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Mendelian error

detection in complex
pedigree

Simon de Givry, Marti Sanchez,
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and Thomas Schiex
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Cleaning the data

In 2005, about 1% genotyping errors
Today, less than 0.1% (NGS)

Individual
(founder)

Genotype
unordered pair of
alleles c
(possibly
unobserved)

Marriage loop



Task 1: Consistency Checking

= Assuming the pedigree is correct, checks if it exists a
complete genotype assignment consistent with the
observed genotypes and with the Mendelian laws of
iInheritance

s Complexity results
(Aceto et al., 2003)

NP-complete for a
pedigree with loops
and more than three
alleles

Polynomial if no loops
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or just two alleles (SNP) 2o 12 o3



Constraint Satisfaction Problem

= X: one variable per individual

s D: domain of every variable is
defined as the set of all
possible genotypes

{1/1,1/2, 1/3, 2/2, 2/3, 3/3 }

s C:

Ternary constraints to
encode Mendelian laws for
any non founder

Unary constraints to
encode genotyping data




Generalized Arc Consistency

O

3

{112,213} 5 {1/2,2/3}

10 11 12
2/2 1/2 2/3

(Mackworth, AlJ 1977)
(Lange, Goradia, Am J Hum Genet 1987)



Backtrack search on loop-breaker
individuals
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10 11 12
2/2 1/2 2/3

(Dechter, AlJ 1990)
(O’Connell, Weeks, Am J Hum Genet 1997)



Backtrack search on loop-breaker
individuals
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10 11 12
2/2 1/2 2/3

(Dechter, AlJ 1990)
(O’Connell, Weeks, Am J Hum Genet 1997)



Task 2: Error Detection

s Finds a complete
assignment with the
minimum number of
errors

— parsimony principle

3
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Task 2: Error Detection

s Finds a complete
assignment with the
minimum number of
errors

— parsimony principle

3

)
2/2 2/2

10

11 12
22 1/2 \;Qz 12



Cost Function Network

(Shapiro, Haralick, IEEE PAMI 81)

1 (X, D, F) (Freuder, Wallace, AlJ 92)
o X={X.... X} nvariables (Schiex, Fargier, Verfaillie, IJCAI 95)
s X

o D={D1,..., Dn} n finite domains of maximum size d
o F={f51,...,f5€}, e cost functions

f;; : associates a finite or infinite (k) positive integer to each tuple of S,

1 Weighted CSP: find a complete assighment A minimizing

D wer [ (AIS])
NP-hard problem



Cost Function Network

X: one variable per individual

D: domain of every variable is
defined as the set of all

10

possible genotypes

(11,112, 1/3, 212, 213, 3/3 } Q
. -

F

Ternary hard constraints to7 7 5
encode Mendelian laws for
any non founder

Unary soft constraints to
encode genotyping data——




Generalized Soft Arc Consistency
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Generalized Soft Arc Consistency
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Equivalence Preserving Transformation

(Schiex, CP 2000),...




Generalized Soft Arc Consistency
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Equivalence Preserving Transformation on trios

(Schiex, CP 2000),..., (Sanchez et al, Constraint 2008)
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Variable elimination

3

2/2 2/2

10 11 12
2/2 1/2 2/3

(Dechter, AlJ 1999)



Variable elimination

3

2/2 2/2

8,9 11 1/2 1/3 2/2 2/3 3/3

171 1 1 1 1 1 1
12 1 1 0 1 0 0
1/3 1 0 1 0 0 1
10 11 12
2/2 1/2 23 2/2 1 1 0 1 0 0
213 1 0 0 0 0 0
3/3 1 0 1 0 0 1

(Dechter, AlJ 1999), (Larrosa, CP 2000)



(Vitezica et al, World Congress on Genetics Applied to Livestock Production 2006)
(Sanchez et al, Constraints 2008)

Real d ata CPU time in seconds to find and prove optimality
on a linux PC 3 GHz with 16 GB using toulbar2 v0.5

" B&B-VE(2) -

ind vars  genotyped alleles nf  ngen treewidthub | | errors uwme  noaes
eye 36 36 28 6 11 4 2 1 0.02 0
cancer 49 48 37 8 18 5 2 1 0.21 0
parkinson 37 34 13 4 7 7 5 0 0 6
berrichonyy, || 129516 9947 2448 4 8821 17 262 2 473 8805
berrichon; 120516 10017 2483 4 8786 17 330 23 581 8384
berrichony,. || 27255 19337 10215 4 4719 19 - 41 589 6170
berrichon) 27255 19562 10215 4 2381 19 - 106 1723 15445
langlade 1355 1209 711 9 208 13 84 38 1228 391
langlade) 1355 1223 715 7 208 13 82 80  60.56 17857
langlades 1355 1258 787 5 208 13 85 39 1419 6731
langladey 1355 1186 672 8 208 13 83 43 597 3520
moissacy 283 260 183 2 81 5 6 0 0 5
moissac) 283 244 167 7 §1 5 6 0 0.51 6
moissacs 283 225 151 3 81 5 6 0 0 4
moissacy 283 256 179 2 81 5 6 0 0 5
moissacs 283 237 161 8 81 5 6 0 1.02 5
moissacg 283 201 131 11 §1 5 5 0 5.64 6




>

1515 sheep (Larigﬂl,ﬁa({éi\/l?), 243 founders, 3 alleles, 880 : L %{ggenerations

(minimum of 23 errors, most probable correction removes 43 genotypes)



Task 3: Error Correction using
Probabilistic Model

s Finds a complete
assignment with
maximum posterior
probability

- Bayesian network

3

)
2/2 2/2

10

11 12
22 12 \9@ 12

Prior on genotyping error: 1%
(and equifrequent alleles)



Task 3: Error Correction using
Probabilistic Model

s Finds a complete
assignment with
maximum posterior
probability

- Bayesian network

3

)
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10 11 12
22 3,132

Prior on genotyping error: 10%
(and equifrequent alleles)



Task 3: Error Correction using
Probabilistic Model

s Finds a complete o Pfreq(T2)
Pero(O1 | T
assignment with o % =B
maximum posterior
probability Q

- Bayesian network

pmendel(T 10 [T8,T9)

10 11 12
2/2 1/2 2/3

P( O, T)=[Pe™( Oi | Ti) x []P™%( Ti | parents(i) ) x [JP™( Ti )



Task 3: Error Correction using
Probabilistic Model

s Finds a complete peror(O1 | T1) Pfrea(T?2)

N D

assignment with
maximum posterior
probability

- Bayesian network

pmendel(T10 [T8,T9)

W Ti ) x [TP™e"de!( Ti | parents(i) ) x [P"™9( Ti )

-log transform Z fSeF f5 ( A[S] )



Variable elimination ..continued

(Dechter, Ald 1999)



Variable elimination ..continued

(Dechter, AlJ 1999)



Variable elimination ..continued

2/2 1/2

Cost function decomposition

(Favier et al, IJCAI 2011)



(Favier et al, IICAI 2011)
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Optimal haplotype reconstruction in half-sib families (Legarra et al, WCGALP 2010)


https://miat.inrae.fr/degivry/Favier11.mov

TOULOUSE

Guaranteed Discrete Energy Optimization
on Large Protein Design Problems

Guaranteed Discrete Energy Optimization on Large Protein Design Problems. Journal of chemical theory and computation
Fast search algorithms for computational protein design. Journal of computational chemistry.

Thomas Schiex (INRA)
D. Simoncini, D. Allouche, S. Barbe (LISBP)
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Why should we want to design proteins? MA 3 INRAD
Eco-friendly chemical/structural nano-agents
@ New drugs for health (human, animals, plants)
@ New catalysts (environment, recycling, biofuels, food and feed, cosmetics...),
@ New components for nanotechnologies

@ Relying on inexpensive atomic level 3D-printers (bacterias, yeast, ...)

%Thanks to the Zhang lab. for this image.



1985

1997
2003

Novel Topology
(top7)

[Kuhlman et al. 2003]

Zinc Finger

[Dehiyat & Mayo 1997]

Calmodulin-binding
peptide

[DeGrado et al. 1985]

2008

2009

Functional Enzyme

[Rothlisberger et al. 2008]

Enzyme for Multi-Step
Reaction

[Jiang et al. 2008]

Enzyme activity

[Chen et al. 2009]

2011

B département

MA & INRA2

science for people, life & earth

2016
2019

Auto-Assembling
Symmetrical Protein

[Niguchi et al. 2019]

Self-Assembling
Nanocage

[Hsia etal. 2016]

Longer Emission Wave
Length Fluorescence

[Chica et al. 2011]
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The Computational Design Problem

science for people, life & eorth

Produce a sequence s of amino-acids that spontaneously adopts a conformation X that performs
some function.



What defines a conformation ? MA 3 INRAZ

@ backbone: dihedral angles Giy Vi

@ sequence: amino-acid choice S
@ side-chains: torsion angles Xij
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The CPD problem: search space

TOULOUSE

Rigid backbone design \,
@ Side-chain flexibility: discretized in LAl
rotamers \ g )

@ 1 rotamer to choose at each
flexible/mutable position

Search Space

@ Fully discrete description, defined by a choice of rotamer (AA X
conformation) for each position.

@ Search space can be ~ 250" or more (Dunbrack)




Stable = minimum energy (GMEC)

TOULOUSE

Using Talaris14?’ (pairwise decomposable)
@ Bonded (dihedral torsion angles,...)
van der Waals (attractive+repulsive)

Electrostatic (statistical)

Hydrogen bonds

°
°
@ Rotamer statistics (Dunbrack)
)
@ Implicit solvation

)

Cutoff functions

E(c)=Ex+ » E(r)+ > Elr,s)
=1 <

1<J




Stable = minimum energy (GMEC)

TOULOUSE

Using Talaris14?’ (pairwise decomposable)
@ Bonded (dihedral torsion angles,...)
@ van der Waals (attractive+repulsive)
Electrostatic (statistical)

Rotamer statistics (Dunbrack)

Implicit solvation

o
)
@ Hydrogen bonds
o
)

Cutoff functions

E(c)=Ex+ » E(r)+ > Elr,s)
=1 <

1<J

v

ZfSEF fS ( A[S] ) NP-hard



A cost function

TOULOUSE

Resj rotamers

S~ WO =

Res j rotamers

hydrogen bond  steric clash
E < threshold E>1.0
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Exact vs. Stochastic search

Large input (> 1GB) NP-hard problem
Toulbar2 is able to...

@ provide a proven minimum energy solution®
@ exhaustively enumerate sequences close to it

@ provide sequence libraries with guaranteed diversity.'®
0400

@ in sequence-conformation spaces of size > 1

Rosetta’s Monte Carlo Simulated Annealer increasingly fails to find the optimal sequence®

“David Simoncini et al. “Guaranteed Discrete Energy Optimization on Large Protein Design Problems”. In: Journal
of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DOI: 10.1021/acs. jctc.5b00594.




Exact vs. Stochastic search Clément Viricel’'s PhD on A 3 INRAQ

predicting changes in binding affinity (counting)
(Viricel et al, Bioinformatics 2018)

Large input (> 1GB) NP-hard problem
Toulbar2 is able to...

@ provide a proven minimdm energy solution®
@ exhaustively enumerate sequences close to it

@ provide sequence libraries with guaranteed diversity.'®

@ in sequen\ge-conformation spaces of size > 10400 |

\ Manon Ruffini's PhD on diversity encoding and negative design
(Ruffini et al, ICTAI 2019, Algorithms 2021)

Rosetta’s Monte Carlo Simulated Annealer increasingly fails to find the optimal sequence®

“David Simoncini et al. “Guaranteed Discrete Energy Optimization on Large Protein Design Problems”. In: Journal
of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DOI: 10.1021/acs. jctc.5b00594.
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Unbounded error

yartement
MA 3 INRAZ
TOULQUSE science for people, life & earth
1,5
P
- J
LLl
=
(ol
(]
Qo
>~
S
e 05
Ll
0

Instance hardness

Asymptote: Size matters!

Asymptotic convergence can be arbitrarily slow...

Guaranteed Discrete Energy Optimization on Large Protein Design Problems

David Simoncinit, David Allouche®, Simon de Givry®, Céline Delmas?, Sophie Barbe¥8L, and Thomas Schiex™*

‘ I ' Journal of Chemical Theory and Computation
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Toulbar2 vs. CPLEX, MaxHS...(real instances) MA 3 INRAZ

ience for people, life & earth

seconds
9000- R

T Artificial Intelligence
Volume 212, July 2014, Pages 59-79

DEE/A* mplp

8000
Computational protein design as an optimization problem %
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# of instances solved (X) within a per instance cpu-time limit (Y) J




Designing a self-assembling 5-propeller MA 3 INRAD

Coll. A.Voet (KU Leuven), D. Simoncini'®

&8# Tako: (R)evolution + Rosetta/talaris14

Tako
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A Mixed Integer Programming Reformulation

Sara Magrot?!, Simon De Givryl, Gauthier Quesnel ?
2 *

of the Mixed Fruit-Vegetable Crop Allocation Problem

Marc Tchamitchian

1UR 875, MIAT-INRA Toulouse France
2UR 767, Ecodeveloppement, INRA-Avignon France

June 28th 2017

IEA/AIE 2017, Arras, France
* Jury member of Mahuna Akplogan’s PhD on crop allocation problem



Introduction

Introduction

Fruit cropping Vegetable cropping Mixed fruit-vegetable cropping
Avignon France, 2015

B —

e %@g %

Agriculture’s challenges (examples) =igel ) g
oy SRR

@ Local market, diversified food. ?F"'"" i ,~.,‘:.";.—--
Reducing pollution (chemical products). o g@ : =
O ? THady)

o
@ Preservation of resources (water, energy). -
° Localization in France

Better biodiversity.

Casdar SMART 2014-2016
National Project in France



Introduction

Introduction

Above-ground <

- Shadow
- Less evaporation
- Microclimate

S T1A 14,3,15 AR A

Protection
from wind
\ Control of
® Sk A T I YYEYYR et ] . subsurface

' L. water levels

N

Combetition for \water and nutrients
Absorption
of water and
nutrients in
depth

Below-ground <

Figure — Example of above- and below-ground interactions between crops and
trees [Kaeser et al., 2010]



Introduction

Introduction

The aim of our study

vesgnamrves [

(discrete decision problem)

Interactions

M aximize posmve
Interactions -, ~E= 0
% "

vegetble crops

: P 2 o TR %,
fruit tree - ‘iﬁ; ) ,.% b A 2
= S - Mlmmlze negative
@ interactions

- Define the position of vegetable crops according to crop
rotations.

Designing a mixed fruit-vegetable system having diversified production while
optimizing the use of resources (light, water and nutrients),
by exploiting interactions between trees and crops.



Problem Modeling

Above-ground interactions : shade and micro-climate conditions

Fruit tree

0 P x P2 2 P3 3
. | ' i —» years
e
i Spring i Summer
T T T T 15T T T T d
gk & mn‘n; wan (M| & Diskwe alatee (m] -
Solar radiation mtercleptlon simulation of an Evolution of potential shade in spring
apple tree . and summer (checked cells).
(Source : PSH - INRA Avignon).

Interactions with vegetable crops

Crop sensitivity to shade.

Shade seasons
@ — : negative effect Crops Summer
@ 0 : neutral effect Lettuce ‘
Tomato
@ -+ : positive effect Onion
Melon
Carrot




Problem Modeling

Below-ground interactions

Fruit tree

"
[ &)
-+
]
W
w

"
I, years

Simulated plum root system [Vercambre et al., 2003]

Surface view

Interactions with vegetable crops

Competition for water in summer (-)

2 months
0 0 -0 20 30
onian muskmelon Lettuce carrot Tomato Saillevel
' . ! ; Tree-crop
! interaction
level
- — Soil level
‘R‘! ! Tree-crop
, . j interaction
' level

e oot

I:’: one équarefeet

[Weaver and Bruner, 1927]

winter

C 1 P2 2 P3 3
| k1 | | | years
XXX
¥ S
\/\g : SIS
2 s
IR

of root extensions of an apple tree.

Sharing for water (+4)

Absorption of surplus water

summer autumn

spring

+10

+10

+10




i n Plants N trees to get the right number of
QueSt O cells with shade(S) or root (R)

Tree - x/{ N ><
Shade Root -~ P ></><

N=2, SR=5,~-R=5, ~~=13 N=2, 8R=10, -R=0, ~=13




i n Plants N trees to get the right number of
QueSt O cells with shade(S) or root (R)

X[
Tree v
Shade Root ~~ Pl ><
N=2, SR=5, -R=5, --=13 N=2, SR=10, -R=0, --=13
SR A SR
-R -R -R
SR SR
A SR
R -R
*A: Apple

Tree



U | N Plants N trees to get the right number of
Q estio cells with shade(S) or root (R)

Ex” 4P

Tree %40 ><

Shade Root -~ f >/><

N=2, SR=5, -R=5, ~=13 N=2, SR=10, -R=0, --=13
SR A SR

R R R SR SR SR
SR SR | SR A SR
A SR SR SR SR
R R SR A SR




Question Adds vegetables (each one on 4 or 5 cells)

such that it maximizes green situations

.. Shade Root -~ ; ' ><.

N=2, SR=5, -R=5, --=13 N=2, SR=10, -R=0, --=13
SR A SR
R R R SR SR SR
SR SR SR A SR
A SR SR SR SR
R R SR A SR
Shade and root (SR) Sun and root (-R) Sun and no root (--)




Question Adds vegetables (each one on 4 or 5 cells)
such that it maximizes green situations

.. Shade Root -~ ; ’ ><.

N=2, SR=5, -R=5, -=13 Obj=23 N=2, SR=10, -R=0, --=13
T M i A i
T I 0 0 0 SR SR SR
L L. M T M SR A SR
A L C ¥ & SR SR SR
M 0 % P & SR A SR

Shade and root (SR) Sun and root (-R) Sun and no root (--)

Onion
Melon

Carrot




Question Adds vegetables (each one on 4 or 5 cells)
such that it maximizes green situations

.. Shade Root -~ ; ’ ><.

N=2, SR=5, -R=5, -=13 Obj=23 N=2, SR=10, -R=0, --=13 Obj=19
T M i A 2 M g C M C
T T 0 0 0 M L e} L T
L L M T M T L A 0o 0
A L G G # & 0 T E M
M 0 C T C T L A T M

Shade and root (SR) Sun and root (-R) Sun and no root (--)

Onion
Melon

Carrot




Mixed Integer Program (Benders decomposmon) / Binary Quadratic Program

10000 | g , , . |
el v,
100 0 . :;" '." n E] _-
8 L e
£ ‘{‘ff-": ’
o) K
= .
(@) 10 |
< y
=
& MIP Below —+—
8 MIP Equilibrate =
T MIP Above --x-- 1
BQP BeIOW ........ o
BQP Equilibrate
0.1 X/ . - BQP Above - -e-
4 6 8 10 12 14 16 18

Time to reconstruct a full crop allocation plan from MIP is negligible (greedy algorithm)

Problem size



Mixed Fruit-Vegetable Crop Allocation Problem

10 x 10
P2: Hr P2:Printemps P2:Eté
P3:Printemps P3:Eté

\. 0 \ o ! B
1 | ‘\“ “ j B
E E EE
QDDD.L

]

(IEMSs 2016, IEA/AIE 2017)




P2:Hiver P2:Printemps P2:Automne
[ — n [ T o W T

P3:Automne

Best solution found by baryonyx™ 0.4 after 1h on 30 cores of AMD Opteron 2.3GHz
(01LP-SPP model, 2 million Boolean variables!)

* https.//github.com/quesnel/baryonyx



50 x 50

P2:Eté

P2:Printemps

P3:Hiver

P3:Printemps P3:Ete

MIP best solution found by cplex 12.8 after 1h on 30 cores of AMD Opteron 2.3GHz
(MIP model with 12500 Boolean variables and 276 continuous variables)



Some tips

. Collaborate with researchers from the other discipline
. Get access to (new) real data

. Collect articles, software, contacts to build an
overview of the field

. Select journals / (interdisciplinary) conferences to
publish

. Validate the results by domain experts
. Enjoy learning a new (complex) discipline!

. PhD subject is a bet! (from your supervisors ;-)



Before the thesis

. How to be recruited
- Long meeting with the supervisor(s)
- Master first research experience (technical report)
- Relevance of your Master courses to the subject (course marks/ranking)

- Funding (National/European projects are usually more restrictive, already specified,
less innovation than University doctoral school funding)

. Building the subject / project
- A particular story between (at least) two supervisors
- Better if they have already collaborate in the past
- Useful for the society ? => complex subjects requiring interdisciplinary approaches
- Sometimes good subjects need a long time to be mature (between the supervisors)

- Subject can be revised, it depends on the student interests (eg. more theory vs
practical)

- Associate the student to its construction

- See as a whole in the student curriculum



During the thesis

. Supervision
- Diversity of supervisors (at least 2!) => more people, more pressure, more difficult to make choices
- Identifying all the actors for the thesis and their role
- Working environment
- Frequency of meetings (in person), regularity
- Places for informal meetings
- Collective agility and flexibility (subject evolution)
- Anticipate and real-time modifications

- Strategy of publications: where (conferences/journals), when (deadlines), what (reselling), who
(author ordering)

— it depends on the scientific discipline (computer science, biology,...)
— doctoral schools usually ask for at least one (two?) selective publication(s)
— after that you have more freedom!

— see past Best Dissertation Awards at CP  for some good examples

- Associate the PhD student to the decision process
- Benevolent attitude, recognition at work
— for the student: be rigorous, open-mind, be a diplomat

— for the supervisors: mutual trust, back and forth between freedom and guidance


https://www.a4cp.org/awards/doctoral-research-award

During the thesis

. Developing skills

- Which skills? (theory, engineer, relational/meeting,
supervision of trainees,...)

- Recognition, value for the company

- PhD committee during the thesis (mid-term evaluation)
- Doctoral school supports (interview, courses)

- Interdisciplinary conferences

- Foreign lab visits



After the thesis

Anticipate after-the-thesis during your thesis!
- What is your career plan?
— Inform supervisors of your career plan (academy / industry)
- List of your skills
- Career counselor

- Doctoral school training / workshops (like CP Doctoral Program!)

Post-doc strategy
- Social network (of supervisors)
— supervisors should help
- Curriculum vitae
- Publication strategy

- Doing applied research in your second discipline (being a facilitator, risk taking)

To be hired
- Interdisciplinary institutes (University, National Research Institute,...)
- Raise awareness of the jury members

- Adapt to the job market (additional training,..)



Professional experiences

Marti Sanchez, PhD in 2006, postdoc at INRAE (2006-2008) and Barcelona
University, tenure track at Universitat Pompeu-Fabra, Barcelona, Spain, in 2022
(work in neuro-robotics)

Aurelie Favier, PhD in 2011, 2-year postdoc at University College Cork, secondary
school teacher in Bordeaux, France since 2014

Jimmy Vandel, PhD in 2012, postdocs at CEA Grenoble, LIRMM Montpellier and
Lille University, permanent research engineer at CNRS, Lille, France since 2020
(work on a bioinformatics and biostatistics platform)

Mahuna Akplogan, PhD in 2013, recruited in 2012 by a private French company
(R&D con)sultant in optimization, work on nurse scheduling, healthcare and
rescue,...

Clément Viricel, PhD in 2017, temporary associate professor at Lyon University,
freelance data-scientist (work on neural nets)

Sara Magrot, PhD in 2019, temporary associate professor at Toulouse University
(2018-2020), research engineer at ONERA (2021-2022) and permanent position at
Berger Levraut, Toulouse, France since 2022

Manon Ruffini, PhD in 2021 (My Thesis in 180s), recruited in Aibstract, Albi, France
since 2021 (work on automatic music generation)



https://youtu.be/NNhSZuw9Yd0

