
Uncertain Constraint Optimisation Problems

Neil Yorke-Smith1 and Carmen Gervet2

1 Artificial Intelligence Center, SRI International, USA.nysmith@ai.sri.com
2 IC–Parc, Imperial College London, UK.cg6@icparc.ic.ac.uk

Abstract Data uncertainties are inherent in the real world. Theuncertain CSP
(UCSP) is an extension of classical CSP that models incomplete and erroneous
data by coefficients in the constraints whose values are unknown but bounded, for
instance by an interval. It resolution is aclosure, a set of potential solutions. This
paper extends the UCSP model to account for optimisation criteria, by defining
theuncertain CSOP. The challenge is to combine optimisation (preferences over
individual solutions) with a closure of a certain type (preference over sets of so-
lutions) to a UCSOP. Unlike traditional CSOPs we need to compare closures (i.e.
families of solutions) rather than just single solutions. We address this problem in
a two stage process. First, non-dominated closures present the choice of solutions
to a UCSOP; once one is chosen, second, its refinement to a redundancy-free
or optimal closure balances reliability and optimality as the user specifies. We
describe means to effectively perform these derivations by leveraging decision
analysis under uncertainty and multi-criteria optimisation theory.

1 Introduction

Data uncertainties are inherent in the real world. Across numerous applications, real-
world Large Scale Combinatorial Optimisation problems (LSCOs) are permeated by
data uncertainty. Despite its successes, and its extensions to account for soft constraints,
for example, the classical constraint satisfaction and optimisation problem (CSOP) is
recognised as inadequate as a model of LSCOs with uncertain data.

Theuncertain CSP(UCSP) was introduced in [19] to model LSCO problems with
incomplete and erroneous data, without approximation of data or potential solutions.
The resolution of a UCSP is a set of its potential solutions, called aclosure. Depending
on her application and the nature of the uncertainty, the user may be interested in one
or more aspects of the potential solutions. For planning the control of aerospace com-
ponents, for instance, which was modelled as a UCSP in [20], the resolution sought is a
plan of operation for each anticipated environmental uncertainty. This corresponds to a
covering set closure: a set of solutions that contains at least one solution (not necessarily
all potential solutions) for each anticipatedrealisationof the data parameters.

Previous work on the UCSP does not account for preferences or soft constraints;
or optimisation other than over the size of the closure or the number of realisations it
covers. Preferences to maximise solution quality in the aerospace planning problem, for
instance, were translated into hard satisfiability constraints on a minimum preference
level. For such problems, where the user demands not only a reliable solution, but also
one that meets specified, numerical objectives, the UCSP is incomplete as a model.

This paper introduces theuncertain CSOPto confront LSCOs with optimisation
criteria. The key challenge is to define the semantics of a reliable and relevant resolution
to the extended model, given preferences on individual potential solutions. On one hand

there is the resolution sought in respect of the data uncertainty; on the other hand there
are the user’s optimisation criteria orthogonal to the uncertainty. Thus multiple and
possibly conflicting criteria arise from the definition of a closure (in terms of supported
potential solutions) and the value of the closure (in terms of the preferences). Further,
this latter notion of the valuation of preferences over a closure must itself be defined.

After reviewing necessary background in Section 2, we extend the uncertain CSP
to define the uncertain CSOP in Section 3, and present our approach to resolving a
UCSOP: selecting first a type of closure, then the ‘best’ closure of that type (according
to the user’s optimisation criteria), and then, possibly, the ‘best’ elements of that closure.

The next two sections thus suppose the type of closure has been selected. To com-
pare different closures of the chosen type (discussed second, in Section 5) we define
objective functionsover closures, based on the user’s objective functions on potential
solutions. We adapt criteria from classical decision making under uncertainty to make
this definition. Then, when the sought closure is other than the full closure, comparing
closures may be a multi-criteria problem, with criteria arising from the definition of the
closure and from the objective functions over closures. Our approach is to compute the
non-dominatedclosures, which form a Pareto frontier over closures, by adapting meth-
ods from multi-criteria optimisation theory. Once a non-dominated closure is chosen,
its refinement to aredundancy-freeor optimalclosure (discussed in Section 4) balances
reliability and optimality as the user specifies.

The certainty closure framework, developed for reliable inference around the UCSP
model and closures, is distinguished by its enclosure approach to data uncertainty and
solutions. In contrast to a CSOP, where the ‘best’ solution is sought, for a UCSOP the
enclosure approach seeks the ‘best’ closure, i.e. we must reason about (sets of) sets
of solutions. While reasoning with a UCSOP is thus distinguished from CSOPs and
classical decision making under uncertainty, there are parallels between reasoning over
closures and multi-criteria optimisation. Where possible we exploit these parallels, and
adapt also CSOP algorithms as solving components. An overview of classical optimi-
sation under uncertainty is in [17]; while [9] discuss multi-criteria optimisation.

Related work in CP to uncertainty includes approximation models and stochastic
models [11] (where various metrics, including expected value, can be maximised for a
single solution or policy), and robust single solutions [7]. Closest to our work are possi-
bilistic approaches that simultaneously consider preferences and uncertainty [4,14]. The
enclosure approach has been used within Operational Research, where optimisation in
the context of uncertain data is addressed by [10], for instance.

2 Background

A classical CSP is a tuple〈V,D, C〉, whereV is a finite set of variables,D is the set of
corresponding domains, andC = {c1, . . . , cm} is a finite set of constraints. A solution
is a complete consistent value assignment. We represent a CSP by a conjunction of its
constraints

∧
i ci (as opposed to the set of its allowed tuples). Similarly, we represent a

solution or set of solutions to a CSP by a conjunction of constraints.
A constraint is a relation between constants, variables and function symbols. The

constants we refer to ascoefficients. A coefficient may becertain (its value is known)
or uncertain(value not known). In a classical CSP, all the coefficients are certain. We
call an uncertain coefficient aparameter. The set of possible values of a parameterλi

is its uncertainty set, denotedUi. We say anuncertain constraintis one in which some
coefficients are uncertain. Observe that the coefficients in an uncertain constraint are
still constants; merely as parameters their exact values are unknown. For example, if the
parameterλ1 has uncertainty setU1 = {0, 1, 2}, the constraintX < λ1 is uncertain. A
realisationof the data is a fixing of the parameters to values from their uncertainty sets.
We say that any certain constraint corresponding to a realisation is arealisedconstraint.

In a CSOP, solutions are ordered, partially or totally, by optimisation criteria. It is
usual for each criterion to be expressed as a (partial) function, the objective function
fi : S → A, whereA is a partially ordered set of values. Without loss of generality, so-
lutions are sought that satisfy all hard constraints andminimisethe objective functions.

Theuncertain CSPextends a classical CSP with an explicit description of the data
that allows us to reason with the uncertainty to derive reliable solution enclosures [19]:

Definition 1 (UCSP).Anuncertain constraint satisfaction problem〈V,D, Λ,U , C〉 is a
classical CSP〈V,D, C〉 in which some of the constraints may be uncertain. The finite
set of parameters is denoted byΛ, and the set of corresponding uncertainty sets byU .

We say that any certain CSP̂P , corresponding to a realisation of the parameters of
P , is arealised CSP. If r is a realisation and̂P is a corresponding realised CSP, for a
solutions of P̂ , we say that the realisationr supportss, ands coversr. For reasons
of space, in this paper we restrict ourselves to UCSPs with discrete data and logically
independent parameters. Our examples are mostly arithmetic constraints. The UCSP
model encompasses both continuous data and dependent parameters; as discussed in
[18], their impact is mostly orthogonal to the optimisation issues considered here.

Example 1.LetX1 andX2 both have domainsD1 = D2 = [1, 5] ⊆ Z. Let λ1 andλ2

be parameters with uncertainty setsU1 = {2, 3, 4} andU2 = {2} respectively. Consider
three constraints:c1 : X1 > λ1, andc2 : |X1−X2| = λ2, andc3 : X2−λ1 6= 1. Writing
V = {X1, X2}, D = {D1, D2}, Λ = {λ1, λ2}, U = {U1, U2}, andC = {c1, c2, c3},
then〈V,D, Λ,U , C〉 is a UCSP. Note thatc1 andc3 are both uncertain constraints.ut

Thecomplete solution setCl(P) of a UCSPP is the set of all solutions supported
by at least onerealisation. Each element ofCl(P) is called apotential solution. The
resolution to a UCSP model is aclosure: a set of potential solutions, i.e. a subset of
Cl(P). If the closure is the entire solution space, we say it is thefull closure.

At the heart of the UCSP model and its resolution is a demand forreliablesolutions,
by which, informally, we mean faithful relative to our knowledge of the state of the real
world. In concrete terms, the form that reliable inference takes depends on two, linked
issues: the requirements of the user and the nature of the uncertainty. In a diagnosis
problem, for example, the user simply might want to know whether there exist any re-
alisations at all with solutions (anygoodrealisations); while in a planning problem, she
might want to know which realisations support which solutions. We meet the varying
forms of reliable inference by providing closures of various types.

More specifically, suppose the user specifies that she is interested in particular in-
formation as the resolution of a UCSP. This corresponds to a particular aspect of the
potential solutions. Anadequatesolution is then one that (1) comprises at least this
information, and (2) faithfully reflects our knowledge about the real-world. Hence, we
say that anadequate closureis a subset of the full closure that provides at least the
information the user requires as the resolution of a UCSP. An adequate closure includes

all solutions relevant to the user’s interest; reliability is unaffected when we disregard
irrelevant potential solutions. Commonly-useful types of closures include [19]:

1. The full closure: the set of all solutions that each cover at least one realisation.
Example usage: behaviour guarantee across all possible solutions; diagnosis of the
reliability of other methods.

2. A covering set: a set of solutions that together cover all realisations. A covering set
closure isminimal if the cardinality of this set is minimal among all such sets. Ex-
ample usage: robust solution covering every eventuality, as in contingent planning.

3. A robust set: a set of solutions such that each coverall realisations (not just at least
one). A robust set closure is maximal if the cardinality of this set is maximal among
all such sets. Example usage: conformant planning.

4. A most robust solution: a single solution that covers the maximal number of reali-
sations, of all single solutions. Example usage: robust solution that must be a single
solution and not a set of solutions, e.g. schedule for a staff roster [11].

Example 2.Let P be the UCSP of Example 1. The full closure ofP in tuple notation
is (X1, X2) ∈ {(3, 1), (3, 5), (4, 2), (5, 3)}; a covering set closure of minimal size is
(X1, X2) ∈ {(3, 1), (5, 3)}, since this solution set covers all three realisations. ut

Remark.The most robust solution closure is a familiar concept in frameworks for un-
certainty. For example, it is the solution sought to a no-observability mixed CSP [5].
Maximising robustness — whether by the metric of number of covered realisations
(coverage), or by another, such as maximal expectation — is a common idea. Despite
the attraction of robustness, it is not uncommon for the robust set closure to be empty,
because of its strong requirement for solutions that coverall realisations.

A support operatortells us which realisations support which solutions. Its inverse
tells us, dually, which realisations are covered by which solutions. Knowledge of such
support information — the relationship between realisations and potential solutions —
not only formally defines the different types of closures, but is essential for deriving
them, which can be achieved by a variety of means, including one from another, trans-
formation of the UCSP, and enumeration over realisations [18].

With respect to a constraint domainD, letR be thespace of realisations, the set of
all possible realisations; and letS be thespace of solutions. Observe that for any UCSP
P , its complete solution setSP is a subspace ofS. Similarly, we define the complete
realisation setRP of P ; it is a subspace ofR. Recall that the power setP(S) of a set
S is the set of all subsets ofS: for example,P({1, 2}) = { ∅, {1}, {2}, {1, 2} }.

Definition 2 (Support operator). A support operatoris a mapΣ : P(S) → P(R)
such that∀S ⊆ S, Σ(S) = R, whereR ⊆ R is a set of realisations s.t. each supports
at least onesolution inS. If a support operator provides all realisations that support a
set of solutionsS, we sayΣ is completefor S. ut

Example 3.For Example 1, a support operatorΣ1 is defined by:(3, 1) 7→ 2, (3, 5) 7→
2, (4, 2) 7→ {2, 3}, and(5, 3) 7→ {3, 4}. Σ1 is complete: one can verify that, for in-
stance,Σ1(SP) = RP . A second support operatorΣ2 is defined by:(3, 1) 7→ 2,
(3, 5) 7→ 2, (4, 2) 7→ 2, and (5, 3) 7→ 3. Σ2 is not complete, because it never in-
cludesλ1 = 4 (for example) but this realisation supports solution(5, 3). ut

3 Uncertain CSOP

Not in every LSCO are all solutions equal. In a planning problem, for instance, the user
might judge plans of shorter length to be preferable. In an uncertain CSP, this discrimi-
nation between resolutions to the model is manifest as a preference for some elements
of a closure over others, or for some closures over others. Although we present a princi-
pled approach, much of the discussion cannot be specific, because optimisation criteria
tie in so closely to the user’s decision-making objective for a given LSCO problem.
While we restrict ourselves mostly to a single optimisation criterion in this paper, mov-
ing from one to many criteria is a relatively smaller step. We first extend the definition of
a UCSP in the natural way from a pure satisfaction problem to an optimisation problem:

Definition 3 (UCSOP).An uncertain constraint satisfaction and optimisation problem
〈V,D, Λ,U , C〉 is a classical CSOP〈V,D, C, A〉 in which some of the constraints may
be uncertain. That is, it is a UCSP with an objective functionf : S × R → A to be
minimised, and a partially ordered setA. ut

As in a CSOP, the objective function is a soft constraint; if we ignore it, a UCSOP
is a UCSP, and therefore the results known for UCSPs apply immediately for UCSOPs.
In particular, the definitions and derivations of the different closures apply. The com-
plexity of solving a UCSP depends on the closure sought: e.g. deriving the full closure
is Σp

2 -hard [19]. Solving a UCSOP involves comparing closures, which increases the
complexity up the polynomial hierarchy to the class PSPACE. Because of the uncer-
tainty, it is to be expected that UCSOPs are computationally more challenging than
CSOPs, which are in the class NP optimisation [3].

The user’s assessment of the value of a solution might depend not only on the so-
lution itself, but also on the realisations it covers. Thus the objective functionf in
Definition 3 is defined onS ×R, i.e. over both solution and realisation spaces.

Example 4.Let us consider adding an optimisation criterion to the discrete UCSP of
Example 1. Consider the criterion of minimising the value ofX2. For a solutions =
(X1, X2), this gives the simple objective functionf(s) = X2. Note thisf involvesS
only: it does not involve the realisations covered bys. The elements of the full clo-
sure are (in this case) totally ordered by the objective function:(3, 1) < (4, 2) <
(5, 3) < (3, 5). The solution with the best objective value isŝ = (3, 1). Observe
that ŝ covers only one realisation (λ1 = 2). There are two single solutions that cover
the greatest number of realisations,(4, 2) and(5, 3); they have support|Σ1((4, 2))| =
|Σ1((5, 3))| = 2. For them, observe that(4, 2) < (5, 3). ut

The objective function of a CSOP is defined on variables and constants. For a UC-
SOP it may also include parameters. In this paper we will restrict ourselves to ob-
jective functions without parameters, and assume all values occurring in the objective
are ground once the decision variables are chosen. However, it is worth noting that
uncertainty in the objective function of a UCSOP can sometimes be rewritten as an
(uncertain) constraint, so reducing the problem to one with certain objective function.
As one instance, consider an interval linear system, a UCSOP with linear constraints,
and with uncertainty sets given by real intervals. If we have a linear objective function
min

∑
i λiXi, uncertainty in the objective is easily removed by adding the additional

constraint
∑
i λiXi ≤ Z for an auxiliary variableZ, and optimisingminZ. The gen-

eral case, of course, will not reduce in this simple way.

3.1 Resolving a UCSOP

Given a single optimisation criterion, classical decision making [17] seeks one single
solution, chosen by the rationale of minimising the objective function. The central ten-
ant of solving a UCSP is that, unless specified by the user, no potential solution is a
priori excluded. Since a closure is thus the resolution of a UCSP, given a single optimi-
sation criterion, a rational approach is to seek a modified closure.

Deriving some types of closures is by itself already an optimisation problem: a min-
imal covering set, a maximal robust set, and a most robust solution. These closures have
in common a criterion based on the amount of support; we say they areoptimisation-
dependent. For minimal covering sets, the support criterion is to minimise the cardinal-
ity of the closure. For maximal robust sets and most robust solutions, the criterion is to
maximise the support of each element.

Thus, if we desire an optimisation-dependent closure, with even a single objective
function, a UCSOP has the potential to be a multi-criteria optimisation problem. The
two at best orthogonal and at worst competing criteria are: cardinality (the size of the
closure) or support (measured by the support operator), and optimality (measured by the
objective function). Analogously, multiple criteria are seen when seeking robust ‘super’
solutions to a CSOP [7]. The challenge is how to balance these two criteria.

Further, whether optimisation-dependent or not, all closures are defined formally in
terms of support operators: e.g. the full closure is the set of solutionseach supported by
at least one realisation. Thus foranyclosure, in general any optimisation criterion may
compete with reliability, which is defined in terms of support.

Our approach is the following: we give precedence to reliability, since, as part of the
definition of a closure, it is the more fundamental. In analogy with a classical CSOP,
firstly we desire solutions to the problem and only secondly do we evaluate them for op-
timality; so with a UCSOP, firstly we derive closures and only secondly do we evaluate
them. We give greater precedence to the optimality criterion only if the user deliberately
specifies a greater desire for optimality; only then is such a closure adequate.

In analogy, consider a soft temporal CSP with contingent events and preferences.
Here a suitable notion of controllability [15] might put precedence for reliability over
optimality. That is, we require hard temporal constraints to be satisfied, and secondly
prefer solutions of higher quality according to the soft constraints.

What this means in practice is that we first select the appropriate type of closure for
the problem, as if it were a UCSP with no optimisation criterion. We then consider the
impact of the optimisation criterion:

– Suppose we have derived a closure of the desired type. The optimisation criterion
means we can refine it by removing some elements. The more the user desires
optimality over reliability, the more elements can be removed.

– Suppose instead we have only selected the desired type of closure. The optimisa-
tion criterion means we have a principled way to prefer some closures of this type
to others of the type, if we extend the criterion to closures rather than individual po-
tential solutions. However, if the type of closure is optimisation-dependent, such as
a minimal covering set, then multiple criteria may arise when comparing closures.

A merit of this approach to optimisation under uncertainty is that we balance the
two extremes: on one hand, deterministic approaches based on the worst case, and on
the other, stochastic approaches based on probabilistic assumptions. As [1] point out,

the former favours robustness over optimality, while the latter favours optimality over
robustness. A relevant closure, to be established in the sequel, ensures a reliable solution
(subsuming the benefits of a robust single solution when one exists); and it ensures an
optimal solution, in the sense to be described.

4 Refining a Given Closure

In this section we suppose the type of closure has been chosen and one closure of the
type has been derived, and now we are given an optimisation criterion. The resulting
objective function means there is now a reason to prefer some elements of a closure to
others. Thus we describe how to refine a closure with respect to an objective function.

Unless the user specifies it, we cannot simply pick the most preferred element of
a closure according to the objective function. The reason is that it is the whole closure
that provides a reliable solution to the problem; any one element (or more generally,
any subset) need not necessarily be a reliable solution.

Nonetheless, the optimisation criterion still gives a potential reason to prune a clo-
sure: when one element makes anotherredundant. Definition 4 says that one solution
is made redundant by another if the latter covers at least the same realisations (support)
and is preferred according to the objective function (optimality).

Definition 4 (Redundant solution).Let S ⊆ Cl(P) be a closure of UCSOPP , and
s1, s2 ∈ S be elements ofS. LetΣ denote a complete support operator forP . s2 is
maderedundantbys1 if Σ(s2) ⊆ Σ(s1) andf(s1) < f(s2). ut

Example 5.In Example 4 the solutions(3, 1) and (3, 5) cover the same realisations.
Thus, with respect to the objective functionf(s) = X2, (3, 1) makes(3, 5) redundant.
Any covering set that includes(3, 1) gains nothing by also including(3, 5). Thus we can
refine such a covering set closure by removing(3, 5) without compromising reliability.

Redundancy applies to any closure, although for singleton closures clearly it is triv-
ial. Note that, as a consequence of their definitions, both a most robust solution and a
minimal covering set are redundancy-free. There is no need to retain redundant solu-
tions in a closure, unless the user specifies that regardless she wants all single solutions.
In the absence of any specification by the user to the contrary, we say that a closure is
an adequate solution to a UCSOP only if it contains no redundant elements:

Definition 5 (Redundancy-free).In the context of a UCSOP, we say that a closure is
redundancy-freeiff it contains no redundant elements; otherwise it isredundant. ut

Example 6.In Example 4, the covering set{(3, 1), (3, 5), (5, 3)} is a redundant closure,
since(3, 5) is made redundant by(3, 1); {(3, 1), (5, 3)} is redundancy-free. ut

Hence, given a closureS and an objective function, we prune the redundant ele-
ments from the closure to yield the redundancy-free refined closureS′ ⊆ S. S′ is the
smallest subset ofS that a priori is a reliable solution to the problem. Nonetheless, the
user may specify her primary desire for an optimal single solution (even though it might
not cover every realisation), in the same way as she might ask for a most robust solution
closure (even though it might not cover every realisation). As stated earlier, only with
such a specification can we give optimisation precedence over reliability, and say such

a solution is adequate. In particular, suppose the user desires the minimal elements of
the full closure according to the objective function, even though this minimal set will
not necessarily cover all realisations. Here is the trade-off between robustness and opti-
mality: between probability of covering all realisations and the value of the solution.

We can translate the user’s restriction on the full closure into a closure of another
type: theoptimal closure{s ∈ Cl(P) : f(s) minimal}. The optimal closure prefers
elements of the full closure with respect to the objective function, parallel to how a
robust set closure prefers elements with respect to their support.3 Generalising, if the
user requires the optimal elements of any closure, we can translate this requirement into
a demand for the optimal closure of that type:

Definition 6 (Optimal closure).Given a closureS of typet, anoptimalt closureis the
subset ofS of elements minimal under an objective functionf . ut

An optimal closure of a given type need not be a closure of that type. For exam-
ple, from a covering set closureS comes an optimal covering set closureS′, but S′

need not be a covering set. Note also that every optimal closure is redundancy-free, but
not every redundancy-free closure is optimal. In contrast to an optimal closure, which
places optimality before support, a general redundancy-free closure places support be-
fore optimality: it prunes only those elements whose omission does not ameliorate the
coverage of the closure, i.e. the number of realisations covered.

Example 7.In Example 4, the covering set{(3, 1), (5, 3)} is redundancy-free, but is not
an optimal covering set closure becausef((5, 3)) = 3 > 1 is not minimal. An optimal
covering set closure is{(3, 1)}, which is a singleton closure in this case. Since it does
not cover all realisations, it is not a covering set closure. ut

Example 8.Consider a problem arising in routing of uncertain traffic demands in a
network [1], suitable for modelling as a UCSOP. Here, the desired closure is a robust
set — each proposed routing must hold for all realisations of the demands within the
uncertainty set — and the routing should be of minimum cost. Thus an optimal robust
set is adequate to the user as a reliable solution for the problem. Operationally, [1]
compute one member of such a closure directly, using column generation. ut

5 Choosing Between Different Closures

To begin with in this section we again suppose the type of closure has been chosen.
The last section assumed one closure of the chosen type had been selected. We now ask
which closure should be selected: which closure of the type is ‘best’ given an optimisa-
tion criterion? In other words, having considered preferring some elements of a closure
to others, we now consider preferring some closures (as subsets ofCl(P)) to others.

There are two aspects to address: (1) how to define a criterion to evaluate a closure,
given the user’s preferences over individual potential solutions; and (2) how to compare
closures, given this criterion, which might be in conflict to the criterion that comes from
the definition of the type of closure, i.e. how to approach the multi-criteria optimisation
problem of choosing between closures.

3 Analogously, consider super solutions to a classical CSOP: an optimal closure corresponds to
the most robust optimal super solution, and a (non-optimal) redundancy-free closure corre-
sponds to the optimal robust super solution [7].

Example 9(Example 4 continued).In Example 4 the two minimal (and so redundancy-
free) covering sets areS1 = {(3, 1), (5, 3)} andS2 = {(4, 2), (5, 3)}. First, let us
compare them by the sum of the number of realisations covered.(3, 1) covers one re-
alisation (λ1 = 2); (4, 2) covers two realisations (λ1 = 1, λ1 = 2); and(5, 3) covers
two realisations (λ1 = 2, λ1 = 3). ThusS1 has a cumulative coverage (the number of
covered realisations) of1+2 = 3 andS2 of 2+2 = 4, soS2 is better. This comparison
focuses on the heuristic of maximising the amount of support.

Second, compare the minimal covering sets by the sum of the objective functionf
on their elements. ThenS1 has a cumulative value of1 + 3 = 4 andS2 of 2 + 3 = 5.
In contrast to the first, by this second ordering,S1 is better (since we minimisef). This
comparison focuses on the optimality criterion.

Third, compare the closures by the sum of the best solution they give for each
realisation.S1 coversλ1 = 2 by (3, 1) and the other realisations by(5, 3), scoring
1 + 3 + 3 = 7. S2 coversλ1 = 2 by (4, 2), λ1 = 3 by (4, 2) and(5, 3), andλ1 = 4
by (5, 3), scoring2 + 2 + 3 = 7. Now the two minimal covering sets are incomparable.
This comparison seeks to balance both reliability and optimality.

Lastly, consider the covering setS3 = {(3, 1), (4, 2), (5, 3)}. This set is not min-
imal, since its cardinality is three. However, according to the last metric, it scores
1 + 2 + 3 = 6, which makes it better thanS1 andS2. We callS3 the optimal for
each realisationclosure, since it contains the best solution for each closure with respect
to the objective function. It shows that the support criterion (minimise cardinality) and
the optimality criterion (minimise some lifted function off) are opposed, and so we
have a multi-criteria problem. ut

5.1 Extending an Objective Function to a Closure

We first must define means to ascribe numerical values to closures, so that we have
means to compare them with respect to the objective functionf specified by the user.
That is, we must liftf from single solutions to closures, i.e. fromS ×R toP(S)×R,
and project it fromP(S) × R to S. The basis for doing so is found by reviewing the
criteria known in decision making under uncertainty. We recall them briefly and then
present different means to definef on closures based upon them.

Recall from [17] that avaluation matrixthat associates a valuevij to each action
ai and each future outcomeΘj . The decision problem is to decide among the actions
(which we can assume are known) in the presence of a lack of knowledge about which
outcome will occur. In terms of a UCSOP, the actionsai are consistent tuples for the
variables, and the outcomesΘj are the feasible realisations of the parameters. Thus the
valuation matrix is nothing more than the objective function enumerated overS andR.

The literature contains many criteria for decisions under uncertainty, when seeking
a single solution rather than a set of solutions. For an actionai, the criteria specify
the value to assign to the action with respect to the objective function. Since we are
minimising f , the optimal action is the one that minimises this value, i.e.argminai .
The criteria, first, specify what value to give to a single solution in the light of the
uncertainty. In our notation, they specify how to projectf fromS×R toS. Second, they
specify how to select a single solutions that optimises the projected objective function
f(s). The criteria differ most importantly in how conservative they are. Beginning with

the most optimistic, simply suppose the most favourable outcome will occur. That is,

min
ai

min
Θj

vij (1)

TheLaplace criterion[17] is also optimistic. It assumes the outcomes are equally
likely, and converts the problem to a decision under risk, computing expected utility:

min
ai

(1
m

m∑
j=1

vij
)

(2)

The most pessimistic criterion supposes that the least favourable outcome will oc-
cur. Theminimax criterionacts conservatively to avoid the worst actions:

min
ai

max
Θj

vij (3)

The spreadtakes a middle ground, as the difference of the most pessimistic and
most optimistic criteria:

min
ai

(
max
Θj

vij −min
Θj

vij
)

(4)

Also neither purely optimistic nor pessimistic, theminimax regret criterioncom-
putes theregret matrixthat associates the opportunity cost of an action:rij = vij −
minak vkj . Regret expresses the difference, in hindsight, between the best decision and
the decision taken. The decision criterion is then to apply minimax to the regret matrix:

min
ai

max
Θj

rij (5)

Variants of regret, such as percentage regret, are defined in robust optimisation [10].
Finally, theHurwicz criterion [17] is parametrised by an index of optimismα ∈

[0, 1]: 0 is pessimistic,1 is optimistic:

min
ai

(
αmin

Θj
vij + (1− α) max

Θj
vij
)

(6)

We must extend these criteria in order to apply them to closures, because in general
a closure will have more than one element. Thus we need to lift the evaluation off
from a single solutions to a set of solutions, a closureS. It is clear there is more than
one answer: for example, as in Example 9, we could sum the values for the elements
or we could take the least value. The most suitable choice of the above means to adopt
depends on the criteria of user for the problem; we present eight such alternatives. Let
S = {s1, . . . , sN} be a set of potential solutions, andΣ be a complete support operator.

1. Take the minimum value off over the individual elements:

f(S) = min
i=1,...,N

f(si) (7)

This is× from the fuzzy semiring [2]; the egalitarian definition of welfare in util-
ity theory [13]. Since we minimisef , this means of liftingf ontoS is the most
optimistic; it corresponds to the most favourable criterion (1) above.

2. Take the maximum value off over the individual elements:

f(S) = max
i=1,...,N

f(si) (8)

This is the least optimistic alternative; it corresponds to the minimax criterion (3)
and gives us a hard upper bound on the optimum.

3. Take the spread of the values:

f(S) = min
i=1,...,N

f(si)− max
i=1,...,N

f(si) (9)

This corresponds to (4), and also (shown by rearranging the equation) to the regret
criterion (5).

4. Use the Hurwicz criterion with an index of optimismα ∈ [0, 1]:

f(S) = α min
i=1,...,N

f(si) + (1− α) max
i=1,...,N

f(si) (10)

This corresponds to (6).
5. Sum the support of the individual elements:

f(S) =
∑

i=1,...,N

1
|Σ(si)|+ 1

(11)

Since we are minimisingf but support is usually maximised, we use the reciprocal
of |Σ(si)|, the number of realisations that support solutionsi. Note the+1 in the
denominator to give correct results ifs has a support metric0. If lesser support is
preferred, we simply use|Σ(si)| rather than its reciprocal.

6. Sum the values off on the individual elements:

f(S) =
∑

i=1,...,N

f(si) (12)

This is× from theweighted semiring[2]; the utilitarian definition of welfare in
utility theory [13]. It corresponds to the Laplace criterion (2).

7. Sum the values off on the individual elements, weighted by their support:

f(S) =
∑

i=1,...,N

f(si)
|Σ(si)|+ 1

(13)

If we view the amount of support as defining a likelihood of occurrence (a possi-
bility distribution function), then (13) corresponds to an expected value criterion.

8. Take the best value off on the elements that cover each realisation:

f(S) =
∑

j=1,...,M

max
si coversrj

f(si) (14)

We call thisoptimal for each realisation. It defines an extension of the covering
set closure, where not only does the closure contain at least one solution for each
realisation, but at least one optimal solution for each.

Table 1.Comparison of closures by various metrics

cardinality min max spread Hurwicz (α=0.5) support sum weighted best

S1 2 1 3 2 2 1
3

4 5
2

7
S2 2 2 3 1 3

2
1
4

5 5
2

7
S3 3 1 3 2 2 1

5
6 7

2
6

To evaluate (11) and (13) we requireΣ(si) for eachsi, known asenumeration
support information[18]. To evaluate (14) we requireΣ-1(rj) for each realisation
rj ∈ Σ(S), whereΣ-1 is a relation inverse ofΣ; enumeration support information
is certainly enough for this.

Example 10(Example 9 revisited).In Example 9 we compared by different metrics
the three covering set closures:S1 = {(3, 1), (5, 3)} andS2 = {(4, 2), (5, 3)} (both
minimal), andS3 = {(3, 1), (4, 2), (5, 3)}. Table 1 evaluates the three closures by all of
the above metrics, and compares them also with the support criterion of the cardinality
of the sets. We see that there are metrics by which each of the closures are strictly best.
A decision between the three closures will depend on the criteria of the user. Moreover,
if we seek a minimal covering set, which is an optimisation-dependent closure, then we
have multiple criteria. If the optimality criterion isbest, for instance, then the support
criterion (cardinality) and optimality criterion are opposed to each other. ut

5.2 Comparing Closures of the Same Type

Summarising, based on the objective function of a UCSOP, we have defined means of
numerically comparing closures of any one type. This enables us to choose a ‘best’
closure, by deriving one or all closures of the type that minimise the corresponding
objective function (7)–(14). This is analogous to looking for the elements of a closure
that minimise the original objective function: it is the closure equivalent of the optimal
elements. As we stated, the most suitable choice of (7)–(14) depends on the criteria of
user for the specific LSCO problem at hand.

However, choosing the ‘best’ closure requires more than just minimisingf(S). Ex-
ample 10 illustrates, for minimal covering sets, how the addition of even one optimi-
sation criterion to a UCSP can lead to a multi-criteria optimisation problem. The two,
essentially orthogonal, sources of criteria arise from support (or cardinality) and op-
timality (defined by the chosenf(S)). As the example showed, when optimality and
support objectives are opposed, they generate a trade-off, resulting in a multi-criteria
optimisation problem to choose a closure. The multiple criteria are reflected by multi-
ple objective functions, which we write asfi, reservingf0 for the support criterion.

Of the approaches to multi-criteria optimisation [16], the Pareto frontier fits nat-
urally with the UCSP, because it is based on providing the user with information to
enable her to take an informed decision. A Pareto frontierof closuresis a plausible set
of closures which the user might examine for the trade-off of the criteria. The selected
closures can then be refined to their redundancy-free or optimal versions.

For a given type of closure, aPareto frontier of closuresis a set of non-dominated
closures. One closureS dominatesanotherS′ iff fi(S) ≤ fi(S′) for each objective
function fi and there exists at least onefk s.t.fk(S) < fk(S′); a closure isnon-

dominatedif there exists no closure that dominates it. A closure in the frontier cannot be
improved with respect to any criterion without deteriorating it with respect to another.4

The alternatives to the Pareto frontier translate the multi-objective problem into a
single-objective problem or problems. Widely used for instance is a weighted sum of
the criteria. It is perhaps less natural than a frontier, because (1) deciding the weights
beforehand is often unclear; and (2) it gives extremal solutions whereas the frontier
provides a range of balanced solutions.

Example 11(Example 9 concluded).Let us say the cardinalityf0(S) = |S|, the mini-
mum valuef1(S) = minsi f(si), and the sumf2(S) =

∑
si
f(si) are the three criteria

the user is concerned with in Example 9. Note that the former comes from the support
criterion, while the latter two come from explicit optimisation criteria. Referring to Ta-
ble 1, observe thatS2 is dominated byS1 but neitherS1 nor S3 dominate each other.
Thus the Pareto frontier is the set{S1, S3}. Refining both with respect tof , we see that
S1 is the redundancy-free form ofS3. Hence we offer the user the closureS1 as the
resolution of the UCSOP. ut

Computing the Frontier. To make the discussion more concrete, we now consider
how to perform an efficient comparison. We can compose the problem of evaluating
f(S) as a meta CSP. The sole variable is the closureS sought; its domain is the set of
all closures of the UCSP. The constraints specify thatS is a closure of the sought type,
and there is an objective function according to the criterion on closures, i.e.f(S).

Without domain-specific knowledge, the natural algorithm to use is branch-and-
bound. The search must be complete to ensure we find anf(S)-minimal closure; it may
be modified to give one or all such closures. To reduce the computational cost, we can
integrate problem decomposition methods: e.g. the hybrid of branch-and-bound and tree
decomposition [8]. If the cost is still too great, we may optionally give up completeness
(and so optimality) by using heuristics, or incomplete methods such as local search.
Below, we discuss further the minimal covering set and most robust solution closures.

Once we can computefi(S) for eachi, methods in the literature to compute Pareto
frontiers [16] apply directly, if we replace ‘solution’ by ‘closure’. A common approach
is to generate a sample of points on the frontier, by either defining a parameterised,
scalar objective (such as a weighted sum) called agenerator, and varying its parameters;
or by finding non-dominated points by local search; both are surveyed in [12]. Sampling
the frontier of closures leads to approximation, a topic for future work.

Since approximation might not be desired, we also highlight two methods that com-
pute the whole frontier. The first method is to employ generators in a CSP. Under suit-
able restrictions on the solution space, some carefully chosen generators are complete:
they generate the whole Pareto frontier as their parameters vary. Further, some genera-
tors have analytical form which can be expressed as a constraint. Thus if we add such
a generator constraint to our meta CSP defined above, we use the generator directly
as part of the CSP solving. The second set of methods are specific for CSPs; they can
be viewed as extensions of branch-and-bound. In particular, [6] combine branch-and-
bound and an efficient representation of the frontier with quadtrees.

4 Our definition of dominance is in line with the standard definition; it requires that the objec-
tive functions be scalar and monotone [9]. The idea of non-dominated closures is similar to
redundancy-free solutions (Definition 4), but differs in that there is no mention of support. In
fact, support is implicit because the definition is parametrised by the type of closure.

Covering set closuresExample 11 indicates that for covering set closures, the principle
trade-off is between the size of the set and its optimality. At one extreme is a covering set
closure of minimal size. This is favourable because: (1) it requires less space to store;
(2) fewer elements must mean each is more robust (on average); and (3) the closure
changes less when it is refined as knowledge about the realisations is acquired.

At the other extreme is a covering set that contains an optimal solution for each
realisation. This is favourable by the metric (14), and if the closure is refined as the
realisations are reduced to a single possibility, it gives us an optimal solution. However,
such anoptimal for each realisationclosure is often likely to be too large to be useful.
The aerospace planning problem is a case study of balancing the criteria [20].

Most robust solution closuresA most robust solution closure is a singleton closure (a
single potential solution) and as such there is work in the literature. First consider the
case where there is no objective function, i.e. a UCSP. To derive a most robust solu-
tion closure is a single-criteria optimisation problem where the objective is to maximise
robustness. In the discrete case, existing branch-and-bound and forward-checking algo-
rithms can be readily adapted by removing probabilities [5,11].

Second, the main case is a UCSOP where there is an objective function. This gives
a multi-criteria optimisation problem in which the criterion arising from support is the
number of covered realisations. Since the sought closure is a singleton, classical multi-
criteria optimisation methods directly apply: the Pareto frontier of closures reduces to
the classical Pareto frontier of solutions. Local search methods such as multi-objective
simulated annealing are known to be effective.

5.3 Comparing Closures of Different Types

So far we have supposed the type of closure has been chosen. We now briefly discuss
comparing closures of different types. From an optimisation criterion, the objective
function assigns a numerical value to each closure, according to one of the above means.
Closures of different types can be compared with respect to their values, just as closures
of the same type. Moreover, we can go on to define domination between closures.

The advantage is a well-founded, quantitative comparison of heterogeneous types of
closure. It means we can resolve a UCSOP without deciding what types of closure might
best meet the user’s requirements and then trying each; by analogy, rather than generate-
and-test we integrate the evaluation with the generation. However, the important caveat
is that different types of closure provide very different types of reliable solution to a
LSCO, in general, and care must be taken that their comparison is coherent.

6 Conclusion and Future Work

The uncertain CSP extends the classical CSP to model incomplete and erroneous data.
Its resolution is a closure, a set of potential solutions. In this paper we extended the
UCSP model to the uncertain CSOP, to account for user preferences and other criteria
that can be modelled with an objective function. To do so, we extended the notion of a
closure to confront LSCOs with optimisation criteria. Non-dominated closures present
the choice of solutions to a UCSOP; once one is chosen, its refinement to a redundancy-
free or optimal closure balances reliability and optimality as the user specifies. Conse-
quently, we can model problems where the user demands not only a reliable solution,
but also one that meets specified, numerical objectives.

As an extension of the classical CSP, rather than e.g. valued CSP [2], the UCSOP
model presented is focused on hard constraints. Future work is to consider soft con-
straints within a UCSOP. However, the UCSOP can already accommodate softness in
as far as it can be described by an objective function, e.g. minimising the weight of vi-
olated constraints. Similarly, future work includes uncertainty in the objective function
of a UCSOP, beyond what can be rewritten out of the objective into a constraint.

Acknowledgement. The authors thank Mark Wallace for constructive suggestions and much
helpful discussion, and the reviewers for their comments. This work was performed while the
first author was at IC–Parc, partially supported by the EPSRC under grant GR/N64373/01.

References

1. W. Ben-Ameur and H. Kerivin. Routing of uncertain demands.Optimization and Engineer-
ing, 3:283–313, 2005.

2. S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie. Semiring-based
CSPs and valued CSPs: Basic properties and comparison. InLNCS 1106. 1996.

3. N. Creignou, S. Khanna, and M. Sudan.Complexity classifications of Boolean constraint
satisfaction problems. SIAM Press, Philadelphia, PA, 2001.

4. D. Dubois, H. Fargier, and H. Prade. Possibility theory in constraint satisfaction problems:
Handling priority, preference and uncertainty.Applied Intelligence, 6:287–309, 1996.

5. H. Fargier, J. Lang, and T. Schiex. Mixed constraint satisfaction: A framework for decision
problems under incomplete knowledge. InProc. of AAAI-96, pages 175–180, Aug. 1996.

6. M. Gavanelli. An algorithm for multi-criteria optimization in CSPs. InProc. of ECAI-02,
pages 136–140, Lyon, France, July 2002.

7. E. Hebrard, B. Hnich, and T. Walsh. Robust solutions for constraint satisfaction and opti-
mization. InProc. of ECAI-04, pages 186–190, Valencia, Spain, 2004.

8. P. J́egou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint
networks.Artificial Intelligence, 146(1):43–75, 2003.

9. R. L. Keeney and H. Raiffa.Decisions with Multiple Objectives. Cambridge, 1993.
10. P. Kouvelis and G. Yu.Robust Discrete Optimization and its Applications. Kluwer, 1996.
11. S. Manandhar, A. Tarim, and T. Walsh. Scenario-based stochastic constraint programming.

In Proc. of IJCAI’03, pages 257–262, Acapulco, Mexico, Aug. 2003.
12. P. Meseguer, N. Bouhmala, T. Bouzoubaa, M. Irgens, and M. Sánchez. Current approaches

for solving over-constrained problems.Constraints, 8(1):9–39, 2003.
13. H. Moulin. Axioms for Cooperative Decision Making. Cambridge University Press, 1988.
14. M. S. Pini, F. Rossi, and K. B. Venable. Possibility theory for reasoning about uncertain soft

constraints. InProc. of ECSQARU 2005, Barcelona, Spain, July 2005.
15. F. Rossi, K. B. Venable, and N. Yorke-Smith. Controllability of soft temporal constraint

problems. InProc. of CP’04, LNCS 3258, pages 588–603, Toronto, Canada, Sept. 2004.
16. R. Steuer.Mulitple Criteria Optimization. Wiley, New York, 1986.
17. H. Taha.Operations Research: An Introduction. Prentice Hall, New Jersey, 1997.
18. N. Yorke-Smith.Reliable Constraint Reasoning with Uncertain Data. PhD thesis, IC-Parc,

Imperial College London, June 2004.
19. N. Yorke-Smith and C. Gervet. Certainty closure: A framework for reliable constraint rea-

soning with uncertainty. InProc. of CP’03, LNCS 2833, pages 769–783, Sept. 2003.
20. N. Yorke-Smith and C. Guettier. Towards automatic robust planning for the discrete com-

manding of aerospace equipment. InProc. of 18th IEEE Intl. Symposium on Intelligent
Control (ISIC’03), pages 328–333, Houston, TX, Oct. 2003.

