
Conflict based Backjumping for Constraints
Optimization Problems

Roie Zivan and Amnon Meisels?

{zivanr,am}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

Abstract. Constraints Optimization problems are commonly solved using a Branch
and Bound algorithm enhanced by a consistency maintenance procedures [WF93]
[LM96,LMS99,LS04]. All these algorithms traverse the search space in a chrono-
logical order and gain their efficiency from the quality of the consistency mainte-
nance procedure.
The present study introduces Conflict-based Backjumping (CBJ) in Branch and
Bound algorithms. The proposed algorithm maintainsConflict Setswhich include
only assignments whose replacement can lead to a better solution and backtracks
according to these sets. CBJ can be added to Branch and Bound which uses the
most advanced consistency maintenance heuristics,NC∗ andAC∗. The exper-
imental evaluation of ofB&B CBJ on randomMax-CSPsshows that the per-
formance of the algorithms are improved by a large factor.

1 Introduction

In standard CSPs, when the algorithm detects that a solution to a given problem does
not exist, the algorithm reports it and the search is terminated. In many cases, although a
solution does not exist we wish to produce the best complete assignment, i.e. the assign-
ment to the problem which includes the smallest number of conflicts. Such problems are
the scope of Max-Constraint Satisfaction Problems (Max-CSPs) [LM96]. Max-CSPs
are a special case of the more general Weighted Constraints Satisfaction Problem (WC-
SPs) [LS04] in which each constraint is assigned with a weight which defines its cost
if it is included in a solution. The weight of a solution is the sum of the weights of
all conflicts (i.e. broken constraints) included in the solution (In Max-CSPs all weights
are equal to 1). The requirement in solving WCSPs is to find the minimal cost (opti-
mal) solution.WCSPsandMax-CSPsare therefore termedConstraints Optimization
Problems.

In this paper we focus for simplicity onMax-CSPproblems. SinceMax-CSPis an
optimization problem with a limited search tree, the immediate choice for solving it is
to use aBranch and Boundalgorithm [Dec03]. In the last decade, various algorithms
were developed for Max and Weighted CSPs [WF93,LM96,LMS99,LS04]. All of these
algorithms are based on standard backtracking and gain their efficiency from the quality

? Supported by the Lynn and William Frankel center for Computer Sciences.



of the heuristic function (consistency maintenance procedure) they use. The best result
for Max-CSPswas presented in [LMS99]. This result was achieved using a complex
method which generates higher lower bounds by manipulating the order in which di-
rectional arc consistency is performed. In [LS04], the authors present new consistency
maintenance procedures,NC* andAC* which improve on former versions ofForward-
checkingandArc-consistency. However the performance of the resulting algorithms are
close but do not outperform the Forward-checking method presented in [LMS99].

The present paper improves on previous results by addingConflict-based Backjump-
ing to the Branch and Bound algorithms presented in [LS04]. Conflict-based Backjump-
ing (CBJ) is a method which is known to improve standardCSP algorithms [Dec03]
[Gin93,ZM03]. In order to performCBJ , the algorithm stores for each variable the set
of assignments which caused the removal of values from its domain. When a domain
empties, the algorithm backtracks to the last assignment in the corresponding conflict
set.

Performing back-jumping forMax-CSPsis a much more complicated task than for
standardCSPs. In order to generate a consistent conflict set all conflicts that have con-
tributed to the current lower bound must be taken in to consideration. Furthermore,
additional conflicts with unassigned values with equal or higher costs must be added to
the conflict set in order to achieve completeness.

The results presented in this paper show that the above effort is worth while. Adding
Conflict based Backjumping to Branch and Bound withNC∗ andAC∗ improves the
runtime by a large factor.

Max-CSPsare presented in Section 2. A description of the standardBranch and
Boundalgorithm along with theNC∗ andAC∗ algorithm is presented in Section 3. The
addition ofCBJ to Branch and Boundwith NC∗ andAC∗ is presented in Section 4.
Section 7 introduces a correctness and completeness proof forB&B CBJ with NC∗
and AC∗. An extensive experimental evaluation, which comparesB&B with NC∗
andAC∗ to B&B CBJ is presented in Section 8. The experiments were conducted on
randomly generatedMax-CSPs.

2 Distributed Constraint Satisfaction

A Max - Constraint Satisfaction Problem(Max-CSP) is composed, like a standard
CSP , of a set ofn variablesX1, X2, ..., Xn. Each variable can be assigned a single
value from a discrete finite domain. Constraints orrelations R are subsets of the Carte-
sian product of the domains of constrained variables. For a set of constrained variables
Xik

, Xjl
, ..., Xmn , with domains of values for each variableDik

, Djl
, ..., Dmn , the

constraint is defined asR ⊆ Dik
×Djl

× ...×Dmn
. A binary constraint Rij between

any two variablesXj andXi is a subset of the Cartesian product of their domains;
Rij ⊆ Dj ×Di.

An assignment (or a label) is a pair< var, val >, wherevar is a variable and
val is a value fromvar’s domain that is assigned to it. Apartial solution is a set of
assignments of values to an set of variables. Thecost of a partial solution in aMax-
CSPis the number of conflicts included in it. An optimalsolution to aMax-CSPis a



partial solution that includes all variables and which includes a minimum number of
unsatisfied constraints, i.e. a solution with a minimal cost.

3 The Branch and Bound algorithm

Optimization problems with a finite search-space are often solved using a Branch and
Bound (B&B) algorithm. BothWeighted CSPsandMax-CSPsfall into this category.
The overall framework of aB&B algorithm is rather simple. Two bounds are constantly
maintained by the algorithm, anupper bound and alower bound. Theupper bound
is initialized to infinity and thelower bound to zero. In each step of the algorithm, a
partial solution,current solution, is expanded by assigning a value to a variable which
is not included in it. After adding the new assignment, thelower bound is updated with
the cost of the updatedcurrent solution. Thecurrent solution is expanded as long
as thelower bound is smaller than theupper bound. If a full solution is obtained,
i.e. thecurrent solution includes assignments to all variables, theupper bound is
updated with the cost of the solution. If thelower bound is equal or higher than the
upper bound, the algorithm attempts to replace the most recent assignment. If all val-
ues of a variable fail, the algorithm backtracks to the most recent variable assigned.

The naive and exhaustiveB&B algorithm can be improved by usingconsistency
maintenancefunctions which increase the value of thelower bound of acurrent solution.
After each assignment, the algorithm performs a consistency maintenance procedure
that updates the costs of future possible assignments and increases its chance to detect
early a need to backtrack. Two of the most successfulconsistency maintenancefunc-
tions are described next.

3.1 Node Consistency and NC*

Node Consistency (or Forward-checking) is a very standard consistency maintenance
method in standardCSPs [Tsa93,Dec03]. The main idea is to ensure that in the do-
mains of each of the unassigned variables there is at least one value which is consistent
with the current partial solution. In standardCSPs this would mean that a value has no
conflicts with the assignments in thecurrent solution. In Max-CSPs, for each value
in a domain of an unassigned variable, one must determine if assigning it to its vari-
able will increase thelower bound beyond the limit of theupper bound. To this end,
the algorithm maintains for every value acost which is its number of conflicts with
assignments in thecurrent solution. After each assignment, the costs of all values
in domains of unassigned variables are updated. When the sum of a value’s cost and
the cost of thecurrent solution is higher or equal to theupper bound, the value is
eliminated from the variable’s domain. An empty domain triggers a backtrack.

The down side of this method inMax-CSPsis that the number of conflicts counted
and stored at the value’scost, does not contribute to the globallower bound, and it
affects the search only if it exceeds theupper bound. In [LS04], the authors suggest an
improved version of Node Consistency they termNC*. In NC* the algorithm maintains
a global costCφ which is initially zero. After every assignment, all costs of all values
are updated as in standardNC. Then, for each variable, the minimal cost of all values



Fig. 1.Values of a variable before and after running NC*

in its domainci is added toCφ, and all value costs are decreased byci. This means that
after the method is completed in every step, the domain of every unassigned variable
includes one value whose cost is zero. The globallower bound is calculated as the sum
of thecurrent solution’s cost andCφ.

Figure 1 presents an example of the operation of theNC∗ procedure on a single
variable. On the left hand side, the values of the variable are presented with their cost
before the procedure. The value of the global costCφ is 6. The minimal cost of the
values is 2. On the RHS, the state of the variable is presented after theNC∗ procedure.
All costs were decreased by 2 and the global valueCφ was raised by 2.

Any value whoselower bound, i.e. the sum of thecurrent solution′s cost,Cφ

and its own cost, exceeds the limit of theupper bound, is removed from the variable’s
domain as in standardNC [LS04].

3.2 Arc Consistency and AC*

Another consistency maintenance procedure which is known to be effective forCSPs
is Arc Consistency. In standardCSPs, Arc-Consistency is more restricted thanNC, for
eliminating inconsistent values from future variables. The idea of standardAC [BR95]
is that if a valuev of some unassigned variableXi, is in conflict with all values of
another unassigned variableXj thenv can be removed from the domain ofXi since
assigning it toXi will cause a conflict.

In Max-CSPsArc-Consistency is used to project costs of conflicts between unas-
signed variables, over values costs. As for standardCSPs, a value in a domain of



Fig. 2.Values of a variable before and after running NC*

an unassigned variable, which is in conflict with all the values of another unassigned
variable, will cause a conflict when it is assigned. This information is used in order to
increment the cost of the value. Values for which the sum of their cost and the global
lower bound exceeds theupper bound, are removed from their variable’s domain.
However, inAC every removal of a value can cause an increase in the cost of another
value. Therefore, an additional check has to be made.

AC∗ combines the advantages ofAC andNC∗. After performingAC, the updated
cost of the values are used by theNC∗ procedure to increase the global costCφ. Values
are removed as inNC∗ and their removal initiates the rechecking forAC.

Figures 2 and 3 present an example of the AC* procedure. On the LHS of Figure 2
the state of two unassigned variables,Xi and Xj is presented. The center value of
variableXi is constrained with all the values of variableXj . Taking these constraints
into account, the cost of the value is incremented and the result is presented on the RHS
of Figure 2. The left hand side of Figure 3 presents the state after the process of adding
the minimum value cost toCφ and decreasing the costs of values of bothXi andXj .
Since the minimal value ofXi was 2 and ofXj was 1,Cφ was incremented by 3. After
the incrementation ofCφ, the values for which the sum ofCφ and their cost is equal
to theupper bound are removed from their domains and the procedure ends with the
state on the RHS of Figure 3.



Fig. 3.Values of a variable before and after running NC*

4 Branch and Bound with CBJ

The addition of Backjumping to standard CSP search is known to improve the run-time
performance of the search by a large factor [Dec03,Gin93]. The various algorithms
which perform backjumping differ by the method of resolution which is used to deter-
mine the selected variable for the algorithm to backjump to. The common choice is to
maintain a set of conflicts for each variable, which includes the assignments that caused
a removal of a value from the variable’s domain. When a backtrack operation is per-
formed, the variable selected to backtrack to is the last variable in the conflict set of the
backtracking variable. In order to keep the algorithm complete during backjumping, the
conflict set of the target variable, is updated with the union of its conflict set and the
conflict set of the backtracking variable [Pro93].

The data structure of conflict sets which was described above forCBJ on stan-
dard CSPs can be used for theB&B algorithm, for solvingMax-CSPs. However,
the construction and maintenance of these conflict sets are a much more complicated
task. In the simplest version ofB&B, the lower bound of a current solution is its
current cost (i.e. the number of conflicts it contains). The algorithm backtracks only
when this cost is larger or equal to theupper bound. When a backtrack operation is
performed, the goal is to decrease the cost by replacing an assignment. More specifi-
cally, every binary constraint is between anearlier variable, which is the variable that
was assigned first and the second variable of the constraint which was assignedlater. If
we assume that for every variable the first value to be assigned is the one with minimal
number of conflicts (i.e. the value with a minimal cost), then backtracking to alater



variable cannot improve the cost of thecurrent solution (see the proof in section 7).
The only way that the cost of acurrent solution can be lowered is by backtracking to
anearlier variable and replacing its assignment. In order to keep the completeness of
the algorithm, the backtrack operation must be performed to the last assigned variable
in the group of candidateearlier assignments

Fig. 4.Values of a variable before and after running NC*

Figure 4 presents a partial solution with 5 variables and cost 3. The conflict set of
this partial solution includes the assignments ofX1 that is in conflict with the assign-
ment ofX3 andX5, andX2 which is in conflict with the assignment ofX4. Although
there are three conflicts in this example, only variablesX1 andX2 areearlier in all
three conflicts. Therefore the conflict set of this partial solution must include both of
them. In standardCSPs, when backtracking from variableX5, it would be enough
to check itsconflict setin order to choose the variable to backtrack to. This example
shows why generating the conflict set only according to the last variable state as done
in standardCSPs in not sufficient in the case ofMax-CSPs. VariableX5 is in conflict
only with the assignment ofX1 however, the cost of the partial solution can be lowered
by backtracking toX2.

Unfortunately, generating the conflict set out of allearlier assignments of the con-
flicts in thecurrent solution is not enough. In everylater assigned variable in each
conflict, unassigned values may have conflicts with differentearlier assignments. For
example, if the value assigned to a variableXi, i > 2, in thecurrent solution has a
cost1, and theearlier assignment with whom it has a conflict is the assignment ofX1,
X1 is added to the conflict set. However if there is an unassigned value in the domain
of Xi also with cost1 but whose conflict is with the assignment of variableXi−1, the
algorithm must backtrack toXi−1 which was assigned later thanX1. In order to give
a formal description of the construction of the conflict set, the following definitions are
needed:

Definition 1 A conflict list of valuevj from the domain of variableX i, is the list of
assignments in thecurrent solution of variables which were assigned beforei, and
vj has conflicts with. The assignments in the conflict list are in the same order the
assignments in thecurrent solution were performed.



Definition 2 Thecurrent cost of a variable is the cost of its assigned value, in the
case of an assigned variable, and the minimal cost of a value in itscurrent domain
in the case of an unassigned variable.

Definition 3 Theconflict set of variableXi with costci is the union of the firstci

assignments in theconflict list of all its values.

Definition 4 A global conflict set is the set of assignments such that the algorithm
back-jumps to the latest assignment of the set.

In the case of simpleB&B, theglobalconflict set is the union of all theconflict sets
of all assigned variables. Another way to explain this need of adding the conflicts of all
values and not just the conflicts of the assigned value, is that in order to decrease the
cost of thecurrent solution, a value which has less conflicts should be able to be as-
signed. Therefore, the latest assignment that can be replaced, and possibly decrease the
cost of one of the variables values to be smaller than the variables current cost should
be considered.

Fig. 5.A conflict set of anassigned variable

Figure 5 presents the state of three variables which are included in thecurrent solution.
VariablesX1, X2 andX3 were assigned valuesv1, v2 andv1 respectively. All costs of
all values of variableX3 are 1. Theconflict set of variableX3 includes the assign-
ments ofX1 andX2 even though its assigned value is not conflicted with the assignment
of X2 since replacing it can lower the cost of valuev2 of variableX3.



5 Node Consistency with CBJ

In order to perform conflict based backjumping in aB&B algorithm using node consis-
tency maintenance, theconflict sets of unassigned variables must be maintained. To
achieve this goal, for every value of a future variable aconflict list is initialized and
maintained. Theconflict list includes all the assignments in thecurrent solution
which conflict with the corresponding value. The length of theconflict list is equal to
the cost of the value. Whenever theNC∗ procedure adds the costci of the value with
minimum cost in the domain ofXi to the global costCφ, the firstci assignments in
each of theconflict lists of Xi’s values are added to theglobal conflictsetand re-
moved from the value’sconflict lists. This includes all the values ofXi including the
values removed from its domain since backtracking to the head of their list can cause
their return to the variablescurrent domain. This means that after each run of the
NC* procedure, theglobal conflictset includes the union of theconflict sets of all
assigned and unassigned variables.

Fig. 6.A conflict set of anunassigned variable

Figure 6 presents the state of an unassigned variableXi. The current solution
includes the assignments of three variables as in the previous example. Valuesv1 and
v3 of variableXi are both in conflict only with the assignment of variableX1. Valuev2

of Xi is in conflict with the assignments ofX2 andX3. Xi’s cost is 1 since that is the
minimal cost of its values. Its conflict set includes the assignments ofX1 since it is the
first in theconflict list of v1 andv3, andX2 since it is the first in theconflict list of



v2. After theNC∗ procedure,Cφ will be incremented by one and the assignments of
X1 andX2 will be added to theglobal conflictset.

6 Arc Consistency with CBJ

Adding CBJ to aB&B algorithm that includes arc consistency is very similar to the
case of node consistency. Whenever a minimum cost of a future variable is added to the
global costCφ, the prefixes of all of its value’sconflict lists are added to theglobal
conflict set. However, inAC∗, costs of values can be incremented by conflicts with
other unassigned values and the correlation between the value’s cost and the number
of conflicts it has with the assignments in thecurrent solution (i.e. the length of its
conflic list) does not hold. In order to find the right conflict set in this case one must
keep in mind that except for an emptycurrent solution ,a cost of a valuevk of variable
Xi is increased due to arc consistency only if there was a removal of a value which is not
in conflict with vk, in some other unassigned variableXj (see Section 7). This means
that replacing the last assignment in thecurrent solution would return the value which
is not in conflict withvk, to the domain ofXj . This is enough to decrease the cost of the
valuevk. Whenever a cost of a value is raised by arc consistency, the last assignment
in the current solution must be added to the end of the value’sconflict list. By
maintaining this property in theconflict list the variablesconflict set and theglobal
conflict setcan be generated in the same way as forNC∗.

7 Correctness ofB&B CBJ

In order to prove the correctness of theB&B CBJ algorithm it is enough to show
that theglobal conflictsetmaintained by the algorithm is correct. First we prove the
correctness for the case of simpleB&B CBJ with no consistency maintenance pro-
cedure. Consider the case that acurrent solution has a lengthk and the index of the
variable of the latest assignment in thecurrent solution’s correspondingconflict set
is l. Assume in negation, that there exists an assignment in thecurrent solution with
a variable indexj > l, that by replacing it the cost of acurrent solution of sizek
with an identical prefix of sizej− 1 can be decreased. Since the assignmentj is not in-
cluded in theglobal conflictsetthis means that for every value of variablesXj+1...Xk,
assignmentj is not included in the prefix of sizecost of all their value’sconflict lists.
Therefore, replacing it would not decrease the cost of any value of variablesXj+1...Xk

to be lower than their current cost. This means that the variables costs stay the same and
the cost of thecurrent solution too in contradiction to the assumption.�

Next, we prove the consistency of theglobal conflictset in B&B CBJ with the
NC∗ consistency maintenance procedure. The above proof holds for the assignments
added due to conflicts within thecurrent solution. For assignments added to the
global conflictset due to conflicts of unassigned variables with assignments in the
current solution we need to show that all conflicting assignments which can reduce
the cost of any unassigned variable are included in theglobal conflictset. After each as-
signment and run of theNC∗ procedure, the costs of all unassigned variables is zero. If
some assignment of variableXj in thecurrent solution was not added to theglobal



Fig. 7. Number of constraints checks performed byNC∗ andNC ∗ BJ on low density Max-
CSPs (p1 = 0.4)

conflict set it means that it was not a prefix of anyconflict list of size equal to the
cost added toCφ. Consequently, changing an assignment which is not in theglobal
conflict setcannot affect the globallower bound. �

Having established the correctness of theconflict set for the current solution
of a Branch and Bound algorithm and for theNC∗ procedure, the consistency of the
global conflictsetfor AC∗ is immediate. The only difference betweenNC∗ andAC∗
is the addition of the last assignment in thecurrent solution to theglobal conflictset
for an increment of the cost of some value which was caused by an arc consistency
operation. A simple induction which is left out of the paper, proves that at any step of
the algorithm, only a removal of a value can cause an increment of some value’s cost
due to arc consistency.�

8 Experimental Evaluation

The common approach in evaluating the performance ofCSP algorithms is to measure
time in logic steps to eliminate implementation and technical parameters from affecting
the results. Two measures of performance are used by the present evaluation. The total
number of assignments and the total number of constraints checks [Dec03].

Experiments were conducted on random constraints satisfaction problems ofn vari-
ables,k values in each domain, a constraints density ofp1 and tightnessp2 (which are
commonly used in experimental evaluations of CSP algorithms [Smi96]). In all of the
experiments theMax-CSPsincluded 10 variables (n = 10), 10 values for each variable
(k = 10). Two values of constraints densityp1 = 0.4 andp1 = 0.7 were used to gener-
ate theMax-CSPs. The tightness valuep2, was varied between 0.72 and 0.99, since the
hardest instances ofMax-CSPsare for highp2 [LM96]. For each pair of fixed density



Fig. 8. Number of assignments performed byAC∗ andAC* BJ on low density Max-CSPs (p1 =
0.4)

Fig. 9. Number of constraints checks performed byAC∗ andAC* BJ on low density Max-CSPs
(p1 = 0.4)

and tightness (p1, p2), 50 different random problems were solved by each algorithm
and the results presented are an average of these 50 runs.

In order to evaluate the contribution ofConflict based Backjumpingto Branch and
Boundalgorithms using consistency maintenance procedures theB&B algorithm with
NC∗ andAC∗ procedures were implemented. The results presented show the perfor-
mance of these algorithms with and withoutCBJ .

Figure 7 presents the computational effort in number of constraints checks to find a
solution, performed byNC∗ andNC* BJ. For the hardest instances, wherep2 is higher



Fig. 10.Number of assignments performed byAC∗ andAC* BJ on low density Max-CSPs (p1

= 0.4)

Fig. 11.Number of constraints checks performed byAC∗ andAC* BJon high density Max-CSPs
(p1 = 0.7)

than0.9, AC* BJ outperformsAC∗ by a factor of between 5 atp2 = 0.93 and 2 at
p2 = 0.99. Figure 8 shows similar results in the number of assignments performed by
the algorithms.

Figure 9 presents the computational effort in number of constraints checks to find a
solution, performed byAC∗ andAC* BJ. For the hardest instances, wherep2 is higher
than0.9, AC* BJ outperformsAC∗ by a factor of 5. Figure 10 shows similar results in
the number of assignments performed by the algorithms.



Fig. 12.Number of assignments performed byAC∗ andAC* BJ on high density Max-CSPs (p1

= 0.7)

Figure 11 and 12 show similar results for theAC∗ algorithms solving high den-
sity Max-CSPs(p1 = 0.7). Interestingly although the scale is much higher the factor
remains the same.

9 Discussion

Conflict based Backjumping is a powerful technique used to improve the run-time of
standardCSP algorithms [Pro93,Dec03,Gin93]. The experimental results, show that
this is true for Branch and Bound algorithms with consistency maintenance procedures.
These results might come as a surprise because unlike in standardCSPs, the conflict
sets inB&B CBJare constructed by the union of conflicts of unassigned values as well
as assigned values. This means that the number of values which their conflicts are taken
into consideration is larger than when performingCBJ for standardCSPs. Noting this
fact, one could expect the maintainedglobal conflictsetto be larger and consequentially
have a smaller effect. This assumption is proven wrong by the result presented in this
paper.

A possible explanation is the properties of the hard instances ofMax-CSPs. In con-
trast to standardCSPs, where the hardest instances are approximately in the center
of the range ofp2 (about 0.5, depends on the exact value ofp1) [Smi96], the hardest
instances ofMax-CSPsare whenp2 is close to1.0 [LM96]. For high values ofp2 when
some assignment is added to theconflict list of some value, it is very probable that
it would also be added to theconflict lists of the other values of the same variable.
Therefore when we add the prefix of sizeci of all values in the domain ofXi to the
variable’sconflict set in many cases these prefixes are very similar if not identical.
This keeps theconflict set small and generates non-trivial jumps.



10 Conclusions

Branch and Bound is the most common algorithm used for solvingMax-CSPs. Former
studies improved the results of the Branch and Bound algorithms by improving the con-
sistency maintenance procedure used by the algorithm [WF93,LM96,LMS99,LS04]. In
this study we adjustedConflict-based Backjumpingwhich is a common technique in
standardCSP algorithms to Branch and Bound with extended consistency mainte-
nance procedures. The results presented in Section 8 are striking.CBJ improves the
performance of theMax-CSPalgorithm by a large factor. The factor of improvement
does not decrease for problems with higher density.

References

[BR95] C. Bessiere and J.C. Regin. Using bidirectionality to speed up arc-consistency pro-
cessing.Constraint Processing (LNCS 923), pages 157–169, 1995.

[Dec03] Rina Dechter.Constraints Processing. Morgan Kaufman, 2003.
[Gin93] M. L. Ginsberg. Dynamic backtracking.J. of Artificial Intelligence Research, 1:25–46,

1993.
[LM96] J. Larrosa and P. Meseguer. Phase transition in max-csp. InProc. ECAI-96, Budapest,

1996.
[LMS99] J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible dac for max-csp.Arti-

ficial Intelligence, 107:149–163, 1999.
[LS04] J. Larrosa and T. Schiex. Solving weighted csp by maintaining arc consistency.Artifi-

cial Intelligence, 159:1–26, 2004.
[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.Computational

Intelligence, 9:268–299, 1993.
[Smi96] B. M. Smith. Locating the phase transition in binary constraint satisfaction problems.

Artificial Intelligence, 81:155 – 181, 1996.
[Tsa93] E. Tsang.Foundations of Constraint Satisfaction. Academic Press, 1993.
[WF93] R. J. Wallace and E. C. Freuder. Conjunctive width heuristics for maximal constraint

satisfaction. InProc. AAAI-93, pages 762–768, 1993.
[ZM03] R. Zivan and A. Meisels. Synchronous vs asynchronous search on discsps. InProc.

1st European Workshop on Multi Agent System, EUMAS, Oxford, December 2003.


