Conflict based Backjumping for Constraints
Optimization Problems

Roie Zivan and Amnon Meisels
{zivanr,an} @cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,
Beer-Sheva, 84-105, Israel

Abstract. Constraints Optimization problems are commonly solved using a Branch
and Bound algorithm enhanced by a consistency maintenance procedures [WF93]
[LM96,LMS99,LS04]. All these algorithms traverse the search space in a chrono-
logical order and gain their efficiency from the quality of the consistency mainte-
nance procedure.

The present study introduces Conflict-based Backjumping (CBJ) in Branch and
Bound algorithms. The proposed algorithm maint&osflict Setsvhich include

only assignments whose replacement can lead to a better solution and backtracks
according to these sets. CBJ can be added to Branch and Bound which uses the
most advanced consistency maintenance heuristicsx and AC*. The exper-
imental evaluation of oB& B_C B.J on randomMax-CSPsshows that the per-
formance of the algorithms are improved by a large factor.

1 Introduction

In standard CSPs, when the algorithm detects that a solution to a given problem does
not exist, the algorithm reports it and the search is terminated. In many cases, although a
solution does not exist we wish to produce the best complete assignment, i.e. the assign-
ment to the problem which includes the smallest number of conflicts. Such problems are
the scope of Max-Constraint Satisfaction ProblemsX-CSP3¥ [LM96]. Max-CSPs
are a special case of the more general Weighted Constraints Satisfaction Problem (WC-
SPs) [LS04] in which each constraint is assigned with a weight which defines its cost
if it is included in a solution. The weight of a solution is the sum of the weights of
all conflicts (i.e. broken constraints) included in the solution (In Max-CSPs all weights
are equal to 1). The requirement in solving WCSPs is to find the minimal cost (opti-
mal) solution.WCSPsand Max-CSPsare therefore terme@onstraints Optimization
Problems

In this paper we focus for simplicity oilax-CSPproblems. Sincélax-CSPis an
optimization problem with a limited search tree, the immediate choice for solving it is
to use aBranch and Boundlgorithm [Dec03]. In the last decade, various algorithms
were developed for Max and Weighted CSPs [WF93,LM96,LMS99,LS04]. All of these
algorithms are based on standard backtracking and gain their efficiency from the quality

* Supported by the Lynn and William Frankel center for Computer Sciences.

of the heuristic function (consistency maintenance procedure) they use. The best result
for Max-CSPswas presented in [LMS99]. This result was achieved using a complex
method which generates higher lower bounds by manipulating the order in which di-
rectional arc consistency is performed. In [LS04], the authors present new consistency
maintenance procedurd$C* andAC* which improve on former versions &brward-
checkingandArc-consistencyHowever the performance of the resulting algorithms are
close but do not outperform the Forward-checking method presented in [LMS99].

The present paper improves on previous results by addiomglict-based Backjump-
ingto the Branch and Bound algorithms presented in [LS04]. Conflict-based Backjump-
ing (CBJ) is a method which is known to improve stand&rd P algorithms [Dec03]
[Gin93,ZMO03]. In order to perfornd’ B.J, the algorithm stores for each variable the set
of assignments which caused the removal of values from its domain. When a domain
empties, the algorithm backtracks to the last assignment in the corresponding conflict
set.

Performing back-jumping foMax-CSPds a much more complicated task than for
standardCSPs In order to generate a consistent conflict set all conflicts that have con-
tributed to the current lower bound must be taken in to consideration. Furthermore,
additional conflicts with unassigned values with equal or higher costs must be added to
the conflict set in order to achieve completeness.

The results presented in this paper show that the above effort is worth while. Adding
Conflict based Backjumping to Branch and Bound wili'+ and AC'x improves the
runtime by a large factor.

Max-CSPsare presented in Section 2. A description of the stan@aeshch and
Boundalgorithm along with thév Cx and AC'x algorithm is presented in Section 3. The
addition of C BJ to Branch and Boundvith NCx and AC'x is presented in Section 4.
Section 7 introduces a correctness and completeness proB&#BrCBJ with N C'x
and AC'x. An extensive experimental evaluation, which compaBdsB with NC'x
and AC'x to B&B_CBJis presented in Section 8. The experiments were conducted on
randomly generatellax-CSPs

2 Distributed Constraint Satisfaction

A Max - Constraint Satisfaction ProblefMax-CSH is composed, like a standard
CSP, of a set ofn variablesX;, Xs, ..., X,,. Each variable can be assigned a single
value from a discrete finite domain. Constraintsedations R are subsets of the Carte-
sian product of the domains of constrained variables. For a set of constrained variables
Xi, XG5 -y Xom,, With domains of values for each variable;, , D;,, ..., D,,,, the
constraint is defined a8 C D;, x D, x ... x Dy, . A binary constraint R;; between
any two variablesX; and X; is a subset of the Cartesian product of their domains;
Rij - Dj X Dl

An assignment (or a label) is a pair var,val >, wherevar is a variable and
val is a value fromwar’s domain that is assigned to it. partial solutionis a set of
assignments of values to an set of variables. dd of a partial solution in aviax-
CSPis the number of conflicts included in it. An optimsblution to aMax-CSPis a

partial solution that includes all variables and which includes a minimum number of
unsatisfied constraints, i.e. a solution with a minimal cost.

3 The Branch and Bound algorithm

Optimization problems with a finite search-space are often solved using a Branch and

Bound (B& B) algorithm. BothWeighted CSPandViax-CSPdall into this category.

The overall framework of 8& B algorithm is rather simple. Two bounds are constantly

maintained by the algorithm, arpper_bound and alower_bound. Theupper_bound

is initialized to infinity and thdower_bound to zero. In each step of the algorithm, a

partial solutioncurrent_solution, is expanded by assigning a value to a variable which

is not included in it. After adding the new assignment,litheer _bound is updated with

the cost of the updatedrrent_solution. The current_solution is expanded as long

as thelower_bound is smaller than thewpwper_bound. If a full solution is obtained,

i.e. the current_solution includes assignments to all variables, thger_bound is

updated with the cost of the solution. If thewer_bound is equal or higher than the

upper_bound, the algorithm attempts to replace the most recent assignment. If all val-

ues of a variable falil, the algorithm backtracks to the most recent variable assigned.
The naive and exhaustivB& B algorithm can be improved by usirgpnsistency

maintenancéunctions which increase the value of thever_bound of acurrent_solution.

After each assignment, the algorithm performs a consistency maintenance procedure

that updates the costs of future possible assignments and increases its chance to detect

early a need to backtrack. Two of the most successubkistency maintenanéenc-

tions are described next.

3.1 Node Consistency and NC*

Node Consistency (or Forward-checking) is a very standard consistency maintenance
method in standard’'S Ps [Tsa93,Dec03]. The main idea is to ensure that in the do-
mains of each of the unassigned variables there is at least one value which is consistent
with the current partial solution. In standatth Ps this would mean that a value has no
conflicts with the assignments in therrent_solution. In Max-CSPsfor each value
in a domain of an unassigned variable, one must determine if assigning it to its vari-
able will increase théower_bound beyond the limit of theupper_bound. To this end,
the algorithm maintains for every valuecast which is its number of conflicts with
assignments in theurrent_solution. After each assignment, the costs of all values
in domains of unassigned variables are updated. When the sum of a value’s cost and
the cost of thecurrent_solution is higher or equal to thepper_bound, the value is
eliminated from the variable’s domain. An empty domain triggers a backtrack.

The down side of this method Max-CSPss that the number of conflicts counted
and stored at the valuest, does not contribute to the glob&ahver_bound, and it
affects the search only if it exceeds theper _bound. In [LS04], the authors suggest an
improved version of Node Consistency they teMi@*. In NC* the algorithm maintains
a global costC; which is initially zero. After every assignment, all costs of all values
are updated as in standah”. Then, for each variable, the minimal cost of all values

h\
~
)
-‘”
=~
~
)
",
-

000
000

-
-

Fig. 1. Values of a variable before and after running NC*

in its domaing; is added taCy, and all value costs are decreased:py his means that

after the method is completed in every step, the domain of every unassigned variable
includes one value whose cost is zero. The glébakr_bound is calculated as the sum

of the current_solution’s cost andCy.

Figure 1 presents an example of the operation ofAlt&« procedure on a single
variable. On the left hand side, the values of the variable are presented with their cost
before the procedure. The value of the global a@gtis 6. The minimal cost of the
values is 2. On the RHS, the state of the variable is presented aft&i@heprocedure.

All costs were decreased by 2 and the global valyevas raised by 2.

Any value whosdower_bound, i.e. the sum of theurrent_solution’s cost,Cy
and its own cost, exceeds the limit of thgper_bound, is removed from the variable’s
domain as in standar¥ C' [LS04].

3.2 Arc Consistency and AC*

Another consistency maintenance procedure which is known to be effectiz&sSttrs

is Arc Consistencyin standard” S Ps, Arc-Consistency is more restricted thait, for
eliminating inconsistent values from future variables. The idea of stantiarfBR95]

is that if a valuev of some unassigned variablg;, is in conflict with all values of
another unassigned variabk; thenv can be removed from the domain &f; since
assigning it taX; will cause a conflict.

In Max-CSPsArc-Consistency is used to project costs of conflicts between unas-

signed variables, over values costs. As for standaffs, a value in a domain of

X

e ————

Fig. 2. Values of a variable before and after running NC*

an unassigned variable, which is in conflict with all the values of another unassigned
variable, will cause a conflict when it is assigned. This information is used in order to
increment the cost of the value. Values for which the sum of their cost and the global
lower _bound exceeds theipper_bound, are removed from their variable’s domain.
However, inAC every removal of a value can cause an increase in the cost of another
value. Therefore, an additional check has to be made.

AC* combines the advantages4€ and N C'x. After performingAC, the updated
cost of the values are used by tN&'x procedure to increase the global cost Values
are removed as itV C* and their removal initiates the rechecking o€

Figures 2 and 3 present an example of the AC* procedure. On the LHS of Figure 2
the state of two unassigned variables, and X; is presented. The center value of
variable X; is constrained with all the values of variablg . Taking these constraints
into account, the cost of the value is incremented and the result is presented on the RHS
of Figure 2. The left hand side of Figure 3 presents the state after the process of adding
the minimum value cost t6'y and decreasing the costs of values of bathand X ;.

Since the minimal value oX; was 2 and ofX; was 1,C;, was incremented by 3. After
the incrementation of’,, the values for which the sum @f, and their cost is equal

to theupper_bound are removed from their domains and the procedure ends with the
state on the RHS of Figure 3.

|

pas
X
) X

S
1
’
~
’

= -~
@@
-
-
=~
@@
-
-
-~
o
~
N
s
3
— -

- -
_—— = =

e ————
N, —m e —-—-
_—————
[
——— L
————
- -

-
-

Xj

—

v N

/ \3

U \
1 \
\ !

I ’

\ \ Vi \ !
\@f \ ’f \ / \ t
i I N AS /7
~ -

Co=9 Co=9
UB = 11 UB = 11

Fig. 3. Values of a variable before and after running NC*

4 Branch and Bound with CBJ

The addition of Backjumping to standard CSP search is known to improve the run-time
performance of the search by a large factor [Dec03,Gin93]. The various algorithms
which perform backjumping differ by the method of resolution which is used to deter-
mine the selected variable for the algorithm to backjump to. The common choice is to
maintain a set of conflicts for each variable, which includes the assignments that caused
a removal of a value from the variable’s domain. When a backtrack operation is per-
formed, the variable selected to backtrack to is the last variable in the conflict set of the
backtracking variable. In order to keep the algorithm complete during backjumping, the
conflict set of the target variable, is updated with the union of its conflict set and the
conflict set of the backtracking variable [Pro93].

The data structure of conflict sets which was described abové€' W on stan-
dard C'SPs can be used for thé&& B algorithm, for solvingMax-CSPs However,
the construction and maintenance of these conflict sets are a much more complicated
task. In the simplest version @& B, the lower_bound of a current_solution is its
current_cost (i.e. the number of conflicts it contains). The algorithm backtracks only
when this cost is larger or equal to theper_bound. When a backtrack operation is
performed, the goal is to decrease the cost by replacing an assignment. More specifi-
cally, every binary constraint is betweenamnr-lier variable, which is the variable that
was assigned first and the second variable of the constraint which was adsigmetf
we assume that for every variable the first value to be assigned is the one with minimal
number of conflicts (i.e. the value with a minimal cost), then backtrackingl/t@ea:

variable cannot improve the cost of therrent_solution (see the proof in section 7).

The only way that the cost of@rrent_solution can be lowered is by backtracking to
anearlier variable and replacing its assignment. In order to keep the completeness of
the algorithm, the backtrack operation must be performed to the last assigned variable
in the group of candidatenriier assignments

CEONO

\ /

Earlier
Assignments

Fig. 4. Values of a variable before and after running NC*

Figure 4 presents a partial solution with 5 variables and cost 3. The conflict set of
this partial solution includes the assignmentsxagfthat is in conflict with the assign-
ment of X3 and X5, and X, which is in conflict with the assignment df,. Although
there are three conflicts in this example, only variabtgsand X» areearlier in all
three conflicts. Therefore the conflict set of this partial solution must include both of
them. In standard’SPs, when backtracking from variabl&s, it would be enough
to check itsconflict setin order to choose the variable to backtrack to. This example
shows why generating the conflict set only according to the last variable state as done
in standard”'S Ps in not sufficient in the case dflax-CSPsVariable X5 is in conflict
only with the assignment of; however, the cost of the partial solution can be lowered
by backtracking toX5.

Unfortunately, generating the conflict set out ofaltlier assignments of the con-
flicts in the current_solution is not enough. In everjuter assigned variable in each
conflict, unassigned values may have conflicts with differaniier assignments. For
example, if the value assigned to a varialllg i > 2, in the current_solution has a
costl, and theeariier assignment with whom it has a conflict is the assignmet¥ of
X, is added to the conflict set. However if there is an unassigned value in the domain
of X; also with costl but whose conflict is with the assignment of varialdle ;, the
algorithm must backtrack t&;_; which was assigned later tha%y . In order to give
a formal description of the construction of the conflict set, the following definitions are
needed:

Definition 1 A con flict_list of valuev; from the domain of variable i, is the list of
assignments in theurrent_solution of variables which were assigned befareand

v; has conflicts with. The assignments in the conflict list are in the same order the
assignments in theurrent_solution were performed.

Definition 2 The current_cost of a variable is the cost of its assigned value, in the
case of an assigned variable, and the minimal cost of a value uitsent_domain
in the case of an unassigned variable.

Definition 3 Thecon flict_set of variable X; with costc; is the union of the first;
assignments in theon flict_list of all its values.

Definition 4 A global con flict_set is the set of assignments such that the algorithm
back-jumps to the latest assignment of the set.

In the case of simpl&& B, theglobalcon flict _set is the union of all theon flict _sets
of all assigned variables. Another way to explain this need of adding the conflicts of all
values and not just the conflicts of the assigned value, is that in order to decrease the
cost of thecurrent_solution, a value which has less conflicts should be able to be as-
signed. Therefore, the latest assignment that can be replaced, and possibly decrease the
cost of one of the variables values to be smaller than the variables current cost should
be considered.

Fig. 5. A conflict set of amussigned variable

Figure 5 presents the state of three variables which are includeddmthent_solution.
VariablesX, X, and X3 were assigned values, v, andwv; respectively. All costs of
all values of variableXs are 1. Thecon flict_set of variable X3 includes the assign-
ments ofX; and X, even though its assigned value is not conflicted with the assignment
of X, since replacing it can lower the cost of valugeof variable X 5.

5 Node Consistency with CBJ

In order to perform conflict based backjumping & B algorithm using node consis-
tency maintenance, then flict_sets of unassigned variables must be maintained. To
achieve this goal, for every value of a future variabl@aflict_list is initialized and
maintained. Theon flict_list includes all the assignments in therrent_solution
which conflict with the corresponding value. The length oftbeflict_list is equal to
the cost of the value. Whenever th&C'x procedure adds the castof the value with
minimum cost in the domain ak; to the global costy, the firstc; assignments in
each of thecon flict_lists of X;’s values are added to thgtobal conflictsetand re-
moved from the value'son flict_lists. This includes all the values df; including the
values removed from its domain since backtracking to the head of their list can cause
their return to the variablesurrent_domain. This means that after each run of the
NC* procedure, thaylobal conflictsetincludes the union of theon flict_sets of all
assigned and unassigned variables.

Fig. 6. A conflict set of arunassigned variable

Figure 6 presents the state of an unassigned varidgblérhe current_solution
includes the assignments of three variables as in the previous example. ¥Mahas
vs Of variableX; are both in conflict only with the assignment of varialle. Valuew,
of X; is in conflict with the assignments &f; and X3. X;'s cost is 1 since that is the
minimal cost of its values. Its conflict set includes the assignmeni afince it is the
first in thecon flict_list of vy andwvs, and X, since it is the first in theon flict_list of

ve. After the NC'x procedure(y will be incremented by one and the assignments of
X, and X, will be added to thglobal conflictset

6 Arc Consistency with CBJ

Adding CBJ to a B& B algorithm that includes arc consistency is very similar to the
case of node consistency. Whenever a minimum cost of a future variable is added to the
global costCy, the prefixes of all of its value'son flict_lists are added to thglobal

con flict_set. However, inAC*, costs of values can be incremented by conflicts with
other unassigned values and the correlation between the value’s cost and the number
of conflicts it has with the assignments in therrent_solution (i.e. the length of its
conflic_list) does not hold. In order to find the right conflict set in this case one must
keep in mind that except for an emptyrrent_solution ,a cost of a value;, of variable

X, isincreased due to arc consistency only if there was a removal of a value which is not
in conflict with vy, in some other unassigned varialie (see Section 7). This means

that replacing the last assignment in therent_solution would return the value which

is not in conflict withvy,, to the domain of{;. This is enough to decrease the cost of the
valuewv;,. Whenever a cost of a value is raised by arc consistency, the last assignment
in the current_solution must be added to the end of the values: flict_list. By
maintaining this property in theon flict_list the variableson flict _set and theglobal
conflictsetcan be generated in the same way asN@r'x.

7 Correctness ofB&B_CB.J

In order to prove the correctness of th&;B_C'BJ algorithm it is enough to show
that theglobal conflictsetmaintained by the algorithm is correct. First we prove the
correctness for the case of simak:B_C BJ with no consistency maintenance pro-
cedure. Consider the case thatuarent_solution has a lengthk and the index of the
variable of the latest assignment in the-rent_solution’s correspondingon flict_set

is . Assume in negation, that there exists an assignment iautheent_solution with

a variable indexj > [, that by replacing it the cost of @rrent_solution of sizek
with an identical prefix of siz¢ — 1 can be decreased. Since the assignménnhot in-
cluded in theglobal conflictsetthis means that for every value of variablgs, ;...X},
assignmenj is not included in the prefix of sizest of all their value’scon flict lists.
Therefore, replacing it would not decrease the cost of any value of varidbles.. X,

to be lower than their current cost. This means that the variables costs stay the same and
the cost of theurrent _solution too in contradiction to the assumptidn.

Next, we prove the consistency of tigobal conflictsetin B&B_C BJ with the
NCx consistency maintenance procedure. The above proof holds for the assignments
added due to conflicts within theurrent_solution. For assignments added to the
global conflictsetdue to conflicts of unassigned variables with assignments in the
current_solution we need to show that all conflicting assignments which can reduce
the cost of any unassigned variable are included igtbleal conflictset After each as-
signment and run of th& C'x procedure, the costs of all unassigned variables is zero. If
some assignment of variahle; in the current_solution was not added to thglobal

30000000 4
24000000
20000000

g 15000000 A
10000000
a000000

oA

Fig. 7. Number of constraints checks performed B¢« and NC x _BJ on low density Max-
CSPs p; =0.4)

conflictsetit means that it was not a prefix of amyn flict_list of size equal to the
cost added ta”,. Consequently, changing an assignment which is not ingtbbal
conflictsetcannot affect the globdbwer_bound. O

Having established the correctness of the flict_set for the current_solution
of a Branch and Bound algorithm and for th&”'« procedure, the consistency of the
global conflictsetfor ACx is immediate. The only difference betweAiC* and AC'x
is the addition of the last assignment in the-rent_solution to theglobal conflictset
for an increment of the cost of some value which was caused by an arc consistency
operation. A simple induction which is left out of the paper, proves that at any step of
the algorithm, only a removal of a value can cause an increment of some value’s cost
due to arc consistency]

8 Experimental Evaluation

The common approach in evaluating the performan&g@®# algorithms is to measure
time in logic steps to eliminate implementation and technical parameters from affecting
the results. Two measures of performance are used by the present evaluation. The total
number of assignments and the total number of constraints checks [Dec03].
Experiments were conducted on random constraints satisfaction problemaif
ables,k values in each domain, a constraints density,0énd tightnes®- (which are
commonly used in experimental evaluations of CSP algorithms [Smi96]). In all of the
experiments thdlax-CSPsncluded 10 variablesi(= 10), 10 values for each variable
(k = 10). Two values of constraints densjty = 0.4 andp; = 0.7 were used to gener-
ate theMax-CSPsThe tightness valug,, was varied between 0.72 and 0.99, since the
hardest instances dax-CSPsre for highp, [LM96]. For each pair of fixed density

2500000

— = NC*
& 2000000 A
b
= R *
$ 1500000 | 4 N8
=
n i
: 1000000
< 500000 |
D 1

Fig. 8. Number of assignments performed H¢'x andAC*_BJ on low density Max-CSP9(=
0.4)

2000000 -

—a— AT
1600000 4
---k--ACT B
i
o 1000000 4
500000 4
D 1

Fig. 9. Number of constraints checks performedAg'+ andAC*_BJon low density Max-CSPs
(p1 = 04)

and tightnessy(l, p2), 50 different random problems were solved by each algorithm
and the results presented are an average of these 50 runs.

In order to evaluate the contribution Gbnflict based Backjumping Branch and
Boundalgorithms using consistency maintenance procedureB&hB algorithm with
NCx* and ACx* procedures were implemented. The results presented show the perfor-
mance of these algorithms with and withauB.J.

Figure 7 presents the computational effort in number of constraints checks to find a
solution, performed byv C'x andNC*_BJ. For the hardest instances, whesés higher

250000 -

— ALY
% 200000 4
S 150000 - - AUTRI
%’ 100000
b
50000 A
04 — .

B A A A=)

p2

Fig. 10. Number of assignments performed Ay« and AC*_BJ on low density Max-CSP(
=0.4)

14000000 -
12000000
10000000

@ B000000 -

“ B000000

4000000 4
2000000 A

0

Fig. 11.Number of constraints checks performedag'« andAC*_BJon high density Max-CSPs
(p1 = 07)

than0.9, AC*_BJ outperformsAC'x by a factor of between 5 at, = 0.93 and 2 at
p2 = 0.99. Figure 8 shows similar results in the number of assignments performed by
the algorithms.

Figure 9 presents the computational effort in number of constraints checks to find a
solution, performed bydC'x andAC*_BJ. For the hardest instances, whesds higher
than0.9, AC*_BJ outperformsAC'x by a factor of 5. Figure 10 shows similar results in
the number of assignments performed by the algorithms.

250000 -

— ALY
% 200000 4
S 150000 - - AUTRI
%’ 100000
b
50000 A
04 — .

B A A A=)

p2

Fig. 12.Number of assignments performed By« andAC*_BJ on high density Max-CSP%{
=0.7)

Figure 11 and 12 show similar results for tH& '« algorithms solving high den-
sity Max-CSPqpl = 0.7). Interestingly although the scale is much higher the factor
remains the same.

9 Discussion

Conflict based Backjumping is a powerful technique used to improve the run-time of
standardC'S P algorithms [Pro93,Dec03,Gin93]. The experimental results, show that
this is true for Branch and Bound algorithms with consistency maintenance procedures.
These results might come as a surprise because unlike in stafiddrd, the conflict
sets inB&B_CBJare constructed by the union of conflicts of unassigned values as well
as assigned values. This means that the number of values which their conflicts are taken
into consideration is larger than when perform@igJ for standard”'S Ps. Noting this
fact, one could expect the maintaingidbal conflictsetto be larger and consequentially
have a smaller effect. This assumption is proven wrong by the result presented in this
paper.

A possible explanation is the properties of the hard instanche&fCSPsIn con-
trast to standard’S Ps, where the hardest instances are approximately in the center
of the range ob, (about 0.5, depends on the exact valuegf[Smi96], the hardest
instances oMax-CSPsare whemp; is close tol.0 [LM96]. For high values o, when
some assignment is added to the flict_list of some value, it is very probable that
it would also be added to then flict_lists of the other values of the same variable.
Therefore when we add the prefix of sizeof all values in the domain ok; to the
variable’scon flict_set in many cases these prefixes are very similar if not identical.
This keeps theon flict_set small and generates non-trivial jumps.

10 Conclusions

Branch and Bound is the most common algorithm used for soMag-CSPsFormer
studies improved the results of the Branch and Bound algorithms by improving the con-
sistency maintenance procedure used by the algorithm [WF93,LM96,LMS99,L.S04]. In
this study we adjuste@onflict-based Backjumpinghich is a common technique in
standardC'S P algorithms to Branch and Bound with extended consistency mainte-
nance procedures. The results presented in Section 8 are stdkihg.improves the
performance of thélax-CSPalgorithm by a large factor. The factor of improvement
does not decrease for problems with higher density.

References

[BR95] C. Bessiere and J.C. Regin. Using bidirectionality to speed up arc-consistency pro-
cessing.Constraint Processing (LNCS 923%)ages 157-169, 1995.

[Dec03] Rina DechterConstraints Processinglorgan Kaufman, 2003.

[Gin93] M. L. Ginsberg. Dynamic backtracking. of Artificial Intelligence Research:25-46,
1993.

[LM96] J.Larrosa and P. Meseguer. Phase transition in max-cdprolen ECAI-96 Budapest,
1996.

[LMS99] J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible dac for maxudsp.
ficial Intelligence 107:149-163, 1999.

[LSO4] J.Larrosa and T. Schiex. Solving weighted csp by maintaining arc consistetidiy.
cial Intelligence 159:1-26, 2004.

[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction prob@mputational
Intelligence 9:268-299, 1993.

[Smi96] B. M. Smith. Locating the phase transition in binary constraint satisfaction problems.
Artificial Intelligence 81:155 — 181, 1996.

[Tsa93] E. TsangFoundations of Constraint SatisfactioAcademic Press, 1993.

[WF93] R.J.Wallace and E. C. Freuder. Conjunctive width heuristics for maximal constraint
satisfaction. IrProc. AAAI-93 pages 762768, 1993.

[ZM03] R. zZivan and A. Meisels. Synchronous vs asynchronous search on discspscin
1st European Workshop on Multi Agent System, EUM&Sord, December 2003.

