
Relaxations of Semiring Constraint Satisfaction
Problems

Louise Leenen1, Thomas Meyer2, and Aditya Ghose1

1 Decision Systems Laboratory
School of IT and Computer Science
University of Wollongong, Australia

{ll916,aditya}@uow.edu.au
2 National ICT Australia

School of Computer Science and Engineering
University of New South Wales, Sydney, Australia

thomas.meyer@nicta.com.au | tmeyer@cse.unsw.edu.au

Abstract. The Semiring Constraint Satisfaction Problem (SCSP) frame-
work is a popular approach for the representation of partial constraint
satisfaction problems. In this framework preferences can be associated
with tuples of values of the variable domains. Bistarelli et al. [1] define
an abstract solution to a SCSP which consists of the best set of solution
tuples for the variables in the problem. Sometimes this abstract solu-
tion may not be good enough, and in this case we want to change the
constraints so that we solve a problem that is slightly different from the
original problem but has an acceptable solution. We propose a relaxation
of a SCSP, and use a semiring to give a distance measure between the
original SCSP and the relaxed SCSP.

1 Introduction

There has been considerable interest over the past decade in over-constrained
problems, partial constraint satisfaction problems and soft constraints. This has
been motivated by the observation that with most real-life problems, it is difficult
to offer a priori guarantees that the input set of constraints to a constraint solver
is solvable. In part, this is because many real-life problems are inherently over-
constrained. In part, this is also because it is difficult for human users to peruse
a given set of constraints that might have been obtained for a given problem to
determine if it is solvable. In the general case, constraint solvers must be able to
deal with problems that are potentially over-constrained. The key challenge in
dealing with an over-constrained problem is identifying appropriate relaxations
of the original problem that are solvable. Early approaches to such relaxations
largely focussed on finding maximal subsets (with respect to set cardinality) of
the original set of constraints that are solvable (such as Freuder and Wallace’s
work on the MaxCSP problem [2]). Subsequent efforts considered more fine-
grained notions of relaxation, where entire constraints did not have to be removed
from consideration. Examples of such efforts include the HCLP framework [3],
Fuzzy CSPs [4] and Probabilistic CSPs [5].



Bistarelli et al. [1] proposed an abstract semiring CSP scheme (henceforth re-
ferred to as the SCSP framework) that generalized most of these earlier attempts,
while making possible to define several useful new instance of the scheme. The
SCSP scheme assumes the existence of a semiring of abstract preference values,
such that the associated multiplicative operator is used for combining preference
values, while the associated additive operator is used for comparing preference
values. While a classical constraint defines which combinations of value assign-
ments to the variables in its signature are allowed, an SCSP constraint assigns
a preference value to all possible value assignments to the variables in its sig-
nature. These preferences implicitly define a relaxation strategy (“try to satisfy
the constraint using the most preferred tuples, else try the next most preferred
tuples” and so on). Note that the actual mechanism is somewhat more involved
than this informal expository description, because the semiring preference values
are partially ordered in the general case.

Our aim in this paper is to define how an SCSP might be relaxed. At first
blush, this might appear counter-intuitive, since an SCSP is intended to define
how soft constraints are relaxed. We will explain our motivations by describing it
in terms of a generic optimization problem (C,O), defined by a set of constraints
C and an objective function O. Assume that we have been given a lower bound
on the value of the optimal solution (e.g., a minimal threshold on profit by
a business unit set by management). Consider a situation where the optimal
solution obtained fails to meet this threshold (e.g., the optimal profit figure falls
short of the profit target). We are interested in seeking a new (and potentially
relaxed) set of constraints C ′ that is minimally different from the original set C
(under some notion of minimal difference that we will leave undefined for the time
being), such that the revised optimization problem (C ′, O) admits an optimal
solution that satisfies the threshold. The revised (or relaxed) set of constraints C ′

is potentially very useful, because it can point to minimal changes in the physical
reality being modeled by the constraints, which, if effected, would permit us to
meet the threshold on the value of the objective function.

In this paper, we attempt such an exercise in the context of SCSPs. A SCSP
does not have an explicit objective function. Objectives are implicitly articulated
(in a distributed fashion) via the preferences over tuples in each SCSP constraint.
Instead of an optimal solution, we are able to articulate the preference values of
the (potentially many) “best” solutions to an SCSP. The version of the problem
that we address in this paper is as follows. Consider an SCSP P and a threshold
β on the preference value of the “best” solution(s) to P . Assume that the “best”
solutions to P fall short of this threshold. We define a mechanism by which we
may “minimally” alter (i.e. relax) P to obtain a P ′ such that it admits a “best”
solution that meets this threshold. We will use as a running example a problem
involving a hotel that is currently unable to attain a five-star rating and that is
interested in determining the minimal changes required to its infrastructure in
order to achieve such a rating. In this example, the star rating of the hotel is
modeled via semiring preference values.



The rest of this paper is organized as follows. In Section 2 we describe the
SCSP framework. In Section 3 we describe our proposals by defining what a good
enough solution is, and how to find a suitable relaxation for a SCSP. In Section
4 we compare our proposal with the Metric SCSPs of [6]. Section 5 contains the
conclusion and a discussion of our future research.

2 The SCSP Framework

When we deal with constraints, the type of semirings that are used are called c-
semirings. Bistarelli et al. [1] define a c-semiring, a constraint system, a constraint
and a constraint problem w.r.t. c-semirings. They also define combination and
projection operations in order to define a solution to a SCSP. These definitions
follow below.

Definition 1. A c-semiring is a tuple S = 〈A, +, ×, 0, 1〉 such that

– A is a set with 0,1 ∈ A;
– + is defined over (possibly infinite) sets of elements of A as follows 3:

• for all a ∈ A,
∑

({a}) = a;
•

∑
(∅) = 0 and

∑
(A) = 1;

•
∑

(
⋃

Ai, i ∈ I) =
∑

({
∑

(Ai), i ∈ I}) for all sets of indices I (flattening
property);

– × is a commutative, associative, and binary operation such that 1 is its unit
element and 0 is its absorbing element;

– × distributes over + (i.e., for any a ∈ A and B ⊆ A, a ×
∑

(B) =∑
({a× b, b ∈ B})).

The elements of the set A are the preference values to be assigned to tuples
of values of the domains of constraints. The operator × is used to combine
constraints in order to find a solution (i.e. a single constraint) to a SCSP, and
the operator + is used to define the projection of a tuple of values for a set
of variables onto a tuple of values for the variables in a constraint. It is now
possible to derive a partial ordering 6S over the set A: α 6S β iff α + β = β.4

This partial ordering will be used to to distinguish the maximal solution(s) in
our constraint problems. The element 0 is the minimum element in the ordering,
while the element 1 is the maximum element.

Definition 2. A constraint system is a 3-tuple CS = 〈Sp, D, V 〉, where Sp =
〈Ap, +p, ×p, 0, 1〉 is a c-semiring, V is an ordered finite set of variables, and
D is a finite set containing the allowed values for the variables in V.

For each tuple of values (of D) for the involved variables of a constraint, a
corresponding element of Ap is assigned.

3 When + is applied to sets of elements, we will use the symbol
P

in prefix notation.
4 Singleton subsets of the set A are represented without braces.



Definition 3. Given a constraint system CS = 〈Sp, D, V 〉, where Sp=〈Ap,
+p,×p,0,1〉, a constraint over CS is a pair c = 〈defp

c , conc〉 where conc ⊆ V is
called the type of the constraint, and defp

c : Dk → Ap (where k is the cardinality
of conc) is called the value of the constraint.

We now have the building blocks required to define a SCSP.

Definition 4. Given a constraint system CS = 〈Sp, D, V 〉, a Semiring Con-
straint Satisfaction Problem (SCSP) over CS is a pair P = 〈C, con〉 where C is
a finite set of constraints over CS and con =

⋃
c∈C conc We also assume that

〈defp
c1

, conc〉 ∈ C and 〈defp
c2

, conc〉 ∈ C implies defp
c1

= defp
c2

.

Consider the following example that is used throughout this paper.

Example 1. A hotel chain acquires a star rating that is an accumulative rating
of the different branches. Currently it has a four star rating and it aims for a
five star rating. There are various renovations that can be done at branches to
increase the rating of the hotel: 1) Lay new carpets, 2) Upgrade a swimming
pool, or 3) Paint the building.

The manager of the hotel chain has to choose which (minimal) renovations to
do at which branches under certain restrictions (such as the budget, renovations
needed at each branch, and the constraints of the renovating teams). This prob-
lem can be expressed as a CSP. We can then add a semiring structure to allow
the manager to express his preferences for particular tuples of domain values
of the constraints. The hotel chain consist of three branches which are denoted
by X, Y and Z. To avoid unnecessary disruptions, the manager wants at most
one renovation job at a time to be performed at a particular branch, and as few
renovation jobs in total as possible.

This problem can be expressed as a SCSP: a constraint system CS = 〈Sp,
D,V 〉 and a SCSP P = 〈C, con〉, where V = con = {X, Y, Z}, D = {0, 1, 2, 3},
C = {c1, c2, c3}, and Sp = 〈{0, 0.25, 0.5, 0.75, 1},max,min, 0, 1〉.

The value of a decision variable indicates which job is to be done at a par-
ticular branch: let re-carpeting be represented by the value 1, pool renovation
by the value 2, and painting by the value 3. The value 0 represents no job being
done at a particular branch. A renovation job with a higher value will contribute
more towards a higher star rating. Assume there are three binary constraints,
c1 = 〈defp

c1
, {X, Y }〉, c2 = 〈defp

c2
, {Y, Z}〉, and c3 = 〈defp

c3
, {X, Z}〉. The tuples

in the domains of these constraints together with their preference values (i.e.
associated c-semiring values) are given in Table 1.

Note that the manager can assign any value in the set of the c-semiring to
a tuple. His choice of value represents the desirability of that particular tuple.
Consider the entry defp

c1
(〈0, 2〉) = 0.75. The tuple 〈0, 2〉 is a tuple of values for

constraint c1 that represents the case where no renovation is to be done at branch
X while branch Y is to be painted. The assigned preference value of 0.75 is high
and this indicates that it is an option that is preferred, for instance, to the one
represented by the tuple 〈1, 1〉 with its value of 0.5. This tuple (〈1, 1〉) represents
the case where both branches X and Y are to be re-carpeted. Also consider the



Table 1. Constraint Definitions

t defp
c1(t) defp

c2(t) defp
c3(t)

〈0, 0〉 0.25 0 0

〈0, 1〉 0.5 0 0

〈0, 2〉 0.75 0 0.75

〈0, 3〉 1 0.75 0

〈1, 0〉 0.5 0 0

〈1, 1〉 0.5 0 0.5

〈1, 2〉 0.75 0.25 0

〈1, 3〉 0 0.5 0

〈2, 0〉 0.75 0 0.75

〈2, 1〉 0.75 0.25 0

〈2, 2〉 0 0.5 0

〈2, 3〉 0 0.5 0

〈3, 0〉 1 0.75 0

〈3, 1〉 0 0.5 0

〈3, 2〉 0 0.5 0

〈3, 3〉 0 0.5 0

assigned preference values for constraint c3 (the values in the last column): the
manager prefers either one of the tuples 〈0, 2〉 or 〈2, 0〉 over any other tuples.
These tuples represent the cases where the swimming pool at either branch X
or branch Z is to be upgraded. Laying new carpets at both branches X and Z
is the only other acceptable choice for constraint c3. A tuple with an associated
value of 0 is highly undesirable.

The values specified for the tuples of each constraint are used to compute
values for the tuples of the variables in the set con according to the semiring
operations; multiplication and addition. The multiplicative operation is used
to combine the c-semiring values of the tuples of each constraint to get the c-
semiring value of a tuple for all the variables, and the additive operation is used
to obtain the value of the tuples of the variables in the type of the problem.

Definition 5. Given a constraint system CS = 〈Sp, D, V 〉 where V is totally
ordered via �, consider any k-tuple t = 〈t1, t2, . . ., tk〉 of values of D and two
sets W = {w1, . . ., wk} and W ′ = {w′

1, . . ., w′
m} such that W ′ ⊆ W ⊆ V and

wi � wj if i ≤ j and w′
i � w′

j if i ≤ j. Then the projection of t from W to W ′,
written t ↓W

W ′ , is defined as the tuple t′ = 〈t′1, . . ., t′m〉 with t′i = tj iff w′
i = wj.

The following definition defines the operation of combining two constraints to
form a single constraint. We will use this operation to combine all the constraints
in a problem into a single constraint.

Definition 6. Given a constraint system CS = 〈Sp, D, V 〉 where Sp = 〈Ap,
+p, ×p, 0, 1〉 and two constraints c1 = 〈defp

c1
, conc1〉 and c2 = 〈defp

c2
, conc2〉



over CS, their combination, written c1 ⊗ c2, is the constraint c = 〈defp
c , conc〉

with conc = conc1 ∪ conc2 and defp
c (t) = defp

c1
(t ↓conc

conc1
)×p defp

c2
(t ↓conc

conc2
).

The operation ⊗ is commutative and associative because × is. We can extend
the operation ⊗ to more than two arguments, say C = {c1, ..., cn}, by performing
c1 ⊗ c2 ⊗ ...⊗ cn, which we will denote by (

⊗
C).

Definition 7. Given a constraint system CS = 〈Sp, D, V 〉, where Sp = 〈Ap,
+p, ×p, 0, 1〉, a constraint c = 〈defp

c , conc〉 over CS, and a set I of variables
(I ⊆ V ), the projection of c over I, written c ⇓ I, is the constraint c′ = 〈defp

c′ ,
conc′〉 over CS with conc′ = I ∩ conc and defp

c′(t
′) =

∑
{t|t↓conc

I∩conc
=t′} defp

c (t).

A solution to a SCSP can now be defined.

Definition 8. Given a SCSP P = 〈C, con〉 over a constraint system CS, the
solution of P is a constraint defined as Sol(P ) = (

⊗
C).

A solution to a SCSP is a single constraint formed by the combination of
all the original constraints of the problem. Such a constraint provides, for each
tuple of values of D for the variables in con, a corresponding c-semiring value.
We now consider the definition of an abstract solution that consists of the set of
k-tuples of D whose associated c-semiring values are maximal w.r.t. 6Sp

.

Definition 9. Given a SCSP problem P = 〈C, con〉, consider Sol(P ) = 〈defp
c ,

con〉. Then the abstract solution of P is the set
ASol(P ) = {〈t, v〉 | defp

c (t) = v and there is no t′ such that v <Sp
defp

c (t′)}.
Let ASolV (P ) = {v | 〈t, v〉 ∈ ASol(P )}.

Example 2. We now compute an abstract solution for our hotel chain example.
The first step is to combine the first and second constraints, c1 and c2. Table
2 shows the c-semiring values associated with each tuple in the constraint c′1 =
c1 ⊗ c2. Then we combine the constraint c′1 and the constraint c3: c′2 = c′1 ⊗ c3.
See Table 3. We now have an abstract solution, ASol(P ) = {〈〈0, 2, 2〉, 0.5〉,
〈〈0, 3, 2〉, 0.5〉}, with ASolV (P ) = {0.5}. Thus the best solution tuples provide
a preference value of 0.5.

3 A Relaxation of a SCSP

We are interested in the case of a SCSP for which the abstract solution is not con-
sidered to be good enough. For example, the manager in our hotel chain example
may require a better solution. For instance, a solution tuple with a preference
value of at least 0.75. The constraints of a problem model requirements that
may be relaxed. We attempt to find a satisfactory solution to a relaxed version
of the original problem. In this section we define when a solution is regarded
to be good enough, and how to find suitable relaxations of the constraints of a
SCSP.



Table 2. Definition of Constraint c′
1

t defp

c′1
(t)

〈0, 0, 3〉 0.25

〈0, 1, 2〉 0.25

〈0, 1, 3〉 0.5

〈0, 2, 1〉 0.25

〈0, 2, 2〉 0.5

〈0, 2, 3〉 0.5

〈0, 3, 0〉 0.75

〈0, 3, 1〉 0.5

〈0, 3, 2〉 0.5

〈0, 3, 3〉 0.5

〈1, 0, 3〉 0.5

〈1, 1, 2〉 0.25

〈1, 1, 3〉 0.5

〈1, 2, 1〉 0.25

〈1, 2, 2〉 0.5

〈1, 2, 3〉 0.5

〈2, 0, 3〉 0.75

〈2, 1, 2〉 0.25

〈2, 1, 3〉 0.5

〈3, 0, 3〉 0.75

all other tuples 0

Table 3. Definition of Constraint c′
2

t defp

c′2
(t)

〈0, 1, 2〉 0.25

〈0, 2, 2〉 0.5

〈0, 3, 2〉 0.5

〈1, 2, 1〉 0.25

all other tuples 0



Definition 10. [6] Let a good enough (abstract) solution for a SCSP P be such
that some element in ASolV(P) is in the region β̂ where β̂ = {γεA : β 6Sp γ}.

If ASolV (P )∩ β̂ 6= ∅ then we have found a good enough solution for a prob-
lem P . If this is not the case, we want to find a relaxation P ′ of P , such that
ASolV (P ′) ∩ β̂ 6= ∅. P ′ should be as close to the original P as possible, that is,
P ′ should be such that there does not exist any other relaxation of P that is
closer to P than P ′.

We first define a relaxation of a single constraint.

Definition 11. A constraint cj = 〈defp
j , conj〉 is called a ci-weakened constraint

of the constraint ci = 〈defp
i , coni〉 iff the following hold:

– coni = conj;
– for all tuples t, defp

i (t) 6S defp
j (t);

– for every two tuples t1 and t2, if defp
i (t1) 6Sp

defp
i (t2), then defp

j (t1) 6Sp

defp
j (t2).

Note that a constraint c is itself a c-weakened constraint.

We want to represent the closeness of a c-weakened constraint to the con-
straint c by associating a c-semiring value with the c-weakened constraint. Every
c-weakened constraint of a constraint c (including the constraint c) will be as-
signed such a distance value.

Definition 12. Given a constraint system CS = 〈Sp, V , D〉 and a SCSP P =
〈C, con〉, for each c ∈ C, let Wc be the set containing all c-weakened constraints,
i.e. Wc = {cj | cj is a c-weakened constraint}. Let Sd = 〈Ad, +d, ×d, 0, 1〉 be
a c-semiring and wdefd

c : Wc → Ad be any function such that

– wdefd
c (cj) = 0 iff cj = c;

– ∀ci, cj ∈ Wc, if for all tuples t defp
i (t) 6Sp

defp
j (t) then wdefd

c (ci) 6Sd

wdefd
c (cj);

– if there exists one tuple t such that defp
i (t) <Sp defp

j (t) and for all tuples s
we have defp

i (s) 6Sp
defp

j (s), then wdefd
c (ci) <Sd

wdefcd(cj).

Definition 12 describes a function wdefd
c that assigns c-semiring values (or

distance values) from the set of the c-semiring Sd to each c-weakened constraint.
This function is restricted by the preference values associated with the tuples
of the c-weakened constraints. If the assigned preference values of all the tuples
of a c-weakened constraint cj are at least as good as their assigned preference
values in another c-weakened constraint ci, then the function wdefd

c will assign
a distance value for cj that is at least as good as the distance value it assigns to
ci. If there is at least one tuple that has a better associated preference value in
cj than in ci (and all other tuples have associated preference values in cj that
are at least as good as those in ci), then wdefd

c will assign a better distance



value to cj than to ci. (We compare c-semiring values in terms of the partial
ordering on them.) This framework is deliberately broad so as to accommodate
any reasonable application.

We now define the concept of closeness w.r.t. a constraint c and a c-weakened
constraint.

Definition 13. – The c-weakened constraint ci is closer to c than the c-weakened
constraint cj, iff wdefd

c (ci) <Sd
wdefd

c (cj).
– The c-weakened constraint ci is no closer to c than the c-weakened constraint

cj, iff wdefd
c (cj) 6Sd

wdefd
c (ci).

– The c-weakened constraints ci and cj are incomparable w.r.t. closeness to c
iff wdefd

c (ci) �Sd
wdefd

c (cj) and wdefd
c (cj) �Sd

wdefd
c (ci).

Below we define a relaxation of a SCSP, and then we describe a way to
formalise “closeness” of relaxations.

Definition 14. A SCSP P ′ = 〈C ′, con〉 is a d-relaxation of the SCSP P = 〈C,
con〉 where Sd = 〈Ad, +d, ×d, 0, 1〉, iff there is a bijection f : C → C ′ and
∀c ∈ C, f(c) is a c-weakened constraint.

For every f(c) ∈ C ′ and c ∈ C, wdefd
c (f(c)) is an indication of the closeness

of f(c) to c. For every c ∈ C, C ′ contains one c-weakened constraint, i.e. every c
can be regarded as being replaced by a c-weakened constraint f(c). We want to
find a d-relaxation P ′ = 〈C ′, con〉 of P = 〈C, con〉 such that every c-weakened
constraint c′ ∈ C ′ is the closest possible to the constraint c ∈ C while the
abstract solution of P ′ is still good enough (w.r.t. β̂). It is necessary to place
some restrictions on the multiplicative operator ×d so that the distance of a d-
relaxation will indeed reflect the closeness of the relaxed problem to the original
problem.

Definition 15. Let cik be a ci-weakened constraint, and cjm and cjn be cj-
weakened constraints. If wdefd

cj
(cjm) <Sd

wdefd
cj

(cjn), then
wdefd

ci
(cik) ×d wdefd

cj
(cjm) <Sd

wdefd
ci

(cik) ×d wdefd
cj

(cjn).

Definition 16. Let R(P ) = {P ′ | P ′ is a d-relaxation of P},
Rβ̂(P ) = {P ′ ∈ R(P ) | ASolV (P ′) ∩ β̂ 6= ∅}, and

ASolRβ̂(P ) = {〈t, v〉 | 〈t, v〉 ∈ ASol(P ′) & P ′ ∈ Rβ̂(P )}.

Rβ̂(P ) contains all those SCSPs that are weakened versions of P whose best
tuples intersect with β̂. ASolRβ̂(P ) actually contains those best tuples. Note
that every tuple in ASol(P ′) is a tuple with a maximal c-semiring value.

The next step is to define a distance measure between a problem P and a
d-relaxation P ′.



Definition 17. Given a d-relaxation P ′ = 〈C ′, con〉 of a SCSP P = 〈C, con〉
such that P ′ ∈ Rβ̂(P ), let d(P ′) = ×d c∈C (wdefd

c (f(c))) be the distance between
P and P ′.5

Now we have to find every P ′ ∈ Rβ̂(P ) for which the distance between P ′

and P is minimal. Thus, let
MRβ̂(P ) = {P ′ ∈ Rβ̂(P ) | @ P ′′ ∈ Rβ̂(P ) such that d(P ′′) <S d(P ′)}.

Example 3. In order to raise the hotel chain’s four star rating to a five star rating,
the manager has calculated that he needs an abstract solution that provides a c-
semiring value of at least 0.75. Our abstract solution to the hotel chain problem
is not good enough. We will now find a d-relaxation to this problem with a
better solution. We only consider relaxations of the second constraint. Some
of the possible c2-weakened constraints are shown as constraints c21, . . . , c28 in
Table 4.

Table 4. Definitions of the c2-weakened Constraints

t c2 c21 c22 c23 c24 c25 c26 c27 c28

〈0, 3〉 0.75 1 0.75 0.75 1 1 0.75 1 1

〈1, 2〉 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.5 1

〈1, 3〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

〈2, 1〉 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.5 1

〈2, 2〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

〈2, 3〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

〈3, 0〉 0.75 1 0.75 0.75 1 1 0.75 1 1

〈3, 1〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

〈3, 2〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

〈3, 3〉 0.5 0.5 0.5 0.75 0.5 0.75 0.75 0.75 1

all other tuples 0 0 0 0 0 0 0 0 0

Let Sd = 〈{1, 2, 3, 4, 5}, min, max, ∞, −∞〉. Then we can associate the
c-semiring values shown in Table 5 with each of the weakened constraints.

We aim to keep our d-relaxation as close as possible to the original problem.
Any one of the c2-weakened constraints with a c-semiring value of 1 would be a
good initial choice. Thus, one possible d-relaxation of the problem P is
P ′

1 = 〈C ′
1, con〉 with C ′

1 = {c1, c23, c3}. The combination of the constraints,
pc1 = c1 ⊗ c23 ⊗ c3 is shown in Table 6.

Now the abstract solution is ASol(P ′
1) = {〈〈0, 2, 2〉, 0.75〉, 〈〈0, 3, 2〉, 0.75〉},

with ASolV (P ′
1) = {0.75} and d(P ′

1) = 0 ×d 1 ×d 0 = 1. This means that our
abstract solution is good enough, and the manager can raise the star rating of

5 We use the symbol ×d in prefix notation when this binary operator is applied to
more than two arguments



Table 5. Distance values for the c2-weakened Constraints

wdefd
c2(c2) 0

wdefd
c2(c21) 1

wdefd
c2(c22) 1

wdefd
c2(c23) 1

wdefd
c2(c24) 2

wdefd
c2(c25) 3

wdefd
c2(c26) 3

wdefd
c2(c27) 4

wdefd
c2(c28) 5

Table 6. Definition of Constraint pc1.

t defp
pc1(t)

〈0, 1, 2〉 0.25

〈0, 2, 2〉 0.75

〈0, 3, 2〉 0.75

〈1, 2, 1〉 0.25

all other tuples 0

the hotel chain by selecting either one of the two tuples in the set ASol(P ′
1) as

a solution.

4 Related Work: Metric SCSPs

Ghose & Harvey [6] extended the SCSP framework by specifying a metric for
each constraint in addition to the preference values that are associated with the
tuples of values for that constraint. The metric provides real valued distances
between the preference values. Metric SCSPs are similar to our proposal in the
sense that both frameworks allow us to establish whether a solution is regarded as
being good enough. Both approaches obtain a measure of the deviation required
from a problem P to a relaxation of P that has a good enough solution.

For Metric SCSPs, the definition of a constraint (Definition 3) is modified by
including a metric dc : A×A → R+ expressing the perceived difference between
c-semiring values. Each constraint is a triple c = 〈defp

c , conc, dc〉 where conc are
the variables to be operated on, defp

c is a function matching tuples to values in
the set of a c-semiring, and a metric dc. The formal properties of the metric are
given in [6].

If a c-semiring Sp = 〈A,+p,×p,0,1〉 is used to assign preference values to the
tuples of values of constraints, the distance of a preference (or c-semiring) value
α to a region β̂ (see Definition 10) is defined as d(α, β̂) = inf{d(α, γ) : γ ∈ β̂}.



Note that given two c-semiring (preference) values, α and γ, with γ ≤Sp
α, we

have d(α, β̂) ≤ d(γ, β̂).
In the definition of a Metric SCSP which follows below, an additional function

f is added. This function will be used to combine distance values provided by
the metric functions of the constraints.

Definition 18. [6] Given a constraint system CS = 〈Sp, D, V 〉, a Metric SCSP
is a triple P = 〈C, con, f〉 where con is a set of variables, C = {c1, c2, . . . , cm} is
a finite set of constraints, and f : (R+)m → R+ is used for combining the results
of the functions dci for all i = 1, . . . ,m.

The following two properties are imposed on the function f in Definition
18: if f(x1, . . . , xm) = 0 ⇔ ∀i, xi = 0, and f is monotonic increasing in each
argument. The aim is to find solution(s) such that minimal deviation is required
from the SCSP while ensuring they are assigned a c-semiring value in a specified
region β̂. The value for a solution of a Metric SCSP, as defined for SCSPs, is
t = defp(t) = (defp

c1
(t ↓con

conc1
)⊗ . . .⊗ (defp

cm
(t ↓con

concm
). To ensure that the value

def(t)p is in β̂ we need only ensure that all defp
ci

are also within β̂.
Let fβ(t) = f(d1(defp

c1
(t ↓con

conc1
), β̂), ..., dm(defp

cm
(t ↓con

concm
), β̂)). The func-

tion fβ determines the deviation from P required to move defp(t) into the region
β̂. Let m∗

β = min{fβ : u ∈ ASol(P )} represent the minimum deviation from the
problem P required to find a complete tuple with a semiring value in β̂.

To summarise, the function fβ provides us with a measurement of how much
a problem P should be relaxed in order to provide a good enough solution. This
measurement is calculated by combining the distance between the maximal tuple
for each constraint and β̂.

In our work, we describe how to construct a relaxation that has a good enough
solution by relaxing constraints. We decide which tuple is a maximal choice for
each constraint by ensuring that the preference value of the combination of all
the relaxed (or weakened) constraints will lie in the region β̂ with the least
possible deviation from the original constraints.

5 Conclusion and Future Work

We have proposed an extension to the SCSP framework for solving Constraint
Satisfaction Problems where a relaxation of a SCSP is defined and solved in case
an acceptable solution for the original SCSP can not be found.

If the preference value associated with the solution of a SCSP is not regarded
as good enough, we showed how to find a suitable relaxation of the SCSP that
has a good enough solution. A relaxation to a SCSP is found by adjusting the
preferences associated with the tuples of some of the constraints of the original
SCSP. In other words, the constraints of the original problem are relaxed until
the resulting problem has a satisfactory solution. Distance values (i.e. c-semiring
values) are associated with each relaxed constraint so that different relaxations
of a problem can be compared in terms of their distance to the original problem.



Metric SCSPs are related to our work. A metric function calculates a real
valued distance between preference values. These distance values are used to
measure the deviation of a solution to a SCSP from some desired solution that
is good enough.

In this paper we have described how to construct acceptable relaxations for
a SCSP with an unsatisfactory solution. Our future work will focus on computa-
tional aspects of this process. We aim to develop techniques to calculate the best
relaxation for a SCSP efficiently. We want to impose structure on the definitions
that respectively assign preference values to tuples of values for constraints and
distance values to relaxed constraints, so that existing CSP algorithms can be
applied to find the best d-relaxation for a SCSP.

References

1. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44 (1997) 201–236

2. Freuder, E.C., Wallace, R.J.: Partial constraint staisfaction. Artificial Intelligence
58 (1992) 21–70

3. Wilson, M., Borning, A.: Hierarchical constraint logic programming. Journal of
Logic Programming 16 (1993) 277–318

4. Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis for
flexible constraint satisfaction. In: Proc. of IEEE Conference on Fuzzy Systems.
(1993)

5. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a probabilistic
approach. In: Proc. ECSQARU. (1993)

6. Ghose, A., Harvey, P.: Partial constraint satisfaction via semiring CSPs augmented
with metrics. In: Proceedings of the 2002 Australian Joint Conference on Artificial
Intelligence. Volume 2557 of Lecture Notes in Computer Science., Springer (2002)


