
New Local Move Operators for Bayesian Network Structure Learning
Jimmy Vandel and Brigitte Mangin and Simon de Givry
UBIA, UR 875, INRA, F-31320 Castanet Tolosan, France

{jvandel,mangin,degivry}@toulouse.inra.fr

Abstract
We propose new local move operators incorporated into a score-based stochastic greedy search
algorithm to efficiently escape from local optima in the search space of directed acyclic graphs.
We extend the classical set of arc addition, deletion, and reversal operators with a new operator
replacing or swapping one parent to another for a given node, i.e. combining two elementary
operations (arc addition and deletion) in one move. The operators are further extended by doing
more operations in one move in order to overcome the acyclicity constraint of Bayesian networks.
These extra operations are temporally performed in the space of directed cyclic graphs, acyclicity
being restored at the end and the move kept if it increases the score. Our experimental results on
standard Bayesian networks and challenging gene regulatory nets show large BDeu improvements
compared to state-of-the-art structure learning algorithms when the sample size is small.

1 Introduction

Learning the structure of Bayesian networks from
fully observed data is known to be an NP-hard prob-
lem (Chickering and Heckermann, 1996) which
has received a lot of attention from researchers
during the last two decades (Daly et al., 2011).
Due to its difficulty, heuristic methods have been
widely used to learn Bayesian network structures.
Among them, score-based methods use a scoring
function f to score a network structure with re-
spect to the data. They explore the space of net-
work structures to find the highest-scoring network.
This space being superexponential in the number
of variables, local search methods are used such
as greedy ascent search (also called hill-climbing),
tabu search, simulated-annealing, and other com-
plex metaheuristics. In spite of its simplicity, the
(repeated randomized or stochastic) greedy search
method reveals to be a competitive method com-
pared to more complex algorithms (Gámez et al.,
2011). Starting from an initial network structure, it
performs a series of local moves until a local opti-
mum is found. Each move selects and applies the
best elementary operation(s) on the current network
structure. The set of candidate neighboring struc-
tures is called the neighborhood in the sequel. A
classical neighborhood is composed of single arc

additions, deletions, and reversals. Using larger
neighborhoods efficiently allows to find better local
optima, and thus better network structures.

(Moore and Wong, 2003) proposed an optimal
reinsertion of a target node by removing all its edges
and reinserting it optimally. (Campos et al., 2002)
explored a new reversal operator which deletes all
the parents of both nodes if they share some parent,
inverts the arc, and adds any subset of the union set
of the old parents for each node. However these ap-
proaches are limited to small problems only. (Hol-
land et al., 2008) used a restricted form of look
ahead called LAGD, combining several operations
in a single move. In this paper, we follow a sim-
ilar approach by focusing our local operations on
a target node and combining several operations to
improve the score and restore the global acyclicity
constraint of Bayes nets. By doing so, we are able
to exploit large neighborhoods efficiently. Other ap-
proaches use a compact representation of a set of
network structures like Greedy Equivalence Search
(GES) (Chickering, 2002; Nielsen et al., 2003)
which considers Markov-equivalent structures.

In Section 2, we give Bayesian network back-
ground. Next, we define a specific stochastic greedy
search algorithm and introduce the new local move
operators in Section 3. We report experimental re-
sults in Section 4 and conclude.

2 Bayesian network structure learning

A Bayesian network (Koller and Friedman, 2009)
denoted by B = (G,PG) is composed of a di-
rected acyclic graph (DAG) G = (X,E) with
nodes representing p random discrete variables X =

{X1, . . . , Xp}, linked by a set of directed edges or
arcs E1, and a set of conditional probability distri-
butions PG = {P1, . . . , Pp} defined by the topology
of the graph: Pi = �(Xi|Pa(Xi)) where Pa(Xi) =

{X j ∈ X | (X j → Xi) ∈ E} is the set of parent
nodes of Xi in G. A Bayesian network B repre-
sents a joint probability distribution on X such that:
�(X) =

∏p
i=1 �(Xi|Pa(Xi)).

Conditional probability distributions PG are de-
termined by a set of parameters. Given the network
structure G, and the fully observed data D, parame-
ters can be estimated by simple counting, following
the maximum likelihood principle.

Learning the structure of a Bayesian network
consists in finding a DAG G maximizing �(G|D).
We have �(G|D) ∝ �(D|G)�(G). Under specific as-
sumptions, the marginal loglikelihood log(�(D|G))
can be expressed as a decomposable scoring func-
tion f (e.g. BDeu score (Heckerman et al., 1995)):

f (D,G) =

p∑
i=1

fXi(D,G) =

p∑
i=1

fXi(D, Pa(Xi)) (1)

A set of Bayesian networks are Markov-
equivalent if they imply exactly the same set or
map of independence constraints among variables2.
Next, we describe a novel greedy search method
maximizing f in the space of DAGs.

3 Stochastic Greedy Search

We define the Stochastic Greedy Search (SGS) al-
gorithm for structural learning of Bayesian net-
works. It collects the best DAG found by r random-
ized hill-climbing algorithms. Stochasticity comes
from two random draws. The first one, often con-
sidered, is the initial structure used for each restart.
The second, more original, is when both edge orien-
tations lead to Markov equivalent DAGs. The DAG
is randomly drawn among the best Markov equiva-
lent neighbors of the current DAG G at each step of
the hill-climbing algorithm. The neighborhood of G

1We use G = E when the set of nodes is implicit.
2BDeu give the same score for Markov-equivalent DAGs.

is composed of the usual operations on DAGs: arc
addition (ADD), arc deletion (DELETE) and arc re-
versal (REVERSE). This neighborhood is denoted
NADR in the sequel. Only operations which do not
create cycles are considered. In the next subsec-
tions, we are going to extend this set of operations.

Proposition 1. (Gámez et al., 2011) Let D be a
dataset of n records that are identically and inde-
pendently sampled from some distribution �(·). Let
f be a locally consistent scoring function. The hill-
climbing algorithm in SGS returns a minimal inde-
pendence map of �(·) as sample size n grows large.

Recall that BDeu score is locally consistent
(Chickering, 2002). The local consistency property
ensures adding any arc that eliminates an indepen-
dence constraint that does not hold in the generative
distribution �(·) increases the score. Conversely,
deleting any arc that results in a new independence
constraint that holds in �(·) also increases the score.

The main interest of our randomization ap-
proach is to simulate a search in the space of
score-equivalent networks. Each greedy search
moves from a DAG instance randomly-selected
from a Markov-equivalence class E(G) to an-
other DAG randomly-selected from an adjacent3

Markov-equivalence class E(G′) thanks to our ran-
dom selection among the best neighbors. It results
in a stronger property:

Proposition 2. (Chickering, 2002) Let D be a
dataset of n iid fully observed samples of some faith-
ful distribution �(·). Let f be locally consistent.
SGS returns a perfect map of �(·) as both the sample
size n and the number of restarts r grow large.

Recall a faithful distribution admits a unique
perfect map corresponding to the optimal struc-
ture. Compared to the GES algorithm (Chicker-
ing, 2002), which offers the same optimality guaran-
tee within a two-phase greedy search, SGS chooses
the orientation of some compelled arcs4 of the true
DAG at random, whereas GES waits while no v-
structures impose orientation constraints. See an
example in Figure 1.

3Two equivalence classes E(G) and E(G′) are adjacent iff G
is an I-map of G′ or vice-versa and the number of edges in the
graphs G and G′ differs by one.

4An arc X → Y in G is compelled if that arc exists in every
DAG of E(G), otherwise it is said reversible.

Figure 1: Four adjacent Markov-equivalence classes found by GES during its first phase of edge and v-
structure insertions. (a) GES and SGS start from the empty graph . (d) The true DAG is found after three
moves. The orientation of X3→ X4 and X1→ X3 edges are chosen at random by SGS, whereas GES
waits until its third move to decide on edge orientations based on DAG score comparisons (enforcing the
v-structure X1→ X3← X2 as stated by the extra ADD parameter {X1}, and forbidding X1→ X3← X4 in
its second move).

We observed in the experiments that a small num-
ber of restarts r allows to find DAGs with better
scores than GES, especially when the sample size
n is limited, in this case GES found a local optimum
and SGS is able to find other better local optima
thanks to randomization. This was also observed
in (Nielsen et al., 2003).

When the sample size is small the learning prob-
lem becomes more difficult: the empirical distri-
bution may be far from a perfect map resulting in
many local optima and the scoring function is no
more consistent, i.e. the likelihood does not domi-
nate the penalty term on the complexity of the struc-
ture which is a non additive function of the parent
variable domain sizes (Chickering, 2002). In this
complex situation, we propose a new operator to es-
cape from some local optima.

3.1 SWAP operator

→

Figure 2: The operator SWAP(X2|X1 → X3) ap-
plied to a 3-variable problem.

Consider the 3-variable example in Figure 2 with
observed data D, scoring function f , and initial
DAG G0 = {X2 → X3}. Let assume f (D, {X1 →

X3}) > f (D, {X2 → X3}) > f (D, {X1 → X3, X2 →
X3}) > f (D, {X3 → X1, X2 → X3}) > f (D, {X2 →
X1, X2 → X3}) > f (D, ∅). Then G0 is a lo-
cal minimum for the classical neighborhood NADR.
Our new operator, denoted SWAP(X|Y → Z), con-
sists in changing one parent X to another parent Y
for one target node Z. This is equivalent to a si-
multaneous pair of ADD and DELETE operators
restricted to the same target node. In our exam-
ple, applying SWAP(X2|X1 → X3) corresponds to
DELETE(X2 → X3),ADD(X1 → X3), resulting
in the better DAG G1 = {X1 → X3} as shown in
Figure 2. The extended neighborhood using the 4
operators is denoted NADRS and SGS using NADRS

(respectively NADR) is denoted SGS2 (SGS with
Swap) (resp. SGS1) in the sequel.

Let p be the number of variables in the DAG
and k be the maximum number of parents per node.
Assuming a sparse graph, p � k, the number of
SWAP operations is larger than for classical oper-
ators but it remains bounded by O(kp2), the com-
plexity of NADRS is therefore in O(kp2), whereas
it is in O(p2) for NADR. Other approaches using
larger neighborhoods such as h-look ahead in l good
directions (LAGD) has a worst-case complexity in
O(lh−1 p2) (Holland et al., 2008), optimal reinsertion
is in O(2k pk+1) (Moore and Wong, 2003), and mod-
ified reversal in O(22k p2) (Campos et al., 2002).

Another source of suboptimality comes from the
global acyclicity constraint of Bayesian networks.

3.2 Breaking cycles by successive deletions and
swaps

→

Figure 3: Applying an extended SWAP∗ operation
breaking a cycle by an additional SWAP opera-
tion: SWAP∗(X2|X7 → X3) = {SWAP(X2|X7 →
X3), SWAP(X4|X5→ X6)}.

Consider the 7-variable DAG example in Fig-
ure 3. Swapping the parent X2 of X3 by X7 in DAG
G (Fig. 3.left) introduces a directed cycle {X7 →
X3, X3 → X4, X4 → X6, X6 → X7} and is there-
fore forbidden in our NADRS neighborhood. How-
ever it may correspond to a large local score im-
provement with respect to variable X3. Let us de-
note this improvement by ∆X3(G,SWAP(X2|X7 →
X3)) = fX3(D,G′) − fX3(D,G) with G′ obtained
by applying the SWAP operation on G (G′ is not
a valid DAG), and D and f being the sample and
scoring function. Our idea is to heuristically guide
the search for a second (or more) local operator to
be applied on G′ in order to restore graph acyclicity
(G′ becomes valid) and such that the true score of
the final DAG is greater than the score of the orig-
inal one. In Figure 3, it is obtained by applying a
second SWAP.

For that purpose, we define an extended SWAP
operator, denoted SWAP∗, able to break all di-
rected cycles by performing a succession of dele-
tion or swap operations. It can be seen as a kind
of greedy descent search in the space of directed
cyclic graphs, trying to remove the less important
arcs or to swap them in order to compensate for their
loss, until a better valid DAG is found. We use lo-
cal score changes to guide the search: ∆Xi(G,OP) =

fXi(D,G′)− fXi(D,G), with G′ the result of applying
the local move operator OP ∈ {DELET E, S WAP}
to G. A negative sum of local changes aborts the
search. Recall that finding a minimum number of
arc deletions in order to restore acyclicity is NP-

Algorithm 1: SWAP∗(X|Y → Z) operator.
Input : operation X|Y → Z, sample D, score f , DAG

G(X,E)
Output : a set of local operations L
L← ∅ /* Initialize output operations to the empty set */ ;
X’← X /* Candidate parent set for future swaps */ ;
G′ ← G /* Copy of input DAG */ ;
∆ = ∆Z(G′,SWAP(X|Y → Z)) /* Putative score1
improvement */ ;
if ∆ > 0 then

L← L ∪ {SWAP(X|Y → Z)} ;
Apply SWAP(X|Y → Z) to G′ ;
/* Repeat deletion or swap operations until no more
cycles */ while ∆ > 0 ∧ (C←NextCycle(G′)) , ∅2
do

X’← X’ \ nodes(C) ;3
/* Choose the best deletion to break cycle C */ ;
(U∗ → W∗)←4
argmax(U→W)∈C\{Y→Z} ∆W (G′,DELETE(U →
W)) ;
/* Test if the sum of local score changes is
positive */ ;
if ∆ + ∆W∗ (G′,DELETE(U∗ → W∗)) > 0 then

L← L ∪ {DELETE(U∗ → W∗)} ;
∆← ∆ + ∆W∗ (G′,DELETE(U∗ → W∗)) ;
Apply DELETE(U∗ → W∗) to G′ ;

else
/* Choose the best swap to get a positive
change */ ;
(U∗|V∗ → W∗)←5
argmax(U→W)∈C,V∈X’ ∆W (G′,SWAP(U |V →
W)) ;
∆← ∆ + ∆W∗ (G′,SWAP(U∗|V∗ → W∗)) ;
if ∆ > 0 then

L← L ∪ {SWAP(U∗|V∗ → W∗)} ;
Apply SWAP(U∗|V∗ → W∗) to G′ ;

else
L← ∅ /* Abort all local operations */ ;6

return L ;

hard. We use a greedy approach instead. The
pseudo-code of SWAP∗ is given in Algorithm 1.
The local score improvement of the initial SWAP
operation is evaluated at line 1. It corresponds to a
putative gain on the current score. If it is positive
then this operation is applied to a copy of the input
DAG G, checking next if it creates some directed
cycles. Each cycle is retrieved by the NextCycle
function and the algorithm searches for an arc dele-
tion in this cycle with minimum deterioration of the
local score at line 4. If the combined local score
change of the SWAP and DELETE operations is
positive then it applies the selected arc deletion and
continues to test if there are no more directed cycles
at line 2. If the combined local score change is neg-
ative then it tries to swap an arc of the cycle such

that the combined local score change is maximized
(line 5) and positive. If it fails to find such an op-
eration then it stops breaking cycles and returns an
empty operation set. Finally if it succeeds, break-
ing all cycles, then it returns a feasible set of SWAP
and DELETE operations resulting into a new valid
DAG G′ with a better score than G. The true score
improvement is equal to ∆.

We used a restricted list of alternative candidate
parent nodes X’ at line 5 to avoid that new arcs cre-
ated by swap operations were swapped again, which
guarantees that algorithm 1 terminates.

We apply the same approach to extend the opera-
tor ADD∗, we note that REVERSE∗ is unnecessary
since REVERSE∗(X → Y) = ADD∗(Y → X). The
resulting neighborhood exploiting these extended
operators is denoted NA∗DS ∗ and SGS using this
neighborhood is denoted SGS3 (Stochastic Greedy
Search with Successive Swaps) in the experiments.

4 Experimental Results

In this section, we describe a set of experiments
aimed at testing the performance of SGSi algo-
rithms compared with state-of-the-art Bayesian net-
work structure learning algorithms on standard
Bayesian nets and challenging gene regulatory nets.

4.1 Results on Standard Bayesian Networks

We used four gold-standard networks from the
Bayesian Network Repository5: Alarm, Insurance,
Hailfinder and Pigs networks. The number of nodes
varies from 27 to 441 with a connectivity value
around 1.5. 100 samples of size n = 500 and
n = 5, 000 were generated for each network using
Causal Explorer (Aliferis et al., 2003).

We compared SGSi algorithms with LAGD (Hol-
land et al., 2008), available in the WEKA soft-
ware (Hall et al., 2009) and GES (Chickering, 2002)
implemented in Tetrad 4.4.0 (Scheines et al., 1998).
LAGD and GES were shown to outperform or to
have similar performance to several recent algo-
rithms in (Salehi and Gras, 2009; Alonso-Barba
et al., 2011). Recall that SGS1 is similar to a re-
peated randomized orientations hill-climbing, SGS2

uses the SWAP operator, and SGS3 breaks cycles

5http://www.cs.huji.ac.il/site//labs/compbio/
Repository/

by successive DELETE and SWAP operators. Ex-
periments were performed on a 3 GHz Intel Core2
computer with 4 GB running Linux 2.6.

We fixed the maximum number of parents per
node at k = 5 for SGSi and LAGD. LAGD ex-
ploits a h = 2-look ahead in l = 5 good direc-
tions. GES was restricted on the number of adja-
cent nodes: d = 7 for Hailfinder and d = 10 for Pigs
network as done in (Alonso-Barba et al., 2011). All
methods were initialized by an empty graph and op-
timized the BDeu score with equivalent sample size
α = 1 and no prior on the network structures. For
each sample, we recorded the best score obtained by
GES, and by r = 10 randomized greedy searches for
SGSi as for LAGD6.

Table 1: Wilcoxon test comparing pairs of algo-
rithms (familywise error rate = 5%). For Method1
versus Method2, + means that Method1 is signifi-
cantly better than Method2, − means that Method1
is significantly worse than Method2 and ∼ means
there is no significant result

Alarm Insurance
Sample size 500 5,000 500 5,000
SGS3 vs GES + + + +

SGS3 vs LAGD + + + +

LAGD vs GES + ∼ + +

Hailfinder Pigs
SGS3 vs GES + + + -
SGS3 vs LAGD ∼ + n/a n/a

LAGD vs GES + + n/a n/a

In order to test the statistical significance of the
difference in BDeu score between two methods, we
applied a non-parametric paired test, the Wilcoxon
signed-rank test (Wilcoxon, 1945). Table 1 presents
the test results for SGS3 (which outperformed SGS1

and SGS2), LAGD and GES by using an unilateral
alternative (no difference versus better) and a fami-
lywise error rate of 5%.

SGS3 was the best method for the four networks,
except for Pigs network with n = 5, 000 which is
more accurately estimated by GES. We conjecture
that in this case, GES was closed to its asymptotic
optimal behavior, which may be due to the structure
of Pigs network with small nodes in-degree. LAGD

6We randomly permute the input variables at each run.

failed on the Pigs network due to the large number
of variables p = 441 that makes the exploration of
2-look ahead neighborhoods infeasible in a reason-
able time. GES was the worst method here (except
for Pigs) due to limited sample sizes. Results not
shown here indicate that SGS2 improved over SGS1

and reached the second position and SGS1 outper-
formed LAGD which can be explained by a better
randomization in our implementation.

Although the algorithms are designed to maxi-
mize a (BDeu) score, we generally look for a net-
work structure as close as possible to the true one.
We report in Table 2 the means over 100 datasets
(rounded values to the nearest integer) of the miss-
ing and spurious edges without taking into account
the edge orientations. The structural Hamming dis-
tance (SHD) is the sum of the above values. SGS3

(resp. GES) got the best SHD in 4 (resp. 5) configu-
rations and outperformed LAGD (which performed
as SGS3 in 1 configuration). GES performed ex-
tremely well on the Pigs network, finding the true
network with 5,000 samples, whereas SGS3 learned
too many edges but recovered all the true edges
(even with n = 500). The spurious edges learned by
SGS3 are exclusively due to random orientations of
compelled arcs in v-structures (see Figure 1). As-
suming X1 → X3 ← X2 in the true network (v-
structures are very frequent in the Pigs network) and
a large sample size, if during its greedy search SGS3

adds first X1 ← X3 and X3 → X2, it will add
next a covering edge X1 → X2 or X1 ← X2 in
order to find a minimal I-map (see Proposition 1).
These covered v-structures can be found in post-
processing by selecting for each one the best con-
figuration among the 3 possible v-structures.

4.2 Detailed analysis on the Alarm network
We further analyzed the impact on performances of
the number of restarts r and the initial graph used
by SGSi algorithms on the Alarm network with a
sample size n = 500. Figure 4 reports averaged
BDeu scores on 30 Alarm samples. The 30 initial
random graphs, the same set used by all the SGSi al-
gorithms, are composed of 71 arcs with at most two
parents per node7. All SGSi methods reached a bet-
ter BDeu score than GES in this small sample size

7For each node, we randomly select two parents and remove
a parent if it creates a directed cycle.

Table 2: Number of spurious edges (+) and miss-
ing edges (-) to sum for the structural Hamming dis-
tance.

Alarm Insurance
Sample size 500 5,000 500 5,000
SGS3+ 8 6 4 2
SGS3- 3 2 20 8
LAGD+ 11 8 4 5
LAGD- 4 2 20 11
GES+ 6 4 2 3
GES- 5 2 23 12

Hailfinder Pigs
SGS3+ 17 16 32 41
SGS3- 24 13 0 0
LAGD+ 21 20 n/a n/a

LAGD- 26 19 n/a n/a

GES+ 15 11 2 0
GES- 24 22 7 0

0 5 10 15 20 25 30 35 40 45 50
−5800

−5750

−5700

−5650

−5600

−5550

−5500

Number of restarts

B
D

eu
 s

co
re

Gold

SGS3 Empty

SGS3 Random

SGS2 Empty

SGS1 Empty

GES

SGS2 Random

SGS1 Random

Figure 4: Best BDeu scores, averaged on 30 Alarm
samples (n = 500), found by SGSi algorithms as
the number of restarts r increases and starting ei-
ther from an empty (solid line) or a random graph
(dashed line). Results of GES (dotted line) and
BDeu score of the true network Gold (dash-dotted
line) are also given. Methods are sorted by decreas-
ing BDeu score at r = 1.

situation by the use of less than r = 4 restarts. SGSi

methods converged quite rapidly as r increases. For
a fixed r, SGS1 was twice faster than SGS3. Only
SGS3 found a better score than the true network.
Initial random graphs were counter-productive for
all the methods, except for SGS3. It shows that start-

ing from a random graph is useful if the available
operators are able to move efficiently in the search
space. On the contrary, using randomness to select
among the best neighbors was always beneficial.

4.3 Results on Gene Regulatory Networks
Gene regulatory network reconstruction from gene
expression data using Bayesian network structure
learning was first proposed in (Friedman et al.,
2000). We used simulated expression datasets of
the DREAM5 Systems Genetics Challenge A (de la
Fuente, 2010). Genetics data were not used as they
require additional modelling to be taken into ac-
count, see e.g. (Vignes et al., 2011). Expression
data were generated using the SysGenSIM genera-
tor (Pinna et al., 2011) based on ordinary differen-
tial equation simulation. Five datasets are available
for three different sample sizes (n = 100, 300, and
999). The 15 datasets were obtained from differ-
ent known gene networks composed of 1, 000 vari-
ables and containing directed cycles. For each sam-
ple size, the five network structures contain a differ-
ent number of edges varying from ≈ 2, 000 (Net1)
to more than 5, 000 (Net5). We discretized gene ex-
pression levels into 2 to 4 states using an adaptive
method based on an adapted k-means algorithm and
the more general framework of Gaussian mixture
models as described in (Vignes et al., 2011).

With such large networks, we had to adapt the
learning procedure of SGSi algorithms8. We de-
cided to restrict their lists of candidate parents as
done in (Goldenberg and Moore, 2004): we se-
lected for each variable X the set of parents S such
that each element Y of S improves the local BDeu
score when it is considered as a unique parent com-
pared to the orphan situation (fX(D, {Y → X}) >

fX(D, ∅)). This filtering process was done before the
search. In these experiments, SGSi algorithms have
a maximum number of parents per node fixed at k =

5 and use r = 10 restarts. Instead of LAGD (which
was too slow), we used MMHC (Tsamardinos et al.,
2006) having two steps similar to SGSi but using
mutual information measures. We recorded the best
BDeu score of 10 runs for MMHC, by randomly
permuting the input variables at each run. All the
methods started from an empty graph and optimized

8GES managed in ∼1-hour CPU time each network thanks
to its better implementation of caching and heap data structure.

the BDeu score with α = 1 and no prior on the net-
work structures.

Table 3: Wilcoxon test (error rate = 5%) for differ-
ent gene network sample sizes

100 300 999
SGS3 vs MMHC + + +

SGS3 vs GES + + +

MMHC vs GES - ∼ +

As there were no replicated samples of the same
network, we performed the Wilcoxon test on pooled
groups for each sample size. We applied a pairwise
type I error of 5% and we did not try to correct for
multiple comparisons, see Table 3. However, it is
worth noting SGS3 was always the best method, in-
creasing the BDeu score by about 2% in average.

Surprisingly, GES appeared to be better on
smaller sample sizes compared to MMHC. MMHC
was penalized by its filtering process, especially on
the smallest sample size, whereas GES had no re-
strictions on the candidate parent sets.

In these experiments, the structural Hamming
distance (SHD) was not informative due to the poor
results reached by all tested algorithms for such
large networks, even the empty structure appears
better. For this reason, we computed the Euclidean
distance to the origin (

√
precision2 + recall2).

Contrary to SHD, a high distance indicates a bet-
ter structural quality. We observed in Table 4 con-
trasted performances between the tested methods
depending on the sample size: for n=100, MMHC
got the best results, for n = 300, it was GES, and
finally SGS3 performed the best for the largest sam-
ple size. Better BDeu scores are not always syn-
onymous with a better structural quality, the limited
sample size in addition to the non faithfulness of the
data could explain this behavior.

Table 4: Euclidean distances to the origin of the
(precision, recall) values. Means of the 5 networks
for each sample size.

n SGS3 MMHC GES
100 0.201 0.258 0.224
300 0.442 0.437 0.456
999 0.514 0.482 0.500

5 Conclusion

We presented in this paper new greedy search al-
gorithms called SGSi exploiting stochasticity from
two random draws. We have developed a new local
move operator called SWAP and extended versions
for ADD and SWAP operators to overcome frequent
limitations of local search methods which are local
maxima and cyclic situations. We compared SGS3

using SWAP and extended operators to state-of-the-
art methods and we obtained significant BDeu im-
provements on classical benchmarks and also sim-
ulated gene regulatory network datasets when the
sample size is small. The complexity of SGS3 stays
moderate with sparse networks.

In the future, we would like to test our operators
with other local search methods like tabu search.

Acknowledgements We would like to thank the
anonymous reviewers for their helpful comments.

References
C. Aliferis, I. Tsamardinos, A. Statnikov, and L. Brown.

2003. Causal Explorer: A Probabilistic Network
Learning Toolkit for Biomedical Discovery. In Proc.
of METMBS’2003, Las Vegas, Nevada, USA.

J. Alonso-Barba, L. de la Ossa, and J. Puerta. 2011.
Structural learning of bayesian networks using local
algorithms based on the space of orderings. Soft Com-
put, pages 1881–1895.

L.M. de Campos, J.M. Fernandez-Luna, and J.M. Puerta.
2002. Local Search Methods for Learning Bayesian
Networks Using a Modified Neighborhood in the
Space of DAGs. In LNCS (2527), pages 182–192.

D. Chickering and D. Heckermann. 1996. Learning
bayesian networks is NP-complete. In learning from
data: Al and Statistics.

D. Chickering. 2002. Optimal structure identification
with greedy search. Journal of Machine Learning Re-
search, 3:507–554.

R. Daly, Q. Shen, and S. Aitken. 2011. Learning
Bayesian networks: approaches and issues. The
Knowledge Engineering Review, 26(2):99–157.

A. de la Fuente. 2010. The DREAM5 Systems Ge-
netics Challenges. http://wiki.c2b2.columbia.
edu/dream/index.php/D5c3.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. 2000.
Using bayesian networks to analyse expression data.
Journal of computational biology, 7(3/4):601–620.

J. Gámez, J. Mateo, and J. Puerta. 2011. Learning
Bayesian networks by hill climbing: efficient methods
based on progressive restriction of the neighborhood.
Data Min. Knowl. Discov., 22:106–148.

A. Goldenberg and A. Moore. 2004. Tractable learn-
ing of large Bayes net structures from sparse data. In
Proc. of ICML’04, pages 44–51.

M. Hall, F. Eibe, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. Witten. 2009. The WEKA Data Mining
Software. SIGKDD Explorations, 11.

D. Heckerman, D. Geiger, and D. Chickering. 1995.
Learning Bayesian Networks: The Combination of
Knowledge and Statistical Data. In Machine Learn-
ing, volume 20, pages 197–243.

A. Holland, M. Fathi, M. Abramovici, and M. Neubach.
2008. Competing fusion for bayesian applications. In
Proc. of IPMU 2008, pages 378–385.

D. Koller and N. Friedman. 2009. Probabilistic Graphi-
cal Models: Principles and Techniques. MIT Press.

A. Moore and W.K. Wong. 2003. Optimal reinsertion: A
new search operator for accelerated and more accurate
bayesian network structure learning. In Proc. of ICML
’03, pages 552–559.

J. Nielsen, T. Kocka, and J. Pefia. 2003. On Local Op-
tima in Learning Bayesian Networks. In Proc. of UAI-
03, pages 435–442.

A. Pinna, N. Soranzo, I. Hoeschele, and A. de la Fuente.
2011. Simulating system genetics data with SysGen-
SIM. Bioinformatics, 27:2459–2462.

E. Salehi and R. Gras. 2009. An empirical comparison
of the efficiency of several local search heuristics al-
gorithms for Bayesian network structure learning. In
Proc. of LION 3, Trento, Italy.

R. Scheines, P. Spirtes, C. Glymour, C. Meek, and
T. Richardson. 1998. The TETRAD Project: Con-
straint Based Aids to Causal Model Specification.
Multivariate Behavioral Research, 33(1):65–117.

I. Tsamardinos, L. Brown, and C. Aliferis. 2006. The
max-min hill-climbing Bayesian network structure
learning algorithm. Mach. Learn., 65:31–78.

M. Vignes, J. Vandel, D. Allouche, N. Ramadan,
C. Cierco, T. Schiex, B. Mangin, and S. de Givry.
2011. Gene Regulatory Network Reconstruction Us-
ing Bayesian Networks, the Dantzig Selector, the
Lasso and Their Meta-Analysis. PLoS ONE, 6(12).

F. Wilcoxon. 1945. Individual Comparisons by Ranking
Methods. Biometrics Bulletin, 1:80–83.

