Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP

Simon de Givry, Thomas Schiex, INRA Gérard Verfaillie, ONERA Toulouse, France

Radio Link Frequency Allocation Problem

Allocate frequencies to radio links such that the sum of interferences (soft binary distance constraints) is minimized

Earth Observation Satellite Management Problem

Select images among a set of candidate images such that physical constraints (hard binary and ternary constraints) are satisfied and the sum of weights associated to selected images (soft unary constraints) is maximized

Mendelian error detection in complex pedigree

Find a complete genotype of maximum a posteriori probability (MPE)

Conditional probability tables (soft unary, binary and ternary constraints)

Motivation of this work

Exploitation of the structure present in many real problems temporal, spatial, causal ...

Framework: weighted binary CSP

- (*X*,*D*,*W*)
 - $X = \{x_1, \dots, x_n\}$ n variables
 - $D=\{D_1,...,D_n\}$ n **finite domains** of maximum size **d**
 - $W = \{W_1, \dots, W_e\}$ e cost functions
 - W_{ij} , W_i , W_{\emptyset} with scopes {x_i,x_j}, {x_i}, \emptyset
 - W_{ij} : $D_i \times D_j \rightarrow [0, k]$
 - k is associated with completely forbidden assignments
- Find a complete assignment minimizing

$$W_{\varnothing}$$
 + $\sum_{i}W_{i}(a_{i})$ + $\sum_{ij}W_{ij}(a_{i},a_{j})$

• NP-hard problem

- Goal: transforming a problem into an equivalent problem with a more explicit lower bound
- Means: enforcing a soft local consistency property by moving costs from binary constraints to unary constraints and to the zero-arity constraint W_{\varnov} (problem lower bound)

Cost projection from a binary to a unary constraint

O

No idempotency property

Cost projection from a binary to a unary constraint

Two cost projections from two binary constraints to a unary constraint

Two cost projections from two binary constraints to a unary constraint

Cost projection from a unary to the zero-arity constraint

Cost projection from a unary to the zero-arity constraint

Value removal

Value removal

Cost projection from a binary to a unary constraint

Cost projection from a binary to a unary constraint

Value removal

Value removal

Soft local consistency: various levels

- NC*: Node Consistency
- AC*: Arc Consistency
- DAC*: Directed Arc Consistency
- FDAC*: Full Directed Arc Consistency

Tree decomposition and soft local consistency

Two main difficulties:

- Costs are moving between clusters and towards W_{α}
 - Recorded subproblem lower bounds may be no longer valid
- Value removals may affect any cluster ۲
 - No guarantee to improve the lower bound when revisiting the same subproblem

Loss in terms of theoretical complexity

Three approaches considered

- Limited form of soft local consistency (forward-checking)
 FC-BTD (Time: O(d^w), Space: O(d^s))
- Limited soft arc consistency, with corrected recorded lower bounds and value removals limited to the current subproblem
 - FDAC-BTD+ (Time: O(kd^w), Space: O(d^s))
- Unlimited soft arc consistency, without learning
 FDAC-PTS (Time: O(d^h), Space: O(nd))

Experimental results Radio Link Frequency Allocation Problem

RLFAP	SUB_1		SUB_4		SCEN-06	
optimum	2669		3230		3389	
n,d,w,h	14, 44, 13, 14		22, 44, 19, 21		100, 44, 19, 67	
Method	time	#LB	time	#LB	time	#LB
FC-BTD	1197	0	-	0	-	-
NC-BTD+	490	0	-	0	-	-
FDAC-BTD+	14	0	929	0	10,309	326
FDAC-PTS	14	n/a	851	n/a	-	n/a
MFDAC	14	n/a	984	n/a	-	n/a

The first time the whole SCEN-06 instance is solved by a search algorithm To be observed: small amount of memory required

Conclusion

• FDAC-BTD+:

- Cluster tree problem decomposition
- Tree search
- Graph-based backjumping and learning
- (Limited) soft arc consistency enforcing
- Initial upper-bounds
- Cluster tree decomposition and soft local consistency can be combined, but various technical options can be considered, and must be more widely experimented.

$$\begin{array}{c} C1 \\ C2 \\ C3 \\ C4 \\ C6 \\ C7 \end{array} \qquad f h' = 3$$

Parameters Clique size (w+1) = 10 Separator size (s) Clique tree height (h') = 3 Domain size (d) = 5 Constraint tightness

Tree decomposition based on Maximum Cardinality Search Root selection minimizing tree-height (h)

dom/deg dynamic variable ordering. CPU-time to find the optimum and prove its optimality

dom/deg dynamic variable ordering. CPU-time to find the optimum and prove its optimality

dom/deg dynamic variable ordering. CPU-time to find the optimum and prove its optimality