Z max{LBaic,] — AW ajc,), W }
Cg€Sons(Ce)\Cy
W
< cub — Weg
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Function LC-BTD ™ (A,C.,V ,clb,cub) : integer
if (V =0) then
S «—— Sons(Ce) ;
) =
clb — Wg + Zcfes maX{LBA[Cf] - AWA[Cf]’ Wa}t:
while (S # 0 and clb < cub) do
Choose Cy € S ;
S «—— S\Cy ;
if (LB;—'\[Cf] < UBA[(}/]) then
cub’ «—— cub — clb + maX{LBA[Cf] — AWA[cf],Wé} ;
el ——LC-BTD*(A, Cy, Vi, Wi, cub') ;
clb «—— clb + clb’ — maX{LBA[Cf] — AWA[cf],Wé} ;
LBA[(,’f] — (:]b/—i-AWA[Cf] ;
if (clb’ < cub’) then UBac;) «— clb/—i—AWA[Of] ;

return clb ;
else

Choose i€V ;

d+— D; ;

while (d # 0 and clb < cub) do
Choose a € d ;
d— d\{a} ;
Enforce LC with {i < a} on subproblem P.;
if (Wg < cub) then
| cub «— min{cub,LC-BTDT (AU {i «— a}, Ce, V\{i}, Wg, cub) } ;

| return cub ;

Algorithm 3: LC-BTD™ algorithm. Initial problem is made LC consistent be-
forehand. First call is LC-BTD*(0,C4,V;, W b, +00).

5.4 LC-BTD+ algorithm

The resulting algorithm called LC-BTD™ combines BTD™ with any local consis-
tency LC € {NC, AC, DAC, FDAC, EDAC'} and is described in Fig. 3 (again,
differences with BTD* are highlighted). In line 10, the lower bound of the cur-
rent subproblem is the sum of assignment cost for cluster C, (W5) plus the sum
of the maximum of the two lower bounds (obtained by lower bound recording
or by propagation) for each cluster son. In line 14, the local consistency LC is
enforced on the current subproblem P, resulting in a new lower bound W; of
P.. In lines 12 and 13, we apply the right corrections in order to record valid
lower and upper bounds. Notice that in line 11, we already have a lower bound
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Wé of Py that is given as input to LC-BTD*. The rest of the code is identical
to BTDT.

The time and space complexities of LC-BTD™ are identical to BTD*. Time
complexity proof is based on the fact that when a new lower bound clb’ +
WA[C,«] is recorded, it is equal to cubc, +WA[C,«] = cub—clb—l—max{LBA[cf] —

—_ _f —_
AWA[Cf],W@} + AWA[Cf] > LBA[Cf]-

6 Combining BTD with unrestricted local consistency

In the previous algorithm, local consistency was restricted to the current sub-
problem in order to keep the set of forbidden values still valid when going down
from one cluster C. to another cluster Cy € Sons(C.) during the search. Now,
we show how it is possible to remove this restriction by using local and global
bounds.

A value is removed if W + Wi(a) > cub or Wy + Wi(a) > gub. Recall that

W, (vesp. W) is the current lower bound of subproblem P, (resp. problem P).
gub is a global upper bound of the whole problem. Although the second global
condition takes into account all the information produced by local consistency
enforcement, it does not necessarily imply the first local condition because cub
includes the knowledge of recorded lower bounds. So both conditions are needed.

A major difficulty when using two conditions during the exploration of a clus-
ter C, is that we are not sure to find the optimum of P, even if the initial upper
bound is greater than the optimum. This is due to the fact that propagation in
P\P, can increase the current lower bound of P such that W > gub before a
solution is found in P,. Moreover, even if a solution is found in P,, there is no
guarantee that we will find the optimal solution of P,. This surprising result is
due to the fact that soft local consistencies such as AC, FDAC or EDAC are
not confluent. Depending on the way W; increases during the search, it can
result in different value removal orders in P\ P, conducting to different projec-

tion/extension operation orders and finally different W; values. Our solution is
to collect during the exploration of a subproblem P, its minimum lower bound
and the cost of the best solution found at all the leaf nodes of the search tree de-
veloped for solving P.. Notice that this minimum lower bound cannot be greater
than the initial subproblem upper bound due to previous value removals. More-
over, value removals can occur during a cluster exploration, due to the global
cut ng + W;(a) > gub which is equal to W + chep\Pe W5 + Wi(a) > gub.
Therefore, the minimum lower bound of P, when a failure occurs (at a leaf node)
cannot be greater than W, + W;(a) = gub — Yc,ep\p. W5 = gub WL WS

The resulting algorithm called LC-BTD* is presented in Fig. 4 (again, dif-
ferences with LC-BTD™ are highlighted). In line 21 and 22, the exploration of
the current cluster takes into account local and global bounds. This is also the
case for computing the initial upper bound of a subproblem in line 16. Instead
of returning a lower bound or the optimum of P, as it is done in LC-BTDT,



15

16

17

18

19

20

21

22

23
24

25

26

10

Function LC-BTD*(A,C.,V clb,cub,glb,gub:in/out) : (integer,integer)

if (V =0) then

S «—— Sons(Ce) ;

el — W5 + ¥, es max{LBajc,) = AW ajop), Wo ) §

cub’ — W§ ;

while (S # 0 and ¢lb < cub) do

Choose Cjy e S ;

S — S\Cy 1

if (LBA[(;f] < UBA[(yf]) then

cub’ «— min{cub — clb + max{LBaic,] — AI/I/’A[CH,I/_VQ},
gub — glb+ Wi, UBao,)} -

(clt,cub’) —LC-BTD*(A, C¢, V4, Wé, cub') ;

clb — elb+ elb’ — max{LBaic,) — AW ac,), Wh} ;

cub” «—— cub” + cub’ ;

LBA[(;f] — maX{LBA[Cf], clb + AW/YA[(;f]} ;

UB;—'\[Cf] — min{UBA[Cf], Cub/-ﬁ-AI/VA[Cf] } ;

else
| cub” — cub” + LBajc;) — AW ajcy)

return (clb, cub”) ;
else
(clb', cub’) «— (cub, +o00) ;
Choose i€V ;
d+«— D; ;
while (d # () and clb < cub and glb < gub) do
Choose a € d ;
d— d\{a} ;
Enforce LC with {i «— a};
if (W, < cub and ng < gub) then
(I,u) «—LC-BTD*(A U {i «— a}, Ce, V\{i}, W, cub, ng, gub) ;
b’ «—— min{clb’, 1} ;
cub’ «— min{cub’,u} ;
cub «— min{cub, u} ;
if (Ce = C1) then gub «—— min{gub, u} ;
else
Lclb' — min{clb', W, gub — ng +Wa};

| return (clb’, cub’) ;
Algorithm 4: LC-BTD* algorithm. Initial problem is made LC' consistent be-
forehand. First call is LC-BTD* ((Z),C’l,Vl,W;,—Foo,W;,—Foo).
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LC-BTD* returns in lines 19 and 26 a lower bound and the cost of the best solu-
tion found after solving P.. cub” represents the cost of the best solution found
in P, and is the sum of the current cluster cost W§ and the total cost of the
best solution found for each subproblem Py such that Cy € Sons(Ce) (see lines
15,17,18). When exploring the current cluster, we maintain the minimum lower
bound (clb’) and the cost of the best solution found (cud’) at all the leaf nodes
of the search tree in lines 20,23,24, and 25.

The space complexity of LC-BTD* is the same as for BTD. Its time complexity
is no more bounded by the tree-width because we don’t have the property that
the recorded lower bounds will increase monotonically. However, LC-BTD* has a
time complexity in O(d"), where h is the tree-height of the tree decomposition,
i.e. the maximum number of variables in a path from the root node to any leaf
node of the cluster tree. This time complexity is also valid for all the BTD-like
algorithms that follow a variable ordering compatible with the cluster tree and
exploit the independence property of subproblems.

7 Taking into account recorded lower bounds as soon as
possible

When exploring a cluster C,, as soon as the variables in C'yNC are assigned for a
given son cluster Cy € Sons(C.), it is possible to take into account the recorded
lower bound LBa(c,) in the current subproblem an problem lower bounds W;

71 . . . .
and W. This can result in further propagations and better pruning. More

precisely, we add to these lower bounds the cost LBajc,) — AW ajc;) — Wé

if it is positive, i.e. if the corrected recorded lower bound is better (optimal or
strictly greater) than the lower bound found by propagation. If it is the case,
then we must disconnect the subproblem Py from the propagation in order to
avoid counting the same constraint cost twice. Moreover, after the complete
exploration of a subproblem Py, s.t. Cy € Sons(C,), we can take into account
as previously the newly updated recorded lower bound when backtracking in C.
All these improvements have been done to enhance LC-BTD*, resulting in the
algorithm called LC-BTDo in the following Section.

8 Experimental results

In this Section, we perform an empirical comparison of our various versions of
the BTD method with classic depth-first branch and bound (MFDAC [10]) and
Bucket Elimination (BE) [5] on random and real-world instances. For efficiency
reasons, our BTD methods are using forward checking for BTD and BTD* and
soft full directional arc consistency (FDAC) for the other versions (FDAC-BTD*,
FDAC-BTD*, and FDAC-BTDo). For comparison purpose, we examine the case
of not recording any lower bound (FDAC-PTS is derived from FDAC-BTDo), in
the spirit of pseudo-tree search [6]. For variable selection, we used the dom/deg
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heuristics which selects the variable with the smallest ratio of domain size di-
vided by future degree. For value selection we consider values in increasing order
of unary cost W;. The variable ordering for directional arc consistency is lexico-
graphic. The tree decomposition method is based on the maximum cardinality
search (MCS) ordering heuristic [14]. The root node is chosen such that the
tree-height is minimized.

For random instances, we limit to 5 minutes the time spent for solving a
given instance (for unsolved instances, we consider that the running time is 5
min). For real-world instances, the limit is 4 hours and 4 billion of visited nodes.
Our implementation of all the algorithms is based on a free weighted CSP solver
called TOOLBAR (C code)!. The experiments were all performed on a 2.4 GHz
Xeon computer with 4 GB.

8.1 Randomly generated instances

Random instances are clique trees. We use the following basic parametric model
(w, s, ', d,t) such that each clique has w + 1 variables with domain size equal
to d, each separator has s variables, each binary constraint has the same tight-
ness equal to ¢ (the ratio between the number of forbidden tuples and d?), and
the resulting clique tree is a complete binary tree composed of 2M" — 1 cliques.
Depending on the parameters (w, s, h’), the total number of variables is equal
ton = s+ (w+1—s)(2" —1). Our tree decomposition method produces a
tree-width equal to w and a tree-height equal to h = h/(w + 1 — s) + s. We have
generated and solved (w = 9,h' = 3,d = 5) clique trees with varying separator
sizes s € {2,5,7} and varying constraint tightness ¢ € [20, 80]%. Samples have
50 instances and we report average values. Time results in seconds and memory
space in number of recorded lower bounds are given in Fig. 1. Exploiting local
cuts as in FC-BTD™ saved time (except in s = 2,¢ = 60%) and space compared
with the original FC-BTD algorithm. Introducing stronger soft local consistency
such as FDAC in BTD had mainly the effect of reducing memory usage and the
number of visited nodes (not reported here for the lack of space) significantly
compared to FC-BTD. However, FDAC-BTD* and FDAC-BTD* were slower than
FC-BTD for s € {2,5}. The reason for this is that the same subproblem can be
solved several times (up to 96 times and mean repetition in [0.0, 3.01] for all the
instances and BTD versions), and also FDAC time complexity is in O(knd?®) [10]
compared to FC in O(kd). Taking into account recorded lower bounds as soon as
possible greatly improved the results. FDAC-BTDo algorithm got the best results
other all BTD-like algorithms, up to two-orders of magnitude for s = {2, 7} com-
pared with FC-BTD. Not using lower bound recording as in FDAC-PTS could
result in very poor performance (s € {2,5}). MFDAC was unable to solve the
instances with small separator size and large number of variables (s = 2,n = 58)
in less than 5 min. On the contrary, it performed the best with s = 7,n = 28.
Finally, bucket elimination took constant time and space (d% = 5 = 1.910°).

L TooLBAR is available at the Algorithms link of the SoftCSP web site
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP.
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Fig. 1. Time in seconds (y-axis in log-scale) and memory space in number of recorded
lower bounds (the theoretical maximum is given by an horizontal line) for solving
random clique trees with clique size equal to 10 and separator size equal to 2,5, and
7. Methods are sorted from the worst (top) to the best (bottom). ¢ is the constraint
graph connectivity (100% means a complete graph).
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8.2 Real-world instances

The Radio Link Frequency Assignment Problem (RLFAP) [1] is a resource allo-
cation problem where the goal is to assign frequencies to a set of radio links in
such a way that all the links may operate together without noticeable interfer-
ence. Some RLFAP instances can be naturally cast as weighted CSPs with binary
soft constraints. We focus on SCEN-06 and SCEN-07 sub-instances which have
constraint costs in {1,10,10%,10%} and {1,102 10% 10%} respectively. For effi-
ciency reasons, we provide the optimum value as the initial global upper bound
and we used the min degree heuristic for tree decomposition of SCEN-07-10%-
30r. SUBCELAR,; instances contain a subset of the SCEN-06 variables. Instance
SCEN-06-30r has been obtained by removing 30 values per domain from the
original instance and relaxing the constraints such that the optimum is a lower
bound of SCEN-062. SCEN-07-10%-30r has been obtained by the same process
and also by removing all the constraints with costs 1 and 102. In the following
Table, we give the results as a pair (time in seconds,number of recorded LB).
BTD methods using FDAC saved a lot of space compared to FC-BTD (e.g.
68 times for SCEN-06-30r). Moreover these methods were able to solve all the
instances within the time and node limits (with mean subproblem repetition
< 3.6), except SCEN-06-30r for FDAC-BTD* (max repetition was 7785, mean
was 546.9). Bucket elimination didn’t solve any instance due to the 4 GB limit.

Method SUBCELAR, | SUBCELAR; | SUBCELAR3; | SCEN-06-30r [SCEN-07-107-30r
n=14,d=44|n=16,d = 44|n=18,d = 44|n = 99,d = 14| n = 196,d = 14
w=9h=14|w=10,h = 14|w =12, h = 15|w = 10, h = 37| w =12, h = 32

time| #goods |time| #goods |time| #goods [time| #goods [time| Fgoods

FC-BTD - 61784 |1799| 2232 - 39717 | 256 | 1664844 | - | 126332063
FC-BTD+ - 70698 |1755| 1528 - | 6791398 | 289 | 59450 | 29 80514
FDAC-BTD+| 851 | 20346 | 70 0 994 | 47564 |390| 23535 | 39 8544

FDAC-BTD* | 842 | 20346 | 70 0 1044| 47564 - 3039 67 9083
FDAC-BTDo | 103 | 20346 | 70 0 1022| 47219 |289| 24173 | 21 5703
FDAC-PTS 6258 0 70 0 1071 0 - 0 8892 0
MFDAC 165 0 60 0 - 0 - 0 - 0

9 Conclusion

In this paper, we have progressively introduce state-of-the-art soft local con-
sistency in the BTD algorithm [15,7] resulting in several new versions having
different time complexities. All versions have the same space complexity as BTD.
The combination of unrestricted soft local consistency with BTD makes the time
complexity exponential in the tree-height, instead of the tree-width in the orig-
inal BTD. However, it has been shown on randomly generated clique trees and
RLFAP subinstances (up to 196 variables) that these new versions using FDAC
can be several orders of magnitude faster than BTD using forward checking, es-
pecially when they take into account recorded lower bounds as soon as possible.

2 See http://www.inra.fr/bia/ftp/T /VCSP.
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Moreover, FDAC-BTD algorithms offer important savings in terms of memory
space actually used by the recording mechanism.

Further experiments on other problems should be done in order to better
characterize the performance of FDAC-BTD compared to FC-BTD. In the fu-
ture, we want to study and limit subproblem repetition.
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Bound arc consistency for weighted CSPs
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Abstract. WCSP is a soft constraint framework with a wide range of
applications. Most current complete solvers can be described as a depth-
first branch and bound search that maintain some form of local consis-
tency during the search. However, the known consistencies are unable
to solve problems with huge domains because of their time and space
complexities. In this paper, we adapt a weaker form of arc consistency,
well-known in classic CSPs, called the bound arc consistency and we
provide several algorithms to enforce it.

1 Introduction

The weighted constraint satisfaction problem (WCSP) is a well-known exten-
sion of the CSP framework with many practical applications. Recently, several
generalizations of the CSP’s arc consistency have been proposed for soft con-
straints, like AC* in [1]. Unfortunately, the time complexity always increases
by a factor of d (the size of the largest domain) and the memory space is at
least proportional to d. This makes these consistencies useless for problems with
long domains like RNA detection or temporal constraints with preferences. We
present here an extension of the bound arc consistency, first described for classic
CSPs in [2]. Its time and space complexities are better than the complexities of
AC* by an order of d.

Bound arc consistency (BAC*) is based on a interval representation of the
sets of values and it can treat efficiently “easy” constraints, such as precedence

vy — v —d if’l)g*’()lfd>0,

0 otherwise.

f(’UlaUQ) = {

that often show up in problems with long domains (like scheduling). We also
propose several extensions of this consistency that take into account the se-
mantics of the function, like monotonicity or convexity and we define &-inverse
consistency that can boost the cost propagation on some conditions.

Finally, we compare BAC* with AC* on the problem of non-coding RNA
detection and show the superiority of our consistency for this kind of problems.

2 Preliminaries

Valuation structures are algebraic objects that specify costs [3]. For WCSP [4],
it is defined by a triple S = (E, ®, <) where



— E =[0..k] C N is the set of costs, k can possibly be oo;
— @, the addition on E, is defined by V(a,b) € N*,a ® b = min{a + b, k},
— < is the usual operator on N.

It is useful to define the subtraction © of costs:

a—>b ifa#k,

k otherwise.

V(a,b)eNQ,aeb{

A binary WCSP is a tuple P = (S, X, D, C), where:

— & is the valuation structure,

— X ={z1,...,x,} is a set of n variables,

— D={D(x1),...,D(x,)} is the set of the finite domains of each variable and
the size of the largest one is d,

— C={c1,...,cc} is the set of e constraints.

A constraint ¢ € C can be either:

— a unary constraint: ¢: D(x;) — E (we call it ¢;), or
— a binary constraint: ¢ : D(z;) X D(z;) — E (we call it ¢;;).

We will restrict ourselves to binary WCSP, where no constraint has an arity
greater than 2. Results can easily be extended to higher arity constraints. Fur-
thermore, we assume the existence of a unary constraint c¢; for every variable,
and a zero-arity constraint (i.e. a constant), noted ¢y (if no such constraints are
defined, we can always define dummy ones: ¢; is the null function over D(x;),
cy =0).

Given a pair (v;, w;) (resp. a value v;), ¢;;(vi,w;) = k (resp. ¢;(v;) = k) means
that the constraint forbids the corresponding assignment. Another cost means
the pair (resp. the value) is permitted by the constraint with the corresponding
cost. The cost of an assignment ¢ = (vy,...,v,), noted V(t), is the sum over all
the cost functions:

V(ﬁ) = @Cij(’l}i,’l)j) (&%) @ci(vi) P cy

An assignment t is consistent if V(t) < k. The usual task of interest is to
find a consistent assignment with minimum cost. This is a NP-hard problem.
Observe that, if k = 1, a WCSP reduces to classic CSP.

3 Some local properties

3.1 Existing local consistencies

WCSPs are usually solved with a branch-and-bound tree of which each node is
a partial assignment. To accelerate the search, local consistency properties are
widely used to transform the sub-problem at each node of the tree to an equiva-

lent, simpler one. The simplest local consistency property is the node consistency
(NC*, cf. [1)).



Definition 1. A wvariable x; is node consistent if:

— Y; € D(x;),co ® ci(v;) < k and
— Ju; € D(x;),ci(v;) =0 (this value v; is called the unary support of x; ).

A WCSP is node consistent if every variable is node consistent.

This property can be enforced in time and space O(nd). Another famous stronger
local consistency is the arc consistency (AC*, cf. [1]).

Definition 2. The neighbours N(x;) of a variable x; is the set of the variables
x; such that there exists a constraint that involves x; and x;. More formally:

Va,; € X,N(SCZ) = {ZL']' cX: Cij EC}
A variable x; is arc consistent if:

— Yu; € D(x;),Va; € N(z;),3w; € D(xj),cij(vi,w;) = 0 (this value w; is
called the support of z; in v; w.r.t. ¢;;) and
— x; 18 node consistent.

A WCSP is arc consistent if every variable is arc consistent.

On a binary WCSP, arc consistency can be enforced in time O(n?d?) and in space
O(ed). The algorithm uses the operations ProjectUnary and Project described in
ALG. 1 to enforce the supports of the values and the unary supports respectively.

Algorithm 1: Operations enforcing AC*

Procedure ijectUnary(xi) [ Find the unary support of z; |
MAN +— miny, ¢ r(q;){ci(vi)} ;

if (min = 0) then return ;

co_raised «— true ;

1 foreach v; € I(x;) do ¢i(v;i) « ci(vi) © min ;

Cg «— Cz b min ;

if (c > k) then raise exception ;

Procedure Project(xh Vi, xj) [ Find the support of v; w.r.t. c;; |
min < Miny, ;e (2 ;) {cij (vi, w;)} 5
2 foreach wj; € I(x;) do c¢i;(vi, w;) < cij(vi,w;) © min ;

L ci(vi) < ci(vi) @ min ;

Ezample 1. F1G. 1(a) represents an instance of a small problem. It contains two
variables (z1 and z3) with two possible values for each one (a and b), a unary
constraint for each variable (the costs are written in the circles) and a binary
constraint (the costs are written on the edge that connects a pair of values; if
there is no edge between two values, the cost is 0). k is arbitrarily set to 4 and
ce is set to 0. As the cost of 21 = a is equal to k (first point of the definition



of NC*), this value is discarded (cf. F1G. 1(b)). Then, we notice that x2 has no
unary support (second point of the definition of NC*) and we project a cost of
1 to ¢g (cf. F1a. 1(c)). The instance is NC*. To enforce AC*, we project 1 from
the binary constraint to 7 = a as this value has no support (cf. Fia. 1(d)).
Finally, we project 1 from ¢ (b) to ¢y, as seen on FIG. 1(e).

In practice, to reach the O(ed) space complexity, the algorithm uses extra
costs differences data structures as suggested in [5]. For each value v; of each
variable involved in each binary constraint c;;, we create a new cost difference
Afj’r', initialized to 0. It stores the cost that has been projected to ¢;(v;) by the
binary constraint ¢;;. Thus the line 2 can be replaced by

Ui Vi i -
A — A @ min ;

and every occurrence of “c;;(v;,w;)” should be replaced by “c;;(vi, w;) © (A} @®
A;?j )”. Similarly, we use another cost difference in ProjectUnary for each variable:
A;. It stores the cost that has been projected from ¢; to ¢g. The line 1 can be
replaced by

A; — Ay ®@min ;

7

and every occurrence of “c;(v;)” should be replaced by “c;(v;) © (4;)”.

(a) original in- (b) prune forbid- (c) find unary sup-
stance den values (NC¥*) port using Project-
Unary(z2) (NC¥)
Co=1,k=4 Co=2,k=4
Z1 T2 x

a a

(O e (O (O e e O

(d) find support (e) find unary sup-
for z1 = b using port using Project-
Project(z1,b, z2) Unary(z1)

(ACT)

Fig. 1. Steps to enforce AC*



3.2 Bound arc consistency

We present here a consistency which is weaker than AC*. It can be enforced

with lower time and space complexities and it is called bound arc consistency
(BAC*).

Definition 3. To apply bound arc consistency, we need to change the definition
of a WCSP: the domains are now intervals Z. Fach variable x; can take all the
values in I(x;) = [lb;..ub;] (Ib; is the lower bound of the interval of x; and ub;
is its upper bound). A variable x; is bound node consistent (BNC*) if:

— (co ®ci(lb) < k) A(co ® ci(ub;) < k) and
— Ju; € I(mi),ci(vi) =0.

A wariable x; is bound arc consistent if:

— Va; € N(x;), I(wy,w)) € I*(x5), cij (Ibs, wy) = cij(ubs, wf) = 0 and
— 4t is bound node consistent.

A WCSP is bound arc consistent if every variable is bound arc consistent.

The intervals initially range over all the possible values. We shall suppose
that all the values of the variables are sorted by an arbitrary order and Vz; €
X,1b; = min{D(x;)},ub; = max{D(z;)}. Changing the representation of the
set of the values to intervals alters the expressivity of the framework: it is not
possible to describe that a value which is inside an interval has been deleted. But
this allows us to decrease the space complexity as a domain is now represented by
only two values. The ALG. 2 provides an algorithm to enforce this consistency.

Ezample 2. F1a. 2(b) describes another problem. The values are supposed to be
sorted by the lexicographic order (a < b < ¢), thus lb; = a and ub; = ¢ for z1 and
the same for 2. After a call of Project(z1, a), we get F1G. 2(c). As co @ ¢;(lby) is
equal to k, 1 = a is discarded and the lower bound of z; is updated to lb; (cf.
F1G. 2(d)). This instance is BAC* but not AC* because xz2 = b has no support.
This proves that BAC* is strictly weaker than AC*.

Theorem 1. Algorithm 2 enforces BAC* in time O(ed® + knd) and in space
O(n+e).

Proof. Correction: We will consider the following invariants:

1. on line 2, all variables are BNC*,
2. if x; is not in @, then Vx; € N(x;),1b;, ub;, lb; and ub; have a support w.r.t.
Cij-
First, ProjectUnary(z;) finds the unary support of x; and SetBNC*(z;) loops
until it finds the allowed bounds of z;, so this function enforces BNC*. At the
beginning of the algorithm, as the variables may not have this property, we call

SetBNC*(z;) for each variable x;. Thus the second invariant is respected at the
beginning of the algorithm.
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Fig. 2. Steps to enforce BAC* with oIC

This invariant may be broken by a projection from a binary constraint to a
bound of an interval; this may either lead to the fact that one of the bound is
now forbidden, or that a unary support (which was this bound) has disappeared.
This is why SetBNC* is called on x; and all its neighbours (lines 5 and 6) after
the projections of the line 4.

The first invariant could also be broken when cg increases: a bound can now
have a unary cost greater that k — cg. This event can occur after the lines 5
and 6. This explains the if beginning at line 7.

Concerning the second invariant, it is true at the beginning of the algorithm
as all the variables are enqueued. Afterwards, Project(z;, v;, ;) finds the support
of v; w.r.t. ¢;j, so SetBSupport(z;, ;) finds the supports of the bounds of x; w.r.t.
cij. Thus the line 4 enforces the second invariant.

This invariant can only be broken by SetBNC* and anytime this function is
called, the corresponding variable is enqueued. Finally, at the end of the algo-
rithm, the instance is BNC* (thanks to the first invariant) and every bound has
a support w.r.t. to each constraint in which it is involved (thanks to the second
invariant): the problem is now BAC*.

Time complexity: Thanks to [1], we know that Project and ProjectUnary
take time O(d). Thus SetBSupport also takes time O(d) and the complexity of
the line 1 is O(nd).



Algorithm 2: Algorithm enforcing BAC*

Procedure SetBAC*() [ Enforce BAC* ]

1 foreach z; € X do SetBNC*(z;) ;

Q — X; cy_raised < false ;

2 while (Q # @) do

23 — Qpop() ;

foreach z; € N(z;) do

SetBSupport(z;, ;) ; SetBSupport(z;, x;) ;
if (SetBNC*(z;)) then Q «— QU {xz;} ;

f (SetBNC*(z;)) then Q — QU {z;} ;

f (co-_raised) then

ce _raised < false ;

foreach z; € X do

9 | if (SetBNC*(z;)) then Q — QU {z} ;

B < L B NV
e e

®

Function SetBNC*(x;): boolean [ Enforce NC* ]
changed «— false ;
10 while (bi; < bs;) A (co @ (ci(biy) © A;) > k) do

11 L bi; < bi; + 1 ; changed « true ;

12 while (b’LZ < sz) A\ (Cz (&) (Ci (bsl) [S) AZ) > k) do

13 L bs; < bs; — 1 ; changed <« true ;
ProjectUnary(z;) ;

| return changed ;

Procedure SetBSupport(x;,x;) [ Find the supports of the bounds of z; w.r.t. c;; ]
| Project(zi, bis, x;) ; Project(xs, bsi, x;) ;

Each variable can be pushed in at most O(d) times into @, thus the overall
complexity of the line 6 is O(nd?). The program enters in the loop of line 3
at most O(ed) times (given a constraint ¢;;, the program can enter O(d) times
because of z; and O(d) times because of ;) thus the overall complexity of lines 4
and 5 is O(ed?). The line 7 can be true at most k times (otherwise the problem is
detected as inconsistent) and the overall complexity of the line 9 is O(k x n x d).
To sum up, this algorithm takes time O(nd? + ed? + knd) = O(ed? + knd).
However, as the while on line 2 can be true at most O(nd) times, the foreach on
line 8 cannot loop more than O(n?d) times and the complexity of the line 9 is not
greater than O(n?d?). So the actual time complexity is O(ed? +min{k, nd} x nd),
and if k > nd then it is O(n?d?).

Space complexity: For each binary constraint, we need 4 cost differences
(one for each bound of each variable) and for each variable x;, a cost difference
A;. Including the space for @, the overall space complexity is O(e + n).

3.3 Strengthening BAC*

We may want to enforce a stronger local consistency that takes into account the
constraint costs involving values inside the intervals. To keep a reasonable space



complexity, this cost will be projected directly to cg. Thus we add to the BAC*
property the @-inverse consistency (S1C):

Definition 4. The constraint c;; is @-inverse consistent if
I(vi, wy) € D(x;) x D(x;), ¢i5(vi, w;) =0

(this pair (vi,w;) is called the binary support of cz). A WCSP is @-inverse
consistent if every constraint is @-inverse consistent.

Remark that @IC is a generalization to a higher arity of the second point of the
NC* property.

When BAC* finds a support w; for {b; w.r.t. ¢;5, it projects the cost ¢;;(1b;, w;)
to the unary constraint ¢;. The constraint is now @IC (the binary support is
(Ib;,w;)), but this property is more relevant when enforced first: it directly in-
creases the cgy.

Ezample 3. Let us resume with the problem on FiG. 2(a). If no cost is men-
tionned on an edge, it is by default 1. We can see on this instance that for any
value of x7 and for any value of x5, the binary constraint yields to a cost not
less than 1. In this case, BAC* would project some binary costs to the bounds
but @IC directly projects all of this costs to cg (cf. F1G. 2(b)); this guarantees
an increase of the lower bound.

Algorithm 3: Algorithm enforcing BAC* with g1C
Procedure SetBSupport(x;,x;) [ Add ZIC to the previous procedure ]
ProjectBinary(z;, ;) ;

| Project(xs, bis, z;) ; Project(zs, bss, ;) ;

Procedure ProjectBinary(zi,z;) [ Find the binary support of ¢;; ]
mMin «— min ,, ¢ (z,;) {cij (vi,w;) © (Af; © A7 ® Aij)} s
wji€l(zy)

if (min = 0) then return ;

co _raised «— true ;

Aij — Ai]' e min ;

Cg «— Cz b min ;

if (cg > k) then raise exception ;

ALG. 3 shows the differences with the previous algorithm to enforce BAC*
with @IC.

Theorem 2. ALG. 3 takes time O(ed® + knd) and space O(n + e).
Proof. Correction: We add an invariant to the ones listed in the previous proof:

3. if z; is not in @, then Vz; € N(z;), ¢;; has a binary support.



Note that the prerequisite is the same as in the first invariant. This comes from
the fact that, once a binary support has been enforced, only the application of
SetBAC* can break it. As this invariant is enforced in the same time as the first
invariant, the same reasoning applies.

Time complexity: The procedure ProjectBinary takes time O(d?). Thus the
overall complexity of the algorithm becomes O(nd? +ed?+knd) = O(ed? +knd).

Space complexity: As we just store the cost difference, we only need O(e)
extra space to remember the cost that has been projected from a constraint
directly to cgz. The overall space complexity remains the same.

It could be possible to decrease the time complexity in d by using an appro-
priate structure that contains the sorted costs of a constraint. But this would
increase the space complexity by a factor at least of d?, which is unacceptable.
Another possibility to have a faster algorithm is to use the semantics of the
constraints to find the minimum of the function in less than O(d?) time, when
possible, to decrease the complexity. We need a definition to describe easily the
cost propagation:

Definition 5. Given a binary constraint c;;, ¢;;(vi, w;) is a border cost if v; =
lb; or v; = ub; or w; = 1b; or w; = ub;. It is an interior cost otherwise.

Given a unary constraint ¢;, ¢;(v;) is a border cost if v; = lb; or v; = ub;. It
is an interior cost otherwise.

Theorem 3. If the minimum of the binary cost functions can be found in O(d)
time, the complexity of BAC* with @IC becomes O(ed? + knd) with no memory
space increase.

Proof. The main difficulty is that the costs of the constraint can be projected
either to the unary constraints (BAC*) or to ¢y (@IC). In the latter case, the
minimum is still attained by the same tuple as all costs have uniformly decreased.
In the former case, the actual minimum may be a border cost and each of them
must be checked. There are 4(d — 1) border costs and finding the minimum
amoung interior cost, by assumption, takes O(d) time. ProjectBinary now takes
time O(d) and thus the complexity of the whole algorithm is O(ed? + knd).

This result is particularly interesting for semi-convex functions (well-known
in temporal constraints with preferences) w.r.t. a single variable, because the
minimum cost is reached by a value on the edge of the cost matrix and so can
be found in O(d) time.

Definition 6. A function ¢; (resp. c;;) is semi-convex [6] iff: Ve € E, the set
{vi € D(x;) : ci(vi) > e} (resp. {(vi,w;) € D(z;) x D(x;) : ¢ij(vi,w;) > e})
is an interval.

Informally speaking, semi-convex functions have only one peak. An example
of semi-convex function is described F1a. 3(a). The unary semi-convex functions



encompass monotonic functions (cf. F1a. 3(b)) and anti-functional constraints
[7] (cf. F1G. 3(c)). The function on F1G. 3(d) is not semi-convex. An example of
semi-convex function w.r.t. a single variable is x,y + 22 — y2. It is semi-convex
w.r.t. x but not to y.

s~ L L o

(a) semi- (b) semi- (¢)  anti- (d)  not
convex convex functional semi-
convex

Fig. 3. Characteristics of some functions

If the costs functions are semi-convex w.r.t. every variable, like z,y — x4y,
the minima can be found in constant time because they are located in the corner
of the cost matrices and we have the following result:

Theorem 4. If the minimum of unary and binary cost functions can be found
in constant time, the complexity of BAC* with @IC becomes O(ed+ kn) with no
MEMory space increase.

Proof. To find the binary support of c;; in ProjectBinary rapidly, we need to
compute nine minima and compare them: the minimum of the interior of ¢;;, the

minimum of the four borders (excluding the corners) ¢;;({b;, .) eAZ’?, cij(ub;, )8

Afjbi, cij (., 1bj) @Aél;j and ¢;; (., ubj)eA?jbj, and the minimum of the four corners

Cij (llh7 lbj) o Ai?l o Ail;] s Cij (llh7 ’U,b]) o Aigl o AZb] y Cij (’LLb17 lbj) o Azbl o Ai? and
cij(ub;, ubj) & A;‘jbi S) A?jbj. Thus, ProjectBinary and SetBSupport run in constant
time.

The same idea applies to ProjectUnary. The domain should be split in three
parts (the interior and the two bounds) and the minimum can be found and
projected to ¢y in constant time with the cost differences A;. Now we can notice
that the conditions at lines 10 and 12 are true, given a variable, at most d times,
so the overall complexity of lines 11 and 13 is O(nd).

Let us sum up the overall complexities:

ed),
ed + nd),

nd),

kn + nd),

— the line 4 takes O
— the line 5 takes O
— the line 6 takes O
— the line 9 takes O

—_———

This proves our theorem.



4 Discussion

Comparison with 2B-consistency: The definition of 2B-consistency, as de-
fined in [2] for numeric non-binary CSP (NCSP) is:

Definition 7. © € X is 2B-consistent if Ve : D(x) x D(z1) X ... x D(z,) € C if:

— J(v1,...v.) € D(x1) X ... x D(x,), c(lb,v1,...,v,.) and
— J(v1,...v.) € D(x1) X ... X D(z,), c(ub,v1,...,0.).

A NCSP is 2B-consistent iff every variable is 2B-consistent.

Obviously, a WCSP such that & = 1 which is BAC* is 2B-consistent.
Besides, it is possible to express a WCSP in classic CSP by reifying the
costs [8].

Definition 8. Consider the WCSP P = (S, X,D,C) Let P = (X', D',C’) be
the classic CSP such that:

— the set X' of variables is X augmented with a cost variable xy, per constraint:
xg for the binary constraint c;j, x for the unary constraint c;;

— the domain of x is D(x) if x is in X, E if x is a cost variable T ; the set of
the domains is D’;

— the set C' of constraints contains:
e the reified constraints c;j defined by the set of tuples

{(vi,wj,e) :v; € D(z;),w; € D(xj), e = ci;(vi,w;)}
o the reified constraints ¢, defined by the set of tuples
{(vi,e) : v; € D(x;),e = ¢;(v;)}

o an extra constraint ¢y that applies on the cost variables xy

S a+ S ah <k
ci;€C c;eC
The problem P’ has a solution iff P has a solution. The aim of enforcing a

property is usually to find inconsistencies as soon as possible. This leads to a
definition of the strength of a consistency:

Definition 9. A property T is at least as strong as another property T' iff for
any problem P, when the enforcement of T' finds an inconsistency, then T finds
an inconsistency too.

Consider now the little WCSP defined by three variables (z1, 22 and z3) and two
binary constraints (¢1 2 and ¢1,3). D(z1) = {a,b,¢,d}, D(x2) = D(z3) = {a, b, c}
(we suppose a < b < ¢ < d) and the costs of the binary constraints are described
Fi1G. 4. We set k to 2.

The reader can check the reified problem is 2B-consistent. BAC* would detect
an unconsistency by projecting the costs to x; and reducing little by little its
domain. This shows that BAC* is at least not comparable with 2B-consistency
for reified WCSPs. The existence of a more accurate comparison between these
consistencies is still an open problem.
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Fig. 4. Two cost matrices

Comparison with AC*: BAC* coupled with @IC can be strictly weaker than
AC* even for semi-convex functions. Consider for example the matrix cost in
Fia. 5. It represents the costs of a binary semi-convex function with domain
[a..c]. All the bounds have a support and thus the constraint is BAC* and @IC.
But the values b have no support and thus this instance is not AC*.

o = O Q2

= N = o
o = O 0

[SRES N~}

Fig.5. A cost matrix

The advantage of BAC with @IC is that projecting the minimum of a con-
straint requires only one operation. For the same cost propagation, AC* must
project from the binary constraints to the unary constraints and to the unary
constraints to cg. Moreover, if AC* does not project all the binary costs on the
same variable, cz may even not increase with the same amount.

To take advantage of the efficiency of BAC* with @IC and the strength of
AC* both consistencies can be combined in the same algorithm. Initially, the
set of values is represented by intervals. When they are smaller than a given
value, intervals are transformed into domains and holes are possible. This needs
only minor changes in the code in SetBSupport and SetBNC*.

Extension of BAC* for piecewise functions: BAC* can also be extended
to efficiently handle piecewise monotonic function. It is called piecewise bound
arc consistency:

Definition 10. To apply piecewise bound arc consistency (PBAC*), an interval
I(z;) becomes a set of p; intervals I*(x;),. .., IPi(x;) with ¥q € [1..p;], 19(x;) =
[162..ub?]. We also have Ib} = Ib;, ub? = ub; and Vg € [1..p; — 1], ub? +1 = [bI*.
A wariable x; is piecewise bound node consistent (PBAC*) if:

- Vq € [1pz], (Cg D Cz(lbg) < k) A\ (Cg D cz(ubg) < k) and
— v € Uyeprpyy 19(@i), ci(vi) = 0.

A wariable x; is piecewise bound arc consistent if:



— Vg € [1.pi],Va; € N(z;), I(wj,w)) € I*(x)), cij (16}, wji) = cij(ubg,wg) =0,
— it is piecewise bound node consistent.

A WCSP is piecewise bound arc consistent if every variable is piecewise bound
arc consistent.

Even for continuous function, dividing the long intervals into several smaller
ones could notably improve the cost propagation.

5 Experimental results

We have applied BAC* to the problem of non-coding RNA (ncRNA) detection.
RNA sequences can be considered as oriented texts (left to right) over the four
letter alphabet {A, C, G, U}. An RNA molecule can fold on itself through inter-
actions between the nucleotides G-C, C—G, A-U and U-A. Such a folding gives
rise to characteristic structural elements such as helices (a succession of paired
nucleotides), and various kinds of loops (unpaired nucleotides surrounded by
helices).

Thus, the information contained both in the sequence itself and the structure
can be viewed as a biological signal to exploit and search for. These common
structural characteristics can be captured by a signature that represents the
structural elements which are conserved inside a set of related RNA molecules.

We call motif the elements of the secondary structure that define a RNA
family. To a first approximation, a motif can be decomposed into strings (cf.
F1c. 6(a)) and helices (cf. F1G. 6(b)). Two elements can be separated by spacers
(cf. F1G. 6(c)). These elements of description are modeled by soft constraints
and the costs are given by the usual pattern matching algorithms (for strings
and helices) or analytic function (for spacers).

Our aim is to find all the occurrences in the sequence that match the given
motif, and the cost of these solutions. We have tried to detect the structure of
tRNA [10] (cf. F1G. 6(d)), modeled by 16 variables, 15 spacers, 3 strings and
4 helices as well as an IRE motif [11] (cf. F1G. 6(e)) modeled by 8 variables,
7 spacers, 2 strings and 2 helices on parts of the genome of Saccharomyces
Cerevisie of different sizes and on the whole genome of Escherichia coli. For
tRNA, we used two different models, the first being much tighter than the second.

For each soft constraint, there is an hard constraint that prunes all the uncon-
sistent values faster through bound arc consistency for classic CSPs. As the helix
is a 4-ary constraint, we used a generalized bound arc consistency to propagate
the costs. @IC has been enforced for spacers (which are semi-convex functions)
but not for strings nor for helices. We used a 2.4Ghz Intel Xeon with 8 GB RAM
to solve these instances. The results on our comparison between our algorithm
and the classic AC* are displayed on F1G. 7. For each instance of the problem,
we write its size (10k is sequence of 10.000 nucleotides and the genome of FEs-
cherichia coli contains more than 4.6 millions nucleotides) and the number of
solutions. We also show the number of nodes explored and the time in seconds
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Fig. 6. A few motifs

tRNA, tight definition

Size / § solutions | 10k / 16| 50k / 16 |100k / 16] 500k / 16 | 1M / 24 |ecoli / 140
AC* (nodes/time) | 23 /29 | 35 / 545 - - - -
BACH* (nodes/time)| 32 /0 39/0 51 /0 | 194 /1 | 414 /2 | 1867 /7
tRNA, loose definition
Size / ¢ solutions |10k / 84| 50k / 84 {100k / 84|500k / 111|1M / 164|ecoli / 702
AC* (nodes/time) |215 / 401|495 / 7041 - - - -
BACF (nodes/time)| 347 /0 | 1036 / 1 | 1775 / 2| 8418 / 4 |17499 / 883476 / 34
IRE
Size / 4 solutions | 10k /0 | 50k /0 |[100k /0| 500k /1 | 1M /4 | ecoli / 8
AC* (nodes/time) | 0/ 3 0/57 | 0/223 - - -
BAC* (nodes/time)| 0 /0 0/0 0/0 20 /0 44 /2 | 237/ 8

Fig. 7. Number of nodes explored and time in seconds spent to solve several instances
of the ncRNA detection problem

spent. A “-” means the instance could not be solved due to memory reasons
despite all the memory optimizations.

The reason of the superiority of BAC* over AC* is twofold. First, AC* needs
to store all the unary cost for every variable to project cost from binary con-
straints to unary constraint. Thus, the space complexity of AC* is at least O(nd).
For very long domains (in our experiment, greater than 50.000 values), the com-
puter cannot allocate sufficient memory and the program is aborted. For the



same kind of projection, BAC* only needs to store the costs of the bounds of
the domains, leading to a space complexity of O(n). A similar conclusion would
have been drawn after a comparison between BAC* and Max-CSP algorithms
like PFC-MRDAC (cf. [12]).

Second, the distance constraints dramatically reduce the size of the domains.
Concretely, when a single variable is assigned, and when all the distance costs
have been propagated, all the other domains have a size that is a constant with
respect to d. As BAC* behaves particularly well with this kind of constraints,
the instance becomes quickly tractable.

6 Conclusions and future work

In this paper we have presented a new local consistency for weighted CSPs, called
bound arc consistency. It is specially devoted to problems with large domains
and time and space complexities are lower than the well-known arc consistencies.
Several extensions have been proposed for constrains with good characteristics,
like semi-convex functions, and @IC seems particularly efficient for this kind of
functions. Finally, we showed that maintaining BAC* is much better than AC*
for the problem of ncRNA detection. In the future, we will try to implement
better heuristics for boosting the search.
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Abstract. We present a software called Myriad for MCDA, based on a
two-additive Choquet integral in the context of multi-criteria preference
handling in optimization problems. The parameters of the model are
determined from the preferential information provided by the decision
maker. The model can be used in the Eclair CP solver to solve multi-
criteria combinatorial problems. A solution can then be assessed by the
model in Myriad, the software helps the decision maker in understanding
the flaws and assets of the solution.

Keywords: Multi-Criteria Combinatorial Optimization, Choquet inte-
gral.

1 Introduction

Handling complex preferences is still difficult in combinatorial optimization prob-
lems. When preferences between solutions can be taken from an expert accord-
ing to the solutions values on a set of attributes, Multi-Criteria Decision Aiding
(MCDA) proposes several approaches for expertise modeling. Recently, we inte-
grated one of these models in CP in order enhance multi-criteria combinatorial
optimization [9,11]. In this paper, we focus essentially on the tools that are
developed in Thales to enable both constructing and using a preference model.
Multi-Criteria Decision Aiding (MCDA) aims at helping a decision maker
(DM) in making up his mind about the assessment of an option or the selection
of the best option among several alternative options, on the basis of several de-
cision criteria. This difficult task requires the use of a preference model and a
process. The model represents the way the options are assessed and compared.
It formalizes the expertise constructed from the interview of a DM. The process
formalizes the interaction between the DM and the preference model. On the one
hand, the DM provides some preferential information from which the optimal
values of the parameters of the preference model are deduced. This is the disag-
gregation phase. On the other hand, the preference model is run on prototypical
or real options, and the results are presented to the decision makers. This is the
aggregation phase. These two phases need to be instrumented by a software.
Within the Thales group, we deal with many MCDA applications:

e Evaluation problems such as trainee’s evaluation in which one shall give an
assessment of each option together with a synthesis of its main assets and
flaws,



e Acquisition problems (products’ design) in which one shall assess the quality
of a product on the basis of some criteria and provide some recommendations
about the most efficient way to improve the product,

e (lassification problems such as threat or risk assessment, or classification
from information coming from several sources, in which each option shall be
assigned to a category,

e Optimization problems in which the cost function depends on multiple cri-
teria and the set of options is so wide that it is described by combinatoric
techniques.

Since these applications concern mainly experts know-how, the underlying model
must be versatile and elaborate enough to encompass most commonly encoun-
tered decisional behaviors. Conversely, the model shall not be too complicated
so that the DM is able to understand the model and the recommendations made
from it. This leaded us to construct an approach based on Multi-Attribute Util-
ity Theory (MAUT) [2] where an overall utility is computed for each option,
and the use of the two-additive Choquet integral as an aggregation function.
The 2-additive Choquet integral is a good compromise between versatility and
ease to understand. In addition, as the MAUT model establishes a score for
a solution, it offers good integration properties for multi-criteria optimization
techniques. We present here a tool named MYRIAD developed at Thales for
MCDA applications based on a two-additive Choquet integral.

Section 2 describes the model used. The disaggregation phase is dealt with in
Section 3 whereas the aggregation one is considered in Section 4. The principles
of the integration of the Choquet integral in CP are introduced in Section 5.
The last section shows how these tools can be applied on a multi-criteria trip
planning problem.

2 General framework

For the sake of simplicity, we assume in this part that the set N = {1,...,n}
of criteria is organized in a single level of aggregation. The set of attributes is
denoted by X1, ..., X,. All the attributes are made commensurate thanks to the
introduction of partial utility functions u; : X; — [0,1]. The [0, 1] scale depicts
the satisfaction of the DM regarding the values of the attributes. An option z is
identified to an element of X = Xy x --- x X, with © = (z1,...,%,). Then the
overall assessment of z is given by

U(x) = H(ui(x1), ..., un(zy)) (1)

where H : [0,1]" — [0,1] is the aggregation function. The overall preference
relation > over X is then

rry = Ul)>U(y).



The two-additive Choquet integral is defined for (z1,...,z2,) € [0,1]™ by [5]

H(zi,...,zn) = |vi— %Z|I7ﬁ,j| 2i

i j#i

+ > Ljzinz+ Y |Tijlzvz (2)

I; ;>0 I; ;<0

where v; is the relative importance of criterion ¢ and I; ; is the interaction be-
tween criteria i and j, A and V denote the min and max functions respectively.
Assume that z; < z;. A positive interaction between criteria ¢ and j depicts com-
plementarity between these criteria (positive synergy) [5]. Hence, the lower score
of z on criterion 7 conceals the positive effect of the better score on criterion j to
a larger extent on the overall evaluation than the impact of the relative impor-
tance of the criteria taken independently of the other ones. In other words, the
score of z on criterion j is penalized by the lower score on criterion i. Conversely,
a negative interaction between criteria ¢ and j depicts substitutability between
these criteria (negative synergy) [5]. The score of z on criterion i is then saved
by a better score on criterion j.

Figure 1 shows two representations of the Choquet integral on two criteria.
The first curve represents a case where the interaction between the two criteria
is positive (they are said to be complementary). It models a preference relation
where a solution has to be good on both criteria to be considered good. On
the contrary, the right hand curve models substitutive criteria (i.e., negative
interaction). In this case, a solution is considered good by the expert as soon as
it is good on one criterion.

1
Complementary criteria modelled with Substitutive criteria modelled with
the Choquet integral the Choquet integral

Fig. 1. Level curves of the Choquet integral for the aggregation of two criteria



3 The disaggregation phase

As said earlier, the aim of the disaggregation phase is to construct a preference
model such as (1) combined with (2) from interviews of the DM. Three stages
are needed.

The first stage is the structuring phase. It consists in determining the stakes
that are involved and identifying the potential viewpoints. Cognitive maps can
be used to help in making the right criteria emerge in a bottom-up approach.
We obtain a hierarchy structure of the criteria where the root corresponds to
the overall aggregation (highest level of aggregation) and the leaves are the
attributes. This hierarchy is entered in Myriad.

The second stage aims at constructing the partial utility functions u,;. When
aggregation function H is a weighted sum, the independence of the criteria makes
it possible to separate the criteria and focus on a criterion ¢ for the construction
of its associated utility function wu;, forgetting the other criteria and the multi-
criteria nature of the problem during this phase. The MACBETH approach [1]
is a method that is consistent in a measurement standpoint for the construction
of the interval scale u;. Due to the use of an aggregation function allowing
interaction between criteria, isolating the criteria cannot be carried out so that
one cannot ask to the DM, information regarding directly ;. It has been showed
in [8] that the utility functions u; can be constructed from information relating
on the overall preference relation =, generalizing the MACBETH approach (see
Figure 2).

Let us give a little bit more details on that. An interval scale is given up
to a dilation and a shift. In order to fix the two degrees of freedom in each
utility function w;, the idea is to identify two elements of X; that are perfectly
satisfactory for the DM (denoted by 1;) and unacceptable for the DM (denoted by
0;), and to fix u;(1;) = 1, u;(0;) = 0. We have shown in [8] that asking questions
about the difference of satisfaction between the two acts (x;, 0n\;) and (y;, Ony;),
for all z;,y; € X; enables us to construct u; whatever the interaction between
criteria may be. In the Macbeth methodology, the decision maker is asked to give
an assessment of the difference of satisfaction between any two acts (z;, 0n\;)
and (y;,0n;) (for all z;,7; € X;) in the ordinal scale composed of 6 elements:
{very small, small, mean, large, very large, extreme} [1].

The last stage concerns the determination of the parameters of the aggrega-
tion model, that is the importance and interaction indices of the two-additive
Choquet integral. The DM enters in MYRIAD preferential information about
each aggregation level composed of a mix of the following three types of data.

e the DM prefers an option to another one;
e the DM gives an overall assessment to an option;

e the DM gives some information directly the importance or the interaction
indices, for instance a criterion is more important than another one, a crite-
rion is important (i.e. v; > 1/n), or the interaction between two criteria is
positive.

An algorithm then finds the optimal parameters associated with previous infor-
mation. The algorithm implemented in MYRIAD is close to the method devel-
oped by J.L. Marichal [5]. The information provided by the DM may be incon-



sistent in the sense that there might be no value of the parameters satisfying the
information provided by the DM. In this case, the preferential information that
is at the origin of the inconsistency are extracted and showed to the DM.

Once the model is thoroughly specified, an interpretation of this model can
be displayed to the DM, in terms of the most/less important criteria, and the
pairs of criteria for which the interaction is positive/negative. The DM has then
a better insight on the preference model obtained. He can turn back to stage 2
or 3 if he desires to change the model.

4 The aggregation phase

The aggregation step is essential for Evaluation or Acquisition problems. It con-
sists in applying the preference model obtained previously on one or several
options. This step is not restricted to the computation of the utilities of each
option on all elementary criteria and aggregation functions. In order that the
assessments and comparisons carried out during the aggregation phase help the
DM in validating or rejecting some preference information, the results must be
explained. The DM wants to understand precisely the results of the computa-
tions by the model. The major point concerns the aggregation part.

A graphical representation of the aggregation by the two-additive Choquet
integral is presented in MYRIAD. Let us look at expression (2). From the mono-
tonicity properties on the importance and interaction indices, one has

, 1
Vie N, vi—52\1i7_,< >0,
J#i
1
oL+ Y |L;,¢|+Z vi—gzm,j =1
I; ;>0 I; ;<0 i VE:D)

Hence all coefficients appearing in (2) are non-negative and they sum-up to one.
Expression (2) is thus a convex sum H(z) = >, ayhi(2), where only three types
of decisional behaviors are present: z; A z; (intolerant behavior characterizing
a positive synergy between i and j), z; V z; (tolerant behavior characterizing a
negative synergy between i and 5), and z; (linear term corresponding to criterion
i taken alone).

One can “plot” the result of H in a pie-chart in which each segment represents
an elementary behavior hy (see Figure 6). The aperture of the segment related
to hy is 2may, and this segment is covered at rate hg(z). Hence, the surface
covered by this segment is aghg(z) so that the overall covering of the disk is
precisely H(z). This graphical representation makes it easy to understand why
result H(z) is rather high (the disk is pretty filled up) or low (the disk is almost
empty). This graphical representation is displayed in MYRIAD.

A semantic explanation is also determined. This argumentation aims at pre-
senting to the elementary decision behaviors that are really at the origin of the
evaluation made [7]. These arguments are returned in one or more sentences in

MYRIAD (see Figure 6).

In some circumstances, the options are not fixed and can be modified and
improved in some ways. We can think of trainees that can improve themselves,



or of an industrial product that we want to be as close as possible to the cus-
tomers’ needs. In this case, the DM is not only interested in an assessment of the
options. This appears essential in the acquisition cycle. Some recommendations
shall provide the most promising improvement ways. We develop an approach
based on a sensitivity analysis performed on each coalition of criteria [4, 6]. The
determination of the criteria on which it is the most rewarding to improve an
option is far more complicated than just itemizing the criteria on which the
option has bad marks. Actually, it depends on the aggregation function H. If
the aggregation is the minimum operator (the DM is very intolerant), it is clear
that the only criterion on which an act shall be improved is the criterion that
has the smallest score. If the aggregation function is the maximum (the DM is
very tolerant), the option shall be improved first on the criterion that has the
largest score. Finally, if the aggregation function is a weighted sum, acts shall
be improved first on the most important criterion. In [6], we have defined an
indicator w4 (H,z) which measures the worth to improve option x w.r.t. H on
some criteria A as follows

B YH((1-7)za+7,23n4) — H(z)
wA(H,m)—'/O Fa(riz) dr

where E4(7,z) is the effort to go from the profile z to the profile ((1 — 7)xa +
7,2n\4)- Function w4 (H, z) depicts the average improvement of H when the cri-
teria of coalition A range from x4 to 14 divided by the average effort needed for
this improvement. We assume generally that E4 is of order 1, that is E4(r,z) =
7Y iea(1=x;). The expression of wa(H, z) when H is a Choquet integral is given
in [6]. We recommend the DM to improve of coalition A for which wa(H,z) is
maximum (see Figure 7).

5 Optimization phase

For combinatorial optimization problems, the integration of the general Cho-
quet integral in Constraint Programming has been introduced in [9]. The same
principles can be used to integrate any multi-criteria aggregation function [12].
Integrating this model reduces the multi-criteria optimization problem into a
mono-objective maximization problem.

In summary, we consider n utility variables uy,...,u, € [0,1] that are con-
nected with the attributes of the problem by the utility functions (modeled with
piecewise linear constraints in our case). The global evaluation that will be op-
timized is modeled by the variable y € [0, 1]. We aim to establish and propagate
the equality between the y variable and the aggregation of wq,...,u, with a
function H. Mathematically, we want to enforce:

Let us denote Aggregation(H,y,{u1,...,u,}) a global constraint that aims at
enforcing this relation. The propagation of Aggregation can be achieved by main-
taining the arc-B-consistency on this constraint. Let us denote [z, Z] the domain

of a variable .



Definition 1. (Arc-B-consistency) [10]

Given a constraint ¢ over q variables x1,...,%4, and a domain d; = [x;,T;)
for each variable x;, ¢ is said to be “arc-B-consistent” if and only if for any
variable x; and each of the bound values v; = x; and v; = T;, there exist val-
UES U1y e vy Vi1, Vi1, Ug i dyy. .. di1,dit1,...,d, such that c(vy,...,v,)
holds.

Arc-B-consistency is weaker than the arc-consistency property. This is verified
when, for each value in the domain of each variable, there is a set of values in
the domain of the other variables that verifies the constraint.

If we suppose the monotonicity and the continuity of the function H, we
can verify that an Aggregation constraint is arc-B-consistent by checking two
conditions per variable:

Proposition 1. (Arc-B-consistency with respect to the Aggregation constraint)
Let ‘H be an increasing continuous aggregation function and C =Aggrega-
tion(H,y,{ur,...,u,}) be an Aggregation constraint. C is Arc-B-consistent if
and only if the following four conditions hold:

(A) y > H(u, - un)
(B) y < H(ur, ...

)
(0) Vk€{17n} : H(mw'-:ukfhu_k:mw'wm)Zg
(D) Vk€{17n} :H(U_h---:Uk717m=uk+17---7u_n)S?

Note that for such a continuous function on numeric variables then checking
arc-B-consistency also ensures that the constraint is arc-consistent [10].

Nevertheless, integrating a multi-criteria aggregation function in a CP solver
raises the problem of defining search heuristics to quickly find good solutions.
Since criteria are often contradictory, it is difficult to find a single search strat-
egy that is good for all of them. In [11], we proposed a search framework that
alternates various search strategies (one per criterion) to build more efficient and
robust algorithms in multi-criteria optimization.

6 Application to the trip planning problem

We present an application of the softwares on a trip planning problem. This
problem consists in constructing a tour in a country during a given number of
days. A tour is composed of cities (one city per day in the tour), activities in the
cities (two per day) and hostels. It has to verify maximum distance constraints
between consecutive cities as well as an overall maximum distance constraint for
the tour. Each activity is classified in one category among { Sightseeing, Museum,
Sport, Entertainment}. The objective here is to find a tour that offers various
kind of activities, as much comfort as possible in the hostels and minimizes the
accommodation costs.

The quality of a tour is given by a two level multi-criteria model. First of
all, a tour is assessed with respect to the diversity of its activities. Then the
overall evaluation aggregates the activities aspects with the cost and comfort
considerations.



6.1 The disaggregation phase

The criteria hierarchy is given in Figure 2. Letters u, ¢ and a denote universes
(i.e. attributes), criteria and aggregation functions respectively.

MYRIAD 1.2 - holidays2.spl W=

Fichier Outils  pide

Fig. 2. Criteria hierarchy.

Utility functions The evaluation on an activity criterion relies on the aver-
age number of time this class of activity is planned per day. The same utility
function is given for each class. For a given class of activity, the 0 element cor-
responds to no occurrence in the planning and the 1 element corresponds to one
occurrence per day in average. For a class of activity i, the DM feels that the
difference between (0;,0_;) and (0.25,0_;) and the difference between (0.5,0_;)
and (1;,0_;) are small. On the contrary, the difference between (0.25,0_;) and
(0.5,0_;) is considered large. Hence, considering for instance criterion “Sight-
seeing”, we obtain the following values : u1(0) = 0, 41(0.25) = 0.2, u;(0.5) = 0.8
and uy(1) = 1 (see Figure 3). We obtain similar utility functions on the other
activity criteria.

Regarding the other criteria, the cost criterion relies on the average room
price per day. For the comfort point of view, only the minimum of all hostels
category in the tour is considered. According to these attributes, the second
stage of the disaggregation phase results in the utility functions of Figure 4.

Aggregation “Activities” Considering the aggregation of the vector of activ-
ity criteria (Sightseeing, Museum, Sport, Entertainment):
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Fig. 3. The utility function on criterion “Sightseeing”.

e The DM first expresses a complementarity between all criteria, giving
four examples of comparisons between virtual alternatives:

Vie{1,...,4},U((1;,0-;)) < U((0.25,0.25,0.25,0.25)
e Then, the DM gives the following examples:
U(1,0,1,1) > U(0.5,0.5,1,1)

U(0,1,1,1) > U(0.5,0.5,1,1)

to express redundancy between Sightseeing and Museum. Two other
similar comparisons are given to express redundancy between Sport and
Entertainment.

This gives the preferential information used to compute the parameters of the
2-additive capacity (Figure 5).

The following tables give respectively the Shapley index v; (relative impor-
tance of criterion i) and the interaction index I; ; obtained.

criterion| v; I; ; Sight. Mus. Sport Ent.
Sight. |0.25 Sight.] 0 -0.15 0.175 0.175
Mus. 0.25 Mus. 0 0.175 0.175
Sport  [0.25 Sport, 0 -0.15
Ent. 0.25 Ent. 0

From these results we can conclude that all criteria are equally important.
Considering the interaction indices:

e Asrequired, the pairs of criteria (Sightseeing, Museum) and (Sport,Entertain-
ment) are redundant. This means that the Activities criterion will be well
satisfied if in the above pairs, one of the criteria is satisfied.
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Fig. 4. Utility functions on criteria “Cost” and “Comfort”.

e Four pairs of criteria have a positive interaction, which means that for each
pair, both criteria need to be simultaneously satisfied in order to get a good
evaluation for Activities.

e There is no veto nor favor among the set of criteria. This means that one
cannot make a quick analysis to see whether the richness is either good or
bad, looking only at one or two criteria.

Aggregation Evaluation Evaluation aggregates the Activities, Cost and Com-
fort criteria.

e First of all, the DM stipulates that Activities is a veto:

U0,1,1)=0
1
Crit. Sightsesing  [1.0] Crit. Sightseeing  [0.25

Crit. Museums oo D Crit: Museums 0.25
< v

Crit. Bport 0o Crit. Sport 0.25

Crit. Entettainment 1010 Crit. Entettainment |0.25

o |

Supprimer J Annuler

Fig. 5. Example of preferential information.



In other words, a trip that does not propose any activity is not interesting,
whatever may be the scores on the other criteria.

e This information also brings:
U(0.3,0.6,0.6) < U(0.6,0.3,0.3)

but, reducing the performance of criteria Cost and Comfort in the right
alternative causes the left one to be preferred:

U(0.3,0.6,0.6) > U(0.6,0,0)
e Then, the DM indicates the following relative importance for the criteria:
Importance(Activities) > Importance(Cost) > Importance(Comfort)

e Finally, he specifies the tradeoff between Cost and Comfort with the
following comparison on the attribute space:

(1,1,1,1,50,2) = (1,1,1,1,90, 4)

The parameters calculated for these examples are given in the following tables:

criterion| v; I; ; Act. Cost Comf.
Act. 0.64 Act. 0 0.4 0.32
Cost 0.2 Cost 0 0
Comf. |0.16 Comf. 0

As for the previous aggregation, Myriad provides an Analysis of these param-
eters. Concerning the importance of criteria, it is clear that the most important
criterion is Activities. The less important one is Comfort. The most complemen-
tary pairs of criteria are (Act.,Cost) and (Act.,Comf.). Activities is a strict veto
and there are also lighter veto effects on Cost and Comfort. This mean that
as soon as one criterion is not well satisfied (especially if it is Activities), the
solution cannot be good.

This analysis helps in knowing what are a priori the most important criteria
and ways to combine criteria in order to find good solutions or design new
products.

6.2 Optimization phase

The above preference model is then implemented in the Eclair solver. The im-
plemented constraint model is quite simple and mainly based on the element
constraint. These models are run on an instance composed of 11 cities and 2 to 6
activities and hostels per city to find a 6 day trip planning. An optimal solution
is found for this evaluation in 40 s. with the following characteristics:

Criterion  |Value
Attribute Value Sightseeing | 0.8
Nb. Sightseeing activities 3 Museums 0.8
Nb. Museums 3 Sport 0.8
Nb. Sport activities 3 Entertainment| 0.8
Nb. Entertainment activities| 3 Activities 0.8
Accommodation cost 410 Cost 0.62
Minimum comfort 3 Comfort 0.8
Evaluation | 0.73




The DM can then simply take the solution if it is considered satisfactory,
or he can operate an aggregation phase in Myriad to investigate further on this
solution.

6.3 The aggregation phase

As said before, the aggregation phase is mainly used on Evaluation or acquisition
problems to compare solutions.

In optimization, the DM can go a little deeper in the solution. Figure 6
shows an explanation of the overall assessment of the solution found with the
same technique as described in [7], together with the pie chart we told about
in Section 4. The pie chart clearly shows the segment on which the solution
behaves well or not. The DM can react on that. If he disagrees on some points,
he can go back to the disaggregation phase and change or enrich the preferential
information. This is an interesting tool to make the DM react about the model.

result.xml - Simulation Solution 12 (Analyse individugllz) - E-MYRIAD.
Fichier #nalyses  Options

A Agrégation : Overall Evaluation 1 Paints farts | Points faibles | Intérsts 3 s'ameliorer par coslitions
E-A Acthvities ) Utilite
E-2 Crit. Sightsesing
- signtseeing Le jugement de Solution 12 suivant cet agrégateur est BON 2
- SR SR 3% solution 12 est BON puisque TOUS | de Soluton 12 sont BOK
Lt Musoums olution 12 es puisque es scores de Solution 12 sont BO|
€ Crit. Sport Solution 12 n'est pas EXCELLENT puisgue Solution 12 n'est pas en moyenne EXCELLENT. Cecia
- Crit. Entertainment Eté partiellement atténué par le fait gue Solution 12 n'est pas EXCELLENT sur le critére Cfit. Cost
®-C Crit. Cost i est new imoocbant :
@2 Ot Comfart o Complémentarité de *Activities' et "Crit. Cost'

Pondsration de : “Activities'

Complémentarité de "Activities' et "Crit. Comfort'

Analyse indrit it ion Solution 12 - Modele Myriad : holidays3.spl

Fig. 6. Assessment of the optimization result.

When the DM validates the evaluation made, he may be interested in the
sensibility analysis so that to help him in enriching his data to allow better
solutions to be constructed. He wants to know on which criteria it is the most
rewarding to improve the solution in order to improve as much as possible its
evaluation. To this end, we present the values of the worth indicator w described
in Section 4.

Coalitions worth
Cost 0.65
Sightseeing & Museums & Sport & Entertainment & Comfort| 0.37




The recommendation is that the solution should be improved first on “Cost”.
This may not always be the criterion on which the solution has the worst score.
It has a strong positive synergy with Activities and has a smaller score than
this criterion so this recommendation makes sense. All the other criteria have
the same satisfaction level and are implied in many complementarity phenom-
ena. Hence, improving only one will not improve the conjunctive decision terms
between them. It is more rewarding to improve them simultaneously than only
one, even for a higher value.

Thus, the DM has greater interest in looking for new 3* hostels with better
prices than for new activities.

result.xml - Simulation Solution 12 (Analyse individuelle) - E-MYRIAD

Fichier Analyses  Gptions

&)= (7
A Evaluation Agrégation ; Overall Evaluation | Points forts | Paints faibles Intéréts a s'ameliorer par coalitions
B A Activities
B-€ Crit. Cost Crit. Cost =
B € Crit. Comfart E 65%
Crit, Sightseeing, Crit. Museums, Crit. Sport, Crit. Entertainment, Crit. Comfort :J
37%

Analyse individuelle simutation Solution 12 - Mod@le Myriad : holidays3.spl

Fig. 7. Promising improvement recommendations for the solution

7 Conclusion

In this paper we tried to introduce the modeling and solving of a multi-criteria
optimization problems as it is performed in Thales. Although the followed multi-
criteria methodology is not new in MCDM), we tried to illustrate it on a detailed
case study in order to give a good view of its principles to the CP community.
We also recalled that this model integrates quite naturally in CP as it uses a
single objective function that aggregates the problem criteria.
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Abstract. The Semiring Constraint Satisfaction Problem (SCSP) frame-
work is a popular approach for the representation of partial constraint
satisfaction problems. In this framework preferences can be associated
with tuples of values of the variable domains. Bistarelli et al. [1] define
an abstract solution to a SCSP which consists of the best set of solution
tuples for the variables in the problem. Sometimes this abstract solu-
tion may not be good enough, and in this case we want to change the
constraints so that we solve a problem that is slightly different from the
original problem but has an acceptable solution. We propose a relaxation
of a SCSP, and use a semiring to give a distance measure between the
original SCSP and the relaxed SCSP.

1 Introduction

There has been considerable interest over the past decade in over-constrained
problems, partial constraint satisfaction problems and soft constraints. This has
been motivated by the observation that with most real-life problems, it is difficult
to offer a priori guarantees that the input set of constraints to a constraint solver
is solvable. In part, this is because many real-life problems are inherently over-
constrained. In part, this is also because it is difficult for human users to peruse
a given set of constraints that might have been obtained for a given problem to
determine if it is solvable. In the general case, constraint solvers must be able to
deal with problems that are potentially over-constrained. The key challenge in
dealing with an over-constrained problem is identifying appropriate relazations
of the original problem that are solvable. Early approaches to such relaxations
largely focussed on finding maximal subsets (with respect to set cardinality) of
the original set of constraints that are solvable (such as Freuder and Wallace’s
work on the MaxCSP problem [2]). Subsequent efforts considered more fine-
grained notions of relaxation, where entire constraints did not have to be removed
from consideration. Examples of such efforts include the HCLP framework [3],
Fuzzy CSPs [4] and Probabilistic CSPs [5].



Bistarelli et al. [1] proposed an abstract semiring CSP scheme (henceforth re-
ferred to as the SCSP framework) that generalized most of these earlier attempts,
while making possible to define several useful new instance of the scheme. The
SCSP scheme assumes the existence of a semiring of abstract preference values,
such that the associated multiplicative operator is used for combining preference
values, while the associated additive operator is used for comparing preference
values. While a classical constraint defines which combinations of value assign-
ments to the variables in its signature are allowed, an SCSP constraint assigns
a preference value to all possible value assignments to the variables in its sig-
nature. These preferences implicitly define a relaxation strategy (“try to satisfy
the constraint using the most preferred tuples, else try the next most preferred
tuples” and so on). Note that the actual mechanism is somewhat more involved
than this informal expository description, because the semiring preference values
are partially ordered in the general case.

Our aim in this paper is to define how an SCSP might be relaxed. At first
blush, this might appear counter-intuitive, since an SCSP is intended to define
how soft constraints are relaxed. We will explain our motivations by describing it
in terms of a generic optimization problem (C, O), defined by a set of constraints
C and an objective function O. Assume that we have been given a lower bound
on the value of the optimal solution (e.g., a minimal threshold on profit by
a business unit set by management). Consider a situation where the optimal
solution obtained fails to meet this threshold (e.g., the optimal profit figure falls
short of the profit target). We are interested in seeking a new (and potentially
relaxed) set of constraints C’ that is minimally different from the original set C'
(under some notion of minimal difference that we will leave undefined for the time
being), such that the revised optimization problem (C’,0) admits an optimal
solution that satisfies the threshold. The revised (or relaxed) set of constraints C”
is potentially very useful, because it can point to minimal changes in the physical
reality being modeled by the constraints, which, if effected, would permit us to
meet the threshold on the value of the objective function.

In this paper, we attempt such an exercise in the context of SCSPs. A SCSP
does not have an explicit objective function. Objectives are implicitly articulated
(in a distributed fashion) via the preferences over tuples in each SCSP constraint.
Instead of an optimal solution, we are able to articulate the preference values of
the (potentially many) “best” solutions to an SCSP. The version of the problem
that we address in this paper is as follows. Consider an SCSP P and a threshold
0 on the preference value of the “best” solution(s) to P. Assume that the “best”
solutions to P fall short of this threshold. We define a mechanism by which we
may “minimally” alter (i.e. relax) P to obtain a P’ such that it admits a “best”
solution that meets this threshold. We will use as a running example a problem
involving a hotel that is currently unable to attain a five-star rating and that is
interested in determining the minimal changes required to its infrastructure in
order to achieve such a rating. In this example, the star rating of the hotel is
modeled via semiring preference values.



The rest of this paper is organized as follows. In Section 2 we describe the
SCSP framework. In Section 3 we describe our proposals by defining what a good
enough solution is, and how to find a suitable relaxation for a SCSP. In Section
4 we compare our proposal with the Metric SCSPs of [6]. Section 5 contains the
conclusion and a discussion of our future research.

2 The SCSP Framework

When we deal with constraints, the type of semirings that are used are called c-
semirings. Bistarelli et al. [1] define a c-semiring, a constraint system, a constraint
and a constraint problem w.r.t. c-semirings. They also define combination and
projection operations in order to define a solution to a SCSP. These definitions
follow below.

Definition 1. A c-semiring is a tuple S = (A, +, X, 0, 1) such that

— A is a set with 0,1 € A;
— + is defined over (possibly infinite) sets of elements of A as follows 3:
o forallac A, Y ({a}) =a;
e Y (0)=0and > (A) =1;
e Y (UAiel)=>({D_(A4;),i € I}) for all sets of indices I (flattening
property);
— X is a commutative, associative, and binary operation such that 1 is its unit
element and 0 is its absorbing element;
— x distributes over + (i.e., for any a € A and B C A, a x Y .(B) =

S ({a x b,b e B})).

The elements of the set A are the preference values to be assigned to tuples
of values of the domains of constraints. The operator x is used to combine
constraints in order to find a solution (i.e. a single constraint) to a SCSP, and
the operator + is used to define the projection of a tuple of values for a set
of variables onto a tuple of values for the variables in a constraint. It is now
possible to derive a partial ordering <g over the set A: a <g Biff a + 3 = .4
This partial ordering will be used to to distinguish the maximal solution(s) in
our constraint problems. The element 0 is the minimum element in the ordering,
while the element 1 is the maximum element.

Definition 2. A constraint system is a 3-tuple CS = (Sp, D, V), where S, =
(Ap, +p, Xp, 0, 1) is a c-semiring, V is an ordered finite set of variables, and
D is a finite set containing the allowed values for the variables in V.

For each tuple of values (of D) for the involved variables of a constraint, a
corresponding element of A, is assigned.

3 When + is applied to sets of elements, we will use the symbol > in prefix notation.
4 Singleton subsets of the set A are represented without braces.



Definition 3. Given a constraint system CS = (S,,D,V), where S,=(A,,
+p, Xp,0,1), a constraint over CS is a pair ¢ = (def?, con.) where con. CV is
called the type of the constraint, and def? : DF — A, (where k is the cardinality
of con.) is called the value of the constraint.

We now have the building blocks required to define a SCSP.

Definition 4. Given a constraint system CS = (Sp,D,V), a Semiring Con-
straint Satisfaction Problem (SCSP) over CS is a pair P = (C, con) where C is
a finite set of constraints over CS and con = |J,cc con. We also assume that
(def? ,conc) € C and (def? ,con.) € C implies def? = def?,.

c2)

Consider the following example that is used throughout this paper.

Ezample 1. A hotel chain acquires a star rating that is an accumulative rating
of the different branches. Currently it has a four star rating and it aims for a
five star rating. There are various renovations that can be done at branches to
increase the rating of the hotel: 1) Lay new carpets, 2) Upgrade a swimming
pool, or 3) Paint the building,.

The manager of the hotel chain has to choose which (minimal) renovations to
do at which branches under certain restrictions (such as the budget, renovations
needed at each branch, and the constraints of the renovating teams). This prob-
lem can be expressed as a CSP. We can then add a semiring structure to allow
the manager to express his preferences for particular tuples of domain values
of the constraints. The hotel chain consist of three branches which are denoted
by X, Y and Z. To avoid unnecessary disruptions, the manager wants at most
one renovation job at a time to be performed at a particular branch, and as few
renovation jobs in total as possible.

This problem can be expressed as a SCSP: a constraint system CS = (S,
D,V) and a SCSP P = (C,con), where V = con = {X,Y,Z}, D = {0, 1,2, 3},
C ={c1,cz,c3}, and S, = ({0,0.25,0.5,0.75, 1}, max, min, 0, 1).

The value of a decision variable indicates which job is to be done at a par-
ticular branch: let re-carpeting be represented by the value 1, pool renovation
by the value 2, and painting by the value 3. The value 0 represents no job being
done at a particular branch. A renovation job with a higher value will contribute
more towards a higher star rating. Assume there are three binary constraints,
c1 = (defl AX,Y}), ca = (defl,,{Y,Z}), and c3 = (defE,{X, Z}). The tuples
in the domains of these constraints together with their preference values (i.e.
associated c-semiring values) are given in Table 1.

Note that the manager can assign any value in the set of the c-semiring to
a tuple. His choice of value represents the desirability of that particular tuple.
Consider the entry def? ({0,2)) = 0.75. The tuple (0,2) is a tuple of values for
constraint ¢y that represents the case where no renovation is to be done at branch
X while branch Y is to be painted. The assigned preference value of 0.75 is high
and this indicates that it is an option that is preferred, for instance, to the one
represented by the tuple (1, 1) with its value of 0.5. This tuple ({1, 1)) represents
the case where both branches X and Y are to be re-carpeted. Also consider the



Table 1. Constraint Definitions

v [def?, (D] det, ()] ez, (0)
(0,0 0.25 0 0
0, 1) 05 0 0
(0,2)] 0.75 0 0.75
0,3 1 0.75 0
(1,0)] 05 0 0
(L,1)] 05 0 0.5
(1,2)] 075 | 0.25 0
1,3 0 0.5 0
(2,0)] 0.75 0 0.75
2,1 075 | 025 0
2,2 0 0.5 0
2,3 0 0.5 0
3,00 1 0.75 0
3,1 0 0.5 0
3.2)] 0 0.5 0
3,3 0 0.5 0

assigned preference values for constraint cz (the values in the last column): the
manager prefers either one of the tuples (0,2) or (2,0) over any other tuples.
These tuples represent the cases where the swimming pool at either branch X
or branch Z is to be upgraded. Laying new carpets at both branches X and Z
is the only other acceptable choice for constraint c3. A tuple with an associated
value of 0 is highly undesirable.

The values specified for the tuples of each constraint are used to compute
values for the tuples of the variables in the set con according to the semiring
operations; multiplication and addition. The multiplicative operation is used
to combine the c-semiring values of the tuples of each constraint to get the c-
semiring value of a tuple for all the variables, and the additive operation is used
to obtain the value of the tuples of the variables in the type of the problem.

Definition 5. Given a constraint system CS = (S,, D, V) where V is totally
ordered via <, consider any k-tuple t = (t1, ta, ..., tr) of values of D and two
sets W = {wy, ..., wp} and W' = {w}, ..., w),} such that W C W C V and
w; 2w; if i <j and w; < wj ifi <j. Then the projection of t from W to W',
written t |\, is defined as the tuple t' = (t|, ..., t,,) with t; = t; iff w} = w,.

The following definition defines the operation of combining two constraints to
form a single constraint. We will use this operation to combine all the constraints
in a problem into a single constraint.

Definition 6. Given a constraint system CS = (S,, D, V) where S, = (A,,

+ps Xp, 0, 1) and two constraints c; = (def? , conc,) and co = (deft,, conc,)



over CS, their combination, written ¢1 ® ca, is the constraint ¢ = (defP, con.)
with con, = cone, U cone, and def?(t) = def? (t 122221) Xp defP (t lggﬁ; ).

The operation ® is commutative and associative because x is. We can extend
the operation ® to more than two arguments, say C' = {cy, ..., ¢, }, by performing
€1 ® 2 ® ... ® ¢y, which we will denote by (& C).

Definition 7. Given a constraint system CS = (S,, D, V), where S, = (A,
+p, Xp, 0, 1), a constraint ¢ = (def?, con.) over CS, and a set I of variables
(I C V), the projection of ¢ over I, written ¢ |} I, is the constraint ¢ = (def?,
coner) over CS with cone: = I N cone and defy(t') = 301y come  _yy defE(2).

INcone

A solution to a SCSP can now be defined.

Definition 8. Given a SCSP P = (C, con) over a constraint system CS, the
solution of P is a constraint defined as Sol(P) = (Q C).

A solution to a SCSP is a single constraint formed by the combination of
all the original constraints of the problem. Such a constraint provides, for each
tuple of values of D for the variables in con, a corresponding c-semiring value.
We now consider the definition of an abstract solution that consists of the set of
k-tuples of D whose associated c-semiring values are maximal w.r.t. <g,.

Definition 9. Given a SCSP problem P = (C, con), consider Sol(P) = {(def?,
con). Then the abstract solution of P is the set

ASol(P) = {(t, v) | def?(t) = v and there is no t' such that v <g, def?(t')}.
Let ASolV(P) = {v | (t,v) € ASol(P)}.

Ezample 2. We now compute an abstract solution for our hotel chain example.
The first step is to combine the first and second constraints, ¢; and co. Table
2 shows the c-semiring values associated with each tuple in the constraint ¢} =
¢1 ® co. Then we combine the constraint ¢} and the constraint cs: ¢, = ¢] ® cs.
See Table 3. We now have an abstract solution, ASol(P) = {((0,2,2), 0.5),
({0,3,2), 0.5)}, with ASolV(P) = {0.5}. Thus the best solution tuples provide
a preference value of 0.5.

3 A Relaxation of a SCSP

We are interested in the case of a SCSP for which the abstract solution is not con-
sidered to be good enough. For example, the manager in our hotel chain example
may require a better solution. For instance, a solution tuple with a preference
value of at least 0.75. The constraints of a problem model requirements that
may be relaxed. We attempt to find a satisfactory solution to a relaxed version
of the original problem. In this section we define when a solution is regarded
to be good enough, and how to find suitable relaxations of the constraints of a
SCSP.



Table 2. Definition of Constraint c}

t deff/1 (t)
(0,0, 3) 0.25
(0,1,2) 0.25
(0,1,3) 0.5
(0,2, 1) 0.25
(0,2,2) 05
(0,2, 3) 0.5
(0,3,0) 0.75
(0,3,1) 0.5
(0, 3,2) 0.5
(0,3, 3) 0.5
(1,0, 3) 0.5
(1,1,2) 0.25
(1,1,3) 05
1,2,1) 0.25
1,2,2) 0.5
(1,2,3) 05
(2,0,3) 0.75
(2,1,2) 0.25
(2,1,3) 05
(3,0, 3) 0.75

all other tuples 0

Table 3. Definition of Constraint c)

t deffé (t)
(0,1,2) 0.25
(0,2,2) 0.5
(0, 3,2) 0.5
(1,2,1) 0.25

all other tuples 0




Definition 10. [6] Let a good enough (abstract) solution for a SCSP P be such
that some element in ASolV(P) is in the region § where 3 = {veA : 3 <s, 7}

If ASolV (P)N 3 # 0 then we have found a good enough solution for a prob-
lem P. If this is not the case, we want to find a relaxation P’ of P, such that
ASolV (P')N 3 # 0. P’ should be as close to the original P as possible, that is,
P’ should be such that there does not exist any other relaxation of P that is
closer to P than P’.

We first define a relaxation of a single constraint.

Definition 11. A constraint c; = <deff, conj) is called a c;-weakened constraint
of the constraint ¢; = (defF, con;) iff the following hold:

— con; = con;

— for all tuples t, def}(t) <s def}(t);

— for every two tuples t1 and to, zfdef (t1) <s, def{(t2), then def}(t1) <s,
de f (t2).

Note that a constraint c is itself a c-weakened constraint.

We want to represent the closeness of a c-weakened constraint to the con-
straint ¢ by associating a c-semiring value with the c-weakened constraint. Every
c-weakened constraint of a constraint ¢ (including the constraint ¢) will be as-
signed such a distance value.

Definition 12. Given a constraint system C'S = (Sp, V, D) and a SCSP P =
(C, con), for each c € C, let W, be the set containing all c-weakened constraints,
i.e. We = {c¢j | ¢; is a c-weakened constraint}. Let Sq = (Aq, +a, Xa, 0, 1) be
a c-semiring and wdef? : W, — Aq be any function such that

— wdefd(c;) =0 iff c; = ¢;

— Vei, ¢ € We, if for all tuples t deff(t) <s, def;(t) then wdefd(c;) <s,
Wdefg(cj);

— if there exists one tuple t such that def{(t) <s, def](t) and for all tuples s
we have deff (s) <s, def}(s), then wdefd(c;) <s, wdef.d(c;).

Definition 12 describes a function wdef? that assigns c-semiring values (or
distance values) from the set of the c-semiring Sy to each c-weakened constraint.
This function is restricted by the preference values associated with the tuples
of the c-weakened constraints. If the assigned preference values of all the tuples
of a c-weakened constraint c; are at least as good as their assigned preference
values in another c-weakened constraint ¢;, then the function wdef¢ will assign
a distance value for c¢; that is at least as good as the distance value it assigns to
¢;. If there is at least one tuple that has a better associated preference value in
¢; than in ¢; (and all other tuples have associated preference values in ¢; that
are at least as good as those in ¢;), then wdef? will assign a better distance



value to ¢; than to ¢;. (We compare c-semiring values in terms of the partial
ordering on them.) This framework is deliberately broad so as to accommodate
any reasonable application.

‘We now define the concept of closeness w.r.t. a constraint ¢ and a c-weakened
constraint.

Definition 13. — The c-weakened constraint c; is closer to ¢ than the c-weakened
constraint c;, iff wdefl(c;) <s, wdefl(c;).
— The c-weakened constraint c; is no closer to c¢ than the c-weakened constraint
cj, iff wdefd(c;) <s, wdefd(c;).
— The c-weakened constraints c; and c; are incomparable w.r.t. closeness to c

iff wdefd(ci) £s, wdefd(c;) and wdefd(c;) £s, wdefe(ci).

Below we define a relaxation of a SCSP, and then we describe a way to
formalise “closeness” of relaxations.

Definition 14. A SCSP P’ = (C’, con) is a d-relazation of the SCSP P = (C,
con) where Sq = (A4, +4, Xa, 0, 1), iff there is a bijection f : C — C' and
Ve e C, f(c) is a c-weakened constraint.

For every f(c) € C" and ¢ € C, wdef2(f(c)) is an indication of the closeness
of f(¢) to c. For every ¢ € C, C’ contains one c-weakened constraint, i.e. every ¢
can be regarded as being replaced by a c-weakened constraint f(c). We want to
find a d-relaxation P’ = (C’, con) of P = (C,con) such that every c-weakened
constraint ¢ € C' is the closest possible to the constraint ¢ € C' while the
abstract solution of P’ is still good enough (w.r.t. B) It is necessary to place
some restrictions on the multiplicative operator x4 so that the distance of a d-
relaxation will indeed reflect the closeness of the relaxed problem to the original
problem.

Definition 15. Let c; be a c;-weakened constraint, and cjm and cjn, be cj-
weakened constraints. If wdef(i (cjm) <s, wdefcdj(cjn), then

wde f& (cix) xa wdefd (cjm) <s, wdefe(cik) xa wdefe (cjn).

Definition 16. Let R(P) = {P’ | P’ is a d-relazation of P},
R4(P) ={P' € R(P)| ASolV(P')N 3 # 0}, and
ASolRy(P) = {(t,v) | (t,v) € ASol(P') & P' € R5(P)}.

Rj(P) contains all those SCSPs that are weakened versions of P whose best

tuples intersect with B ASolRé(P) actually contains those best tuples. Note
that every tuple in ASol(P’) is a tuple with a maximal c-semiring value.

The next step is to define a distance measure between a problem P and a
d-relaxation P’.



Definition 17. Given a d-relazation P' = (C’, con) of a SCSP P = (C, con)
such that P' € R5(P), let d(P') = Xa cec (wdefd(f(c))) be the distance between
Pand P'°

Now we have to find every P’ € Rj(P) for which the distance between P’
and P is minimal. Thus, let
MRy(P) = {P" € Ry(P) | AP c Rj(P) such that d(P") <g d(P')}.

Ezxample 3. In order to raise the hotel chain’s four star rating to a five star rating,
the manager has calculated that he needs an abstract solution that provides a c-
semiring value of at least 0.75. Our abstract solution to the hotel chain problem
is not good enough. We will now find a d-relaxation to this problem with a
better solution. We only consider relaxations of the second constraint. Some

of the possible co-weakened constraints are shown as constraints caq, ..., cog in
Table 4.

Table 4. Definitions of the co-weakened Constraints

t C2 | C21 | Ca2 | Ca3 |C24| C25 | C26 | C27 |C28
(0, 3) 0.75| 1 |0.75/0.75( 1 | 1 075 1 |1
(1,2) 0.25(0.25| 0.5 |0.25(0.5/0.25/ 0.5 0.5 | 1
(1,3) 0.5]0.5|0.51(0.75|0.5|0.75|0.75/0.75| 1
(2,1) 0.25(0.25| 0.5 |0.25(0.5/0.25/ 0.5 0.5 | 1
(2,2) 0.5]0.5|0.51(0.75|0.5|0.75|0.75/0.75| 1
(2,3) 0.5]0.5|0.5]0.75|0.5|0.75|0.75[0.75| 1
(3,0) 0.75) 1 |0.75/0.75{ 1 | 1 |0.75] 1 |1
(3,1) 0.5]0.5|0.51(0.75|0.5|0.75|0.75/0.75| 1
(3,2) 0.5]0.5|0.51]0.75|0.5|0.75|0.75(0.75| 1
(3,3) 0.5 (0.5 0.5]0.75|0.5|0.75|0.75|0.75| 1

all other tuples) 0 | 0 | O | O |[O] O | O | O |O

Let Sy = ({1,2,3,4,5}, min, max, oo, —oc0). Then we can associate the
c-semiring values shown in Table 5 with each of the weakened constraints.

We aim to keep our d-relaxation as close as possible to the original problem.
Any one of the co-weakened constraints with a c-semiring value of 1 would be a
good initial choice. Thus, one possible d-relaxation of the problem P is
P = (Cf,con) with C{ = {c1, c23, c3}. The combination of the constraints,
pce1 = €1 ® co3 ® c3 is shown in Table 6.

Now the abstract solution is ASol(P]) = {((0,2,2), 0.75), ({0, 3,2), 0.75)},
with ASolV(P]) = {0.75} and d(P]) = 0 x4 1 x4 0 = 1. This means that our
abstract solution is good enough, and the manager can raise the star rating of

5 We use the symbol x4 in prefix notation when this binary operator is applied to
more than two arguments



Table 5. Distance values for the co-weakened Constraints

QY| W W[N] == O

Table 6. Definition of Constraint pc;.

t [deli @)
(0,1,2) 0.25
(0,2,2) 0.75
(0,3,2) 0.75
(1,2,1) 0.25

all other tuples 0

the hotel chain by selecting either one of the two tuples in the set ASol(P]) as
a solution.

4 Related Work: Metric SCSPs

Ghose & Harvey [6] extended the SCSP framework by specifying a metric for
each constraint in addition to the preference values that are associated with the
tuples of values for that constraint. The metric provides real valued distances
between the preference values. Metric SCSPs are similar to our proposal in the
sense that both frameworks allow us to establish whether a solution is regarded as
being good enough. Both approaches obtain a measure of the deviation required
from a problem P to a relaxation of P that has a good enough solution.

For Metric SCSPs, the definition of a constraint (Definition 3) is modified by
including a metric d. : A x A — RT expressing the perceived difference between
c-semiring values. Each constraint is a triple ¢ = (def?, con., d.) where con,. are
the variables to be operated on, def? is a function matching tuples to values in
the set of a c-semiring, and a metric d.. The formal properties of the metric are
given in [6].

If a c-semiring S, = (4, +,, Xp, 0,1) is used to assign preference values to the
tuples of values of constraints, the distance of a preference (or c-semiring) value
o to a region 3 (see Definition 10) is defined as d(av, §) = inf{d(c,7) : v € 3}.



Note that given two c-semiring (preference) values, o and v, with v <g, «, we
have d(a, 3) < d(v, 3).

In the definition of a Metric SCSP which follows below, an additional function
f is added. This function will be used to combine distance values provided by
the metric functions of the constraints.

Definition 18. [6] Given a constraint system C'S = (S,, D, V), a Metric SCSP
is a triple P = {C, con, f) where con is a set of variables, C = {c1,ca,...,cm} is
a finite set of constraints, and f : (RT)™ — R™ is used for combining the results
of the functions d., for alli=1,... m.

The following two properties are imposed on the function f in Definition
18: if f(z1,...,2m) = 0 & Vi,z; = 0, and f is monotonic increasing in each
argument. The aim is to find solution(s) such that minimal deviation is required
from the SCSP while ensuring they are assigned a c-semiring value in a specified
region B The value for a solution of a Metric SCSP, as defined for SCSPs, is
t=defP(t) = (defP (t S )®...® (defP (t ]9 ). To ensure that the value

1 cone,y Cm, cone,,

def(t)P is in 3 we need only ensure that all defP are also within 8.

Let fo(t) = f(di(def?,(t Legn, ), B); s dm(def? (¢ 1E5n. ), 73)). The func-
tion fg determines the deviation from P required to move def”(t) into the region
3. Let mp = min{fg : u € ASol(P)} represent the minimum deviation from the

problem P required to find a complete tuple with a semiring value in B

To summarise, the function fz provides us with a measurement of how much
a problem P should be relaxed in order to provide a good enough solution. This
measurement is calculated by combining the distance between the maximal tuple
for each constraint and /3.

In our work, we describe how to construct a relaxation that has a good enough
solution by relaxing constraints. We decide which tuple is a maximal choice for
each constraint by ensuring that the preference value of the combination of all
the relaxed (or weakened) constraints will lie in the region 3 with the least
possible deviation from the original constraints.

5 Conclusion and Future Work

We have proposed an extension to the SCSP framework for solving Constraint
Satisfaction Problems where a relaxation of a SCSP is defined and solved in case
an acceptable solution for the original SCSP can not be found.

If the preference value associated with the solution of a SCSP is not regarded
as good enough, we showed how to find a suitable relaxation of the SCSP that
has a good enough solution. A relaxation to a SCSP is found by adjusting the
preferences associated with the tuples of some of the constraints of the original
SCSP. In other words, the constraints of the original problem are relaxed until
the resulting problem has a satisfactory solution. Distance values (i.e. c-semiring
values) are associated with each relaxed constraint so that different relaxations
of a problem can be compared in terms of their distance to the original problem.



Metric SCSPs are related to our work. A metric function calculates a real
valued distance between preference values. These distance values are used to
measure the deviation of a solution to a SCSP from some desired solution that
is good enough.

In this paper we have described how to construct acceptable relaxations for
a SCSP with an unsatisfactory solution. Our future work will focus on computa-
tional aspects of this process. We aim to develop techniques to calculate the best
relaxation for a SCSP efficiently. We want to impose structure on the definitions
that respectively assign preference values to tuples of values for constraints and
distance values to relaxed constraints, so that existing CSP algorithms can be
applied to find the best d-relaxation for a SCSP.
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Abstract. AND/OR search spacdsave recently been introduced as a unify-
ing paradigm for advanced algorithmic schemes for graphicalels. The main
virtue of this representation is its sensitivity to the stuwe of the model, which
can translate into exponential time savings for searchriéiigos. In [1] we intro-
duced a linear space AND/OR Branch-and-Bound (AOBB) seactieme that
explores the AND/OR search tree for solving optimizatiosk&a In this paper
we extend the algorithm by equipping it with a context-baaddptive caching
scheme similar to good and nogood recording, thus it explaneAND/OR graph
rather than the AND/OR tree. We also improve the algorithmubing a new
heuristic for generating close to optimal height pseudegr based on a well
known recursive decomposition of the hypergraph repraesient We illustrate
our results using a number of benchmark networks, inclutiegrery challeng-
ing ones that arise in genetic linkage analysis.

1 Introduction

Graphical models such as Bayesian networks or constraiwbnies are a widely used
representation framework for reasoning with probabdistnd deterministic informa-
tion. These models use graphs to capture conditional imdbgreies between variables,
allowing a concise representation of the knowledge as veebkfficient graph-based
query processing algorithms. Optimization tasks such difinthe most likely state of
a Bayesian network or finding a solution that violates thetleamber of constraints in
a constraint network, are typically tackled with eitlsgrarchor inferencealgorithms.
Search methods (e.g. depth-first Branch-and-Bound, lissséarch) are time expo-
nential in the number of variables and can operate in polyabspace. Inference al-
gorithms (e.g. variable elimination, tree-clustering ime and space exponential in a
topological parameter calldgdee width If the tree width is large, the high space com-
plexity makes the latter methods impractical in many cases.

The AND/OR search space for graphical models [2] is a newtipduced frame-
work for search that is sensitive to the independenciesamthdel, often resulting in
exponentially reduced complexities. It is based on a pseradnthat captures indepen-
dencies in the graphical model, resulting in a search trpemential in the depth of the
pseudo-tree, rather than in the number of variables.

In [1] we presented a linear space Branch-and-Bound schbateekplores the
AND/OR search tree for solving optimization tasks in graghimodels, called AOBB.



In this paper we improve the AOBB scheme significantly by gsiaching schemes.
Namely, we extend the algorithm to explore the AND/OR gragther than the AND/OR
tree, using a flexible caching mechanism that can adapt toamelimitations. The
caching scheme is based@ntextsand is similar to good and nogood recording and re-
cent schemes appearing in Recursive Conditioning and ¥aaektracking [3-5]. We
also introduce a new heuristic for generating close to agthmight pseudo-trees based
on the recursive decomposition of the problem’s hypergraphesentation. A similar
idea was already exploited in [4] for constructing low-viidtecomposition trees. The
efficiency of the proposed search methods also depends attheacy of the guid-
ing heuristic function, which is based on the mini-buckeiragimation or maintaining
soft arc-consistency. We focus our empirical evaluatiortivem common optimization
tasks such as solving Weighted CSPs [6] and finding the Madid®e Explanation in
Bayesian networks [7], and illustrate our results over &waof benchmark networks,
including the very challenging ones that arise in the fielderetic linkage analysis.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization ProbledCOP) is a six-tuplé® = (X, D, F,®, |, Z),
whereX = {X;,..., X, } is a set of variablesD = {Ds,...,D,} is a set of fi-
nite domains andc = {fi,..., fin} is a set of constraints. Constraints can be either
soft (cost functions) otard (sets of allowed tuples). Without loss of generality we
assume that hard constraints are represented as (bi-yalastfunctions. Allowed
and forbidden tuples have codtand oo, respectively. The scope of functigfy, de-
notedscope(f;) C X, is the set of arguments ¢f. The operator®x and | can be
defined using the semi-ring framework [6], but in this paperagsume that; f; is
a combinationoperator®; f; € {I[; fi,>.; fi} andl, f is aneliminationoperator,
Uy f € {mazxs_v f,ming_y [}, whereS is the scope of functiorf andY C X. The
scope of), fisY.

An optimization task is defined by(Z) = |} ,®*, f;, whereZ C X. A global
optimizationis the task of finding the best global cost, namg&ly= (). For simplicity
we will develop our work assuming a COP instance wgitimmatiorandminimization
as combination and elimination operators, yielding a dl@oat function defined by
f(X) =minx 3570, fi

Given a COP instance, itgimal graphG associates each variable with a node and
connects any two nodes whose variables appear in the scdipe sdme (hard or soft)
constraint.

2.2 AND/OR Search Spaces

The classical way to do search is to instantiate variablesaira time, following a
static/dynamic variable ordering. In the simplest cass,ftocess defines a search tree,
whose nodes represent states in the space of partial assigmnihe traditional search
space does not capture the structure of the underlying gapmodel. Introducing
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Fig. 1. The AND/OR search space.

AND states into the search space can capture the structaoeng®sing the problem
into independent subproblems by conditioning on value&][8The AND/OR search
space is defined using a backbgseudo-tree

Definition 1 (pseudo-tree) Given an undirected grap& = (V, E), a directed rooted
treeT = (V, E’) defined on all its nodes is callggbeudo-tred any arc of G which is
not included inE’ is a back-arc, namely it connects a node to an ancestdt.in

AND/OR Search Trees Given a COP instance = (X, D, F), its primal graph& and

a pseudo-tred” of G, the associated AND/OR search tr8g has alternating levels
of OR nodes and AND nodes. The OR nodes are labdle@nd correspond to the
variables. The AND nodes are labelédl;, z;) and correspond to value assignments
in the domains of the variables. The structure of the AND/@d® tis based on the
underlying pseudo-tree arrangem&naf G. The root of the AND/OR search tree is an
OR node, labeled with the root @f.

The children of an OR nod&; are AND nodes labeled with assignmefls;, x;),
consistent along the path from the ropith(z;) = ((X1,z1), ..., (Xi—1,2:-1)). The
children of an AND nod€X;, z;) are OR nodes labeled with the children of variable
X, in T. In other words, the OR states represent alternative wagsleing the prob-
lem, whereas the AND states represent problem decompositio independent sub-
problems, all of which need be solved. When the pseudo4raechain, the AND/OR
search tree coincides with the regular OR search tree.

Example 1.Figure 1(a) shows the pseudo-tree arrangement of a prinaghgof a
COP instance, together with the back-arcs (dotted lindguré 1(b) shows a partial
AND/OR search tree based on the pseudo-tree, for bi-valagdbles.

The AND/OR search tree can be traversed by a depth-firstisadgorithm that is
guaranteed to have a time complexity exponential in thehdepthe pseudo-tree and
can operate in linear time. The arcs frokj to (X, z;) are annotated by appropri-
atelabelsof the cost functions iF. The nodes inSr can be associated withalues
accumulating the result of the computation resulted froenstibtree below.



Definition 2 (label). Thelabel[(X;, (X;, z;)) of the arc from the OR nod¥; to the
AND node(X;, x;) is defined as the sum of all the cost functions values whog®sco
includesX; and is fully assigned alongath(x;).

Definition 3 (value). Thevaluewv(n) of a noden € St is defined recursively as fol-
lows: (i) if n = (X, z;) is aterminal AND node then(n) = I(X;, (X, z;)); (i) if n =
(Xi,z;) isaninternal AND node then(n) = (X5, (Xi, 2i))+ 32,0 csuce(n) Y (1); (i)

if n» = X is an internal OR node them(n) = min, ¢ sucem)v(n'), wheresucc(n) are
the children ofn in St.

Clearly, the value of each node can be computed recursiveiy, leaves to root.

Proposition 1. Given an AND/OR search treer of a COP instancé® = (X, D, F),

the valuev(n) of a noden € Sy is the minimal cost solution to the subproblem rooted
at n, subject to the current variable instantiation along thetpfrom root ton. If n is
the root ofSt, thenv(n) is the minimal cost solution tB.

AND/OR Search Graphs The AND/OR search tree may contain nodes that root iden-
tical subtrees. These are calledifiable When unifiable nodes are merged, the search
tree becomes a graph and its size becomes smaller. A degtthefarch algorithm can
explore the AND/OR graph using additional memory. The dthor can be modified

to cachepreviously computed results and retrieve them when the sades are en-
countered again. Some unifiable nodes can be identified loastircontexts

Definition 4 (context).Given a COP instanc® = (X, D, F) and the corresponding
AND/OR search treéSt relative to a pseudo-tre&’, the contextof any AND node
(Xi,x;) € St, denoted byontext(X;), is defined as the set of ancestorsgfin the
induced pseudo-tree, including;, that are connected to descendantsgf

It is easy to verify that the context of; d-separates [7] the subproblem below
X; from the rest of the network. Theontext-minimaAND/OR graph is obtained by
merging all the context unifiable AND nodes. For illustrati@onsider the context-
minimal graph in Figure 1(c) of the pseudo-tree from Figui@) 1The contexts of the
nodes can be read from the pseudo-tree, as follawgext(A) = { A}, context(B) =
{B, A}, context(C) = {C, B, A}, context(D) = {D}, context(E) = {E, B, A}
andcontext(F) = {F} (for more information see [2]).

3 AND/OR Branch-and-Bound Search

AND/OR Branch-and-Bound (AOBB) was recently introducedlhas a depth-first
Branch-and-Bound that explores an AND/OR search tree fairgpoptimization tasks
in graphical models. Our empirical evaluation demonstratearly the improved per-
formance of the AND/OR tree search over the traditional @R search. In this section
we move from searching the AND/OR tree to searching AND/OBpbs. The new
algorithm, denoted here by AOBB( augments AOBB with a flexible context-based
caching scheme that stores the results in a cache afterghedimputation and retrieves
them when the same nodes are encountered again.



3.1 Caching Schemes

Traversing an AND/OR search graph requires caching somesddring search and
the ability to recognize unifiable nodes. The caching scheiased orontextswhich

are precomputed from the pseudo-tree. As it was mentiondiéreghe context of an
AND node(X;, z;) is the set of ancestors d&f; in the induced pseudo-tree, including
X, that are connected to descendantXefAlgorithm AOBB(j) stores nodes at vari-
ables whose context size is smaller than or equgl(talled cache bound grbound).

It is easy to see that whehequals the induced width of the pseudo-tree the algorithm
explores the minimal context AND/OR graph.

This rather straightforward scheme can be further improVé@ second caching
scheme is inspired by the cutset conditioning ideas from [8}s assume the con-
text of a nodeXy, is context(Xy) = {Xy, ..., Xt }, where|context(X})| > j. Dur-
ing the search, when variablgs(,, ..., X;_;} are assigned, they can be viewed as
a cutset. Therefore, the problem rootedX5t _;,; can be solved in isolation, once
variables{ X1, ..., X;_,} are assigned. In the subproblem, conditioned on the values
{z1,...,x5—;}, context(Xy) is {Xk—j+1,.., Xk}, SO it can be stored within thg
bounded space restrictions. However, when AOBB¢tracts taX,_; or above, all the
nodes cached at variahl, need to be discarded. This caching scheme requires only a
linear increase in additional memory.

The usual way of caching is to have a table for each variabléedtcache table
which records the context. However, some tables might ngeecache hits. We call
thesedead-cachesln the AND/OR search graph, dead-caches appear at nodes tha
have only one incoming arc. AOBBY needs to record only nodes that are likely to
have additional incoming arcs, and these nodes can be de&gtry inspecting the
pseudo-tree. Namely, if the context of a node includes thiéd parent, then there is no
need to store anything for that node, because it would be@dceehe. For illustration,
consider the AND/OR search graph from Figure 1(c). N&dis a dead-cache because
its context includes the context of node which is its parent in the pseudo-tree.

3.2 Lower Bounds on Partial Trees

At any stage during search, any nodalong the current path roots a curreuatrtial
solution subtregdenoted byG,;(n), to the corresponding subproblem. By the nature
of the search proces&i,(n) must be connected, must contain its raoand will
have afrontier containing all those nodes that were generated but not yetreled.
The leaves of7,,(n) are callectip nodes. Furthermore, we assume that there exists
a staticheuristic evaluation functioh(n) underestimating(n) that can be computed
efficiently when node is first generated.

Given the current partially explored AND/OR search graph, the active path
AP(t) is the path of assignments from the root®f to the current tip node Thein-
side contexin(AP) of AP(t) contains all nodes that were fully evaluated and are chil-
dren of nodes otdP(t). Theoutside contextut(AP) of AP(t), contains all the fron-
tier nodes that are children of the nodes4R(¢). Theactive partial subtreedP7 (n)
rooted at a node € AP(t) is the subtree ofis,;(n) containing the nodes aAP(t)
betweem andt together with their OR children. We can define nodyaamic heuristic
functionof a noden relative to AP7 (n), as follows.



ALGORITHM : AOBB(j, P, T)
Input: ACOPP = (X,D,F,+,min), pseudo-tred’, root X, cache bound.
Output: Minimal cost solution tdP.

@)
)

@)

(4)

©)

Initialize OPEN by adding OR nodg, to it; PATH «— ¢;
Initialize cache tables for every variahlé such thatcontezt(X;)| < j;
if (OPEN ==¢)
return v(Xo);
Remove the first node in OPEN; Addn to PATH;
Retrieve cached values as follows:
if (n is AND node, denote. = (X, z;))
if (econtext(X;)| < j)

A—{filfi € FA(Xi€var(f;)) A (var(f;) CPATH)};
UXiy (Xiyxa)) < D04 [

v(n) — cache(Xi,xi);

goto step(5);

Try to prune the subtree belawas follows:
foreachm € PAT H, wherem is an ancestor of
it (fa(m) = ub(m))

v(n) <« oo; (dead-end)
goto step (4);

Expandn generating all its successors as follows:
suce(n) «— ¢,
if (n is OR node, denote = X;)

v(n) «— oo;

foreachvaluezx; € D;

h({Xi,zi)) — LB(X:, 1),
suce(n) «— suce(n) U {{(X;,z:) };

else(n is AND node, denoter = (X, x;))
A {fi | ; € F A(Xi € var(f;) A (var(f;) C PATH)};
’U(TL) —0; l(X’i7 <Xb7w2>) — ZA fj;
foreachvariableY € chr(X;)

h(Y) — LB(Y);
suce(n) — {Y'};

Add succ(n) on top of OPEN;
while succ(n) == ¢
if (n is OR node)

v(Parent(n)) « v(Parent(n)) + v(n);

else(n is AND node)

cache(X;,z;) «— v(n);
v(n) — v(n) + (X, (X, a));
v(Parent(n)) «— min(v(Parent(n)),v(n));

succ(Parent(n)) <« succ(Parent(n)) — {n};
PATH «— PATH - {n};
n <« Last(PATH);

(6) gotostep (2);

Fig. 2. AOBB(5): AND/OR Branch-and-Bound graph search.




Definition 5 (dynamic heuristic evaluation function). Given an active partial tree
APT (n), thedynamic heuristic evaluation functiain, f,(n), is defined recursively
as follows: (i) if APT (n) consists only of a single node and ifn € in(AP) then
fn(n) = v(n) else fr(n) = h(n); (i) if n = (X;,z;) is an AND node, having OR
childrenmy, ..., my, thenf,(n) = maz(h(n), [(X;, (X;, ;) + Zle fr(my)); (i) if

n = X; is an OR node, having an AND child, thenf;,(n) = maxz(h(n), fi(m)).

We can show that:

Theorem 1. (1) f»(n) is alower boundon the minimal cost solution to the subproblem
rooted atn, namelyf,(n) < v(n); (2) fn(n) > h(n), namely the dynamic heuristic

function is tighter than the static one.

3.3 AND/OR Branch-and-Bound with Caching

A search algorithm traversing the AND/OR search space clnlete alower bound
onwv(n) of a noden on the active path, by using,(n). It can also compute ampper
boundonv(n), based on the portion of the search space beldhat has already been
explored. The upper bound(n) onwv(n) is the current minimal cost solution subtree
rooted atn.

The depth-firsAND/OR Branch-and-Bourgtaph search algorithm withbounded
caching is described in Figure 2. A list called OPEN simuddke recursion stack. The
list PATH maintains the current assignment on the activh.pgairent(n) refers to the
predecessor of in the AND/OR search grapbucc denotes the set of successors of
a node in the AND/OR search graph arid-(X;) denotes the children of variablé;
in the pseudo-tre®. Procedure LBf) computes the static heuristic estimate:) of
v(n) for any noden.

In the initialization step, AOBBJ) computes the context of every variable. A cache
table is created for every context whose size is less thagualdo the cache bound
In Step (3), the algorithm attempts to retrieve the reswathed at the AND nodes. If a
valid cache entryy is found for noden = (X;, z;), namely the subproblem rooted at
n has already been solved for the current instantiation of#niables incontext(X;),
thenu(n) is set too and the search continues with Step (4), thus avoidiagxpansion.

Step (4) is where the search goes forward and expands ditgytevels of OR and
AND nodes. Upon the expansion of the algorithm successively updates tbheer
bound functionf,, (m) for every ancestom of n along the active path, and prunes the
subgraph below: if, for somem, f,(m) > ub(m).

Step (5) is where the value functions are propagated backwduis is triggered
when a node has an empty set of successors and it typicalpehapvhen the node’s
descendants are all evaluated.

Theorem 2. AOBB(j) is sound and complete for COP.

4 Heuristics

In this section we describe briefly several schemes for gingrstatic heuristic esti-
matesh(n), based on bounded inference and soft arc-consistency.



4.1 Mini-Bucket Heuristics

In this section we briefly describe two general schemes foegiing heuristic es-
timates that can guide Branch-and-Bound search, and whélbased on the Mini-
Bucket approximation. Mini-Bucket Elimination (MBE) [1@ an approximation al-
gorithm designed to avoid the high time and space compl@fiBucket Elimination
(BE) [11], by partitioning large buckets into smaller sulssealledmini bucketseach
containing at most (calledi-bound) distinct variables, and which are processed inde-
pendently. The heuristics generators are therefore paesized by the Mini-Bucket
i-bound, thus allowing for a controllable trade-off betwdweuristic strength and its
overhead.

Static Mini-Bucket Heuristics (sMB) In the past, [12] showed that the intermediate
functions generated by the Mini-Bucket algorithm MBE¢an be used to compute a
heuristic function, that underestimates the minimal castresion of the current partial
assignment in a regular OR search tree. In [1] we extendeddiba to AND/OR search
spaces.

Dynamic Mini-Bucket Heuristics (dMB) The dynamic version of the mini-bucket
heuristics has been recently proposed in [1] for both OR aN®/OR search spaces.
The heuristic lower-bound estimate is computed by the Bincket algorithm MBE{),

at each node in the search space, restricted to the subproblem roote@iadl subject
to the current partial instantiation (for more details sgg.

4.2 Directional Arc-Consistency Heuristics

Maintaining full directional arc-consistency (FDAC) [18hd the more recent existen-
tial directional arc-consistency (EDAC) [14] provide a paful mechanism for gen-
erating high quality lower bound heuristic estimates oftiaimal cost extension of
any partial assignment in a regular OR search tree. In theegpbaf AND/OR search
spaces we showed in [1] that it is possible to maintain arsisbency separately, on
independent components rooted at AND nodes, thus complotiaglower-bounds on
the minimal cost solutions to the respective subproblems.

5 Finding a Pseudo-Tree

The performance of AND/OR tree/graph search algorithmsfisénced by the quality
of the pseudo-tree. Finding the minimal depth/context deduvee is a hard problem
[8,15]. In the following we describe two heuristics for geating pseudo-trees with
relatively small heights/contexts.

5.1 Min-Fill Heuristic

Min-Fill [16] is one of the best and most widely used heucsstfor creating small
induced width elimination orders. An ordering is generdtgglacing the variable with



the smallestill set(i.e. number of induced edges that need be added to fullyexxirine
neighbors of a node) at the end of the ordering, connectlraj &b neighbors and then
removing the variable from the graph. The process continumis all variables have
been eliminated. Once an elimination order is given, theiggdree can be extracted
as a depth-first traversal of the min-fill induced graph,tstgrwith the variable that
initiated the ordering, always preferring as successonofi®e the earliest adjacent node
in the induced graph. An ordering uniquely determines a gadtee. This approach
was first used by [15].

5.2 Hypergraph Separator Decomposition

An alternative heuristic for generating a low height batthpseudo-tree arrangement
is based on recursive decomposition. Given a COP instBneg( X', D, F) we convert
it into a hypergraphH = (V, E) where each constraint it is a vertexv; € V and
each variable irt’ is an edge:; € E connecting all the constraints in which it appears.

Definition 6 (separators).Given a hypergrapti{ = (V, E), a hypergraph separator
decompositiornis a triple (H, S, R) where: (i)S C E, and the removal of separates
‘H into k disconnected components (subgraphs)..., Hy; (ii) R is a relation over the
size of the disjoint subgraphs (i.e. balance factor).

It is well known that the problem of generating optimal hygraph partitions is
hard. However heuristic approaches were developed ovgetirs. A good approach is
packaged imMeTi S*. We will use this software as a basis for our pseudo-treergene
tion. This idea and software were also used by [4] to genératevidth decomposition
trees. Generating a pseudo-tfBdor P usinghMeTi Sis fairly straightforward. The
vertices of the hypergraph are partitioned into two baldr{oeughly equal-sized) parts,
denoted byH,. r; andH..;4n: respectively, while minimizing the number of hyperedges
across. A small number of crossing edges translates intoadl anmber of variables
shared between the two sets of functioRs. s andH,.;4»: are then each recursively
partitioned in the same fashion, until they contain a singlgex. The result of this
process is a tree of hypergraph separators which is alsowalpgece of the original
model since each separator corresponds to a subset oflesrcained together.

In Tablel we computed the height of the pseudo-tree obtaiitbdhe hypergraph
and minfill heuristics for 10 belief networks from the UAI Resitory? and 10 constraint
networks derived from the SPOT5 benchmark [17]. For eachdiséree we also com-
puted the induced width of the elimination order obtainearfithe depth-first traversal
of the tree. We observe that the minfill heuristic generategi-width elimination or-
ders, while the hypergraph heuristic produces much smiaflieyht pseudo-trees. The
hypergraph pseudo-trees appear to be favorable for treehsalgorithms, while the
minfill pseudo-trees, which minimize the context size, amrerappropriate for graph
search algorithms.

! http://www-users.cs.umn.edu/ karypis/metis/hmetis
2 http://lwww.cs.huiji.ac.il/labs/compbio/Repository



Networkl hypergrapil min-fill ||Network| hypergraph  min-fill

width heightwidth heigh width heightwidth heigh
barley 7 13| 7 23 ||spot5 47 152| 39 204
diabeteg 7 16 | 4 77 ||spot28 | 108 138| 79 199
link 21 40 | 15 53 |lspot29 | 16 23 | 14 42
mildew | 5 9 4 13 ||spot42 | 36 48 | 33 87
muninl| 12 17 | 12 29 ||lspot54 | 12 16 | 11 33
munin2 | 9 16 | 9 32 |lspot404 19 26 | 19 42
munin3| 9 15| 9 30 (|spot408 47 52 | 35 97
munind | 9 18 9 30 (lspot503 11 20| 9 39
water 11 16 | 10 15 |[spot505 29 42 | 23 74
pigs 11 20 | 11 26 |[spot507 70 122| 59 160

Table 1. Bayesian Networks Repository (left); SPOT5 benchmarlght)i

6 Experiments

In this section we evaluate the performance of the new ANDED&ch-and-Bound
graph search schemes on two common optimization problerhséng Weighted CSPs
(WCSP) and finding the Most Probable Explanation (MPE) ind&agn networks

Weighted CSK6] extends the classic CSP formalism with so-calleft constraints
which assign a positive integer penalty cost to each fosriddple (allowed tuples have
cost 0). The goal is to find a complete assignment with mininaggregated cost.

Bayesian Networkprovide a formalism for reasoning about partial beliefsemd
conditions of uncertainty [7]. They are defined by a direceyclic graph over nodes
representing variables of interest. The arcs indicatexfstamce of direct causal influ-
ences between linked variables quantified by conditior@ability tables (CPTs) that
are attached to each family of parents-child nodes in thearé&t The MPE problem is
the task of finding a complete assignment with maximum priibathat is consistent
with the evidence. It easy to see that MPE can be triviallyregged as a WCSP by
replacing the probability tables by their negative lodarit

We consider three classes of AND/OR Branch-and-Bound &asch algorithms,
each one of them using a specific heuristics generator asvaliClasses-AOMB(¢)
andd-AOMB(:) are guided by static/dynamic mini-bucket heuristics,J&’sAlOMFDAC
maintains full directional arc-consistency (FDAC). Weoatensider the graph versions
of these algorithms, denoted ByAOMB(i,5), d-AOMB(4,7) and AOMFDAC(), re-
spectively, which perform caching only at the variablesvidiich the context size is
smaller than or equal to the cache boynd

In all our experiments, the competing algorithms were ietsi to a static variable
ordering resulted from a depth-first traversal of the psewe®. We report the average
effort, as CPU time (in seconds) and number of visited nodgsiired for proving
optimality of the solution. For all test instances we recitrel number of variables (n),
domain size (d), number of functions (c), induced width (ard height of the pseudo-

8 Experiments were done on a 2.4GHz Pentium IV with 1GB of RAMning Windows XP.



hypergraph minfill
Network | Algorithm | (w*,h) no cache cache (w*,h) no cache cache
time nodes time node time nodes time nodes
29b [AOMFDAC|(16,22)5.938 170,82R1.492  40,42§(14,42) 5.036 79,86(3.237 34,128
(83,394) [SAOMB(12) 1.002 8,4581.012 1,03 0.381 997|0.411 94
42b  [AOMFDAC|(31,43)1,043 6,071,39[884.1 3,942,94K18,62 - 22,102,05! - 17,911,719
(191,1151)sAOMB(16) 132.0 2,871,801.27.4 2,815,503 3.254 11,6383.164 9,030
54b [AOMFDAC|(12,14)0.401 6,581 0.29 3,377(9,19)[ 1.793 28,4910.121 2,087
(68,197) [SAOMB(10) 0.03 74 0.03 74 0.02 567| 0.02 381
404b |AOMFDAC](19,23) 0.02 148 0.01 138|(19,57)] 2.043 21,406 0.08 1,221
(101,595)|SAOMB(12), 0.01 101] 0.01 101 0.02 357 0.01 208
503b [AOMFDAC] (9,14) 0.02 40§ 0.01 307[ (8,46)[1077.1 19,041,5520.05 703
(144,414)| sAOMB(8) 0.01 150/ 0.01 150 0.03 1,918 0.01 172
505b [AOMFDAC|(19,32) 17.8 368,247 5.20  69,04%(16,98 - 9,872,07815.43 135,64
(241,1481)sAOMB(14) 5.618 6836.208 68 4.997 1912/5.096 83]

Table 2. Results for SPOT5 benchmarks.

tree (h). A"-" indicates that a time limit was exceeded by tbgpective algorithm. The
best results are highlighted.

6.1 Weighted CSPs

For our first experiment, we consider the scheduling of athEyserving satellite. The
original formulation of the problem states that given a detamndidate photographs,
select the best subset that the satellite will actually .tdke selected subset of pho-
tographs must satisfy a set of imperative constraints anttheasame time, maximize
the importance of the selected photographs. We experimevite problem instances
from the SPOT5 benchmark [17] that can be trivially traresiahto the WCSP formal-
ism. These instances have binary and ternary constraidtd@mains of size 1 and 3.
For our purpose we consider a simplified binary MAX-CSP \@rsif the problem (i.e.
0/1 binary cost functions) and search for a complete valsgamsent to all variables
that violates the least number of constraints.

Table 2 reports the results obtained for 6 SPOT5 networks fif$t column identi-
fies the instance, the number of variabley &nd the number of binary constraints.(
For each instance we ran two algorithms (given by the secoharm): AOMFDAC
and s-AOMB(4). For the latter we report only thebound for which we obtained the
best results. The remaining columns are divided into twdicadrblocks, each corre-
sponding to a specific heuristic used for constructing tleige-tree (e.g. hypergraph,
min-fill). Each block reports the induced width{), the height of the pseudo-trek)(
the running time and number of nodes explored by the tree &he) as well as the
graph (cache) version of each algorithm. The cache bgunds set to 16. It can be
observed that caching improves considerably the perfocmahboth algorithms, espe-
cially for AOMFDAC. On instance 505b for example, the gragision of AOMFDAC
is as much as 3.4 times faster than the tree version whennmginvith a hypergraph
based pseudo-tree. The same instance could not be solv&d @it hour limit by the
tree AOMFDAC using a min-fill based pseudo-tree, but it wasesbin about 15 sec-
onds by the graph version of the algorithm. The effect of gags not too prominent
for s-AOMB(7). This is most likely due to the very good quality of the hstid esti-
mates which able to prune the search space very effectiRelyarding the quality of
the pseudo-trees we observe that the hypergraph heurstarates lower height trees
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Fig. 3. Results for random Bayesian networks.

which appear to favor AOMFDAC. Alternatively, min-fill bagerees produce lower
width orderings which can in turn generate more accurate-mioket heuristic esti-
mates.

6.2 Bayesian Networks

Our second experiment consists of uniform random Bayestanarks. The networks
were generated using parameteisd, c, p), wheren is the number of variableg, is
the domain sizeg is the number of conditional probability tables (CPTs) and the
number of parents in each CPT. The structure of the netwockeiated by randomly
picking ¢ variables out of. and, for each, randomly pickingparents from their pre-
ceding variables, relative to some ordering. The entriesawh probability table are
generated uniformly randomly, and the table is then nozedli

Figure 3 displays the results for a class of random Bayesamarks with parame-
ters (¢=1004=3,c=90p=2). The pseudo-tree was constructed by the min-fill haarist
We consider two classes of algorithma®\OMB(i,5) and d-AOMB(i,5), respectively.
Thei-bound of the mini-bucket heuristic ranged between 2 andid we chose three
caching levels as followdow (j = 2), medium(; = 8) andhigh (j = 14). It can
be observed that caching improvwesOMB(¢) (see Figure 3(a)) especially for smaller
i-bounds of the static mini-bucket heuristic (e.g- 8). When using the dynamic mini-
bucket heuristic (see Figure 3(b)) caching does not outwifgoverhead for all re-
portedi-bounds. This is due primarily to the accuracy of the heigrishich is able to
prune a substantial portion of the search space.

6.3 Genetic Linkage Analysis

For our third experiment we consider the problem of computiremaximum likelihood
haplotype configuratioof a general pedigree. In human genetic linkage analysis [18
thehaplotypds the sequence of alleles at different loci inherited byratividual from

one parent, and the two haplotypes (maternal and paterhal) imdividual constitute

this individual’sgenotypeWhen genotypes are measured by standard procedures, the



Fig. 4. A fragment of Bayesian network used in genetic linkage asisly

hypergraph minfill
Pedigree| Algorithm | (w*,h) no cache cache (w*,h) no cache cache
(n,d) time nodes time  node time nodes time node
bn27 [sAOMB(14)((20,36)2.273 42,276 0.83 11,35d(18,43)5.998 8,3645.979 8,077
(460,5) VE+C n/a
Superlink 1.140
bn29 [sAOMB(14)((22,39)8.222  169,98R31.823 20,20J(21,52)8.532  80,00y7.741 69,14
(566,5) VE+C n/a
Superlink 1.571
bn11l3 [sAOMB(12)|(17,27)0.771 11,89$0.551  3,706(15,41)0.721 9,1470.681 8,294
(186,4) | VE+C 11.98
Superlink 0.030
bnil4 [sAOMB(12)[(22,33)14.79 462,70[6.660 167,33320,55)20.50 498,3052.32 490,008
(234,5) VE+C 17.41
Superlink 0.430
bnLB_.3 [sAOMB(18)((25,42)26.72 467,6418.944 21,78%24,74)33.47 357,31.083 40,31
(642,4) VE+C 0.881
Superlink 0.110
bnLB_4 [sAOMB(18)[(26,45)1,390 24,961,2623.79 289,91(21,90)131.8 1,562,51[22.34 215,798
(799,4) | VE+C 1.011
Superlink 0.130
bnGB.27.1{sAOMB(14)[(19,29)28.28  863,07RL0.47 168,54(0(21,40)67.75 1,726,2374.23 1,716,848
(178,4) | VE+C 172.5
Superlink 32.88
bnGB.67_1{sAOMB(18)((24,39)9.744 47,869.564 36,715(25,50)170.3  95,504225.2 94,587
(212,4) VE+C 597.5
Superlink 11.72

Table 3. Results for genetic linkage analysis networks.

result is a list of unordered pairs of alleles, one pair fozthebbcus. The maximum
likelihood haplotype problem consists of finding a joint ltdppe configuration for all
members of the pedigree which maximizes the probabilityadéd

The pedigree data can be represented as a Bayesian netwiotkrge types of ran-
dom variablesgenetic locivariables which represent the genotypes of the individuals
in the pedigree (two genetic loci variables per individuat fpcus, one for the pater-
nal allele and one for the maternal allelphenotypevariables, angelectorvariables
which are auxiliary variables used to represent the geneifidhe pedigree. Figure 4
represents a fragment of a network that describes paréiltsitteractions in a simple



2-loci analysis. The genetic loci variables of individuat locus; are denoted by.; ;,
andL; ;.. VariablesX; ;, S; j, andS; j,, denote the phenotype variable, the paternal
selector variable and the maternal selector variable a¥iehgal : at locusj, respec-
tively. The conditional probability tables that corresddn the selector variables are
parameterized by thecombination ratid [19]. The remaining tables contain only de-
terministic information. It can be shown that given the jgeeé data, the haplotyping
problem is equivalent to computing the Most Probable Exgtian of the correspond-
ing Bayesian network (for more details consult [19, 20]).

In Table 3 we show results for several hard genetic linkagdblpm instances
We experimented with three algorithmsAOMB(:) (tree and graph versions), VE+C
and Superlink. Superlink v1.5 is currently the most effitgolver for genetic linkage
analysis, is dedicated to this domain and uses a combinafiwariable elimination
and conditioning, as well as a proprietary matrix multiption scheme. VE+C is our
implementation of the elimination and conditioning hybrdthout the special multi-
plication scheme, and it uses the elimination order outp@uperlink. Fors-AOMB(1)
we report only the bestbound of the mini-bucket heuristic. For the graph versiébn o
s-AOMB(7) the cache bound was equal to theound. We observe that on this domain,
the hypergraph based pseudo-trees produced the bessfestibth the tree and graph
versions ofs-AOMB(3). In several instances, the hypergraph heuristic was dlisota
produce orderings with widths smaller than those obtainil tie min-fill heuristic
(e.g. bnGB27_1, bnGB67.1).

Caching improves dramatically the performance-#{OMB(%) in all test cases. On
the bnLB4 pedigree, the graph versionoPOMB(18) is about 58 times faster than the
tree version, reducing the size of the search space explaed25M to about 290K
nodes. The grapk-AOMB(%) is consistently better than VE+C, except on instances
bnLB_3 and bnLB4. In that case, the elimination order produced by Supetiud a
width of 13, which was much smaller than that obtained by hbéhhypergraph and
min-fill heuristics. When comparing the graptAOMB(7) with Superlink we observe
that the graphs-AOMB(¢) is better than Superlink in 3 out of the 8 instances (e.g.
bn2.7, bnGB27_1, bnGB67_1) and they are about the same order of magnitude on the
remaining instances.

7 Conclusion

This paper rests on two contributions. First, we extendedAND/OR Branch-and-
Bound tree search algorithm with a flexible context-basetiiogy scheme allowing the
algorithm to explore an AND/OR search graph rather thanea frbe new graph search
algorithm was then specialized with heuristics based dreeithe mini-bucket approx-
imation or soft arc-consistency. Second, we introducedwaheuristic for generating
pseudo-trees based on the recursive decomposition of ttdepn’s hypergraph. Both
contributions are supported by experimental results férisg WCSPs and comput-
ing the MPE configuration in belief networks on a variety ofithetic and real-world
networks, including some very challenging networks frora field of genetic link-
age analysis. Finally, some new directions of researcluifectombining the AND/OR

4 All networks are available at http://biocinfo.cs.techniamil/superlink/



search algorithms with constraint propagation for effitichandling the determinism
in Bayesian networks, as well as improving the heuristies gluide the search process.

Related Work: AOBB is related to the Branch-and-Bound method propose®y [
for acyclic AND/OR graphs and game trees, as well as the pstee search algorithm
proposed in [22] for boosting Russian Doll search. The ogtition method developed
in [23] for semi-ring CSPs can also be interpreted as an AND{#Daph search algo-
rithm.
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Abstract. In this paper, we define a generic algebraic framework that
covers several Al formalisms used to represent uncertainties, feasibili-
ties, or utilities. This includes hard, soft, mixed, quantified, or stochastic
constraint satisfaction problems, Bayesian and Gibbsian networks, chain
graphs, influence diagrams, probabilistic or possibilistic Markov decision
processes. This is made possible by the fact that these formalisms can
be described as “graphical models”, using local relations to express a
global knowledge. Composite graphical models include different types of
relations to model uncertainties on the environment, feasibilities on de-
cisions, and utilities expressing preferences or hard requirements. Usual
queries can then be interpreted in this framework as a sequence of quan-
tification/elimination of variables with dedicated operators. Using the
proposed framework, it will be possible to better understand the links
between existing formalisms and to develop generic efficient parameter-
ized algorithms.

1 Existing frameworks

In the last decades, several representation frameworks have been developed in
the AT community to reason about uncertainties, feasibilities, and utilities. Con-
straint satisfaction problems (CSP [1]) represent problems in which local con-
straints between discrete variables express facts or requirements. Valued/semiring
CSP [2] extend constraint networks to represent uncertain facts or soft require-
ments (covering classical, fuzzy, additive, lexicographic, probabilistic CSP...).
Mized CSP [3] introduce a distinction between controllable and uncontrollable
variables. Similarly, quantified CSP [4] and stochastic CSP [5] extend CSP with
universally and randomly quantified variables. Similar works exist in the SAT
(boolean satisfiability) community [6]. Bayesian networks [7] represent prob-
lems that involve local oriented dependencies between random variables. Chain
graphs [8] extend Bayesian networks by adding non-oriented dependencies, as in
Gibbsian networks. In another direction, influence diagrams [9] extend Bayesian
networks by adding non-random decision variables and utility variables. Markov
decision processes (MDP), possibly partially observable [10, 11], can represent se-
quential decision problems under uncertainty. Finally, factored MDP [12] extend
MDP to variable-based representations. Related works use possibility theory [13,
14], or Spohn’s theory of epistemic beliefs [15].



2 Motivations

One can observe significant similarities between these frameworks, which share
common algebraic properties. We present some examples to illustrate this point.

Graphical models Graphical models are defined by a finite set of variables
V ={21,...,2,}, each variable having a finite domain of values Dom(x;), and
by a finite set of local functions L = {fi, ..., fm} taking their values in a specific
domain. The combination of these functions with a specific operator offers a
space-tractable definition of a global (joint) function on all variables.

In the CSP (or SAT) framework [1], the set L contains relations (or con-
straints/clauses) mapping tuples of values to {true, false}. A usual query on a
CSP is to find an assignment of the variables satisfying all constraints. It can be
formulated as Jx13xo ... 32, (fi A fa Ao A fr) (or “does there exist a value
for x1, @2, ... x, such that the conjunction of the constraints is satisfied”).
Agsuming true > false, checking consistency is equivalent to computing:

n;axm:;mx...n;ax(fl/\fg/\.../\fm) (1)

1 x

The values that optimize this query define a solution. In this query, local relations
are combined with A, and the elimination (or projection) operator max is applied
to each variable. Replacing A by their respective combination operator & (resp.
x) in Query 1 yields the usual query of valued (resp. totally ordered semiring)
CSP [2].

Similarly, in a Bayesian network [7], L is a set of local conditional probabil-
ity distributions L = {P(z; | pa(z;)), z; € V'} where pa(z;) is the set of parent
variables of z; defined by a directed acyclic graph (DAG) G. Such a network
represents a joint probability distribution P(V') on all variables as a combina-
tion of local conditional probability distributions, exactly as the combination of
local constraints in a CSP implicitly models a global constraint on all variables.
Various queries can be considered on a Bayesian network, such as computing
P(x1), the probability distribution on 1, equal to:

Z . Z ( H P(z; |pa(:vi))) (2)

Tn z; €V

In this case, local functions are combined with x, and elimination is done with
+, instead of A and max respectively for checking consistency of a CSP.

These graphical models are said to be simple because they only involve one
type of variable (decision variables for CSP, random variables for Bayesian net-
works), one type of function (constraints for CSP, conditional probability distri-
butions for Bayesian networks), one type of combination operator (A for CSP, x
for Bayesian networks), and one type of elimination operator (max for checking
consistency of a CSP, + for computing probabilities in a Bayesian network).
However, many related formalisms have introduced several types of variables,
functions, combination and elimination operators. Such frameworks can infor-
mally be denoted as composite graphical models.



Composite graphical models Stochastic CSP [5] involves two kinds of vari-
ables: decision variables d;, and stochastic variables s; describing the environ-
ment. A global probability distribution on stochastic variables is expressed as
a combination of local probability distributions that can be simply P(s;) if the
stochastic variables are assumed to be mutually independent. A set of local con-

straints C' = {cy, ..., cp } is also defined. An example of query with two decisions
steps is:
n(liaxmax max max (P(s1) x P(s2)) x (1 X ... %X ¢m) (3)
1 3

Uncertainties given by the local probability distributions are combined with x,
utilities expressed by the constraints are combined with X, uncertainties and
utilities are combined together with X, environment (stochastic) variables are
eliminated with +, and decision variables are eliminated with max.

Another example of a composite graphical model is given by influence di-
agrams [9] or finite horizon possibilistic and probabilistic MDP [10,11,14]. A
MDP describes the evolution of the environment by time-steps. An environment
variable s; describing the state of the environment is associated with each time-
step t, as well as a decision variable d; representing the decision made at time ¢.
In the following, the initial state s; is assumed to be known.

In a probabilistic MDP, uncertainties on the evolution of the environment are
described with local probability distributions P(s¢41 | 8¢, d;) of being in state s;41
at time ¢ + 1, given s; and d;. Utilities on the environment and on the decisions
are specified via local additive rewards R(s¢, d;) associated with each time-step.
If there are T time-steps, the associated query is:

II}{?.X max Zmax ( H P(St+1 ‘ St,dt ) ( Z R St,dt ) (4)

te[1,T—1] te1,T]

to obtain an optlmal policy under uncertainty. Uncertainties given by the prob-
abilities are combined with x, utilities given by the rewards are combined with
+, uncertainties and utilities are combined with x, environment variables (the
s¢) are eliminated with +, and decision ones (the d;) are eliminated with max.

In a possibilistic MDP, uncertainties on the evolution of the environment are
described with possibility distributions 7(s¢41 | s¢,d:) of being in state s;1q at
time ¢+ 1, given s; and d;. Utilities on the environment and on the decisions are
specified via local preferences yu(s¢,d;) associated with each time-step. If there
are T time-steps, the query associated with the pessimistic version of possibilistic
MDP is:

n}l?,xnsl;nn:lgx. . n;innjgxmax (1 - te[rll’,l%_‘n_l]ﬂ'(St+1 | s¢,di) tg[lli,rqlﬂ]“(st’dt)> (5)
Uncertainties given by the possibilities are combined with min, utilities given by
the preferences are combined with min, an uncertainty un and a utility ut are
combined with max(1 — un,ut), environment variables (the s;) are eliminated
with min, and decision ones (the d;) are eliminated with max. It appears that
only the combination and elimination operators differ between Equations 4 and 5.



In MDP, the environment may restrain the possible decisions, as in STRIPS
planning, where preconditions on actions are imposed. If f(s;,d;) is a local
boolean relation expressing whether a decision d; is feasible or not in state s,

Equation 4 becomes maxg, / f(s;,dy) 2, MAXdy / f(s2,d) « + + 2 gp MAXdr / f(s7,d7) Os
where a = (Hte[l,Tq] P(s¢41 ] st, dt)) X (EtG[I,T] R(sy, dt)). To avoid indexed
max operations, it is also possible to write this equation as:

max 2 max. .. a max (te[/l\,T] f(St,dt)) * o (6)
with x an operation used to combine feasibilities and utilities, defined by true x
ut = ut, false x ut = ¢, ¢ being “ignored” by the elimination operators, i.e.
max(ut, ¢) = min(ut, Q) = ut + ¢ = ut. Again, a sequence of variable elimina-
tions is performed on a combination of local relations, local feasibility constraints
being combined with A, and combined with uncertainties and utilities with *.

Global objective Equations 1 to 6 show that queries associated with existing
frameworks all correspond to a sequence of application of elimination opera-
tors on a combination of local functions. The only differences between these
frameworks lies in the types of the local functions involved and in the way infor-
mation is combined and eliminated. The existing generic approach of valuation
algebras [16,17] is suitable for simple graphical models, but, being restricted to
simple graphical models with one type of information, it cannot be directly used
to solve queries on composite graphical models.

In order to deal in the most general way with graphical models where one
may distinguish between environment variables (whose value is uncertain) and
decision variables (whose value is chosen), between local relations expressing
uncertainties, feasibilities and utilities, using several type of combination oper-
ators (for combining uncertainties, feasibilities, and utilities) and of elimination
operators (typically min, max, or + may alternate in general queries), we de-
signed a new algebraic framework, called Uncertainty-Feasibility- Utility networks
(UFUs). Using such networks, simple or complex queries can be formulated uni-
formly using elimination operators (acting as quantifiers). This framework en-
ables the integration of several algorithmic approaches independently explored
in each framework: exact methods relying on tree search or variable/bucket elim-
ination, approximate algorithms using sampling or local search, and local infer-
ence mechanisms such as local consistency enforcing (now available on general
classes of functions [19]) and global constraints. It will also bring to light and
capitalize on the many common underlying algorithmic ideas, therefore avoiding
reinventing similar methods.

The Uncertainty-Feasibility-Utility networks framework is based on three
main components that make the backbone of this paper:

— a generic algebraic structure, presented in Section 3, introduces operators
specifying how to combine uncertainties, feasibilities, utilities, how to com-
bine uncertainties with utilities, feasibilities with utilities, and how to elimi-
nate on uncertainties, feasibilities, and utilities;



— a problem (Section 4) is then defined as a set of local functions between
variables. Variables are either environment variables (with an uncertainty
measure on the value they take), or decision variables (when their value is
decisionally chosen by an agent). Three types of local functions are defined:
uncertainty relations (modeling uncertainties on the environment variables),
feasibility relations (modeling feasibility constraints on decision variables),
and utility relations (modeling preferences or hard requirements, on any
variable).

— queries on a problem (Section 5) are finally formulated as sequences of vari-
able eliminations, e.g. to compute an optimal policy under uncertainty.

Example To give flesh to our definitions, we consider the following example:
Peter invites John and Mary (a divorced couple) to a business dinner in order
to convince them to invest in his company. Peter knows that if John is present
at the end of the dinner, he will invest 10 k$. The same holds for Mary with 50
k$. Peter knows that John and Mary will not come together (one of them has to
baby-sit their child), that at least one of them will come, and that the case “John
comes and Mary does not” occurs with a probability of 0.6. As for the menu,
Peter can order fish or meat for the main course, and white or red for the wine.
However, the restaurant refuses to serve fish and red wine together. John does
not like white wine and Mary does not like meat. If the menu does not suit them,
they will leave the dinner. If John comes, Peter does not want him to leave the
dinner because he is his best friend.

3 Definition of a generic algebraic structure

We start by describing the algebraic structure on which uncertainties, feasibili-
ties, and utilities are defined. This structure involves ordered sets, combination
and elimination operators, as well as specific elements.

Uncertainties can be expressed in several forms, as shown in the examples
of probabilistic and possibilistic MDP (see Section 2). A first well-known form
uses probabilities, as in probabilistic MDP. In this case, probabilities are com-
bined with x (under independency hypothesis), and elimination on probabilities
(usually called marginalisation) is done with +. But uncertainties can also be
expressed as possibility degrees in [0,1], as in possibilistic MDP. In this case,
possibilities are combined with an operator that can be min, and are eliminated
with max. An interesting subcase appears when possibility degrees are either
0 or 1, i.e. when the uncertainties describe which world is completely possible
or impossible. Uncertainties can then be combined with A, and eliminated with
V. A last example is given by Spohn’s theory of epistemic beliefs [15]: in this
case, uncertainties are surprise degrees in N U {+00}, 0 being associated with
non-surprising situations, and +o0o being associated with completely surprising
(impossible) situations. Surprise degrees are then combined with + and elimi-
nated with min.



To generalize those various frameworks reasoning about uncertainties, we
define an uncertainty structure as a tuple Syn= (Eun, 2un> Pun, @un) such that:

— E,, is a set of elements called uncertainty degrees, totally ordered by <,
and with a minimal element 0, (0., will be associated with impossibility).

— @, is a binary, associative, commutative, monotonic, closed operator on
E,.,, (elimination operator), with 0,, as neutral element.

— ®un 18 a binary, associative, commutative, monotonic, closed operator on
E,,, (combination operator), with a neutral element 1,, € E,, and 0, as
annihilator. Moreover, @,,,, distributes over &,,,.

It is a totally ordered commutative semiring. The previously described uncer-
tainty modeling frameworks can easily be shown to be instances of uncertainty
structures. Note that Dempster-Shafer belief functions [20] are not subsumed.

Feasibilities are used to express the fact that a decision is feasible or not.
Therefore feasibilities are expressed on {true, false}. This set is equipped with
the total order <y verifying false <y true. As a conjunction of decisions is feasible
iff each decision of the conjunction is feasible, feasibilities are combined with A.
As a disjunction of decisions is feasible iff at least one decision of the disjunction
is feasible, feasibilities are eliminated with V. Thus, feasibilities are expressed on
a structure called a feasibility structure, which is always Sy = ({true, false}, <;
,V,A). Note that Sy is also an uncertainty structure.

Utilities A usual approach to take into account utilities and uncertainty is the
famous probabilistic expected utility theory [21], used e.g. in stochastic CSP
and probabilistic MDP. In this theory, utilities are combined with +, and the
expected utility formula ), p; x U; combines uncertainties and utilities with x
and eliminates utilities with +.

But other options exist. If uncertainties are possibility degrees as in pos-
sibilistic MDP, the possibilistic pessimistic expected utility theory [13] can be
used: utilities are combined with min (as a risk minimization), an uncertainty un
and a utility ut are combined with max(1 — un,ut), and utilities are eliminated
with min. Last, if uncertainties are surprise degrees, the qualitative utility the-
ory for Spohnian beliefs [15] can be used: when only “positive” utilities exist, it
corresponds to combining utilities with +, combining uncertainties and utilities
with +, and eliminating utilities with min.

To generalize these examples, we define first a wutility structure, on which
utilities are expressed, and then a combination operator between uncertainties
and utilities. A utility structure is a tuple Sy = (Eur, Sut, Put, @ue) such that:

— FE,: is a set of elements called utility degrees, totally ordered by <,:, and
which contains a minimal element 1 ,;, associated with unacceptability.

— @y is a binary, associative, commutative, monotonic, closed operator on FE,;
(elimination operator), with a neutral element 0,; € E,; denoting indiffer-
ence, between positive and negative utilities.

— @4 18 a binary, associative, commutative, monotonic, closed operator on
E,; (combination operator), with a neutral element 1,; € E,; and L,; as
annihilator.



A utility structure is different from an uncertainty structure: 0, is the minimum
element of E,, whereas 0,; is not necessarily the minimum element of F,;; both
positive and negative utilities may exist. Then, a combination operator between
uncertainties and utilities is an operator Qun/ut E,, x E,; — E,; such that:

— @un/ut 18 monotonic: for a given uncertainty, the higher the utility, the better,
and the more a positive utility is believed (and the less a negative one), the
better: (utq <ut uta) = (UN @y /o utt Sup UN Dy /o uta)

((ung Zun ung) A (Ous St ut)) = (Ung @yppur Ut Syt N Dyyp /i ut)
((ung 2un ung) A (ut Syt Out)) = (UN2 Dypjur Ut Ryt UNG Dy /or ut)

— utilities are “weighted” by uncertainties. These linearity axioms give a usual
“lottery” semantics [21] to combined uncertainties and utilities. These ax-
ioms are also important for algorithmic reasons. Despite the strength of these
axioms, they cover all the previous frameworks (see Table 1):

uny ®un/ut (’U/I’LQ ®un/ut Ut) = (’U/I’Ll Oun ’U/Ilg) ®un/ut ut

un ®un/ut (Utl But UtQ) = (un ®un/ut Utl) Dut (un ®un/ut UtQ)
(Unl Bun Un2) Qun/ut ut = (unl Qun/ut Ut) Dut (Un2 Qun/ut Ut)
Lun @unjut ut = ut, and Oup @ypjus ut = Ouz

Finally, to combine feasibilities and utilities, we use, as in Equation 6, a
combination operator between feasibilities and utilities * : {true, false} X (FEy: U
{0}) = (Eu U {0}) such that for any ut € E,; U {Q}, true x ut = ut and
false x ut = ¢, where ¢ is a special element ignored by elimination operators:
max(ut, ¢) = min(ut, ¢) = ut &, ¢ = ut (imposing max(ut, §)= min(ut, ¢)= ut
is fine since =<, is a total order on E,;, and not on E,; U {0}). x enables us to
write max, ¢(z)=¢rue d(z) as max, f(x) x d(x), which gives feasibilities the same
status as uncertainties and utilities. We also extend @y, /s by un @yp /0 ¢ = 0,
which implies un @, /0t (f xut) = fx (Un @ypjys ut) = f*un @y )y ut.

An uncertainty-utility structure is defined as a triple (Sun,Sut, @un/ut)
such that S, is an uncertainty structure, S, is a utility structure and @, /¢
is a combination operator between uncertainties and utilities. The structure for
feasibility constraints is always Sy = ({true, false}, <;,V,A). Similarly, » does
not change. Classical uncertainty-utility structures satisfying all the previous
axioms are shown in Table 1. Our dinner problem uses probabilistic expected
utility (row 1 in Table 1).

Eun =un Qun Qun Oun, lu Bt Sut But Qut Lut, Out, Lud Qun/ut
1] RY < + x 0,1 |RU{-c0} < + + —00,0,0 X
2 RT < 4+ x 0,1 RT < 4+ x 0,0,1 X
3 0,1 < max min 0,1 0,1 < max min 0,0,1 min
4 0,1 < max min 0,1 0,1 < min min  0,1,1 max(1—un, ut)
5| NU{oc} > min + 00,0 | NU{oco} > min + 00,00,0 +

Table 1. Uncertainty-utility structure in - 1. probabilistic expected utility - 2. proba-
bilistic expected satisfaction - 3. optimistic possibilistic expected utility - 4. pessimistic
possibilistic expected utility - 5. non-bipolar qualitative utility for Spohnian beliefs.



4 Definition of problems

We can now combine this algebraic structure with the notion of graphical models
using local functions as in Equations 1 to 6. Formally, a local function on E is
a function L; : Dom(S(L;)) — E, where S(L;) is a set of variables called the
scope of L;. A local function on E,, (the set of uncertainty degrees) is called
an uncertainty relation, a local function on {true, false} (the set of feasibility
degrees) is called a feasibility relation, and a local function on E,; (the set of
utility degrees) is called a wtility relation. A feasibility relation can obviously be
modeled as a constraint; an uncertainty relation can be modeled as a constraint
if it takes its values in {0y, 1yn} (forbidden tuples are mapped on 0,,,, allowed
ones on 1,,); similarly, a utility relation can be modeled as a constraint if it takes
its values in { L, 1, }. Eliminating a variable x with an operator op from a local
function L; on a set of variables S consists of computing, for each assignment A of
S—{z}, (op; Li)(A) = 0pac pom(z) Li(A.(x = a)), i.e. a function on S(L;) — {z}.

Given a finite set of variables V', partitioned into Vg, the set of environment
variables, and Vp, the set of decision ones, we want to express:

— a global uncertainty degree UNy on the environment variables as a com-
bination of uncertainty relations. UNy satisfies normalization conditions,
according to which the disjunction of all the situations gives the same un-
certainty degree 1,,. The normalization will appear locally through local
normalization conditions imposed on uncertainty relations;

— a global feasibility degree Fy on the decision variables as a combination
of feasibility relations. Fy satisfies normalization conditions, according to
which one decision is feasible in any situation; this is semantically justi-
fied since e.g. doing nothing is always possible (even if unacceptable). The
normalizations will appear locally through local normalization conditions
imposed on feasibility relations;

— a global utility degree UTy on all variables as a combination of utility rela-
tions. UTy expresses preferences or hard requirements. No normalization is
imposed here, because local utilities can always be combined without gener-
ating any impossibility; their combination can only generate unacceptability.

Definition 1 A problem Pb on an uncertainty-utility structure (Sun, Sut, @un /ut)
is a tuple (V,G,UN,F,UT) where:

-V = {ay,29,...} is a finite set of variables. V is partitioned into Vg (the
set of environment variables) and Vp (the set of decision variables). Each
variable x; has a finite domain Dom(x;). For S C V, Dom(S) denotes the
Cartesian product of the domains of variables in S.

— G is a DAG whose vertices are called components. The components form a
partition of V' such that each component intersects only one of Vg or Vp.
We note Cg (resp. Cp) the set of components included in Vg (resp. Vp) and
pa(c) the variables belonging to a parent of ¢ in G.

— UN ={UN;,UNa, ...} is a finite set of uncertainty relations; each UN; is as-
sociated with a component ¢ € Cg noted c(UN;), s.t. S(UN;) C (cUpa(c)); for
any ¢ € Cg, the local normalization &y, (®unC(UN1.):CUNi) = lyn must hold.

[



— F = {F\,F,,...} is a finite set of feasibility relations; each F; is associa-
ted with a component ¢ € Cp noted ¢(F;), s.t. S(F;) C (cUpal(c)); for any
¢ € Cp, the local normalization V (/\C(F,-):ch‘) = true must hold.

— UT ={UT\,UTs,...} is a finite set of utility relations.

The DAG structure makes uncertainty and feasibility relations implicitly ori-
ented (between variables in pa(c) and variables in ¢) or not (inside a component).
Note that there cannot be any undirected relation between an environment vari-
able and a decision variable, as they cannot belong to a same component: either
a decision influences the environment, or the environment restrains the possible
decisions. Intuitively, the DAG models independences.

The dinner problem can be modeled using six variables: bp; and bpys (value
t or f), representing John’s and Mary’s presence at the beginning, ep; and epas
(value t or f), representing their presence at the end, mc (value fish or meat),
for the main course choice, and w (value white or red), for the wine choice.
Vp = {mec,w} and Vg = {bps, bprs, eps, epar}-

The DAG of components encoding independences can be built using e.g.
causal reasoning. For example, it is possible to infer that bp; and bpys are
linked by a correlation relation and are not causally influenced by other vari-
ables, that ep; is causally determined by bp; and w, but not by epys (the
corresponding links are oriented to ep;), that me and w are linked by a non-
oriented feasibility relation expressing the impossibility to order fish with red
wine. .. The result is shown in Figure la. Implicitly, the DAG means that the
joint probability distribution P(bps, bpar, eps,epn | me,w) can be expressed as
P(bpy,bpar) @un P(epy | bpg, bpar, me, w) @y Plepas | bpy, bpar, me, w), and that
the global feasibility degree can be expressed as F(me,w).

The uncertainty relations express P(bps, bpar), P(eps|bpy, bpa, me, w), and
Pepas | bp.y, bpar, me,w). A first uncertainty relation U Ny expresses P(bp.y, bpas),
the probability of presence of John and Mary at the beginning: UN;(bp; =
t,bpy = f) =0.6, UNy(bpy = f,bpy =t) = 0.4, and UN,(bp; = t,bpyy =t) =
UNy(bpy = f,bpps = f)=0. Then, P(eps|bps,bpr, me,w) can be specified as
UNs @yun UN3. UN, expresses that if John is absent at the beginning, he will be
absent at the end: UNy(A4)=0 if A=(ep;=t,bp;=f), 1 otherwise. Equivalently
UNj is the constraint (bps= f) — (epsj= f). UN3 is the constraint (bp;=t) —
((epy=t) > =(w= white)). Similarly, P(epys | bp.s, bpar, me, w) = UNy @y, U N5
with UN4 and U N defined as constraints. Note that unlike Bayesian networks,
one can specify the probability of a variable given its parents by several relations.

Concerning feasibilities, F(mec,w) is specified as a unique feasibility relation
F, expressing that Peter cannot order fish with red wine: Fy : =((mc = fish) A
(w = red)). The association of relations with components is shown in Figure 1a.

As for utilities, a binary utility relation expresses that Peter does not want
John to leave the dinner: UTy : (bpy = t) — (eps = t). Two unary utility
relations UTy and UT3 on ep; and epys resp. express the gains expected from
the presences at the end: for instance, UTy(epy = t) = 10 and UTs(epy = f) = 0.

All the local relations are drawn as a composite graphical model in Figure 1b.



me, w bps, bpum

F TN,

l:l decision
© environment

uncertainty
relation

relation

UN.,UN; UNy,UNs

+
® feasibility
- @- lrn: lltzn

elat1

Fig. 1. (a) DAG of components (b) Uncertainty-Feasibility-Utility network.

Back to existing frameworks Let us consider the formalisms described in
Section 2 again. Representing a CSP (hard or soft) in our framework can be
easily done by defining a problem as Pb = (V,G, 0,0, UT): all variables in V" are
decision variables, G is reduced to a unique decision component containing all
variables, and the constraints can be considered as utility relations.

A Bayesian network can be modeled as Pb = (V,G,UN,,(): all variables
in V are environment variables (they are random variables), G is the DAG of
the Bayesian network, and UN = {P(z; |pa(z;)),z; € V}. There are not any
feasibility or utility relations. Chain graphs differ from Bayesian networks in that
instead of expressing conditional probabilities P(z; |pa(z;)) on variables, they
express conditional probability distributions P(¢; | pa(c;)) on components ¢; of
a DAG, each P(c;|pa(c;)) being expressed in a factored form. A chain graph
can be modeled as Pb = (V,G,UN, ), (), with G the DAG of components of the
chain graph, and UN the set of factors of each P(c; | pa(c;)). Without the notion
of components, such a framework would not have been subsumed.

One can model a stochastic CSP as Pb = (V,G,UN,0,UT), where Vg is
the set of stochastic variables, Vp is the set of decision ones, G is a DAG which
depends on the relations between the stochastic variables, UN is the set of prob-
ability distributions on the stochastic variables, and UT is the set of constraints.

A finite horizon probabilistic MDP can be modeled as Pb = (V,G,UN, F,UT).
If there are T time-steps, then Vg = {s;,t € [1,T]} and Vp = {d;,t € [1,T]};
G is a DAG of components such that each component contains only one vari-
able, such that the parents of an environment component {s;,11} are {s,;} and
{d:}, and such that the unique parent of a decision component {d;} is {s:};
UN = {P(st41lst, di),t € [LLT = 1]}, F = {f(ss,dy),t € [1,T]}, and UT =
{R(s¢,d:),t € [1,T]}. The modeling of a possibilistic MDP is similar.

It is easy to prove that SAT, stochastic SAT, quantified boolean formulas,
quantified CSP, factored MDP, influence diagrams or STRIPS planning are also
subsumed by this formalism. Yet, frameworks such as partially ordered semiring
CSP [2] are not encompassed, because of the assumption of a total order on E,;.
Note that our example could not have been modeled with influence diagrams,
which do not include the notion of feasibility.

Conditional independence This definition offers additional semantic prop-
erties if the notion of conditional uncertainty distributions is introduced. An



uncertainty distribution g is an uncertainty relation over S satisfying the nor-
malization condition ®ungvs = lun. It can be extended to any subset S’ of S
by applying @, to eliminate variables in S—S’. As conditional probabilities are
defined using division, conditional uncertainties are defined via a conditioning
operator over E,,,, denoted @,,,,. When such an operator defined on {(uny,uns) €
EunXEypn | uny Sun ung, Oyn<yn ung} and verifying (uny @upn un) @upn (ung Oyn
un) = (un1 Byn una) Oup un (linearity), 0un Dun un = Oyn, UN Dyp un = lyy,
(uny @yun un2) Qup ung = uny and (ung Oup un) Qupn ((UN2 Ry UN) Oy un) =
(uny @upn ung) Cun un (simplification) exists, the uncertainty structure is said to
be conditionable. All structures of Table 1 are conditionable.

In a conditionable uncertainty structure, let yg be an uncertainty distribution
on S, and S',S" be disjoint subsets of S. ys/us# @un Y5, noted ygr | g, is a
conditional uncertainty distribution on S’ given S”. It is an uncertainty distri-
bution on S’ for any assignment of S”, and verifies ys/usr = g | g0 @ ysn. If Sy,
Ss and S3 are disjoint subsets of .S, then, S; and Sy are conditionally independent
w.r.t. v given Sz iff y5,us, (5, = Vs1 |55 @un Vs, |s,: the problem can be split
into one part depending on S; U S3, and another one depending on Ss U S3.

If a DAG of components is used to model conditional independences of the
global uncertainty degree UNy,, then UNy can be expressed as a combination of
normalized factors (one factor per component), and each factor may be further
factorized. The same kind of factorization can be obtained for Fy . Conversely,
it is possible to prove that the global uncertainty degree defined from a problem
Pb= (V,G,UN,F,UT) as the combination of the uncertainty relations in UN
is an uncertainty distribution conditional independences of which are encoded
by G. The same holds for feasibilities. See [22] for more details.

5 Definition of queries

Given a problem, the goal is now to answer queries on it. As shown in Section 2
(see Equations 1 to 6), a query corresponds to a sequence of variable eliminations
applied on a combination of local functions. As the combination of local functions
is defined by a problem, the only element not yet defined is the sequence of
eliminations; it corresponds to our definition of queries. A query will enable
us to ask questions such as: “how to maximize the investment if the restaurant
chooses the main course first and Peter is pessimistic about this choice, and then
Peter chooses the wine before knowing who is present at the beginning and at the
end”. In this case, the sequence of eliminations would be (min, {mc}).(max, {w})

-(@uta {pr7 bpM, €D, epM})) Formally:

Definition 2 A query Q is a pair (Pb,Sov) where Pb = (V,G,UN,F,UT)
18 a problem and Sov is a sequence of operator-variables pairs, such that the
operators are min, max or $y¢, and such that each variable appears at most
once in Sov. Variables that appear in Sov are quantified variables, the others
are called free variables.

A query is correct iff, if quantified, environment variables are quantified by
@yt and decision ones by min or max (adequation between the nature of a vari-



able and its operator® ),and iff for any variables x and y of different nature (one
decision variable, one environment variable), when the component of x is an as-
cendant in the DAG G of the component of y, then x appears at the left of y in
Sov, or x is a free variable (respect of causality).

Thus, a query is correct if it satisfies constraints on the elimination order
and on the type of eliminations. Note that adjacent sets of variables S; and S,
eliminated with the same operator op can be gathered with (op, S1).(op, S2) =
(op, S1 U Sy), because elimination operators are associative and commutative.

Property 1 There exists at least one correct query without free variables on a

problem (because of the DAG structure).

Query meaning The answer Ans(Q) to a correct query @ = (Pb, Sov) can be
defined inductively as a function of A, an assignment of the free variables:

Ans((Pb, (op,{z;}) . Sov"))(A") = eDop( , Ans((Pb, Sov"))(A'.(z; = a)) (7)
Ans((Pb,0))(A") = <<Fi/éFFi> * (U Sun NUNZ-) Qunfut (U q@ggTUTZ-))(A') (8)

Equation 8 expresses that, if all the problem variables are assigned, the answer
to the query is the combination of the uncertainty degree, the feasibility degree,
and the utility degree of the corresponding complete assignment. Equation 7
expresses that, if the variables are not all assigned and z; is the first quantified
variable with op as an operator, the answer to the query is obtained by applying
the elimination operator op to all the values of z;. When min/max operators
are used on a decision variable, this means optimal decisions are sought. All
or part of the values that optimize the query can be recorded if needed during
the evaluation of the answer to a query. Equivalently, Ans(Q) can be written:
Ans(Q) = Sov ((Arer Fi) * (Qunvn,eun UND) @unjut (Quivr,cur UTH)).

Queries enable us to consider various situations in terms of observability. If
an environment quantified variable x appears at the left of a decision quantified
variable y (e.g. Sov = ... (@, {z}) ... (max, {y})...), this means that the value
of = is known (observed) when a value for y is chosen. Conversely, if Sov =
coo(max, {y}) ... (B, {x}) ..., z is not observed before choosing y.

In another direction, queries enable us to consider various situations in terms
of optimistic or pessimistic attitude, as each decision variable can be quantified
with min or max. Assume that a decision is made by another agent via a decision
variable y. It is possible to perform either (max, {y}) if one is optimistic about
the behavior of the other agent, or (min, {y}) if one is pessimistic.

Semantical foundations based on the lottery theory [21] do exist for the def-
inition of the query meaning: using conditional distributions, it is possible to
give a second definition of Ans(Q), where each step involving a environment
variable is considered as a lottery, and each step involving a decision variable is
considered as an optimization step among the feasible decisions.

4 An environment variable can be quantified by min or max, if &,;=min or max.



Theorem 1 The two definitions of Ans(Q) are equivalent if conditional uncer-
tainties can be defined (see [22] for a proof).

With the second (semantic) definition, computationally expensive quantities are
involved: the first (operational) definition is algorithmically more suitable.

Queries on the dinner problem What is the maximum investment Peter
can expect (and which associated decision(s) should he make) if he chooses the
menu without knowing who will come 7 The associated query is:

(Pba (max, {mc, w})(EButa {pra bpMa e€p.J, epM}))

The answer is 6 (k$) with {(mec = meat), (w = red)}. But if Peter knows who
comes, the query becomes:

(va (®ut7 {pra bpM}).(max., {mc'/ w})‘(@utv {epJa epM}))

The answer is 26 (k$) with a 20 (k$) gain from the observability of who is present.
The decision is {(mc¢ = meat), (w = red)} if John is present and Mary is not,

{(mc = fish),(w = white)} otherwise. Consider now the query introduced at
the beginning of Section 5:

(Pb, (min, {mc}).(max, {w}).(Pus, {bps, bors, ens,epar}))

The answer is 1,;= —oo: in the worst main course case, even if Peter chooses
the wine, the situation can be unacceptable. Finally, the query

(Pba (@uta {pra bpMa e€pJ, epM})-(maX7 {mc, w}))

is not correct: it runs counter to causality, as the menu has to be chosen before
knowing who is present at the end. These examples show how a query enables us
to consider various situations in terms of observability, and in terms of optimistic
or pessimistic attitude.

Back to existing frameworks Let us consider again the examples of Section 2.
Looking for a solution to a CSP (Equation 1) or to a totally ordered soft CSP
corresponds to the query Q@ = (Pb, (max,V)), with Pb the expression of the
CSP in our framework and V' the set of variables of the CSP. Computing the
probability distribution on a variable z; for a Bayesian network (Equation 2)
modeled as Pb corresponds to @ = (Pb, (+, {xa,...,2,}). These examples are
mono-operator queries, involving only one type of elimination operator.

Let us now consider multi-operator queries. The search for an optimal policy
under uncertainty for a stochastic CSP (Equation 3) modeled as Pb, corresponds
to the query @ = (Pb, (max, {di,d>}).(+, {s1}).(max, {ds,ds}).(+,{s2})). For
a finite horizon MDP with T time-steps (Equations 4 to 6), the query is Q =
(Pb, (max, {d1}).(®ust, {s2}).(max, {da}) ... (Pus, {s7}).(max, {dr})), where E;
equals + with probabilistic MDP, and min with possibilistic pessimistic MDP.
With a quantified CSP, elimination operators min and max alternate. With
influence diagrams, the unique query (production of a decision that maximizes
expected utility) alternates max on decisions and @,; = + on random variables.



Answering queries For mono-operator queries on simple graphical models,
generic algorithms as provided by valuation algebras [16,17] or bucket elimina-
tion [18] can be considered. For multi-operator queries, we have:

Theorem 2 Computing the answer to a query is a PSPACE-hard problem.

Proof : Quantified Boolean Formulas (QBF) is a PSPACE-complete problem
which can be easily reduced to our framework: all variables are decision, clauses
are utility relations combined with A, and the associated query alternates min (for
universally quantified variables) and max (for existentially quantified variables).

O

The first inductive definition of the meaning of a query ) actually defines a
naive exponential time algorithm to compute Ans(Q) using a tree-exploration
procedure with a fixed variable ordering (the one of Sov) that collects elementary
uncertainties, feasibilities, and utilities. According to the nature of the operator
used, each level in the tree consists in applying a min, max or ¢,; operator on
the values collected. This blunt approach, as existing approaches for quantified
constraints or formulas [4], uses Sov to fix the variable order. A better approach
would be to transform a multi-operator query into an optimized set of mono-
operator queries bringing to light implicit parallelism and extra variable order
freedom by taking into account the problem and query structure as well as
algebraic operators properties.

6 Conclusion

In the last decades, Al has witnessed the design and study of numerous frame-
works for reasoning about uncertainties, feasibilities and utilities. We have tried
to crystallize their inherent mathematical structure to build a unified formalism
covering hard, valued, quantified, mixed, and stochastic CSP, Bayesian networks,
probabilistic or possibilistic MDP, influence diagrams. ..

Compared to related works [16,18,17], our proposal is the only one able
to deal with generic composite graphical models, in which there may be sev-
eral types of variables (decision or environment), several types of local relations
(uncertainties, feasibilities, utilities), and several types of combination and elim-
ination operators.

From an algorithmic point of view, approximate algorithms using sampling
and local search could be considered. Anyway, the implicit tree-search algorithm
embodied in the first operational inductive definition of the value of a query
offers a first naive approach. The simultaneous use of local consistencies [19,
23], global constraints, branch and bound (and possibly game algorithms), vari-
able/bucket elimination algorithms [18], as well as caching strategies that exploit
the problem-structure as in [24, 25], are obvious candidates to improve this basic
schema, provided that they are extended to take into account the composite na-
ture of the Uncertainty-Feasibility-Utility networks framework. In another direc-
tion, so as to more precisely justify the algebraic structure used in the framework,
works in decision theory such as the one in [26] could also be considered.
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Solving Soft Constraints by Separating
Optimization and Satisfiability
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Abstract. As many real-world problems involve user preferences, costs,
or probabilities, the constraint framework has been extended from satis-
faction to optimization by extending hard constraints to soft constraints.
However, techniques for constraint satisfaction, such as local consistency
or conflict learning, do not easily generalize to optimization. Thus, solv-
ing soft constraints appears more difficult than solving hard constraints.
In this paper, we present an approach to solving soft constraints that
exploits this disparity by re-formulating soft constraints into an opti-
mization part (with unary objective functions), and a satisfiability part.
We describe a search algorithm that exploits this re-formulation by enu-
merating subspaces with equal valuation, that is, plateaus in the search
space, rather than individual elements of the space. Experimental results
indicate that this hybrid approach can in some cases be more efficient
than other methods for solving soft constraints.

1 Introduction

Many real-world problems are naturally framed as optimization problems where
the task is to find assignments to variables that optimize user preference, cost,
or probability. Therefore, constraint satisfaction problems (CSPs) have been
extended from satisfaction to optimization by the notion of soft constraints.
One general framework for soft constraints are valued constraint satisfaction
problems (VCSPs) [20, 1], which augment CSPs with a valuation structure and
subsume many earlier notions such as fuzzy CSPs, probabilistic CSPs, or partial
constraint satisfaction.

For the case of solving CSPs, techniques such as local consistency filtering [16]
and conflict (nogood) learning [5] have proven to be very effective. Substantial
progress has been made in extending these techniques to the more general case
of soft constraints [2,7]; however, the optimization case still appears far more
difficult than the satisfaction case.

In practical applications, the constraints often exhibit structure or regulari-
ties that can be exploited in order to make optimization feasible. For instance,
approaches based on tree decomposition [8,12] exploit favorable properties of
the constraint graph (limited width) to break down the problem into lower-
dimensional subproblems.



In this paper, we present an approach to exploit a form of structure that
can occur only in VCSPs, but not in CSPs: namely that the valuations are not
distributed evenly across the space of assignments, but there rather exist large
sets of assignments that have equal valuation (corresponding to “plateaus” in
the search space).

Our approach exploits this by factoring optimization problems into a set of
soft constraints that carry all the information about valuations of assignments,
and a set of hard constraints that do not carry valuations but just need to be
satisfied. A special instance of such a re-formulation is taking the dual of the
problem [14], which yields a factorization into hard constraints and unary soft
constraints.

The benefit of this re-formulation is that it allows to apply optimization
techniques to the optimization part, and to apply satisfiability techniques to the
satisfiability part. In particular, if the soft constraint part is small enough, it
becomes feasible to use optimization techniques such as A* search [10], which is
optimal in the number of search nodes visited, but would be infeasible to apply
on the complete, original problem due to its memory requirements. For the hard
constraint part, it becomes possible to use state-of-the-art the techniques for
CSPs that exploit local consistency and conflicts.

This principled idea has been underlying algorithmic approaches in the area
of model-based reasoning and diagnosis [24, 9] for quite some time. Model-based
reasoning captures the behavior of physical systems in terms of constraint-based
models, where a (typically small) subset of variables capture preferences (such
as the failure probability of components, or the cost of repairing them), and
constraints capture consistency. [25] formally defines these problems as so-called
optimal CSPs and presents an algorithm called conflict-directed A* that solves
them using a mixture of optimization and satisfaction techniques. We generalize
upon these methods, and by coupling them with a method for transforming val-
ued CSPs into optimal CSPs, we extend their applicability to the general case of
soft constraints. Our resulting hybrid algorithm enumerates plateaus (parts of
the search space with the same valuation) in best-first order, and subsequently
checks if there exists a consistent solution within the plateau. This can be more
efficient than enumerating individual elements of the search space, because de-
pending on the problem, there can be much fewer plateaus than total elements
of the search space.

The remaining parts of the paper are organized as follows: We review the
definitions of valued CSPs [20] and optimal CSPs [25] and present a method
for transforming between them. The method is similar to dualization [14] in
that it yields a separation into hard constraints and unary soft constraints. We
then present a variant of conflict-directed A* that exploits this re-formulation
by searching over sets of assignment with equal valuation rather than searching
over individual assignments of the variables in the problem. We give experimental
results demonstrating that this algorithm sometimes outperforms other methods
for solving valued CSPs, and we indicate several directions for future work.



2 Valued CSPs

A classical constraint satisfaction problem (CSP) is a triple (X, D, C') with vari-
ables X = {x1, ..., x,}, finite domains D = {dy, ..., d,, }, and constraints C' =
{e1, -+, cm}. Each constraint ¢; € C is a relation ¢; C I, cvar(c,)di Over vari-
ables var(c;) € X. An assignment ¢ to variables var(c;) satisfies the constraint
if t € ¢;, and violates it otherwise.

Definition 1 (Valuation Structure [20]). A valuation structure is a tuple
(E,<,®, L, T) where E is a set of valuations, totally ordered by < with a min-
imum element | € E and a mazimum element T € E, and ® is an associative,
commutative, and monotonic binary operation with identity element 1 and ab-
sorbing element T.

The set of valuations F expresses different levels of constraint violation, such
that | means satisfaction and T means unacceptable violation. The operation
@ is used to combine (aggregate) several valuations. A constraint is hard, if all
its valuations are either L or T.

Definition 2 (Valued Constraint Satisfaction Problem [20]). A valued
constraint satisfaction problem (VCSP) consists of a classical CSP (X, D,C)
with valuation structure (E,<,®, L, T), and a mapping ¢ from C to E which
associates a valuation with each constraint.

For example, the problem of diagnosing the polycell circuit in Fig. 1 [25]
can be framed as a VCSP with variables X = {a,b,¢,d,e, f,g,2,y,2}. Each
variable corresponds to a boolean signal and has domain {0,1}. The VCSP
has five ternary constraints fo1, fo2, fo3, fa1, faz corresponding to the gates
in the circuit, and four unary constraints f., fq, fr, fy corresponding to the
observations. The ternary constraints express that the gates are performing their
boolean functions. The unary constraints express that the variables ¢, d, and g
are observed to be 1, whereas variable f is observed to be 0. The valuation
structure (Na' Uoo, +,<,0,00) captures the cost of violating a constraint, which
we assume to be 1 for the constraints f,1, fo2, fo3, 2 for the constraints f,; and
fa2, and oo for the constraints modeling the observations.

Given a VCSP, the problem is to find an assignment ¢ to X which mimimizes
the combined valuation of all violated constraints, @{c eCltvar(c;)lge; } @(c). For
the boolean polycell example, the minimum valuation of an assignment is 1,
corresponding to a fault of a single OR gate.

3 Optimal CSPs

Since solving VCSPs is more complex than solving classical CSPs, an algorith-
mic approach that is based on spliting the VCSP into a set of classical (hard)
constraints and a set of valued (soft) constraints can be useful.

In the following, we consider a specialization of this approach where the
constraints are divided into hard constraints and unary soft constraints. In [25],
this type of optimization problem is called optimal CSP:
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Fig. 1. The boolean polycell example consists of three OR gates and two AND gates.
Variables ¢, d, f, and g are observed as indicated.

Definition 3 (Optimal CSP). An optimal CSP (OCSP) consists of a classical
CSP (X, D, (), with valuation structure (E,<,®, L, T), and a set U of unary
functions u; @ y; — E defined over a subset Y C X of the variables. The
variables in' Y are called decision variables, and the variables in X \Y are called
non-decision variables.

An OCSP can be viewed as a special case of a VCSP where soft constraints
(constraints with valuation ¢(c;) < T) must be unary. A solution to an OCSP is
an assignment to Y with minimal valuation such that there exists an extension
to all variables X that satisfies all constraints in the CSP. Hence, whereas a
solution to a VCSP is a single assignments to X, a solution to an OCSP is an
assignments to the decision variables Y that can stand for a whole collection of
assignments to X that have all the same valuation (plateau) and differ only with
respect to the non-decision variables X \ Y.

It is observed in [14] that a number of optimization problems can be directly
expressed with hard and unary soft constraints, that is, as OCSPs; an example
are combinatorial auctions [19].

4 Translation from Valued CSPs to Optimal CSPs

In general, a VCSP may have non-unary soft constraints and thus it does not
necessarily have the form of an OCSP. However, it is possible to transform a
VCSP into an OCSP with an equivalent optimal solution. This transformation
is based on viewing the constraints of the VCSP as decision variables of the
OCSP, similar to the hidden variable representation described [14]. The transla-
tion demonstrates that OCSPs, though syntactically more restricted than VC-
SPs, actually have the same expressive power as VCSPs. OCSPs could therefore
be viewed as a “normalization” of VCSPs that achieves the desired separation
into a hard constraint part and a soft constraint part.

Definition 4 (Translation of VCSP to OCSP). The translation of a VCSP
(X, D, C) with valuation structure (E,<,®, L, T) and mapping ¢ into an OCSP



(X', D’,C") with unary functions U over decision variables Y C X' is defined
as follows:

— X' consists of X and one decision variable y; for each constraint ¢; € C;

— D’ consists of D and the domain {true, false} for each decision variable y;;

— U consists of one unary function u; per decision variable y;. The function
maps the value true to L and the value false to ¢(c;);

— (' consists of one constraint c; for each c¢; € C'. Each c} is a relation over
variables var(c;) = var(c;) Uy;. An assignment t to var(c;) satisfies c if
and only if tlvar(c;)] € ¢; and y; = true or t[var(c;)] ¢ ¢; and y; = false.

For example, the translation of the VCSP for the boolean polycell circuit
yields an OCSP with variables {a,b,c,d,e, f,g,2,9,2,y1,Y2,...,Yyg}. Variables
y1 to yo are decision variables, and variables {a,b,c,d,e, f,g,2,y,z} are non-
decision variables. There are nine unary functions uy, us, ..., ug € U, and nine

constraints fo1, fo2, fos, fa1, fa2, fe, fa, fr, fq obtained by extending each
constraint of the original VCSP with a decision variable.

Theorem 1. A VCSP and its translation to an OCSP have the same optimal
solution.

The transformation as described in Def. 4 turns a VCSP with n variables and
m constraints into an OCSP with n 4+ m variables and 2 - m constraints. We can
further reduce the size of the OCSP by observing that for any hard constraint
¢; in the VCSP (¢(c;) = T), choosing the value false for its corresponding
decision variable y; can never give rise to a solution of the OCSP because it will
immediately lead to the valuation T. Therefore, we do not need to introduce
decision variables for hard constraints in the VCSP.

Definition 5 (Reduced translation of VCSP to OCSP). A reduced trans-
lation of a VCSP (X, D,C) with valuation structure (E,<,®, 1, T) and map-
ping ¢ into an OCSP (X', D', C") with unary functions U over decision variables
Y C X' is defined as follows:

— X' consists of X and one decision variable y; for each constraint c¢; € C for
which ¢(c;) < T;

— D' and U are as in Def. 4;

— ('’ consists of one constraint ¢; for each c; € C. If ¢(c;) = T then ¢, = ¢;,

j j
else c; is defined as in Def. 4.

The equivalence of optimal solutions (Theorem 1) will also be preserved by
the translation in Def. 5. Note that for the special case of a VCSP that is actually
a CSP (a VCSP where ¢(c;) = T for all ¢; € C), the reduced translation is the
CSP itself. Therefore, solving a CSP as an OCSP does not incur any overhead.

For the boolean polycell example, the translation using Def. 5 no longer
introduces a decision variable for the hard constraints f., f4, fy, f4 corresponding
to observations, and thus the resulting OCSP has only five decision variables y1,
Ya, ..., Y5 corresponding to the constraints fo1, fo2, fo3, fa1, fa2-



5 Solving OCSPs

The separation of valued CSPs into unary soft constraints and hard constraints
can be algorithmically exploited by coupling together specialized algorithms for
each part. In particular, for the hard constraint part, we can employ techniques
that are highly optimized for satisfaction problems, and for the soft constraint
part, we can employ techniques that work best for a relatively small optimization
problem but would be infeasible for the original, bigger problem. This hybrid al-
gorithmic approach can be more efficient than general solvers for soft constraints
that do not make assumptions about how the valuations are distributed over the
space of assignments.

5.1 Conflict-directed A* Search

Williams and Ragno [25] describe such a hybrid approach for solving a subclass of
OCSPs. The approach, called conflict-directed A *, uses backtracking search with
arc consistency and conflict-directed backjumping [5] on the hard constraints,
and A* search [10] on the unary soft constraints. Conflict-directed backjumping
is an instance of learning new constraints from inconsistencies that can be very
effective for real-world constraint satisfaction problems. A* search is an instance
of best-first search that uses a lower bound g for the partial assignment made so
far, and an optimistic estimate h of the value that can be achieved when com-
pleting the assignment; at each point in the search, A* expands the assignment
with the best combined value of g and h. A* search is run-time optimal [3] in
that it visits a minimum number of search nodes (among all search methods
having access to the same heuristics). Unfortunately, due to its memory require-
ments, A* search is hardly feasible as a solution method for general VCSPs. As
observed in [25], however, the memory requirements of A* search on OCSPs are
often much more modest, because only assignments to variables that have an
associated cost (decision variables) need to be stored in the search queue, and
conflicts from the CSP part can be exploited to further reduce the size of the
queue.

In the following, we present a simplified variant of conflict-directed A* that
is adapted to OCSPs obtained from VCSPs. The pseudo-code of the algorithm
is shown in Alg. 1. First, local consistency is established in the CSP part of the
OCSP. If an inconsistency arises during local propagation, then the OCSP has
no consistent solution (no assignment with valuation better than T). Otherwise,
the algorithm performs a best-first (A*) search over assignments to the decision
variables Y of the OCSP, using a priority queue of (partial) assignments to Y’
that is ordered by their valuation. The A* search is based on two sub-procedures
updateAssignment() and switchAssignment(), shown in Proc. 2 and Proc. 3, re-
spectively. Procedure switchAssignment() establishes a (partial) assignment a to
the decision variables from the queue, trying to reuse as much as possible the
current search tree; it backtracks to the deepest point in the search tree up to
which the current assignment to Y and a are the same. If an inconsistency occurs
while trying to establish the assignment, then a conflict is extracted and added



to the set of constraints, and the assignment is discarded. Next, updateAssign-
ment() is used to assign decision variables that have only one value remaining,
and extend the assignment (and in particular, its valuation) accordingly. Since
this update might increase the valuation of the current assignment, it is now
possible that is no longer the best assignment; in this case, the assignment is
pushed back into the queue. Otherwise (if the current assignment is still the best
one), it is checked whether the assignment to the decision variables is complete.
If the assignment is incomplete, the algorithm chooses a next decision variable
y; to assign and enqueues the two possible branches y; < true and y; < false.
If the assignment to the decision variables is complete, then the algorithm uses
procedure consistentAssignment() to check if the assignment is consistent with
the CSP. To this end, consistentAssignment() tries to extend the assignment
to Y C X to an assignment to X by assigning the remaining (non-decision)
variables X \ Y. In Proc. 4, this is done using depth-first search with conflict-
directed backjumping. The current level of the search tree (which so far involves
only decision variables) is frozen in variable decisionLevel, and whenever a con-
flict occurs that would require to backup higher than this level (backtrackLevel
smaller than or equal to decisionLevel), the current assignment to the decision
variables must be inconsistent and is discarded. Otherwise, the assignment is
output as the next best solution.

Conflict-directed A* is thus a hybrid algorithm for OCSPs that exploits the
distinction between decision variables (which determine the valuation of an as-
signment) and non-decision variables (which determine only the consistency of
an assignment) by treating them separately: it enumerates the assignments to
the decision variables (corresponding to plateaus) in best-first order, and then
checks the consistency of these assignment (corresponding to the plateau being
empty or not). Depending on the problem structure, there can be fewer plateaus
than individual elements of the search space, and therefore this two-step ap-
proach can be more efficient than enumerating the individual elements of the
search space.

Theorem 2. The conflict-directed A* algorithm in Alg. 1 computes the optimal
solution of a given OCSP.

For instance, for the boolean polycell example and the OCSP encoding in
Def. 5, the algorithm has to assign five decision variables yi1, y2, ..., y5 corre-
sponding to the constraints f,1, fo2, fo3, fa1, fa2. Conflict-directed A* starts
with an empty assignment to the decision variables. Propagation does not prune
any values for the decision variables, so the algorithm assigns a decision vari-
able. Assume the decision variables are assigned in the order yi, yo, ..., ¥s.
The algorithm thus creates two new assignments, (y; < true) with valuation
0 and (y; « false) with valuation 1, and puts them on the queue. The algo-
rithm pops the assignment (y; < true) from the queue and establishes it using
function switchAssignment(). Two new assignments, (y; « true,ys « true)
with valuation 0 and (y; <« true,y; < false) with valuation 1 are created and
enqueued. When establishing the best assignment (y; « true,ys < true) us-



Algorithm 1 Conflict-directed A* for OCSPs

1: if not (propagate() = conflict) then
2:  queue — (0, 1)
3:  while queue # 0 do
4: (a, value) «— top(queue)
5: queue «— pop(queue)
6: if switchAssignment(a) then
T updateAssignment({a, value))
8: if assignment with better value exists in queue then
9: queue — push(queue, (a, value))
10: else
11: if exists y; € Y, y; = unknown then
12: queue < push(queue, (a U (y; < true),v))
13: queue «— push(queue, (a U (y; < false), v ® ¢(c;)))
14: else
15: if consistentAssignment() then
16: output value as best solution
17: exit
18: end if
19: end if
20: end if
21: end if
22:  end while
23: end if

24: output no solution

ing switchAssignment(), propagation forces ys to be false, and thus updateAs-
signment() refines the assignment to (y; « true,ys « true,ys <« false) with
valuation 2. Since a better assignment exists in the queue, this assignment is
pushed back into the queue, and the next best assignment, say (y; « false)
with valuation 1, is considered. Since this new assignment and the current as-
signment share no common prefix, switchAssignment() needs to backtrack up
to y1 in order to establish this assignment. After propagation, the updated as-
signment becomes (y; « false,ys < true) with valuation 1. The algorithm
proceeds by assigning yo «— true and y4 < true, at which point y5 « true can
be derived by propagation, and therefore a complete decision variable assign-
ment (y; < false,yo < true,ys < true,y, < true,ys < true) with valuation
1 is obtained. Procedure consistentAssignment() determines that this assign-
ment is consistent (a satisfying assignment to the non-decision variables is e.g.
(@ —1,b—1lce1lde—1le—0f—0g—1laz—0yec1lz1), and
thus outputs value 1 as the optimal solution.

Conflict-directed A* search can be further refined in a number of ways. [25,
15] describe extensions that reduce the size of the search queue by generating
new entries only at a point where the current assignment to the decision vari-
ables becomes inconsistent, and an extension to the case of non-binary decision
variables that generates only next best child assignments instead of all children



Procedure 2 updateAssignment({a, value))

1
2
3
4
5
6
7

: for all y; €Y, y; ¢ a, y; # unknown do
if y; = true then
(a, value) « (a U (y; < true), value)
: else
(a, value) « (a U (y; « false), value & ¢(c;))
end if
: end for

Procedure 3 switchAssignment(a)

©

—
—

12:
13:
14:
15:

e I A o v

H
1

: level < deepest level up to which a and current assignment are equal
: backtrack(level)
: for (y; < val) € a do
if y; # val then
return false
else if y; = unknown then
y; < val
level « level 4+ 1
if propagate() = conflict then
CSP « CSP U conflict
return false
end if
end if
end for
return true

Procedure 4 consistent Assignment()

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

1
2
3
4:
5:
6.
7
8

: decisionLevel « level
: while exists z; € X \ Y, z; = unknown do

choose val € d;
x; «— val
level « level + 1
di «— dz — val
if propagate() = conflict then
backtrackLevel < analyze(conflict)
if backtrackLevel < decisionLevel then
return false
else
CSP «— CSP U conflict
backtrack(backtrackLevel)
level «+ backtrackLevel
end if
end if
end while
return true




at once. It is also easy to extend the algorithm such that it enumerates the
solutions in best-first order, instead of computing only the optimal solution.

6 Implementation

We have implemented the transformation of VCSPs into OCSPs and the conflict-
directed A* search algorithm in C++. Conflict-directed A* search was imple-
mented on top of zChaff [17], one of the most efficient complete solvers for
boolean satisfiability (SAT) problems. The main reasons why we choose zChaff
is that it offers (1) a highly optimized data-structure for local consistency (unit
propagation), called two-literal watching scheme; (2) a method for extracting
small conflicts from inconsistencies, based on so-called unique implications points
(UIPs), which correspond to dominators in the implication graph; and (3) an
efficient variable and value ordering heuristic called variable state independent
decaying sum (VSIDS), which biases the search towards variables that occur in
recently learned clauses, i.e., conflicts. (In addition, zChaff uses other techniques
such as random restarts, which we do not exploit in our prototype).

Our prototypic implementation of conflict-directed A* adopts zChaff’s local
propagation scheme, its conflict extraction method, and its variable/value order-
ing heuristic for the non-decision variables. The decision variables are currently
assigned in no specific order. Using a SAT solver as the underlying satisfiability
engine means that the CSP part of the OCSP has to be first encoded as a SAT
problem, by mapping variables to boolean variables, and mapping constraints
to clauses in conjunctive normal form (CNF). For this purpose, we choose a
logarithmic SAT encoding of the CSP [11], although other encodings are equally
possible (see [23, 6] for two alternative encodings).

7 Experimental Results

We evaluated our prototype on various examples of valued CSPs, and compared
its performance against other algorithms for solving soft constraints.

The algorithms we compared against are branch-and-bound with maintaining
existential directional arc consistency (BB-MEDAC) [7], and cluster tree elim-
ination (CTE) [4]. BB-MEDAC is a recently proposed search algorithm that
combines depth-first branch-and-bound with a form of arc consistency general-
ized to soft constraints. In our experiments we used the implementation that is
part of the TOOLBAR package [22]. CTE is an inference algorithm for both hard
constraints and soft constraints that is based on decomposing the constraint
graph into a tree structure, and solving it using dynamic programming. In our
experiments, the tree was computed using a greedy min-fill heuristic.

All the examples shown below (apart from the random problems) are taken
from the TOOLBAR repository. All experiments were performed under Windows
XP using a 2.8 GHz Pentium 4 PC with 1 GB of Ram.



7.1 Academic Problems

First, we tried conflict-directed A* on three academic puzzles. Since these ex-
amples involve only hard constraints, the corresponding OCSPs do not contain
any decision variables, and thus conflict-directed A* can solve these problems as
efficiently as the underlying satisfiability engine (in our implementation, zChaff
with the given SAT encoding). For all three algorithms, we used a time bound
of 1 minute. Table 1 summarizes the results. Although these examples are rela-
tively small, note that CTE fails to solve all but one of them within the given
time bound.

Table 1. Results for academic puzzles (containing only hard constraints).

| | CDA* [BB-MEDAC| CTE |

zebra (25 variables, 19 constraints) |0.188 sec| 0.016 sec  [0.047 sec
send (11 variables, 32 constraints) [0.312 sec| 0.031 sec |> 1 min
donald (15 variables, 51 constraints)|2.828 sec| 0.156 sec |> 1 min

7.2 Random Problems

Next, we compared the algorithms on random Max-CSP problems. Max-CSPs
are instances of VCSPs where each constraint has cost 1; thus, the task is to
minimize the number of violated constraints. To generate the examples, we used
a random binary constraint model with four parameters N, K, C, and T', where
N is the number of variables, K the domain size, C' the number of constraints,
and T the tightness of each constraint (number of tuples having cost 1). Again,
we used a time bound of 1 minute. Table 2 summarizes the results for six classes
of random Max-CSP, averaged over 10 instances each.

Table 2. Results for random Max-CSPs (10 instances each).

l (N, K,C,T) [ CDA* [ BB-MEDAC [ CTE ‘
(40, 4, 60, 4) |0.0346 sec| 0.0092 sec |1.461 sec
(40, 4, 60, 8) |2.184 sec 0.022 sec  |4.136 sec
(40, 4, 60, 12) | > 1 min | 0.0468 sec |7.325 sec
(25, 4, 100, 4) | 0.818 sec| 0.0156 sec |> 1 min
(25, 4, 100, 8) | > 1 min 0.169 sec  |> 1 min

(25, 4, 100, 12)| > 1 min 0.131 sec |> 1 min

For all these examples, BB-MEDAC converges very fast towards the optimal
solution. Unfortunately, conflict-directed A* does not perform well for the denser
and tighter instances. Further analysis of these cases reveals that the algorithm



actually quickly finds small conflicts that could potentially guide the A* search
towards the optimal solution, but then tries many assignments to the decision
variables that are useless as they are not relevant to (i.e., do not resolve) those
conflicts. Thus, we expect that using a similar variable ordering heuristic for the
decision variables as for the non-decision variables (focusing on variables involved
in conflicts) could substantially improve the performance of conflict-directed A*
for these cases.

7.3 Real-world Problems

Finally, we evaluated the performance of our algorithm on four real-world cir-
cuit examples. These are obtained by turning SAT instances from the DIMACS
challenge into Max-CSPs by making each clause a constraint with cost 1. For
these examples, we used a time bound of 10 minutes. Table 3 summarizes the
results.

Table 3. Results for DIMACS circuit examples.

| CDA* [BB-MEDAC| CTE |
ssa0432-003 (435 variables, 1027 constraints) | 14.547 sec | > 10 min 1.219 sec
$8a7552-038 (1501 variables, 3575 constraints)| 28.312 sec| > 10 min |142.969 sec
$sa2670-141 (986 variables, 2315 constraints) [101.765 sec| > 10 min 6.21 sec
ssa2670-130 (1359 variables, 3321 constraints)| 233.89 sec | > 10 min | 53.203 sec

CTE performs best for most of these examples; however, the run-times for
CTE in Table 3 show only run-times of CTE itself and do not include the time for
computing the tree decomposition, which takes longer than the run-time of CTE
for some of the examples. Also, CTE requires significantly more memory than
the other algorithms for most of the examples. BB-MEDAC, which performed
best for the academic and random examples, cannot solve any of the DIMACS
examples within the given time bound. In fact, even after 10 minutes of compu-
tation, its lower bound (best valuation found so far) is often far off the optimal
solution. We suspect that this has to do with the fact that BB-MEDAC performs
local propagation (existential directional arc consistency) for binary constraints
only, and defers the propagation of non-binary constraints until they become
binary. Thus, the propagation scheme is not effective for the DIMACS exam-
ples where almost all constraints are non-binary. In contrast, conflict-directed
A* exploits efficient local propagation (zChaff’s two literal scheme) for any hard
constraints. In fact, for instance ssa7552-038, which has optimal cost 0, conflict-
directed A* requires only one call to the SAT engine (zChaff) in order to solve it.
The actual run-time of zChaff for this example is only a fraction of the run-time
given in Table 3, indicating that the current implementation of conflict-directed
A* wastes significant time constructing unnecessary search queue entries. We
therefore expect that further improvements to the algorithm to reduce the size



of the search queue by creating entries only as needed (as described in [25, 15])
will have a strong impact for these examples.

8 Discussion and Related Work

In [14], Larrosa and Dechter already observed that transforming soft constraints
into sets of hard and unary soft constraints may provide a useful starting point
for algorithmic development. Conflict-directed A* is an instance of such an ap-
proach; it ties together two algorithms specialized to optimization and satisfac-
tion (A* search and conflict-directed backjumping). The approach is inspired by
techniques from model-based reasoning and diagnosis [24, 9], where problems can
be naturally framed as a mixture of large hard constraints and unary objective
functions (i.e., OCSPs).

The transformation of a VCSP into an OCSP makes this hybrid approach
applicable to soft constraints. It can be viewed as a process of “pre-compiling” the
objective function, which makes the preferences more explicit and can thus make
the problem easier to solve. From this perspective, the separation into unary soft
constraints and hard constraints is only a special case; it is not actually required
by the approach that the soft constraints are unary. Another useful view of the
re-formulation into OCSPs is that of giving a “normal form” for soft constraints,
which makes the degree to which the problem is an optimization problem vs.
a satisfaction problem more explicit. It seems that research in soft constraints
has so far focussed on expressive, unifying frameworks, but much less on such
canonical representations. Optimal CSPs could provide a starting point in this
direction.

A drawback of our re-formulation technique is that it can increase the size
of the problem; since one decision variable is introduced for each soft constraint,
the resulting OCSP may be much bigger than the original VCSP, especially if it
has a high ratio of constraints to variables. However, even if the re-formulation
incurs an increase in the problem size, the benefit of applying dedicated solvers
to each part of the problem (as in conflict-directed A*) may still outweigh the
increase in the search space. The ratio up to which the re-formulation is beneficial
is a subject of further research.

As already indicated in Sec. 5.1, several improvements to conflict-directed A*
are possible, in particular for switchAssignment(), the procedure that is most
critical to the performance of the algorithm. The cost of switching between two
A* search nodes (corresponding to two different assignments to the decision
variables, i.e., two CSPs) could be reduced by incremental techniques that allow
for computing only the difference between two CSP instances. In model-based
reasoning and diagnosis, truth maintenance systems (TMS) [13], which keep
track of the dependencies in the implication graph, are frequently used for this
purpose. However, the additional bookkeeping necessitated by the TMS creates a
trade-off between between making the context switch more efficient and making
the satisfiability check more efficient.



Another direction for future work is to combine conflict-directed A* search
with structural (tree decomposition) methods. As can be seen from the exper-
iments, the two approaches are fairly complementary to each other, and de-
composing the problem into smaller subproblems can dramatically improve per-
formance on examples with low tree width. The combination would involve an
instance of conflict-directed A* running on every cluster in the tree, and a spe-
cial set of decision variables that capture the cost of assignments to variables
shared between clusters (separator variables). We are currently working on such
a decomposed version of conflict-directed A*. Some earlier work on combining
best-first search with tree decompositions can be found in [18], whereas [21] de-
scribes a method for (the simpler case of) combining depth-first search with tree
decompositions.

In our implementation, we used a SAT solver (zChaff) to check consistency of
the candidates (plateaus) enumerated by A* search, mainly for the reason that it
provides an efficient implementation of local propagation and conflict extraction.
Recently, the problem of extending SAT solvers to optimization counterparts
where either the number of satisfied clauses must be maximized (max-SAT) or
the clauses carry a weight to be maximized (weighted max-SAT) has received
considerable attention [26]. Much of this work still focuses on extending the basic
DPLL search algorithm that underlies most complete SAT solvers (especially the
unit propagation and variable ordering heuristic) to this case, and does not yet
exploit more advanced concepts like conflicts. Still, it would be interesting to
compare such approaches to our method.

9 Conclusion

We presented an approach for transforming VCSPs into hard constraints and
unary soft constraints (OCSPs), and an algorithm that exploits this re-formulation
by solving the optimization and satisfiability part separately using a combina-
tion of two specialized algorithms. Because it can exploit structure in the search
space by enumerating whole sets of assignments with equal valuations (plateaus)
rather than just individual assignments, this hybrid approach can be more effi-
cient than algorithms that work directly on the VCSP. We presented an instance
of this approach, called conflict-directed A*, and its prototypic implementation
on top of a SAT solver. The prototype can outperform other solvers for VCSPs on
some problems of practical importance. Promising directions for future research
include more sophisticated, incremental methods for the critical step of switching
between plateaus, and incorporating structural decomposition methods.
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Abstract. The lexicographically-ordered CSP (“lexicographic CSBf $hort)
combines a simple representation of preferences with thsitidity constraints
of ordinary CSPs. Preferences are defined by a total ordedrmss all assign-
ments, such that a change in assignment to variaidenore important than any
change in assignment to any variable that comes after itdrotdering. In this
paper, we show how this representation can be extended tiieheonditional
preferences. This can be done in two ways. In the first, fan eaaditional pref-
erence relation, the parents have higher priority than kfildren in the original
lexicographic ordering. In the second, the relation betwgsrents and children
need not correspond to the basic ordering of variables. Fdslgms of the first
type, any of the algorithms originally devised for ordindeyicographic CSPs
can also be used when some of the domain orderings are dependéhe as-
signments to “parent” variables. For problems of the sedyppé, we show that a
branch-and-bound algorithm originally devised for ordjnkexicographic CSPs
can be extended to handle CSPs with conditional domain iogterAlthough
bounding is necessarily compromised to a degree, our erpats suggest that
this algorithm is still reasonably efficient.

1 Introduction.

An important contribution of artificial intelligence to tlstudy of preferences has been
the development of methods for representing and handlinditonal preferences. This
work is based on the assumption that preference orderiegsften context-dependent.
Once one considers preferences in this way, many exampieg $p mind. To take one
such: what | prefer to eat may depend on the country | am, edpel am inclined to
‘go native’. So in Spain | may prefer paella and tortillas,jl&ln Germany | may prefer
bratwurst and sauerkraut. Although it is not entirely cldeat contexts such as these
should always be treated as elements in a preference ogdéhia is surely a viable
interpretation, especially with human beings who can regame contexts as entities.
(And it also seems to be a generally effective manouver wiph@éscriptive contexts.)
Recently, we have investigated the propertidexitographically ordered CSPs[1].
This is a special kind of soft constraint system in which altotdering is imposed on
complete assignments, in terms of the variables and th&greed values. This ordering
is lexicographic in form, with the further stipulation thadriable selection is the pri-
mary factor and value assignment is secondary. This meaha good assignment for a



more-preferred variable is more important than a good asségt for a less-preferred

variable in deciding the overall ranking of solutions. Thefprence ordering is as-

sumed to be independent of any constraints that may hold ath@se variables. The

latter, therefore, restrict the alternatives given by aralgreference ordering to those
that can actually be realized.

Lexicographic CSPs are meant to represent problems in whaflerences involve
multiple objectives and attributes and where feasibildapstraints also impose restric-
tions on assignments that are actually possible. From tim pioview of representation
as well as computation they offer significant benefits. Thidue in part because of the
radical decoupling of the preference structure from thsifelity conditions (as noted
earlier by [1]; cf. a similar argument by [2] in connectiontwCP-nets).

While it is to be expected that there will be situations wharmsple lexicographic
CSPs do not capture all the nuances of the preference reatio other cases this
may be a more appealing approach by virtue of its greateitycknd simplicity. This
is suggested by the fact that lexicographic orderings ametimes used in decision-
making applications, despite their extreme assumptiegoted by [3].

One of the appealing features of this form of lexicograpkjaresentation of pref-
erences for CSPs is that it offers wide scope for developatignization algorithms [1]
[4]. In fact, ordinary CSP algorithms can be used as the fatiad for such algorithms.
If the variable and value orderings follow the lexicograpdridering, then this is all that
is necessary because in this case the first solution foundisgteed to be the optimal
one. Otherwise, the algorithm must search for all solutamsby multiple comparisons
determine which solution is optimal. Since this is ineffigieshen there are many feasi-
ble solutions, we have also developed a version of branctvandd and shown this to
be reasonably effective. In addition, we have developeckaialized restart algorithm
(a version of Junker’s preference-based search [5]) inlwbicthekth restart, theth
variable is instantiated in lexical order while better aidg heuristics are used for the
remaining variables; in this case, when the first solutiofoimd, its kth assignment
will be optimal. Finally, we have begun to consider spez&diforms of weighted local
search, which can be efficient for finding optimal soluticaithough they cannot prove
that a solution is optimal.

In this paper, this form of lexicographic ordering is exteddoconditional |exico-
graphic orders, thereby extending this form of representation to allowdonditional
preferences. In this case, the same type of lexicograpderiog holds as in ordinary
lexicographic CSPs, but domain orderings are conditionassignments chosen from
other domain. We consider two important classes of conutitexicographic CSPs. In
the first class, conditionalities always respect the pyasrdering of the variables; in
the second, they do not. As we will see, the latter extensienatty restricts the kinds
of algorithms that can be used; however, a variation on tlaadir and bound algo-
rithms not only remains sound but is also nearly as efficiemiractice as the original
algorithm.

As a motivating (and clarifying) example, consider a situatn which a customer
is deciding among possible vacations. There are two seasamisich he can travel:
spring and summer. And for simplicity we consider only twadtions: Naples and
Helsinki. In the first scenario (first type of conditionalieagraphic ordering), location



is more important than the time of travel and the preferregae depends on the loca-
tion chosen. This is shown in Figure 1a, where following [6 tonditional preference
is represented as a conditional preference table. Theiatsbpreference ordering is:

( Naples, spring > ( Naples, summey > ( Helsinki, summe} > ( Helsinki, spring)

In the second scenario (second type of conditional lexaplgic ordering), location is

again the primary feature, but the preference for a locatepends on the city chosen.
Thus, our customer prefers Naples in the spring but Heldimithe summer, but he

prefers to take his vacation in spring instead of summerhi ¢ase, the preference
ordering is:

( Naples, spring > ( Helsinki, summel) > ( Helsinki, spring) > ( Naples, summey

Itis of interest to note that the second ordering is inteithat least as reasonable as the
first.

{Naples,Helsink} Naples> Helsinki
{spring,summer Naples: spring- summer
Helsinki: summer- spring

a.
{Naples,Helsink} spring: Naples- Helsinki
summer: Helsinki- Naples
{spring,summey spring> summe
b.

Fig. 1. Two examples of conditional lexicographic preference ordgs. In (a) the conditions are
consistent with the priority of variables; in (b) the comalits oppose the priority ordering.

An alternative representation of conditional prefereribas has received much at-
tention in recent years is the “CP-net” [6] [7]. Since CPseid not require total orders,
they are in some respects a more flexible form of representatiowever, the present
formulation provides a novel kind of flexibility, in that itlaws conditionalities to op-
pose the priority ordering. It may, therefore, be worth exiplg the relations between
these two forms of representation as well as their relatiengths and weaknesses.



The remainder of the paper is organized as follows. Sectigives formal defini-
tions of lexicographic CSPs and CSPs with conditional legiraphic orders, and pro-
vides a short discussion on the relations between thesensgsind the more general
soft constraint representations. Section 3 discusseoredao CP-nets and TCP-nets.
Section 4 gives a summary of algorithms for solving ordinarycographic CSPs. Sec-
tion 5 discusses algorithms that can handle conditionétdgxaphic CSPs of either
type. Section 6 gives conclusions.

2 Background and Definitions.

2.1 Definitions

Definition 1. Lexicographic CSP.A finite CSP is defined in the usual way as a triple
(V, D, C), whereV is a set of variabled) is a set of domains each of which is asso-
ciated with a member df’, andC is a set of constraints, or relations holding between
subsets of variables.

To specify a CSP as lexicographic, we introduce the follgndefinitions. A la-
belling of setV is a bijection betweef1, ..., |V|} andV. A lexicographic structure
L overV is apair(\, {>x: X € V}), where the second component is a family of
total orders, with> x being a total order on the domain &f, and\ is a labelling of
V. We write the labeling\(:) of V as Xy, ..., X,,. The associatelxicographic order
>, on (complete) assignments is defined as follaws:;, S if and only if « # § and
a(X;) >x, B(X;), whereX; is the first variable (i.e., with minimunr) such thatx and
3 differ.

A lexicographic CSP is a tuple(V, D, C, A\, {>x: X € V}), where(V, D, C) is a
finite CSP and\, {>x: X € V}) is a lexicographic structure ovéf.

A solution to a lexicographic CSP is an assignmehsuch that

(i) o* is asatisfying assignment, that s, it is consistent witlsatisfies, all constraints
in C.
(ii) for any other satisfying assignmeant a* >/, a.

Definition 2. Conditional lexicographic CSP.A conditional lexicographic structure
overV is defined as a tupl& = (\,G,CPT), wherel is a labelling ofl/, with A(4)
being writtenX;, G is a directed acyclic graph dri which is compatible with\, i.e.,
(Xi, X;) € G impliesi < j. CPT is a function which associates a conditional prefer-
ence tableC' PT'(X) to eachX € V. Each conditional preference tall&PT'(X;) as-
sociates a total order;¥ with each instantiation of the parent#/; of X; (with respect

to ). The associatecbnditional lexicographic order = - on assignments is defined as
follows: a = Bifand only if o # 8 anda(X;) >Xi B(X;), whereX; is the first
variable (i.e., with smalles) such thatx(X;) # 5(X;), andu = a(U;) = B(U;). Itis
easily seen that i is a total order on assignments.

Definition 3. Extended Conditional Lexicographic CSP.An extended conditional
preference order involves a functiorq) which assigns a numbéJ(z|u) for every value

x of X; and assignment to U;. The conditional preference order is then defined as
follows: to compare assignmenisand we find the firstX; whereQ(«(X;)|a(U;))



is not equal taQ (B(X,)|B(U:)). If Q(a(X:)|a(Uy)) s less tharQ(B(X,)|B(Us)), we
prefera to 3; else we prefef to a.

Another way of viewing this is that we are converting eachgseenta = (x4,
..., Zy) to ann-tuple of numbersy’ = (Q(x1]u1), ..., Q(xn|uy,)), Whereu; is the
assignmenty makes tolU;. The conditional lexicographic order,, is then just the
standard lexicographic order on thes¢uples of numbersax is preferred tg3 if and
only if o' is lexicographically less thaff. Hence>, is a total order.

2.2 Lexicographic CSPs and soft constraints.

The lexicographically-ordered CSP is a special case ofléhécbgraphic CSP” or “lex-
VCSP” as defined in [8]. As these authors show, lex-VCSPsrangrn equivalent to a
kind of weighted CSP. However, because of the charactereobttiering in our case,
we do not need to represent preferences numerically, andwwbudld up partial solu-
tions correctly without reference to numerical operatisunsh as addition. So, while we
follow [8] and refer to it by their term, “lexicographic CSHt is a very special case of
the class that they describe, with implications both fougesfulness as a representation
in the context of preferences and its ability to support effitalgorithms. For this rea-
son, we use the term “lex-VCSP” to refer to the more genefaigmay of CSPs whose
evaluations can be ordered lexicographically.

An evaluation structure for CSPs involving a lexicograpdridering was originally
developed within the fuzzy CSP context to avoid the limitégtdminability between
solution values due to the use of fuzzy min and max operationsombining and
comparing evaluations. In this formulation, preferenaeskftuples associated with a
given constraint are ordered by increasing magnitude,wadblutions are compared
beginning with the first members of each ordering and praogegp the lists until a
difference is found [9]. In addition, constraint priorgiean be incorporated by asso-
ciating a priority level with each constraint, and making #valuation for a tuple the
maximum of its preference value and the complement of th@iprivalue, i.e.

pus(u, ..., ur) = max(1l — ac, pr(ur, ..., ug))

whereus andug are evaluations of the fuzzy relatiofsand R associated with con-
straintC, andac is C's priority level. A related and somewhat more general formu
lation falling within the valued CSP framework is in termsarflerings of constraint
violations, where the combinator is multiset-union with aafditional top ") value
that acts as an absorbing element and can be used to represdatibns of hard con-
straints. Comparison then involves sorting the multisetsoaiated with each solution
and comparing them lexicographically, beginning with tighlest value and choosing
the evaluation with the smaller value for the first differerfiound [8]. These authors
also show that lexicographic CSPs of this form are equivdteweighted CSPs, with
positiveco serving as the top value.

Lexicographic CSPs as we have defined them fall under thendeztass described
above (though not the first, in which priorities and prefeesnare balanced). For our
purposes (and perhaps in general), the weighted CSP faiionula more straightfor-
ward. In this case, one avoids the oddities of combifingith multisets and comparing



a single evaluation with a multiset when this element is imed. We can embed a lex-
icographic ordering within a weighted CSP framework asoil:

Lexicographic CSP as a weighted CSH-or eachi = 1,...,n we define a unary
weighted constrainitV; over variableX;, given byW; (z) = kb" ¢, wherex is thekth
best value in the domain of; andb is the largest domain size. Then for assignments
andg, the sum of the weights associatedts less than the sum associategstid and
only if a >, B.

3 Lexicographic CSPs and CP-nets.

In recent years, the most popular or at least the most adedrtheans of represent-
ing conditional preferences has been the conditional prate network witrceteris
paribus assumptions, or CP-net [6]. A more recent variant, the TEF40], includes
elaborations to handle relations of importance betweeffieiteires of user-selections.
This corresponds to the ranking of variables in lexicogira@$Ps.

CP-net structures are based on assignments of values tbhe;i or “features”.
A conditional preference is encoded in a “conditional prefiee table” (CPT) associ-
ated with a particular variabl&;. TCP-nets also encode importance relations between
variables in terms of an ordering with lexicographic feasjras well as representing
conditional importance relations in a manner analagousmnalitional preferences.

A critical feature of (T)CP-nets is that preferences arg/ @afined under Ceteris
paribus’ conditions. If, for example, feature$ and B each have two values; , a> and
by, bo, respectively, and, >x, a2 andb; >x, b2, then we can deduce frooeteris
paribus assumptions that; by >N asby, asb; >N azby, €tc, but we cannot order; by
andas b, on this basis. As a result of this feature, preference orckmsbe established
on the basis of “flipping sequences” (as illustrated in tise édxample). This is still true
of TCP-nets, although in some cases adjacent outcomes quarsee can be separated
by two flips rather than one.

In this connection, it is worth noting that except in somei#dicases, the order on
assignments generated by a CP-net, or by a TCP-net, is niexéc@graphic order [11].
The reason for this is that flipping sequences require thasexutive elements in the
ordering differ by at most one (CP-nets) or two (TCP-netsinants. However, consec-
utive elements in a lexicographic ordering can differ byt elements. In addition,
for acyclic networks in which conditional preferences egpond to the priority order-
ing, it can be shown that CP-nets are dominated by conditieri@ographic orderings
in that a given CP-net always implies a given conditionaidegraphic ordering [4].

Perhaps the most important implication of these differens¢hat, while determin-
ing whether solutiomw is (necessarily) preferred to solutiehis easy for lexicographic
orderings, since it is based on successive comparisongliaeis this can be difficult
with (T)CP-nets, since it depends on finding flipping seqesrfor transforming one
alternative into another [12]. On the other hand, CP-nédsved weaker form of com-
parison, which indicates for two solutiomsand o', that the preference of the latter
over the former isiot entailed by the CP-net structure. This form of comparisanim
carried out in linear time [7].



Although (T)CP-nets do not encode feasibility constraitectly, the orderings
that they represent can be combined with such constrairsisrirewhat the same way
that lexicographic CSPs combine a particular preferengerorg with a constraint rep-
resentation. It has been shown that for CP-nets with fdagilsonstraints, a set of
Pareto-optimal solutions can be obtained using the weak®aparisons that were just
described [2]. In this case the CP-net implies a priorityeoirty that must be followed
during of search. As shown below, a comparable requirenanbe lifted in the case
of some algorithms for conditional lexicographic CSPs.

4 Methods for Solving Ordinary Lexicographic CSPs

For reference, we outline four methods examined earliehendontext of ordinary
lexicographic CSPs. (We omit the incomplete methods.) \We ptesent some results
of experimental tests with random problems to show comwarperformance. We can
simulate total orders with these problems, where variahtesvalues are represented
by integers, by using these labels as the required indingsoth cases, lower integer
values represent preferred elements. Thus the solutiéh, Z11, 3/1, ...n/1), where
zly is the variable/value labeling, is the most preferred,,(2/1, 3/1, ...n/2) the next-
most preferred, etc. In keeping with the definition of a legiaphic ordering, a shift of
value fromk to k + 1 for a given variable represents a greater change in prefertban

a shift from#k to k& + r for any variable with a higher index number. Since in presiou
work a MAC-based algorithm proved to be much more effectramtforward checking,
the former is used in all tests in this paper.

As noted before, ordinary CSP algorithms based on a simyileolgraphic ordering
can be used to find optimal solutions to these problems. litiaddCSP algorithms
with variable ordering heuristics can also be used, but is ¢hse the all-solutions
problem must be solved.

In addition to these two procedures, we consider a simpladbrand bound pro-
cedure Here, we can also use effective CSP heuristics; intfas can be seen as a
method of improving the original CSP algorithm that is basedhese heuristics. The
cost function gives large values for any but very small peais, but we do not need to
calculate it directly. Rather, we simply compare succesgalues following the lexical
variable ordering until we encounter a difference. Spedlific suppose that variable
X; is the variable currently being considered for instantiatiand this variable is the
kth most important variable in the ordering. To evaluate treant partial solution, we
start from the first variable in the lexical ordering. If a iedole has an assignment, we
check this against its instantiation in the best assigntioemtd so far; if it does not yet
have an assignment, we check the best remaining value ioiitsith against the best
assignment. In either case, if we encounter a value grdaearthe best found so far,
then search can back up.

The final procedure is specialized for this type of prefeesmiering; we refer to
it as “staged lexical search”. Search is done repeatedbaah case until the first so-
lution is found, and for each repetition, or stage, of searh more variable is chosen
in lexical order. Values are always chosen according toeRiedl ordering. Thus, in
Stage 1 we first select variabl; according to the lexical ordering, and then use any



Table 1. Search Efficiency Comparisons

hard problems easy problems
domain size 10 20 30 10 20 30
tightness 0.35 0.45 0.50 0.30 0.40 0.45

CSP lexical
median nodes 149 4631 30,959 26 85 292
mean nodes 347 9084 121,786 37 174 1027
mean solns 1 1 1 1 1 1

CSP min domain
median nodes 1402 7404 26,053373,260 - -
mean nodes 1599 7927 29,858410,654 - -
mean solns 193 35 8 196,731 - -

branch and bound

median nodes 165 1238 6252 322 945 2381
mean nodes 217 2020 9395 380 1189 2991
mean solns 2 1 1 6 6 6

staged lexical
median nodes 325 1511 7152 230 338 506

mean nodes 390 2330 9778 237 375 607
mean solns 20 20 20 20 20 20

Notes. Twenty-variable problems, sample size 100. MAC ritlym. “hard problems” are near

the critical complexity peak for lexical ordering. “easyoptems” are near the edge of the hard
region for lexical. “solns” is number of solutions found thg the entire search; for CSP min
domain this is the total number of solutions per problem.nBhaand bound and staged lexical
algorithms employed the min domain ordering.

heuristic to select the others. When we have found a feasiilgion, we know that the
assignment fotX; is optimal, so we retain it for the remainder of search. Ig8&ta,
we first select variablé&s, so the first feasible solution found will include an optimal
assignment for this variable. And so forth. Although depeld independently, this al-
gorithm is, in fact, a special case of preference-baseds¢al, where the criteria on
which search is based form a total order.

Performance comparisons are given in Table 1. These arerdbtgms with pa-
rameters<20,10,0.50,0.28. (Note that the number of values per domain is large with
respect to problems normally considered in this contextthatithere are numerous
hard constraints.) The results suggest that for hard pmebégther branch and bound or
staged lexical perform well, while throughout the range agyeproblems an ordinary
CSP algorithm with lexical variable (and value) orderinthis most efficient procedure.

5 Algorithms for Conditional Lexicographic CSPs.

When the parent-child order is compatible with the impoctaarder of the variables,
any of our methods for constrained optimization can be useettirn a solution that is
optimal for the conditional lexicographic CSP. Howevesuks in the previous sections



show that, if the CSP is strongly constrained, finding a sirggdtimal solution can be
made substantially more efficient by using an alternatigerdthm such as the staged
lexical or branch and bound. In particular, the staged Ebatgorithm can be applied

in exactly the same way as before to the conditional lexiaplgic case (since at stage
we know the ordering of the values &f;, as its parents have been instantiated already).
Either this algorithm or the branch and bound algorithm $thdae faster for highly
constrained problems (cf. Table 1).

Lexicographic CSPs based on extended conditional prefererders are probably
not amenable to search based on lexical ordering (and lgrtaat to any straightfor-
ward version of lexically-based search). This is becauseptkference ordering for a
domain may not be known at the time of instantiation, and ichstases each value
may potentially have any rank in the domain ordering. While oan select a value on
the basis of the conditional ordering for the best value efghimary ancestor, if the
latter becomes unavailable, then the original assignmeist fve revised. Under these
conditions, it is not clear that a lexical order of search bardetermined at all while
still ensuring completeness, let alone maintaining efficye

For branch and bound, however, flexibility of variable ordgrin search can be
retained:

Proposition 1. Abranch and bound procedure whose cost function isthe lexicographic
ordering based on @ (z|u) solves the (extended) conditional lexicographic CSP cor-
rectly under any order of variable instantiations.

Proof Sketch.We argue this as follows. As usual, we refer to variables whprsf-
erence order depends on other variables’ instantiatiohshéldren”, and the variables
they depend on as their “parents”. Since multiple childi@mlge treated independently,
treating the case of one child is sufficient. For more thanparent, the cases depend
on the last parent instantiated, so it is sufficient to cogrs@dsingleton set. This gives
four basic cases:

1. parent- child A parentis instantiated first
2. parent- child A child is instantiated first
3. child > parent/ parent is instantiated first
4. child > parent/ child is instantiated first

(Here, X; = X; indicates that index < indexj in the labeling\.) Case 1 needs no
comment. In Case 3, the child’s preference order will alwag$ixed at the time of in-
stantiation, so there is no special problem here, eithéalses 2 and 4 the child’s order
is unknown at the time of instantiation, but an assignmenteachosen consistent with
the best assignment of the parent. Then, if this assignmentiilable when the parent
is instantiated, there is no problem. In the other situatioa problem occurs when the
next assignment is considered for the child; here, if the@possible assignment that
>, the best-assignment-found, then search cannot be bounded.

The algorithm is complete because at any level of searchiatles values of the
current domain are tested in a particular order.

In addition to restrictions on when bounding can occur, ttagomdifference from
the branch and bound algorithm for simple lexicographjeatidered CSPs is that com-
parisons must use the rank for a value that held when theisolutas found. The



algorithm can be also enhanced by testing for special cakesawounding can still
be done. For example, if the current variable being checkethinstantiated and is a
child-variable in some relation, but the domains of the st@ntiated parents in all such
relations can be ordered, then the best values for thosatgaran be used to derive a
tentative ordering for the domain of the variable being &e€eichat together with these
parent values gives a best partial solution.

To test the efficiency of a branch and bound algorithm for tkiereded lexico-
graphic CSP, a problem generator was written. This progtamsswith an existing
CSP and transforms it into a conditional lexicographic C8Rdlecting variables for
conditional preferences and building a CPT for each refatithe user specifies the
following parameters:

number of preference relations

maximum number of parents per relation

maximum number of children per relation

maximum number of attempts to make a relation witharents and children (If
this number is ever exceeded, the program writes a messatgntiard-output, but
continues with the problem generation.)

In addition, the following restrictions are made during geation:

1. Achild-variable only appears as such in one prefererataoa (otherwise the CPT
is ill-defined).

2. The graph of conditional relations is directed-acydizthere is nalirected path
from a node back to itself.

3. Avariable occurs in no more than one single-parent aiafi his is not a required
restriction, but it prevents selection from undermining thaximum-child speci-
fication sincek singleton-parent relations involving the same parentadei are
indistinguishable from a single relation with one variadtel k children.

At present, there are two further restrictions that the aaarspecify optionally:

1. That parent-child relations always correspond to therjtyi ordering of the vari-
ables. (This specifies that the conditional lexicograpl8&as of the simpler type.)
2. That the parents and children in a relation do not havenpsne common.

The branch-and-bound procedure (Figure 2) relies heanilthe fact that for lexi-
cographic orderings, value orderings can be indexed. Tloiwsit to check bounds in
terms of indexes, thereby comparing a candidate assignaiginprevious assignments
even when the preference ordering for the past assignmédiftasent from the present
ordering. (In the current implementation, indexes are tatesl as such; comparisons
are made by comparing cardinalities of sublists beginniiig the values compared.)
Bounds checking proceeds lexicographically; if a varidtale an assignment, this value
is compared with the value in the best solution found so fatetims of their indexes. If
it does not have an assignment, a comparison can still be betdeen the best possi-
ble value in the current domain and the value in the bestisolfnund. In addition, it is
sometimes possible to determine a best value for an uninsishvariable as indicated
in the last two else-if clauses under the while in the boustuzek function.



conditional-bnb (partial-solution, remaining-variable
if remaining-variables= nil
save new best-solution
and continue /Ibacktrack
else
select next variable and remove from remaining-variables
for each value in its ordered domain
if new instantiation gives an arc consistent problem
and
bounds-check(next-variable, next-value) returns truedér bound
conditional-bnb (new-partial-solution, remaining-\adies)
continue /Ibacktrack

bounds-check (candidate-var, candidate-value)
while variables remain to be compared
select next-variable in order
get value next-best for this variable from current bestrsoh
if next-variable == candidate-var
curr-assign = candidate-value
else if next-variable is instantiated
curr-assign = current assignment of next-variable
if next-variable¢ any child-set
compare curr-assign or best value in default-current-dlonvith next-best
else if there is no current-preference order
compare curr-assign or best value in default-current-dlonvith next-best
else if candidate-var is a remaining uninstantiated parent
get domain-order associated with parent values
compare curr-assign or best value according to domairrevitle next-best (using indexes)
else if domains of remaining uninstantiated parents carrdered
/Iparents not children or have current ordered domains
compare curr-assign or best possible value given bestipegsirent-tuple
with next-best (using indexes)
if comparison has succeeded break //one alternative wees bet
if comparison succeeded and bound was exceeded
return false
else
return true

Fig. 2. Pseudocode for branch and bound for CSP with conditionatdgxaphic orderings.



We present some preliminary results for problems derivechftwo sets of 20-
variable problems listed in Table 1: (ij| = 10, tightness = 0.35, (iij}{J| = 20, tightness
= 0.45. For generation, the maximum number of parents odiil per relation was
limited to two, in the first cases to limit CPT size, in the seddo allow a sufficiently
large number of relations (since the same variable cannatdgld in more than one
relation). The number of preference relations was 7, ansetirecluded 70-80% of the
variables in the problem. (This is probably a much more seease than will be en-
countered in practice.) For problem set (i) the median aralmn@mber of search nodes
was 274 and 384, respectively, and 3 solutions were found@mage including the op-
timal one. For set (ii) the median and mean were 2672 and 382pectively, with 2
solutions found. Given the potential for search to blow uplemthese conditions in
comparison with ordinary lexicographic CSPs, these resark impressive. We con-
clude that this algorithm is still efficient despite the nesary restrictions on bounding.

6 Conclusions.

This work shows that conditional preferences can be ingatpd into this type of lex-
icographic representation for CSPs, thus extending theesobthis form of represen-
tation in an important manner. This means that the desiedabtures of lexicographic
CSPs, such as ease of comparison between solutions andithdetoupling of pref-
erences and feasibility constraints, can be carried ouvietgase of conditional prefer-
ences.

Algorithms for ordinary lexicographic CSPs can be extenauandle conditional

orderings; somewhat surprisingly, this can be done in ose eaen when the condition-
alities do not correspond to the ordering of variables. Solenge degree, efficiency of
search for combinatorial optimisation can be maintainegpile the added complexity
of this form of representation.

Acknowledgment.This work was supported by Science Foundation Ireland uGdant
00/P1.1/CQ75. Definitions in Section 2 are from [4] and argddy due to N. Wilson.

References

1.

2.

Freuder, E.C., Wallace, R.J., Heffernan, R.: Ordinabt@int satisfaction. In: Fifth Internat.
Workshop on Soft Constraints - SOFT’'02. (2003)

Boutilier, C., Brafman, R.l., Domshlak, C., Hoos, H., Bod.: Preference-based con-
strained optimization with CP-nets. Computational Ingelhce, Special Issue on Preferences
(2004) 137-157

. Keeney, R.L., Raiffa, H.: Decisions with Multiple Obje&s. Preferences and Value Trade-

offs. Cambridge (1993)

. Freuder, E.C., Heffernan, R., Prestwich, S., Wallacé,, RVilson, N.: Lexicographically-

ordered constraint satisfaction problems. unpublishé@%2

. Junker, U.: Preference-based search and multi-cribgtimization. In: Proc. Eighteenth

Nat. Conf. on Artif. Intell., AAAI Press (2002) 34-40

. Boutilier, C., Brafman, R.l., Hoos, H.H., Poole, D.: Reaisg with conditionalceteris

paribus preference statements. In: Proc. Fifteenth Annual ConfUnoertainty in Artif.
Intell., Morgan Kaufmann (1999) 71-80



10.

11.

12.

Boutilier, C., Brafman, R.l., Domshlak, C., Hoos, H.HodRke, D.: CP-nets: A tool for
representing and reasoning with conditionetieris paribus preference statements. Journal
of Artificial Intelligence Research (2004) 135-191

Schiex, T., Fargier, H., Verfaillie, G.: Valued consttagatisfaction problems: Hard and
easy problems. In: Proc. Fourteenth Internat. Joint ConAntif. Intell., Morgan Kaufmann
(1995) 631637

Fargier, H., Lang, J., Schiex, T.: Selecting preferrddtiams in fuzzy constraint satisfaction
problems. In: Proc. First European Conf. on Fuzzy and lighit Technologies - EUFIT'93.
(1993) 1128-1134

Brafman, R.l., Domshlak, C.: Introducing variable intpace tradeoffs into CP-nets. In:
Proc. Eighteenth Annual Conf. on Uncertainty in Artif. Iht€2002)

Wilson, N.: Extending CP-nets with stronger conditigm®ference statements. In: Proc.
Nineteenth Nat. Conf. on Artif. Intell. (2004)

Domshlak, C., Brafman, R.I.: CP-nets - reasoning andistency testing. In: Proc. Eighth
Conf. on Principles of Knowledge Representation and Reagphorgan Kaufmann (2002)
121-132



Uncertain Constraint Optimisation Problems

Neil Yorke-Smith and Carmen Gervét

L Artificial Intelligence Center, SRI International, USAysmith@ai.sri.com
2 |C—Parc, Imperial College London, UkKg6@icparc.ic.ac.uk

Abstract Data uncertainties are inherent in the real world. Theertain CSP
(UCSP) is an extension of classical CSP that models incomplete and erroneous
data by coefficients in the constraints whose values are unknown but bounded, for
instance by an interval. It resolution i<kosure a set of potential solutions. This
paper extends the UCSP model to account for optimisation criteria, by defining
theuncertain CSOPThe challenge is to combine optimisation (preferences over
individual solutions) with a closure of a certain type (preference over sets of so-
lutions) to a UCSOP. Unlike traditional CSOPs we need to compare closures (i.e.
families of solutions) rather than just single solutions. We address this problem in
a two stage process. First, non-dominated closures present the choice of solutions
to a UCSOP; once one is chosen, second, its refinement to a redundancy-free
or optimal closure balances reliability and optimality as the user specifies. We
describe means to effectively perform these derivations by leveraging decision
analysis under uncertainty and multi-criteria optimisation theory.

1 Introduction

Data uncertainties are inherent in the real world. Across numerous applications, real-
world Large Scale Combinatorial Optimisation problems (LSCOs) are permeated by
data uncertainty. Despite its successes, and its extensions to account for soft constraints,
for example, the classical constraint satisfaction and optimisation problem (CSOP) is
recognised as inadequate as a model of LSCOs with uncertain data.

Theuncertain CSRUCSP) was introduced in [19] to model LSCO problems with
incomplete and erroneous data, without approximation of data or potential solutions.
The resolution of a UCSP is a set of its potential solutions, callddsaure Depending
on her application and the nature of the uncertainty, the user may be interested in one
or more aspects of the potential solutions. For planning the control of aerospace com-
ponents, for instance, which was modelled as a UCSP in [20], the resolution sought is a
plan of operation for each anticipated environmental uncertainty. This corresponds to a
covering set closure set of solutions that contains at least one solution (not necessarily
all potential solutions) for each anticipatezhlisationof the data parameters.

Previous work on the UCSP does not account for preferences or soft constraints;
or optimisation other than over the size of the closure or the number of realisations it
covers. Preferences to maximise solution quality in the aerospace planning problem, for
instance, were translated into hard satisfiability constraints on a minimum preference
level. For such problems, where the user demands not only a reliable solution, but also
one that meets specified, numerical objectives, the UCSP is incomplete as a model.

This paper introduces thencertain CSORo confront LSCOs with optimisation
criteria. The key challenge is to define the semantics of a reliable and relevant resolution
to the extended model, given preferences on individual potential solutions. On one hand



there is the resolution sought in respect of the data uncertainty; on the other hand there
are the user’s optimisation criteria orthogonal to the uncertainty. Thus multiple and
possibly conflicting criteria arise from the definition of a closure (in terms of supported
potential solutions) and the value of the closure (in terms of the preferences). Further,
this latter notion of the valuation of preferences over a closure must itself be defined.

After reviewing necessary background in Section 2, we extend the uncertain CSP
to define the uncertain CSOP in Section 3, and present our approach to resolving a
UCSOP: selecting first a type of closure, then the ‘best’ closure of that type (according
to the user’s optimisation criteria), and then, possibly, the ‘best’ elements of that closure.

The next two sections thus suppose the type of closure has been selected. To com-
pare different closures of the chosen type (discussed second, in Section 5) we define
objective functionver closuresbased on the user’s objective functions on potential
solutions. We adapt criteria from classical decision making under uncertainty to make
this definition. Then, when the sought closure is other than the full closure, comparing
closures may be a multi-criteria problem, with criteria arising from the definition of the
closure and from the objective functions over closures. Our approach is to compute the
non-dominateatlosures, which form a Pareto frontier over closures, by adapting meth-
ods from multi-criteria optimisation theory. Once a non-dominated closure is chosen,
its refinement to aedundancy-freer optimalclosure (discussed in Section 4) balances
reliability and optimality as the user specifies.

The certainty closure framework, developed for reliable inference around the UCSP
model and closures, is distinguished by its enclosure approach to data uncertainty and
solutions. In contrast to a CSOP, where the ‘best’ solution is sought, for a UCSOP the
enclosure approach seeks the ‘best’ closure, i.e. we must reason about (sets of) sets
of solutions. While reasoning with a UCSOP is thus distinguished from CSOPs and
classical decision making under uncertainty, there are parallels between reasoning over
closures and multi-criteria optimisation. Where possible we exploit these parallels, and
adapt also CSOP algorithms as solving components. An overview of classical optimi-
sation under uncertainty is in [17]; while [9] discuss multi-criteria optimisation.

Related work in CP to uncertainty includes approximation models and stochastic
models [11] (where various metrics, including expected value, can be maximised for a
single solution or policy), and robust single solutions [7]. Closest to our work are possi-
bilistic approaches that simultaneously consider preferences and uncertainty [4,14]. The
enclosure approach has been used within Operational Research, where optimisation in
the context of uncertain data is addressed by [10], for instance.

2 Background

A classical CSP is a tupl@’, D, C), whereV is a finite set of variabled is the set of
corresponding domains, add= {cy, ..., ¢, } is a finite set of constraints. A solution
is a complete consistent value assignment. We represent a CSP by a conjunction of its
constraints/\; ¢; (as opposed to the set of its allowed tuples). Similarly, we represent a
solution or set of solutions to a CSP by a conjunction of constraints.

A constraint is a relation between constants, variables and function symbols. The
constants we refer to apefficientsA coefficient may becertain (its value is known)
or uncertain(value not known). In a classical CSP, all the coefficients are certain. We
call an uncertain coefficient garameter The set of possible values of a parametgr



is its uncertainty setdenoted’;. We say aruncertain constraints one in which some
coefficients are uncertain. Observe that the coefficients in an uncertain constraint are
still constants; merely as parameters their exact values are unknown. For example, if the
paramete®\; has uncertainty séf; = {0, 1, 2}, the constrainf < )\, is uncertain. A
realisationof the data is a fixing of the parameters to values from their uncertainty sets.
We say that any certain constraint corresponding to a realisaticedisedconstraint.

In a CSOP, solutions are ordered, partially or totally, by optimisation criteria. It is
usual for each criterion to be expressed as a (partial) function, the objective function
fi: & — A, whereA is a partially ordered set of values. Without loss of generality, so-
lutions are sought that satisfy all hard constraints mmimisethe objective functions.

Theuncertain CSRextends a classical CSP with an explicit description of the data
that allows us to reason with the uncertainty to derive reliable solution enclosures [19]:

Definition 1 (UCSP).Anuncertain constraint satisfaction probléb D, A, U, C) is a
classical CSRV, D, C) in which some of the constraints may be uncertain. The finite
set of parameters is denoted dyand the set of corresponding uncertainty seté/by

We say that any certain csP, corresponding to a realisation of the parameters of
P, is arealised CSPIf r is a realisation and’ is a corresponding realised CSP, for a
solutions of P, we say that the realisationsupportss, ands coversr. For reasons
of space, in this paper we restrict ourselves to UCSPs with discrete data and logically
independent parameters. Our examples are mostly arithmetic constraints. The UCSP
model encompasses both continuous data and dependent parameters; as discussed in
[18], their impact is mostly orthogonal to the optimisation issues considered here.

Example 1.Let X; and X5 both have domain®, = D, = [1,5] C Z. Let \; and ),
be parameters with uncertainty sBts= {2, 3,4} andU, = {2} respectively. Consider
three constraints; : X; > Ay, andes : | X1 —X5| = Ao, andes : Xo—A; # 1. Writing
V= {Xl,XQ}, D= {Dl,DQ}, A= {)\17)\2}, U= {U17U2}, andC = {01702763},
then(V, D, A,U,C) is a UCSP. Note that; andcs are both uncertain constraints.O

The complete solution setl(P) of a UCSPP is the set of all solutions supported
by at least onerealisation. Each element 6fl(P) is called apotential solution The
resolution to a UCSP model is@dosure a set of potential solutions, i.e. a subset of
C1(P). If the closure is the entire solution space, we say it iftiflelosure

At the heart of the UCSP model and its resolution is a demanefiable solutions,
by which, informally, we mean faithful relative to our knowledge of the state of the real
world. In concrete terms, the form that reliable inference takes depends on two, linked
issues: the requirements of the user and the nature of the uncertainty. In a diagnosis
problem, for example, the user simply might want to know whether there exist any re-
alisations at all with solutions (argoodrealisations); while in a planning problem, she
might want to know which realisations support which solutions. We meet the varying
forms of reliable inference by providing closures of various types.

More specifically, suppose the user specifies that she is interested in particular in-
formation as the resolution of a UCSP. This corresponds to a particular aspect of the
potential solutions. Aradequatesolution is then one that (1) comprises at least this
information, and (2) faithfully reflects our knowledge about the real-world. Hence, we
say that aradequate closurés a subset of the full closure that provides at least the
information the user requires as the resolution of a UCSP. An adequate closure includes



all solutions relevant to the user’s interest; reliability is unaffected when we disregard
irrelevant potential solutions. Commonly-useful types of closures include [19]:

1. The full closure the set of all solutions that each cover at least one realisation.
Example usage: behaviour guarantee across all possible solutions; diagnosis of the
reliability of other methods.

2. A covering seta set of solutions that together cover all realisations. A covering set
closure isminimalif the cardinality of this set is minimal among all such sets. Ex-
ample usage: robust solution covering every eventuality, as in contingent planning.

3. A robust seta set of solutions such that each coabtrealisations (not just at least
one). A robust set closure is maximal if the cardinality of this set is maximal among
all such sets. Example usage: conformant planning.

4. A most robust solutiana single solution that covers the maximal number of reali-
sations, of all single solutions. Example usage: robust solution that must be a single
solution and not a set of solutions, e.g. schedule for a staff roster [11].

Example 2.Let P be the UCSP of Example 1. The full closure®fin tuple notation
is (X1, X2) € {(3,1), (3,5), (4,2), (5,3)}; a covering set closure of minimal size is
(X1, X2) € {(3,1),(5,3)}, since this solution set covers all three realisations. O

Remark. The most robust solution closure is a familiar concept in frameworks for un-
certainty. For example, it is the solution sought to a no-observability mixed CSP [5].
Maximising robustness — whether by the metric of number of covered realisations
(coverage, or by another, such as maximal expectation — is a common idea. Despite
the attraction of robustness, it is not uncommon for the robust set closure to be empty,
because of its strong requirement for solutions that calleealisations.

A support operatottells us which realisations support which solutions. Its inverse
tells us, dually, which realisations are covered by which solutions. Knowledge of such
support information — the relationship between realisations and potential solutions —
not only formally defines the different types of closures, but is essential for deriving
them, which can be achieved by a variety of means, including one from another, trans-
formation of the UCSP, and enumeration over realisations [18].

With respect to a constraint doméih let R be thespace of realisationghe set of
all possible realisations; and I§tbe thespace of solutiongbserve that for any UCSP
P, its complete solution s&ip is a subspace af. Similarly, we define the complete
realisation seR p of P; it is a subspace oR. Recall that the power s@(.S) of a set
S is the set of all subsets &F for example,P({1,2}) = {0, {1},{2},{1,2} }.

Definition 2 (Support operator). A support operatois a mapX' : P(S) — P(R)
such thatvS C S, X (S) = R, whereR C R is a set of realisations s.t. each supports
at least onesolution inS. If a support operator provides all realisations that support a
set of solutionss, we sayX' is completefor S. O

Example 3.For Example 1, a support operatby is defined by(3,1) — 2, (3,5) —
2, (4,2) — {2,3}, and(5,3) — {3,4}. X is complete: one can verify that, for in-
stance,X;(Sp) = Rp. A second support operatdr; is defined by:(3,1) — 2,
(3,5) — 2, (4,2) — 2, and(5,3) — 3. X5 is not complete, because it never in-
cludes); = 4 (for example) but this realisation supports solut{én3). ad



3 Uncertain CSOP

Not in every LSCO are all solutions equal. In a planning problem, for instance, the user
might judge plans of shorter length to be preferable. In an uncertain CSP, this discrimi-
nation between resolutions to the model is manifest as a preference for some elements
of a closure over others, or for some closures over others. Although we present a princi-
pled approach, much of the discussion cannot be specific, because optimisation criteria
tie in so closely to the user’s decision-making objective for a given LSCO problem.
While we restrict ourselves mostly to a single optimisation criterion in this paper, mov-
ing from one to many criteria is a relatively smaller step. We first extend the definition of

a UCSP in the natural way from a pure satisfaction problem to an optimisation problem:

Definition 3 (UCSOP).An uncertain constraint satisfaction and optimisation problem
(V, D, A,U,C) is a classical CSORV, D, C, A) in which some of the constraints may
be uncertain. That is, it is a UCSP with an objective functfon S x R — A to be
minimised, and a partially ordered sdt O

As in a CSOP, the objective function is a soft constraint; if we ignore it, a UCSOP
is a UCSP, and therefore the results known for UCSPs apply immediately for UCSOPs.
In particular, the definitions and derivations of the different closures apply. The com-
plexity of solving a UCSP depends on the closure sought: e.g. deriving the full closure
is X¥-hard [19]. Solving a UCSOP involves comparing closures, which increases the
complexity up the polynomial hierarchy to the class PSPACE. Because of the uncer-
tainty, it is to be expected that UCSOPs are computationally more challenging than
CSOPs, which are in the class NP optimisation [3].

The user’s assessment of the value of a solution might depend not only on the so-
lution itself, but also on the realisations it covers. Thus the objective fungtiom
Definition 3 is defined o x R, i.e. over both solution and realisation spaces.

Example 4.Let us consider adding an optimisation criterion to the discrete UCSP of
Example 1. Consider the criterion of minimising the valueXaf. For a solutions =

(X1, X>), this gives the simple objective functigi{s) = X5. Note thisf involvesS

only: it does not involve the realisations covered fyThe elements of the full clo-
sure are (in this case) totally ordered by the objective functiénl) < (4,2) <
(5,3) < (3,5). The solution with the best objective value ds= (3,1). Observe
that § covers only one realisatior\{ = 2). There are two single solutions that cover
the greatest number of realisatioi$, 2) and(5, 3); they have suppoit™; ((4,2))| =
|21((5,3))| = 2. For them, observe thét, 2) < (5, 3). O

The objective function of a CSOP is defined on variables and constants. For a UC-
SOP it may also include parameters. In this paper we will restrict ourselves to ob-
jective functions without parameters, and assume all values occurring in the objective
are ground once the decision variables are chosen. However, it is worth noting that
uncertainty in the objective function of a UCSOP can sometimes be rewritten as an
(uncertain) constraint, so reducing the problem to one with certain objective function.
As one instance, consider an interval linear system, a UCSOP with linear constraints,
and with uncertainty sets given by real intervals. If we have a linear objective function
min ). A\; X;, uncertainty in the objective is easily removed by adding the additional
constrainty . \; X; < Z for an auxiliary variableZ, and optimisingnin Z. The gen-
eral case, of course, will not reduce in this simple way.



3.1 Resolving a UCSOP

Given a single optimisation criterion, classical decision making [17] seeks one single
solution, chosen by the rationale of minimising the objective function. The central ten-
ant of solving a UCSP is that, unless specified by the user, no potential solution is a
priori excluded. Since a closure is thus the resolution of a UCSP, given a single optimi-
sation criterion, a rational approach is to seek a modified closure.

Deriving some types of closures is by itself already an optimisation problem: a min-
imal covering set, a maximal robust set, and a most robust solution. These closures have
in common a criterion based on the amount of support; we say theypéraisation-
dependentFor minimal covering sets, the support criterion is to minimise the cardinal-
ity of the closure. For maximal robust sets and most robust solutions, the criterion is to
maximise the support of each element.

Thus, if we desire an optimisation-dependent closure, with even a single objective
function, a UCSOP has the potential to be a multi-criteria optimisation problem. The
two at best orthogonal and at worst competing criteria are: cardinality (the size of the
closure) or support (measured by the support operator), and optimality (measured by the
objective function). Analogously, multiple criteria are seen when seeking robust ‘super’
solutions to a CSOP [7]. The challenge is how to balance these two criteria.

Further, whether optimisation-dependent or not, all closures are defined formally in
terms of support operators: e.g. the full closure is the set of solutiacis supported by
at least one realisation. Thus fanyclosure, in general any optimisation criterion may
compete with reliability, which is defined in terms of support.

Our approach is the following: we give precedence to reliability, since, as part of the
definition of a closure, it is the more fundamental. In analogy with a classical CSOP,
firstly we desire solutions to the problem and only secondly do we evaluate them for op-
timality; so with a UCSOP, firstly we derive closures and only secondly do we evaluate
them. We give greater precedence to the optimality criterion only if the user deliberately
specifies a greater desire for optimality; only then is such a closure adequate.

In analogy, consider a soft temporal CSP with contingent events and preferences.
Here a suitable notion of controllability [15] might put precedence for reliability over
optimality. That is, we require hard temporal constraints to be satisfied, and secondly
prefer solutions of higher quality according to the soft constraints.

What this means in practice is that we first select the appropriate type of closure for
the problem, as if it were a UCSP with no optimisation criterion. We then consider the
impact of the optimisation criterion:

— Suppose we have derived a closure of the desired type. The optimisation criterion
means we can refine it by removing some elements. The more the user desires
optimality over reliability, the more elements can be removed.

— Suppose instead we have only selected the desired type of closure. The optimisa-
tion criterion means we have a principled way to prefer some closures of this type
to others of the type, if we extend the criterion to closures rather than individual po-
tential solutions. However, if the type of closure is optimisation-dependent, such as
a minimal covering set, then multiple criteria may arise when comparing closures.

A merit of this approach to optimisation under uncertainty is that we balance the
two extremes: on one hand, deterministic approaches based on the worst case, and on
the other, stochastic approaches based on probabilistic assumptions. As [1] point out,



the former favours robustness over optimality, while the latter favours optimality over
robustness. A relevant closure, to be established in the sequel, ensures a reliable solution
(subsuming the benefits of a robust single solution when one exists); and it ensures an
optimal solution, in the sense to be described.

4 Refining a Given Closure

In this section we suppose the type of closure has been chosen and one closure of the
type has been derived, and now we are given an optimisation criterion. The resulting
objective function means there is now a reason to prefer some elements of a closure to
others. Thus we describe how to refine a closure with respect to an objective function.
Unless the user specifies it, we cannot simply pick the most preferred element of
a closure according to the objective function. The reason is that it is the whole closure
that provides a reliable solution to the problem; any one element (or more generally,
any subset) need not necessarily be a reliable solution.
Nonetheless, the optimisation criterion still gives a potential reason to prune a clo-
sure: when one element makes anotteeiundant Definition 4 says that one solution
is made redundant by another if the latter covers at least the same realisations (support)
and is preferred according to the objective function (optimality).

Definition 4 (Redundant solution).Let S C CI(P) be a closure of UCSOP, and
s1,82 € S be elements aof. Let X denote a complete support operator fBr s, is
maderedundanby s; if X'(s2) C X(s1) and f(s1) < f(s2)- O

Example 5.In Example 4 the solution&3, 1) and(3,5) cover the same realisations.
Thus, with respect to the objective functigifis) = X5, (3,1) makes(3, 5) redundant.
Any covering set thatinclud€8, 1) gains nothing by also includin@, 5). Thus we can
refine such a covering set closure by removiBgh) without compromising reliability.

Redundancy applies to any closure, although for singleton closures clearly it is triv-
ial. Note that, as a consequence of their definitions, both a most robust solution and a
minimal covering set are redundancy-free. There is no need to retain redundant solu-
tions in a closure, unless the user specifies that regardless she wants all single solutions.
In the absence of any specification by the user to the contrary, we say that a closure is
an adequate solution to a UCSOP only if it contains no redundant elements:

Definition 5 (Redundancy-free).In the context of a UCSOP, we say that a closure is
redundancy-fredf it contains no redundant elements; otherwise iteadundant O

Example 6.In Example 4, the covering sé3, 1), (3,5), (5, 3)} is a redundant closure,
since(3, 5) is made redundant b3, 1); {(3,1), (5,3)} is redundancy-free. O

Hence, given a closurd and an objective function, we prune the redundant ele-
ments from the closure to yield the redundancy-free refined clagure S. S’ is the
smallest subset of that a priori is a reliable solution to the problem. Nonetheless, the
user may specify her primary desire for an optimal single solution (even though it might
not cover every realisation), in the same way as she might ask for a most robust solution
closure (even though it might not cover every realisation). As stated earlier, only with
such a specification can we give optimisation precedence over reliability, and say such



a solution is adequate. In particular, suppose the user desires the minimal elements of
the full closure according to the objective function, even though this minimal set will
not necessarily cover all realisations. Here is the trade-off between robustness and opti-
mality: between probability of covering all realisations and the value of the solution.

We can translate the user’s restriction on the full closure into a closure of another
type: theoptimal closure{s € CI(P) : f(s) minimal}. The optimal closure prefers
elements of the full closure with respect to the objective function, parallel to how a
robust set closure prefers elements with respect to their sup@eheralising, if the
user requires the optimal elements of any closure, we can translate this requirement into
a demand for the optimal closure of that type:

Definition 6 (Optimal closure). Given a closures of typet, anoptimalt closureis the
subset of5 of elements minimal under an objective functjon O

An optimal closure of a given type need not be a closure of that type. For exam-
ple, from a covering set closurg comes an optimal covering set closw& but S’
need not be a covering set. Note also that every optimal closure is redundancy-free, but
not every redundancy-free closure is optimal. In contrast to an optimal closure, which
places optimality before support, a general redundancy-free closure places support be-
fore optimality: it prunes only those elements whose omission does not ameliorate the
coverage of the closure, i.e. the number of realisations covered.

Example 7.In Example 4, the covering sé(3, 1), (5, 3)} is redundancy-free, butis not
an optimal covering set closure becayf$é5,3)) = 3 > 1 is not minimal. An optimal
covering set closure i§(3, 1)}, which is a singleton closure in this case. Since it does
not cover all realisations, it is not a covering set closure. a0

Example 8.Consider a problem arising in routing of uncertain traffic demands in a
network [1], suitable for modelling as a UCSOP. Here, the desired closure is a robust
set — each proposed routing must hold for all realisations of the demands within the
uncertainty set — and the routing should be of minimum cost. Thus an optimal robust
set is adequate to the user as a reliable solution for the problem. Operationally, [1]
compute one member of such a closure directly, using column generation. O

5 Choosing Between Different Closures

To begin with in this section we again suppose the type of closure has been chosen.
The last section assumed one closure of the chosen type had been selected. We now ask
which closure should be selected: which closure of the type is ‘best’ given an optimisa-
tion criterion? In other words, having considered preferring some elements of a closure
to others, we now consider preferring some closures (as subggt6ry) to others.

There are two aspects to address: (1) how to define a criterion to evaluate a closure,
given the user’s preferences over individual potential solutions; and (2) how to compare
closures, given this criterion, which might be in conflict to the criterion that comes from
the definition of the type of closure, i.e. how to approach the multi-criteria optimisation
problem of choosing between closures.

% Analogously, consider super solutions to a classical CSOP: an optimal closure corresponds to

the most robust optimal super solution, and a (hon-optimal) redundancy-free closure corre-
sponds to the optimal robust super solution [7].



Example 9(Example 4 continued)n Example 4 the two minimal (and so redundancy-
free) covering sets ar8; = {(3,1),(5,3)} and S, = {(4,2),(5,3)}. First, let us
compare them by the sum of the number of realisations covésetl) covers one re-
alisation ¢, = 2); (4,2) covers two realisations\( = 1, A; = 2); and(5, 3) covers
two realisations X; = 2, \; = 3). ThusS; has a cumulative coverage (the number of
covered realisations) df+ 2 = 3 andS; of 2+ 2 = 4, s0.S; is better. This comparison
focuses on the heuristic of maximising the amount of support.

Second, compare the minimal covering sets by the sum of the objective furfction
on their elements. Thefi; has a cumulative value df+ 3 = 4 andS; of 2 + 3 = 5.

In contrast to the first, by this second orderig,is better (since we minimisg). This
comparison focuses on the optimality criterion.

Third, compare the closures by the sum of the best solution they give for each
realisation.S; coversA; = 2 by (3,1) and the other realisations , 3), scoring
14+3+3=7.5;covers\; =2by(4,2), \; = 3 by (4,2) and(5,3), and\; = 4
by (5,3), scoring2 + 2 + 3 = 7. Now the two minimal covering sets are incomparable.
This comparison seeks to balance both reliability and optimality.

Lastly, consider the covering st = {(3,1), (4,2), (5,3)}. This set is not min-
imal, since its cardinality is three. However, according to the last metric, it scores
1+ 2+ 3 = 6, which makes it better thaf; and.S,. We call S3 the optimal for
each realisatiorclosure, since it contains the best solution for each closure with respect
to the objective function. It shows that the support criterion (minimise cardinality) and
the optimality criterion (minimise some lifted function ¢} are opposed, and so we
have a multi-criteria problem. ad

5.1 Extending an Objective Function to a Closure

We first must define means to ascribe numerical values to closures, so that we have
means to compare them with respect to the objective fungtiepecified by the user.
That is, we must liftf from single solutions to closures, i.e. frafhx R to P(S) x R,
and project it fromfP(S) x R to S. The basis for doing so is found by reviewing the
criteria known in decision making under uncertainty. We recall them briefly and then
present different means to defifien closures based upon them.

Recall from [17] that avaluation matrixthat associates a valug; to each action
a; and each future outcon®;. The decision problem is to decide among the actions
(which we can assume are known) in the presence of a lack of knowledge about which
outcome will occur. In terms of a UCSOP, the actiefisare consistent tuples for the
variables, and the outcomé&s are the feasible realisations of the parameters. Thus the
valuation matrix is nothing more than the objective function enumeratedaadRR.

The literature contains many criteria for decisions under uncertainty, when seeking
a single solution rather than a set of solutions. For an actjptthe criteria specify
the value to assign to the action with respect to the objective function. Since we are
minimising f, the optimal action is the one that minimises this value,argmin,, .
The criteria, first, specify what value to give to a single solution in the light of the
uncertainty. In our notation, they specify how to projgdtom S x R to S. Second, they
specify how to select a single solutierthat optimises the projected objective function
f(s). The criteria differ most importantly in how conservative they are. Beginning with



the most optimistic, simply suppose the most favourable outcome will occur. That is,

S 1
min 1gin v M
The Laplace criterion[17] is also optimistic. It assumes the outcomes are equally
likely, and converts the problem to a decision under risk, computing expected utility:

min (— vij) (2)

The most pessimistic criterion supposes that the least favourable outcome will oc-
cur. Theminimax criterionacts conservatively to avoid the worst actions:
II(HH I%E?X %% (3)
The spreadtakes a middle ground, as the difference of the most pessimistic and
most optimistic criteria:
ngiin (Hg}x Vij — Hél]n vij) 4
Also neither purely optimistic nor pessimistic, theénimax regret criterioncom-
putes theregret matrixthat associates the opportunity cost of an actign'= v;; —
min,, vk;. Regret expresses the difference, in hindsight, between the best decision and
the decision taken. The decision criterion is then to apply minimax to the regret matrix:
min maxri; (5)

a; '

Variants of regret, such as percentage regret, are defined in robust optimisation [10].
Finally, theHurwicz criterion[17] is parametrised by an index of optimism e
[0,1]: 0 is pessimistic] is optimistic:

rIL1111n (o Hél]n vi; + (1 —a) r%%xvij) (6)
We must extend these criteria in order to apply them to closures, because in general
a closure will have more than one element. Thus we need to lift the evaluatipn of
from a single solutiors to a set of solutions, a closufe It is clear there is more than
one answer: for example, as in Example 9, we could sum the values for the elements
or we could take the least value. The most suitable choice of the above means to adopt
depends on the criteria of user for the problem; we present eight such alternatives. Let
S ={s1,...,sn} be asetof potential solutions, aatbe a complete support operator.

1. Take the minimum value of over the individual elements:

F(S) = min _f(s:) ()
This is x from the fuzzy semiring [2]; the egalitarian definition of welfare in util-
ity theory [13]. Since we minimis¢, this means of liftingf onto S is the most
optimistic; it corresponds to the most favourable criterion (1) above.



. Take the maximum value of over the individual elements:
f(8) = max_f(si) 8)

This is the least optimistic alternative; it corresponds to the minimax criterion (3)
and gives us a hard upper bound on the optimum.
. Take the spread of the values:

f(8) = min f(s;) - max_f(s:) 9)
This corresponds to (4), and also (shown by rearranging the equation) to the regret
criterion (5).
. Use the Hurwicz criterion with an index of optimisme [0, 1]:

f(§)=a min f(s)+(1—a) max [f(s;) (10)
This corresponds to (6).
. Sum the support of the individual elements:

1
[ = > TGO 1 (11)

i=1,....N

Since we are minimising but support is usually maximised, we use the reciprocal
of | X(s;)|, the number of realisations that support solutipnNote the+1 in the
denominator to give correct resultssihas a support metrie. If lesser support is
preferred, we simply usg-(s;)| rather than its reciprocal.

. Sum the values of on the individual elements:

)= fsi) (12)
N

i=1,...,

This is x from the weighted semiring2]; the utilitarian definition of welfare in
utility theory [13]. It corresponds to the Laplace criterion (2).
. Sum the values of on the individual elements, weighted by their support:

f(s4)

S) = —_ 13
£(8) i:;N\%i)lH (13)
If we view the amount of support as defining a likelihood of occurrence (a possi-
bility distribution function), then (13) corresponds to an expected value criterion.

. Take the best value ¢f on the elements that cover each realisation:

()= > . max f(s:) (14)
7j=1,....M
We call thisoptimal for each realisationlt defines an extension of the covering
set closure, where not only does the closure contain at least one solution for each

realisation, but at least one optimal solution for each.



Table 1. Comparison of closures by various metrics

cardinality min max spread Hurwiczv&0.5) support sum weighted best

S 2 1 3 2 2 ;4 3 7
Sy 2 2 3 1 3 i 5 2 7
S3 3 1 3 2 2 : 6 : 6

To evaluate (11) and (13) we requi®e(s;) for eachs;, known asenumeration
support information[18]. To evaluate (14) we requir&!(r;) for each realisation
r; € X(S), whereX! is a relation inverse of; enumeration support information
is certainly enough for this.

Example 10(Example 9 revisited)ln Example 9 we compared by different metrics

the three covering set closures; = {(3,1),(5,3)} and S, = {(4,2),(5,3)} (both
minimal), andSs = {(3,1), (4,2), (5, 3)}. Table 1 evaluates the three closures by all of

the above metrics, and compares them also with the support criterion of the cardinality
of the sets. We see that there are metrics by which each of the closures are strictly best.
A decision between the three closures will depend on the criteria of the user. Moreover,
if we seek a minimal covering set, which is an optimisation-dependent closure, then we
have multiple criteria. If the optimality criterion Isest for instance, then the support
criterion (cardinality) and optimality criterion are opposed to each other. O

5.2 Comparing Closures of the Same Type

Summarising, based on the objective function of a UCSOP, we have defined means of
numerically comparing closures of any one type. This enables us to choose a ‘best’
closure, by deriving one or all closures of the type that minimise the corresponding
objective function (7)—(14). This is analogous to looking for the elements of a closure
that minimise the original objective function: it is the closure equivalent of the optimal
elements. As we stated, the most suitable choice of (7)—(14) depends on the criteria of
user for the specific LSCO problem at hand.

However, choosing the ‘best’ closure requires more than just minimj&ing. Ex-
ample 10 illustrates, for minimal covering sets, how the addition of even one optimi-
sation criterion to a UCSP can lead to a multi-criteria optimisation problem. The two,
essentially orthogonal, sources of criteria arise from support (or cardinality) and op-
timality (defined by the chosefi(S)). As the example showed, when optimality and
support objectives are opposed, they generate a trade-off, resulting in a multi-criteria
optimisation problem to choose a closure. The multiple criteria are reflected by multi-
ple objective functions, which we write &s, reservingf, for the support criterion.

Of the approaches to multi-criteria optimisation [16], the Pareto frontier fits nat-
urally with the UCSP, because it is based on providing the user with information to
enable her to take an informed decision. A Pareto fromtiedosuress a plausible set
of closures which the user might examine for the trade-off of the criteria. The selected
closures can then be refined to their redundancy-free or optimal versions.

For a given type of closure, Rareto frontier of closures a set of non-dominated
closures. One closur€ dominatesanotherS’ iff f;(S) < f;(S’) for each objective
function f; and there exists at least onfg s.t. fr(S) < fx(S’); a closure isnon-



dominatedf there exists no closure that dominates it. A closure in the frontier cannot be
improved with respect to any criterion without deteriorating it with respect to anbther.

The alternatives to the Pareto frontier translate the multi-objective problem into a
single-objective problem or problems. Widely used for instance is a weighted sum of
the criteria. It is perhaps less natural than a frontier, because (1) deciding the weights
beforehand is often unclear; and (2) it gives extremal solutions whereas the frontier
provides a range of balanced solutions.

Example 11(Example 9 concluded).et us say the cardinality,(.S) = | S|, the mini-

mum valuef; (S) = ming, f(s;), and the suny»(S) = > f(s;) are the three criteria

the user is concerned with in Example 9. Note that the former comes from the support
criterion, while the latter two come from explicit optimisation criteria. Referring to Ta-
ble 1, observe tha$; is dominated byS; but neitherS; nor S3 dominate each other.
Thus the Pareto frontier is the gef;, .53 }. Refining both with respect tf, we see that

S is the redundancy-free form ¢f;. Hence we offer the user the closuse as the
resolution of the UCSOP. ad

Computing the Frontier. To make the discussion more concrete, we now consider
how to perform an efficient comparison. We can compose the problem of evaluating
f(S) as a meta CSP. The sole variable is the closuseught; its domain is the set of

all closures of the UCSP. The constraints specify that a closure of the sought type,
and there is an objective function according to the criterion on closureg( 5¢.

Without domain-specific knowledge, the natural algorithm to use is branch-and-
bound. The search must be complete to ensure we firfdg)xminimal closure; it may
be modified to give one or all such closures. To reduce the computational cost, we can
integrate problem decomposition methods: e.g. the hybrid of branch-and-bound and tree
decomposition [8]. If the cost is still too great, we may optionally give up completeness
(and so optimality) by using heuristics, or incomplete methods such as local search.
Below, we discuss further the minimal covering set and most robust solution closures.

Once we can computg(.S) for eachi, methods in the literature to compute Pareto
frontiers [16] apply directly, if we replace ‘solution’ by ‘closure’. A common approach
is to generate a sample of points on the frontier, by either defining a parameterised,
scalar objective (such as a weighted sum) callgdreerator and varying its parameters;
or by finding non-dominated points by local search; both are surveyed in [12]. Sampling
the frontier of closures leads to approximation, a topic for future work.

Since approximation might not be desired, we also highlight two methods that com-
pute the whole frontier. The first method is to employ generators in a CSP. Under suit-
able restrictions on the solution space, some carefully chosen generators are complete:
they generate the whole Pareto frontier as their parameters vary. Further, some genera-
tors have analytical form which can be expressed as a constraint. Thus if we add such
a generator constraint to our meta CSP defined above, we use the generator directly
as part of the CSP solving. The second set of methods are specific for CSPs; they can
be viewed as extensions of branch-and-bound. In particular, [6] combine branch-and-
bound and an efficient representation of the frontier with quadtrees.

4 Our definition of dominance is in line with the standard definition; it requires that the objec-
tive functions be scalar and monotone [9]. The idea of non-dominated closures is similar to
redundancy-free solutions (Definition 4), but differs in that there is no mention of support. In
fact, support is implicit because the definition is parametrised by the type of closure.



Covering set closuregxample 11 indicates that for covering set closures, the principle
trade-off is between the size of the set and its optimality. At one extreme is a covering set
closure of minimal size. This is favourable because: (1) it requires less space to store;
(2) fewer elements must mean each is more robust (on average); and (3) the closure
changes less when it is refined as knowledge about the realisations is acquired.

At the other extreme is a covering set that contains an optimal solution for each
realisation. This is favourable by the metric (14), and if the closure is refined as the
realisations are reduced to a single possibility, it gives us an optimal solution. However,
such aroptimal for each realisatiomlosure is often likely to be too large to be useful.
The aerospace planning problem is a case study of balancing the criteria [20].

Most robust solution closure# most robust solution closure is a singleton closure (a
single potential solution) and as such there is work in the literature. First consider the
case where there is no objective function, i.e. a UCSP. To derive a most robust solu-
tion closure is a single-criteria optimisation problem where the objective is to maximise
robustness. In the discrete case, existing branch-and-bound and forward-checking algo-
rithms can be readily adapted by removing probabilities [5,11].

Second, the main case is a UCSOP where there is an objective function. This gives
a multi-criteria optimisation problem in which the criterion arising from support is the
number of covered realisations. Since the sought closure is a singleton, classical multi-
criteria optimisation methods directly apply: the Pareto frontier of closures reduces to
the classical Pareto frontier of solutions. Local search methods such as multi-objective
simulated annealing are known to be effective.

5.3 Comparing Closures of Different Types

So far we have supposed the type of closure has been chosen. We now briefly discuss
comparing closures of different types. From an optimisation criterion, the objective
function assigns a numerical value to each closure, according to one of the above means.
Closures of different types can be compared with respect to their values, just as closures
of the same type. Moreover, we can go on to define domination between closures.

The advantage is a well-founded, quantitative comparison of heterogeneous types of
closure. It means we can resolve a UCSOP without deciding what types of closure might
best meet the user’s requirements and then trying each; by analogy, rather than generate-
and-test we integrate the evaluation with the generation. However, the important caveat
is that different types of closure provide very different types of reliable solution to a
LSCO, in general, and care must be taken that their comparison is coherent.

6 Conclusion and Future Work

The uncertain CSP extends the classical CSP to model incomplete and erroneous data.
Its resolution is a closure, a set of potential solutions. In this paper we extended the
UCSP model to the uncertain CSOP, to account for user preferences and other criteria
that can be modelled with an objective function. To do so, we extended the notion of a
closure to confront LSCOs with optimisation criteria. Non-dominated closures present
the choice of solutions to a UCSOP; once one is chosen, its refinement to a redundancy-
free or optimal closure balances reliability and optimality as the user specifies. Conse-
quently, we can model problems where the user demands not only a reliable solution,
but also one that meets specified, numerical objectives.



As an extension of the classical CSP, rather than e.g. valued CSP [2], the UCSOP
model presented is focused on hard constraints. Future work is to consider soft con-
straints within a UCSOP. However, the UCSOP can already accommodate softness in
as far as it can be described by an objective function, e.g. minimising the weight of vi-
olated constraints. Similarly, future work includes uncertainty in the objective function
of a UCSOP, beyond what can be rewritten out of the objective into a constraint.
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Abstract. Constraints Optimization problems are commonly solved using a Branch
and Bound algorithm enhanced by a consistency maintenance procedures [WF93]
[LM96,LMS99,LS04]. All these algorithms traverse the search space in a chrono-
logical order and gain their efficiency from the quality of the consistency mainte-
nance procedure.

The present study introduces Conflict-based Backjumping (CBJ) in Branch and
Bound algorithms. The proposed algorithm maint&osflict Setsvhich include

only assignments whose replacement can lead to a better solution and backtracks
according to these sets. CBJ can be added to Branch and Bound which uses the
most advanced consistency maintenance heuristicsx and AC*. The exper-
imental evaluation of oB& B_C B.J on randomMax-CSPsshows that the per-
formance of the algorithms are improved by a large factor.

1 Introduction

In standard CSPs, when the algorithm detects that a solution to a given problem does
not exist, the algorithm reports it and the search is terminated. In many cases, although a
solution does not exist we wish to produce the best complete assignment, i.e. the assign-
ment to the problem which includes the smallest number of conflicts. Such problems are
the scope of Max-Constraint Satisfaction ProblemsX-CSP3¥ [LM96]. Max-CSPs
are a special case of the more general Weighted Constraints Satisfaction Problem (WC-
SPs) [LS04] in which each constraint is assigned with a weight which defines its cost
if it is included in a solution. The weight of a solution is the sum of the weights of
all conflicts (i.e. broken constraints) included in the solution (In Max-CSPs all weights
are equal to 1). The requirement in solving WCSPs is to find the minimal cost (opti-
mal) solution.WCSPsand Max-CSPsare therefore terme@onstraints Optimization
Problems

In this paper we focus for simplicity oilax-CSPproblems. Sincélax-CSPis an
optimization problem with a limited search tree, the immediate choice for solving it is
to use aBranch and Boundlgorithm [Dec03]. In the last decade, various algorithms
were developed for Max and Weighted CSPs [WF93,LM96,LMS99,LS04]. All of these
algorithms are based on standard backtracking and gain their efficiency from the quality

* Supported by the Lynn and William Frankel center for Computer Sciences.



of the heuristic function (consistency maintenance procedure) they use. The best result
for Max-CSPswas presented in [LMS99]. This result was achieved using a complex
method which generates higher lower bounds by manipulating the order in which di-
rectional arc consistency is performed. In [LS04], the authors present new consistency
maintenance procedurd$C* andAC* which improve on former versions &brward-
checkingandArc-consistencyHowever the performance of the resulting algorithms are
close but do not outperform the Forward-checking method presented in [LMS99].

The present paper improves on previous results by addiomglict-based Backjump-
ingto the Branch and Bound algorithms presented in [LS04]. Conflict-based Backjump-
ing (CBJ) is a method which is known to improve stand&rd P algorithms [Dec03]
[Gin93,ZMO03]. In order to perfornd’ B.J, the algorithm stores for each variable the set
of assignments which caused the removal of values from its domain. When a domain
empties, the algorithm backtracks to the last assignment in the corresponding conflict
set.

Performing back-jumping foMax-CSPds a much more complicated task than for
standardCSPs In order to generate a consistent conflict set all conflicts that have con-
tributed to the current lower bound must be taken in to consideration. Furthermore,
additional conflicts with unassigned values with equal or higher costs must be added to
the conflict set in order to achieve completeness.

The results presented in this paper show that the above effort is worth while. Adding
Conflict based Backjumping to Branch and Bound wili'+ and AC'x improves the
runtime by a large factor.

Max-CSPsare presented in Section 2. A description of the stan@aeshch and
Boundalgorithm along with thév Cx and AC'x algorithm is presented in Section 3. The
addition of C BJ to Branch and Boundvith NCx and AC'x is presented in Section 4.
Section 7 introduces a correctness and completeness proB&#BrCBJ with N C'x
and AC'x. An extensive experimental evaluation, which compaBdsB with NC'x
and AC'x to B&B_CBJis presented in Section 8. The experiments were conducted on
randomly generatellax-CSPs

2 Distributed Constraint Satisfaction

A Max - Constraint Satisfaction ProblefMax-CSH is composed, like a standard
CSP, of a set ofn variablesX;, Xs, ..., X,,. Each variable can be assigned a single
value from a discrete finite domain. Constraintsedations R are subsets of the Carte-
sian product of the domains of constrained variables. For a set of constrained variables
Xi, XG5 -y Xom,, With domains of values for each variable;, , D;,, ..., D,,,, the
constraint is defined a8 C D;, x D, x ... x Dy, . A binary constraint R;; between
any two variablesX; and X; is a subset of the Cartesian product of their domains;
Rij - Dj X Dl

An assignment (or a label) is a pair var,val >, wherevar is a variable and
val is a value fromwar’s domain that is assigned to it. partial solutionis a set of
assignments of values to an set of variables. dd of a partial solution in aviax-
CSPis the number of conflicts included in it. An optimsblution to aMax-CSPis a



partial solution that includes all variables and which includes a minimum number of
unsatisfied constraints, i.e. a solution with a minimal cost.

3 The Branch and Bound algorithm

Optimization problems with a finite search-space are often solved using a Branch and

Bound (B& B) algorithm. BothWeighted CSPandViax-CSPdall into this category.

The overall framework of 8& B algorithm is rather simple. Two bounds are constantly

maintained by the algorithm, arpper_bound and alower_bound. Theupper_bound

is initialized to infinity and thdower_bound to zero. In each step of the algorithm, a

partial solutioncurrent_solution, is expanded by assigning a value to a variable which

is not included in it. After adding the new assignment,litheer _bound is updated with

the cost of the updatedrrent_solution. The current_solution is expanded as long

as thelower_bound is smaller than thewpwper_bound. If a full solution is obtained,

i.e. the current_solution includes assignments to all variables, thger_bound is

updated with the cost of the solution. If thewer_bound is equal or higher than the

upper_bound, the algorithm attempts to replace the most recent assignment. If all val-

ues of a variable falil, the algorithm backtracks to the most recent variable assigned.
The naive and exhaustivB& B algorithm can be improved by usirgpnsistency

maintenancéunctions which increase the value of thever_bound of acurrent_solution.

After each assignment, the algorithm performs a consistency maintenance procedure

that updates the costs of future possible assignments and increases its chance to detect

early a need to backtrack. Two of the most successubkistency maintenanéenc-

tions are described next.

3.1 Node Consistency and NC*

Node Consistency (or Forward-checking) is a very standard consistency maintenance
method in standard’'S Ps [Tsa93,Dec03]. The main idea is to ensure that in the do-
mains of each of the unassigned variables there is at least one value which is consistent
with the current partial solution. In standatth Ps this would mean that a value has no
conflicts with the assignments in therrent_solution. In Max-CSPsfor each value
in a domain of an unassigned variable, one must determine if assigning it to its vari-
able will increase théower_bound beyond the limit of theupper_bound. To this end,
the algorithm maintains for every valuecast which is its number of conflicts with
assignments in theurrent_solution. After each assignment, the costs of all values
in domains of unassigned variables are updated. When the sum of a value’s cost and
the cost of thecurrent_solution is higher or equal to thepper_bound, the value is
eliminated from the variable’s domain. An empty domain triggers a backtrack.

The down side of this method Max-CSPss that the number of conflicts counted
and stored at the valuest, does not contribute to the glob&ahver_bound, and it
affects the search only if it exceeds theper _bound. In [LS04], the authors suggest an
improved version of Node Consistency they teMi@*. In NC* the algorithm maintains
a global costC; which is initially zero. After every assignment, all costs of all values
are updated as in standah”. Then, for each variable, the minimal cost of all values



h\
~
)
-‘”
=~
~
)
",
-

000
000

-
-

Fig. 1. Values of a variable before and after running NC*

in its domaing; is added taCy, and all value costs are decreased:py his means that

after the method is completed in every step, the domain of every unassigned variable
includes one value whose cost is zero. The glébakr_bound is calculated as the sum

of the current_solution’s cost andCy.

Figure 1 presents an example of the operation ofAlt&« procedure on a single
variable. On the left hand side, the values of the variable are presented with their cost
before the procedure. The value of the global a@gtis 6. The minimal cost of the
values is 2. On the RHS, the state of the variable is presented aft&i@heprocedure.

All costs were decreased by 2 and the global valyevas raised by 2.

Any value whosdower_bound, i.e. the sum of theurrent_solution’s cost,Cy
and its own cost, exceeds the limit of thgper_bound, is removed from the variable’s
domain as in standar¥ C' [LS04].

3.2 Arc Consistency and AC*

Another consistency maintenance procedure which is known to be effectiz&sSttrs

is Arc Consistencyin standard” S Ps, Arc-Consistency is more restricted thait, for
eliminating inconsistent values from future variables. The idea of stantiarfBR95]

is that if a valuev of some unassigned variablg;, is in conflict with all values of
another unassigned variabk; thenv can be removed from the domain &f; since
assigning it taX; will cause a conflict.

In Max-CSPsArc-Consistency is used to project costs of conflicts between unas-

signed variables, over values costs. As for standaffs, a value in a domain of
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Fig. 2. Values of a variable before and after running NC*

an unassigned variable, which is in conflict with all the values of another unassigned
variable, will cause a conflict when it is assigned. This information is used in order to
increment the cost of the value. Values for which the sum of their cost and the global
lower _bound exceeds theipper_bound, are removed from their variable’s domain.
However, inAC every removal of a value can cause an increase in the cost of another
value. Therefore, an additional check has to be made.

AC* combines the advantages4€ and N C'x. After performingAC, the updated
cost of the values are used by tN&'x procedure to increase the global cost Values
are removed as itV C* and their removal initiates the rechecking o€

Figures 2 and 3 present an example of the AC* procedure. On the LHS of Figure 2
the state of two unassigned variables, and X; is presented. The center value of
variable X; is constrained with all the values of variablg . Taking these constraints
into account, the cost of the value is incremented and the result is presented on the RHS
of Figure 2. The left hand side of Figure 3 presents the state after the process of adding
the minimum value cost t6'y and decreasing the costs of values of bathand X ;.

Since the minimal value oX; was 2 and ofX; was 1,C;, was incremented by 3. After
the incrementation of’,, the values for which the sum @f, and their cost is equal

to theupper_bound are removed from their domains and the procedure ends with the
state on the RHS of Figure 3.
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Fig. 3. Values of a variable before and after running NC*

4 Branch and Bound with CBJ

The addition of Backjumping to standard CSP search is known to improve the run-time
performance of the search by a large factor [Dec03,Gin93]. The various algorithms
which perform backjumping differ by the method of resolution which is used to deter-
mine the selected variable for the algorithm to backjump to. The common choice is to
maintain a set of conflicts for each variable, which includes the assignments that caused
a removal of a value from the variable’s domain. When a backtrack operation is per-
formed, the variable selected to backtrack to is the last variable in the conflict set of the
backtracking variable. In order to keep the algorithm complete during backjumping, the
conflict set of the target variable, is updated with the union of its conflict set and the
conflict set of the backtracking variable [Pro93].

The data structure of conflict sets which was described abové€' W on stan-
dard C'SPs can be used for thé&& B algorithm, for solvingMax-CSPs However,
the construction and maintenance of these conflict sets are a much more complicated
task. In the simplest version @& B, the lower_bound of a current_solution is its
current_cost (i.e. the number of conflicts it contains). The algorithm backtracks only
when this cost is larger or equal to theper_bound. When a backtrack operation is
performed, the goal is to decrease the cost by replacing an assignment. More specifi-
cally, every binary constraint is betweenamnr-lier variable, which is the variable that
was assigned first and the second variable of the constraint which was adsigmetf
we assume that for every variable the first value to be assigned is the one with minimal
number of conflicts (i.e. the value with a minimal cost), then backtrackingl/t@ea:



variable cannot improve the cost of therrent_solution (see the proof in section 7).

The only way that the cost of@rrent_solution can be lowered is by backtracking to
anearlier variable and replacing its assignment. In order to keep the completeness of
the algorithm, the backtrack operation must be performed to the last assigned variable
in the group of candidatenriier assignments

CEONO
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Fig. 4. Values of a variable before and after running NC*

Figure 4 presents a partial solution with 5 variables and cost 3. The conflict set of
this partial solution includes the assignmentsxagfthat is in conflict with the assign-
ment of X3 and X5, and X, which is in conflict with the assignment df,. Although
there are three conflicts in this example, only variabtgsand X» areearlier in all
three conflicts. Therefore the conflict set of this partial solution must include both of
them. In standard’SPs, when backtracking from variabl&s, it would be enough
to check itsconflict setin order to choose the variable to backtrack to. This example
shows why generating the conflict set only according to the last variable state as done
in standard”'S Ps in not sufficient in the case dflax-CSPsVariable X5 is in conflict
only with the assignment of; however, the cost of the partial solution can be lowered
by backtracking toX5.

Unfortunately, generating the conflict set out ofaltlier assignments of the con-
flicts in the current_solution is not enough. In everjuter assigned variable in each
conflict, unassigned values may have conflicts with differaniier assignments. For
example, if the value assigned to a varialllg i > 2, in the current_solution has a
costl, and theeariier assignment with whom it has a conflict is the assignmet¥ of
X, is added to the conflict set. However if there is an unassigned value in the domain
of X; also with costl but whose conflict is with the assignment of varialdle ;, the
algorithm must backtrack t&;_; which was assigned later tha%y . In order to give
a formal description of the construction of the conflict set, the following definitions are
needed:

Definition 1 A con flict_list of valuev; from the domain of variable i, is the list of
assignments in theurrent_solution of variables which were assigned befareand

v; has conflicts with. The assignments in the conflict list are in the same order the
assignments in theurrent_solution were performed.



Definition 2 The current_cost of a variable is the cost of its assigned value, in the
case of an assigned variable, and the minimal cost of a value uitsent_domain
in the case of an unassigned variable.

Definition 3 Thecon flict_set of variable X; with costc; is the union of the first;
assignments in theon flict_list of all its values.

Definition 4 A global con flict_set is the set of assignments such that the algorithm
back-jumps to the latest assignment of the set.

In the case of simpl&& B, theglobalcon flict _set is the union of all theon flict _sets
of all assigned variables. Another way to explain this need of adding the conflicts of all
values and not just the conflicts of the assigned value, is that in order to decrease the
cost of thecurrent_solution, a value which has less conflicts should be able to be as-
signed. Therefore, the latest assignment that can be replaced, and possibly decrease the
cost of one of the variables values to be smaller than the variables current cost should
be considered.

Fig. 5. A conflict set of amussigned variable

Figure 5 presents the state of three variables which are includeddmthent_solution.
VariablesX, X, and X3 were assigned values, v, andwv; respectively. All costs of
all values of variableXs are 1. Thecon flict_set of variable X3 includes the assign-
ments ofX; and X, even though its assigned value is not conflicted with the assignment
of X, since replacing it can lower the cost of valugeof variable X 5.



5 Node Consistency with CBJ

In order to perform conflict based backjumping & B algorithm using node consis-
tency maintenance, then flict_sets of unassigned variables must be maintained. To
achieve this goal, for every value of a future variabl@aflict_list is initialized and
maintained. Theon flict_list includes all the assignments in therrent_solution
which conflict with the corresponding value. The length oftbeflict_list is equal to
the cost of the value. Whenever th&C'x procedure adds the castof the value with
minimum cost in the domain ak; to the global costy, the firstc; assignments in
each of thecon flict_lists of X;’s values are added to thgtobal conflictsetand re-
moved from the value'son flict_lists. This includes all the values df; including the
values removed from its domain since backtracking to the head of their list can cause
their return to the variablesurrent_domain. This means that after each run of the
NC* procedure, thaylobal conflictsetincludes the union of theon flict_sets of all
assigned and unassigned variables.

Fig. 6. A conflict set of arunassigned variable

Figure 6 presents the state of an unassigned varidgblérhe current_solution
includes the assignments of three variables as in the previous example. ¥Mahas
vs Of variableX; are both in conflict only with the assignment of varialle. Valuew,
of X; is in conflict with the assignments &f; and X3. X;'s cost is 1 since that is the
minimal cost of its values. Its conflict set includes the assignmeni afince it is the
first in thecon flict_list of vy andwvs, and X, since it is the first in theon flict_list of



ve. After the NC'x procedure(y will be incremented by one and the assignments of
X, and X, will be added to thglobal conflictset

6 Arc Consistency with CBJ

Adding CBJ to a B& B algorithm that includes arc consistency is very similar to the
case of node consistency. Whenever a minimum cost of a future variable is added to the
global costCy, the prefixes of all of its value'son flict_lists are added to thglobal

con flict_set. However, inAC*, costs of values can be incremented by conflicts with
other unassigned values and the correlation between the value’s cost and the number
of conflicts it has with the assignments in therrent_solution (i.e. the length of its
conflic_list) does not hold. In order to find the right conflict set in this case one must
keep in mind that except for an emptyrrent_solution ,a cost of a value;, of variable

X, isincreased due to arc consistency only if there was a removal of a value which is not
in conflict with vy, in some other unassigned varialie (see Section 7). This means

that replacing the last assignment in therent_solution would return the value which

is not in conflict withvy,, to the domain of{;. This is enough to decrease the cost of the
valuewv;,. Whenever a cost of a value is raised by arc consistency, the last assignment
in the current_solution must be added to the end of the values: flict_list. By
maintaining this property in theon flict_list the variableson flict _set and theglobal
conflictsetcan be generated in the same way asN@r'x.

7 Correctness ofB&B_CB.J

In order to prove the correctness of th&;B_C'BJ algorithm it is enough to show
that theglobal conflictsetmaintained by the algorithm is correct. First we prove the
correctness for the case of simak:B_C BJ with no consistency maintenance pro-
cedure. Consider the case thatuarent_solution has a lengthk and the index of the
variable of the latest assignment in the-rent_solution’s correspondingon flict_set

is . Assume in negation, that there exists an assignment iautheent_solution with

a variable indexj > [, that by replacing it the cost of @rrent_solution of sizek
with an identical prefix of siz¢ — 1 can be decreased. Since the assignménnhot in-
cluded in theglobal conflictsetthis means that for every value of variablgs, ;...X},
assignmenj is not included in the prefix of sizest of all their value’scon flict lists.
Therefore, replacing it would not decrease the cost of any value of varidbles.. X,

to be lower than their current cost. This means that the variables costs stay the same and
the cost of theurrent _solution too in contradiction to the assumptidn.

Next, we prove the consistency of tigobal conflictsetin B&B_C BJ with the
NCx consistency maintenance procedure. The above proof holds for the assignments
added due to conflicts within theurrent_solution. For assignments added to the
global conflictsetdue to conflicts of unassigned variables with assignments in the
current_solution we need to show that all conflicting assignments which can reduce
the cost of any unassigned variable are included igtbleal conflictset After each as-
signment and run of th& C'x procedure, the costs of all unassigned variables is zero. If
some assignment of variahle; in the current_solution was not added to thglobal
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conflictsetit means that it was not a prefix of amyn flict_list of size equal to the
cost added ta”,. Consequently, changing an assignment which is not ingtbbal
conflictsetcannot affect the globdbwer_bound. O

Having established the correctness of the flict_set for the current_solution
of a Branch and Bound algorithm and for th&”'« procedure, the consistency of the
global conflictsetfor ACx is immediate. The only difference betweAiC* and AC'x
is the addition of the last assignment in the-rent_solution to theglobal conflictset
for an increment of the cost of some value which was caused by an arc consistency
operation. A simple induction which is left out of the paper, proves that at any step of
the algorithm, only a removal of a value can cause an increment of some value’s cost
due to arc consistency]

8 Experimental Evaluation

The common approach in evaluating the performan&g@®# algorithms is to measure
time in logic steps to eliminate implementation and technical parameters from affecting
the results. Two measures of performance are used by the present evaluation. The total
number of assignments and the total number of constraints checks [Dec03].
Experiments were conducted on random constraints satisfaction problemaif
ables,k values in each domain, a constraints density,0énd tightnes®- (which are
commonly used in experimental evaluations of CSP algorithms [Smi96]). In all of the
experiments thdlax-CSPsncluded 10 variablesi(= 10), 10 values for each variable
(k = 10). Two values of constraints densjty = 0.4 andp; = 0.7 were used to gener-
ate theMax-CSPsThe tightness valug,, was varied between 0.72 and 0.99, since the
hardest instances dax-CSPsre for highp, [LM96]. For each pair of fixed density
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and tightnessy(l, p2), 50 different random problems were solved by each algorithm
and the results presented are an average of these 50 runs.

In order to evaluate the contribution Gbnflict based Backjumping Branch and
Boundalgorithms using consistency maintenance procedureB&hB algorithm with
NCx* and ACx* procedures were implemented. The results presented show the perfor-
mance of these algorithms with and withauB.J.

Figure 7 presents the computational effort in number of constraints checks to find a
solution, performed byv C'x andNC*_BJ. For the hardest instances, whesés higher
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than0.9, AC*_BJ outperformsAC'x by a factor of between 5 at, = 0.93 and 2 at
p2 = 0.99. Figure 8 shows similar results in the number of assignments performed by
the algorithms.

Figure 9 presents the computational effort in number of constraints checks to find a
solution, performed bydC'x andAC*_BJ. For the hardest instances, whesds higher
than0.9, AC*_BJ outperformsAC'x by a factor of 5. Figure 10 shows similar results in
the number of assignments performed by the algorithms.
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Figure 11 and 12 show similar results for tH& '« algorithms solving high den-
sity Max-CSPqpl = 0.7). Interestingly although the scale is much higher the factor
remains the same.

9 Discussion

Conflict based Backjumping is a powerful technique used to improve the run-time of
standardC'S P algorithms [Pro93,Dec03,Gin93]. The experimental results, show that
this is true for Branch and Bound algorithms with consistency maintenance procedures.
These results might come as a surprise because unlike in stafiddrd, the conflict
sets inB&B_CBJare constructed by the union of conflicts of unassigned values as well
as assigned values. This means that the number of values which their conflicts are taken
into consideration is larger than when perform@igJ for standard”'S Ps. Noting this
fact, one could expect the maintaingidbal conflictsetto be larger and consequentially
have a smaller effect. This assumption is proven wrong by the result presented in this
paper.

A possible explanation is the properties of the hard instanche&fCSPsIn con-
trast to standard’S Ps, where the hardest instances are approximately in the center
of the range ob, (about 0.5, depends on the exact valuegf[Smi96], the hardest
instances oMax-CSPsare whemp; is close tol.0 [LM96]. For high values o, when
some assignment is added to the flict_list of some value, it is very probable that
it would also be added to then flict_lists of the other values of the same variable.
Therefore when we add the prefix of sizeof all values in the domain ok; to the
variable’scon flict_set in many cases these prefixes are very similar if not identical.
This keeps theon flict_set small and generates non-trivial jumps.



10 Conclusions

Branch and Bound is the most common algorithm used for soMag-CSPsFormer
studies improved the results of the Branch and Bound algorithms by improving the con-
sistency maintenance procedure used by the algorithm [WF93,LM96,LMS99,L.S04]. In
this study we adjuste@onflict-based Backjumpinghich is a common technique in
standardC'S P algorithms to Branch and Bound with extended consistency mainte-
nance procedures. The results presented in Section 8 are stdkihg.improves the
performance of thélax-CSPalgorithm by a large factor. The factor of improvement
does not decrease for problems with higher density.
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