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What is it and why do we need it?

Can it be done efficiently?

Search

Problem transformations

Open problems

Valued Constraint Satisfaction



Chapter 1. What is it?

Motivation, 

Definitions,

Some general theorems



A unifying abstraction

= Talks to be scheduled at conference

Transmitters to be assigned frequencies

Amino acids to be located in space

Circuit components to be placed on a chip

Variables



A unifying abstraction

= All invited talks on different days

No interference between near transmitters

x + y + z > 0

Foundations dug before walls built

Constraints



A unifying abstraction

A solution is an assignment of values to variables that

satisfies all the constraints
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But what if…

There are lots of solutions, but some are better 

than others?

There are no solutions, but some assignments 
satisfy more constraints than others?

We don’t know the exact constraints, only 

probabilities, or fuzzy membership functions?

We’re willing to violate some constraints if we 

can get a better overall solution that way?
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Fragmentation

COP

Max-CSP
Max-SAT
WCSP

FCSP
HCLP

Pseudo-Boolean Optimisation
Bayesian Networks
Random Markov Fields

Integer Programming
…



A solution is an assignment of values to variables that

satisfies all the constraints

A unifying abstraction

associate costs with each assignmentConstraints

A solution is an assignment of values to variables that

minimises the combined costs 
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Definition of a VCSP instance

a set of n variables Xi with domains di

a set of valued constraints, where each  
constraint has a

 scope (list of variables)

 cost function (function from assignments 
to costs)

It only remains to specify what the possible costs are, 
and how to combine them



11

Definition of a valuation structure

a set S of costs

a total order <

minimum and maximum elements:

we denote these by 0 and 

an aggregation operator  which is 
commutative, associative, monotonic, 
and such that , 0=
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Examples of valuation structures

If S = {0, },  then VCSP  CSP

If S = {0, 1, 2, …, }, and  is addition,

then VCSP generalizes MAX-CSP

If S = [0,1],  and  is max, then VCSP  Fuzzy CSP

If S = {0, 1, …., k}, and  is bounded addition +k

where +k  = min {k, +}, then VCSP  WCSP
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Families of valuation structures

A valuation structure is idempotent if      
, =

All idempotent valuation structures 

are equivalent to Fuzzy CSP
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Families of valuation structures

A valuation structure is strictly monotonic if
<, <,   < 

All strictly monotonic valuation structures 

can be embedded in a fair valuation structure

A valuation structure is fair if

aggregation has a partial inverse, that is, 

,  such that =
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Families of valuation structures

A valuation structure is discrete if between any 

pair of finite costs there are finitely many 

other costs

All discrete and fair valuation structures 

can be decomposed into 

a contiguous sequence of valuation structures 

with aggregation operator +k
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Chapter 2. Efficiency

Structural restrictions,

Valued constraint languages,

Submodularity,

Multimorphisms



General question

Having a unified formulation allows us to 
ask general questions about efficiency:

When is the VCSP

tractable?



Problem features

This picture illustrates the constraint scopes

The set of scopes is sometimes called the 
constraint hypergraph, or the scheme

Restricting the scheme can lead to 
tractability, as in the standard CSP
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Structural tractability

Tree-structured binary VCSPs are tractable

x1

x2 x3

x4 x5 x6 x7

Project out leaf nodes by minimising over possible assignments

Proceed from the leaf nodes to a chosen root node

Time complexity O(e d2)
Space complexity O(n d)

n: number of variables
d: maximum domain size
e: number of cost functions



E1

E2

E3
E4

Bounded treewidth VCSPs are tractable

Tree decomposition

E1

E2

E3

E4

Time complexity O(e dw+1)
Space complexity O(n ds)

w: bounded treewidth
= max |Ei| - 1

s: max {|Ei  Ej|: i≠j}

Finding a tree decomposition with minimum w* is NP-hard!
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Tree decomposition example
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CELAR scen06r
n = 82

d = 44
e = 327

w = 26
s = 3

Benchmark problem
assigning frequencies
to transmitters
to minimise total interference



Problem features

We have seen that structural features of a  
problem can lead to tractability

This is very similar to the standard CSP

What about other kinds of restrictions to the VCSP?



More problem features

The picture now emphasises the cost functions

Restricting the cost functions we allow can also 

lead to tractability

C1

C2

C3
C4
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Valued constraint languages

A set of cost functions is called a valued constraint 
language 

VCSP() represents the set of VCSP instances whose 
cost functions belong to the valued constraint 
language 

For some choices of  , VCSP() is tractable

We will consider some examples where the valuation 
structure contains non-negative real values and 
infinity, and aggregation is standard addition
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Submodular functions

where min and max are applied component-wise, i.e. 

min(<s1,…,sk>,<t1,…,tk>)  = <min(s1,t1),…,min(sk,tk)>

VCSP(submodular) is tractable

A cost function c is submodular if s,t

c(min(s,t)) + c(max(s,t))  c(s) + c(t)

A class of functions that has been widely studied in OR is
the submodular functions…



x y z

0 0 0 0

0 0 1 1

0 1 0 7

0 1 1 1

1 0 0 ∞

1 0 1 3

1 1 0 ∞

1 1 1 0

0 0 1 1

1 0 1  Maximum

1 0 0 ∞

Examples of submodular functions



x y z

0 0 0 0

0 0 1 1

0 1 0 7

0 1 1 1

1 0 0 ∞

1 0 1 3

1 1 0 ∞

1 1 1 0

0 0 1 1

1 0 0 ∞

1 0 1 3 Maximum

0 0 0 0 Minimum

+        = 3

+        = ∞

s,t  Cost(Min(s,t)) + Cost(Max(s,t))  Cost(s) + Cost(t) 

Examples of submodular functions

s

t
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Examples of submodular functions

all unary functions

all linear functions (of any arity)

the binary function cut

where cut(a,b)=1 if (a,b)=(0,1)  (0 otherwise)

the rank function of a matroid

the Euclidean distance function between two 
points (x1, x2), (x3, x4) in the plane

(x,y)=(x-y)r if x ≥ y ( otherwise) for r ≥ 1 
(compare “Simple Temporal CSPs with strictly monotone preferences” 

Khatib et al, IJCAI 2001)
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Example: Min-Cut

The Min-Cut problem can be modelled by the 

single submodular binary cost function cut

1

00

00

0

0 0

Solution to VCSP is a Min-Cut

cut(a,b)=1 if (a,b)=(0,1)

Valued constraints on 
all edges (both ways) 

with cost function cut

VCSP with domain {0,1}
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Algorithms

The best known general algorithm for 

Boolean submodular function minimisation 

is O(n6)

(see Orlin “A faster strongly polynomial time algorithm for submodular 

function minimization”, Mathematical Programming, 2009)

However, many special cases can be solved 
much more efficiently…



Boolean submodular functions
Many Boolean submodular functions can be 

expressed using the binary function cut

(these include all {0,1}-valued Boolean submodular 
functions, all binary and all ternary Boolean 

submodular functions, and many others)
(
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VCSP({cut}) is O(n3)

See Zivny & Jeavons “Classes of submodular constraints 
expressible by graph cuts”, Constraints, 2010



Binary submodular functions

x1

x2
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Binary VCSP(submodular) is O(n3d3)

See Cohen et al “A maximal tractable class of soft constraints”, JAIR 2004

Binary submodular functions 
over any finite domain 

can be expressed as a sum of

”Generalized Interval” functions

(they correspond to Monge matrices)



x y z

0 0 0 0

0 0 1 1

0 1 0 7

0 1 1 1

1 0 0 ∞

1 0 1 3

1 1 0 ∞

1 1 1 0

s,t  Cost(Min(s,t)) + Cost(Max(s,t))  Cost(s) + Cost(t) 

By choosing other functions, 

we can obtain other tractable 

valued constraint languages…

We say that the cost function has 

the multimorphism (Min,Max)

Beyond submodularity



Known tractable cases

1) (Min,Max)

2) (Max,Max)

3) (Min,Min)

4) (Majority,Majority,Majority)

5) (Minority,Minority,Minority)

6) (Majority,Majority,Minority)

7) (Constant 0)

8) (Constant 1)

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable:

See Cohen et al “The complexity of soft constraint satisfaction”, AIJ 2006



A dichotomy theorem

1) (Min,Max)

2) (Max,Max)

3) (Min,Min)

4) (Majority,Majority,Majority)

5) (Minority,Minority,Minority)

6) (Majority,Majority,Minority)

7) (Constant 0)

8) (Constant 1)

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable:

See Cohen et al “The complexity of soft constraint satisfaction”, AIJ 2006

For Boolean cost 

functions…

In all other cases the 
cost functions have 
no significant 

common 
multimorphisms and 

the VCSP problem is 
NP-hard.
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Benefits of a general approach

The dichotomy theorem immediately implies 
earlier results for SAT, MAX-SAT, Weighted 
Min-Ones and Weighted Max-Ones

Multimorphisms have also been used to show 
that not all submodular functions can be 
expressed using binary functions (see Zivny et al 
“The expressive power of binary submodular functions”, Discrete 
Applied Maths, 2009) 

Multimorphisms allow submodularity to be 
generalised to a bigger class of tractable 
languages (see Cohen et al “Generalizing submodularity and 
Horn clauses: Tractable optimisation problems defined by tournament 
pair multimorphisms”, Theoretical Computer Science, 2008) 
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Chapter 3. Search
using problem transformations

Branch and Bound,
Equivalence-preserving operations, 
Soft local consistency (node, arc, 
directional, virtual, optimal),
Soft global constraints.



DepthFirst Branch and Bound (DFBB)

(LB) Lower Bound

(UB) Upper Bound

If        UB then prune

V
a
ri
a
b
le

s 
(d

yn
a
m

ic
 o

rd
e
ri
n
g
)

under estimation of the 
best solution

in the sub-tree

= best solution found so far

Each node is a VCSP subproblem
(defined by current conditioning)

LBc

= c

= k

k

Obtained by enforcing local consistency

40



41

Equivalence-preserving 
transformations (EPT)

An EPT transforms VCSP instance P1 
into another VCSP instance P2 with the 
same objective function.

Examples of EPTs:

- Propagation of inconsistencies ( costs)

- UnaryProject

- Project/Extend

INCREMENTALITY!
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UnaryProject(i,)

Precondition: 0    min{ci(a) : a  di} 

c0 := c0 +  ;

for all a  di  do

ci(a) := ci(a) -  ;

Increases the lower bound c0 if all unary 

costs ci(a) are non-zero.
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Project(M,i,a,)

Precondition: iM, adi, -ci(a)    min{cM(x): x[i]=a} 

ci(a) := ci(a) +  ;

for all x  labelings(M) s.t. x[i]=a do

cM(x) := cM(x) -  ;

If >0, this projects costs from cM to ci

If <0, this extends costs from ci to cM
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Node and soft arc consistency

Node consistent (NC) if i 

no UnaryProject(i,) is possible for >0 and 
no propagation of  costs possible between ci

and c0 (forbidden values removed if ci+c0  k)

Soft arc consistent (SAC) if M,i,a 

no Project(M,i,a,) is possible for >0
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The SAC closure is not unique

1

1

1

1

1

1

••

•

•

•

•

•

•

•

••

•

OR
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Different soft AC notions:

Directional: send costs from Xj to Xi if i<j (in 
the hope that this will increase c0)

Existential: i, send costs to Xi

simultaneously from its neighbor variables if 
this increases c0

Virtual: no sequence of Projects/Extends 
increases c0

Optimal: no simultaneous set of 
Projects/Extends increases c0
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Directional Arc Consistency 

for all i<j, a  di b  dj such that

cij(a,b) = cj(b) = 0.

Solves tree-structured VCSPs

FDAC (Full Directional AC) = 

Directional AC + Soft AC

FDAC can be established in O(end3) 
time (or in O(ed2) time if +k is +)
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Existential Arc Consistency

node consistent and i, adi such 
that ci(a) = 0 and for all cost functions 
cij , b  dj such that cij(a, b) = cj(b) =0

EDAC = Existential AC + FDAC

EDAC can be established in 

O(ed2 max{nd,k}) time
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Virtual Arc Consistency (VAC)

If P is a VCSP instance then Bool(P) is 
the CSP instance whose allowed tuples 
are the zero-cost tuples in P-c0

If Bool(P) has a solution, then P has a 
solution of cost c0 (but usually Bool(P) 
has no solution)

Definition: P is VAC if Bool(P) is AC.



50

Approximating VAC

If a sequence of AC operations in Bool(P) 
leads to a domain wipe-out, then a similar 
sequence of SAC operations in P increases c0

But, in this sequence, costs may need to be 
sent in more than one direction from the 
same cM  Introduction of fractional weights

VAC algorithm may converge to a local 
minimum (and more, an instance P’ which is 
not VAC)

VAC can be established in O(ed2 k/) time
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Optimal Soft Arc Consistency

We can overcome this problem of 
convergence by solving a LP to find the set of 
simultaneous UnaryProject and Project 
operations which maximises c0.

The resulting VCSP instance is OSAC
(Optimal Soft Arc Consistent).

OSAC is strictly stronger than VAC.

Unfortunately, the LP has O(edr+n) variables 
and O(edr+nd) constraints, and hence only 
useful for pre-processing.



Example
-1

1

1

1

1

1

1

c0 = 1

a

bb

c

a c

c

ca

a

X
1

X
2

X
3

X
4

AC,DAC,FDAC,EDAC,VAC
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Hierarchy

NC*

AC* DAC*

FDAC*

AC

NC

DAC

Special case: CSP (k=1)

EDAC*

VAC

OSAC

Solve tree-like
primal graphs

Solve submodular
cost functions
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Some practical observations

For very hard-to-solve instances, 
maintaining VAC provides a significant 
speed-up, however for many problems, 
maintaining a simpler form of soft arc 
consistency (e.g. EDAC) is faster.

Unary costs ci(a) and EAC value inform 
value and variable ordering heuristics

54
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AC for soft global constraints

Suppose that a global cost function cM can 

be coded as the minimum cost of a maximum 

flow in a network in which (a) there is a one-

to-one correspondence between max-flows 
and global labellings and (b) each assignment 

(xi,a) has a corresponding edge eia such that 
the max-flow is 1 in eia if xia (0 if xia). 

Then it is possible to project  from cM to 

ci(a) by reducing cost(eia) by .

(van Hoeve et al, J. Heur. 2006) (Lee & Leung, IJCAI’09)
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Network representing soft Alldiff
 Min number of variables with same value

variable-based costs (Beldiceanu & Petit, CPAIOR’04)

1

1

2

2
a

b

c

d

x1

x2

x3

x4

All edge capacities
are equal to 1

All edge costs are 0
if not indicated

The flow shown is a min-cost max-flow with x1=a.
We can project 1 from cM to c1(a) by reducing the 

cost of the blue edge from 0 to –1.



Latin Square N x N with costs

Example of solution for N = 5:

2  1  3  5  4

4  2  1  3  5

1  5  4  2  3

5  3  2  4  1

3  4  5  1  2

Objective: 49

57

All variables take a different value
in each row and each column

A unary cost function for each cell
fi,j(xi,j) : D  [0,MaxCost[

Objective = i j fi,j(xi,j)



Latin Square with costs
in CHOCO

//1- Create the model

int n = 4;

int maxcost = 10;

CPModel m = new CPModel();

//2- Create the variables

IntegerVariable[] nvars = makeIntVarArray("Q", n  * n, 1, n);

IntegerVariable[] costvars = makeIntVarArray("C", n  * n, 0, maxcost-1);

IntegerVariable obj = makeIntVar("O", 0, (maxcost-1)*n*n, Options.V_OBJECTIVE);

int[][][] costs = new int[n][n][n];

//3- Create the random unary costs

Random rand = new Random();

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

for (int k = 0; k < n; k++) {

costs[i][j][k] = rand.nextInt(maxcost);}}}
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Latin Square with costs
in CHOCO

//4- Post constraints 

for (int i = 0; i < n; i++) {

IntegerVariable[] line = new IntegerVariable[n];

IntegerVariable[] column = new IntegerVariable[n];

for (int j = 0; j < n; j++) {

row[j] = nvars[i*n +j];

column[j] = nvars[i+j*n];

m.addConstraint(Options.C_NTH_G, nth(nvars[i*n+j], costs[i][j], costvars[i*n+j], 0));

}

m.addConstraint(allDifferent(row));

m.addConstraint(allDifferent(column));

}

m.addConstraint(eq(sum(costvars), obj));

//5- Create the solver

Solver s = new CPSolver();

s.read(m);

s.minimize(false);
59



Latin Square with costs
in toulbar2

latin4 16 4 24 145

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 0 1 2 3 -1 salldiff var 1000000

4 4 5 6 7 -1 salldiff var 1000000

4 8 9 10 11 -1 salldiff var 1000000

4 12 13 14 15 -1 salldiff var 1000000

4 0 4 8 12 -1 salldiff var 1000000

4 1 5 9 13 -1 salldiff var 1000000

4 2 6 10 14 -1 salldiff var 1000000

4 3 7 11 15 -1 salldiff var 1000000

1 0 0 4

0 0

1 3

2 9

3 1

60

pbname, n, d, e, k 

domain sizes

hard AllDifferent on rows

hard AllDifferent on columns

unary cost functions
value,cost

#vars, scope, defcost, #tuples



Latin Square with costs

61choco  v2.1.1, toulbar2 v0.9.3, sicstus v4.1.2 on linux PC 2.66 Ghz 64GB

GCC_Cost (Régin, Constraints 2002)
EDGAC (Lee & Leung, AAAI 2010)
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For an overview of soft local consistencies, see

“Soft arc consistency revisited”,
Cooper, de Givry, Sanchez, Schiex, Zytnicki & 

Werner, AIJ 2010.

For soft global constraints (FDGAC), see

“Towards Efficient Consistency Enforcement for 
Global Constraints in Weighted Constraint 
Satisfaction”, Lee & Leung, IJCAI 2009.

62



Chapter 4. Search
exploiting the problem structure

BB-VE(2), BTD, AND/OR search 



Solving methods

Search: Conditioning

Complete

Incomplete

Simulated Annealing
Tabu Search, VNS,

Complete

Incomplete

Cluster Tree Elimination

Variable Elimination

Local Consistency

Mini-bucket(i)

Stochastic Local SearchDepth-First 

Branch & Bound

A*

Inference: Elimination
Time: exp(treewidth)

Space:exp(treewidth)

Time: exp(n)

Space: linear

Hybrids

BTD, AND/OR graph 

search
Time: exp(treewidth)

Space: exp(treewidth)

(slide from IJCAI’09 tutorial) 64

BB-VE

Time: exp(n)

Space: linear
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Many real applications have a structured network

SPOT5 #509 (Constraints 4(3), 1999) 

langladeM7 sheep pedigree

(Constraints 13(1), 2008) 

CELAR SCEN-07r

(Constraints 4(1), 1999) 

Earth

Observation

Satellite

Management

Radio
Link

Frequency
Assignment

Mendelian
Error

Detection

Tag
SNP

Selection

HapMap chr01 r2≥0.8 #14481

(Bioinformatics 22(2), 2006)



CELAR 6 results since 1993 
n. of vars: n=100, domain size: d=44, n. of cost functions: e=1222

66

Time of optimality proof Method(s) used Publication

26 days
(SUN UltraSparc 167 MHz)

Ad-hoc problem 
decomposition & Russian 
Doll Search (22 vars only)

(de Givry, Verfaillie, 
Schiex, CP 1997)

3 days
(SUN Sparc 2)

Ad-hoc problem 
decomposition & PFC-
MRDAC (22 vars only) 

(Larrosa, Meseguer, 
Schiex, AIJ 1998)

8 hours
(DEC Alpha 500MP)

Preprocessing rules & 
Cluster Tree Elimination

(Koster PhD thesis, 1999)

3 hours
(PC 2.4 GHz)

B&B with EDAC & tree 
decomposition (BTD)

(de Givry, Schiex, 
Verfaillie, AAAI 2006)

3 minutes
(PC 2.6 GHz)

BTD & variable ordering 
heuristisc &dicho branching

(Sanchez, Allouche, de 
Givry,Schiex, IJCAI 2009)

CELAR 7 (n=200) solved in  4.5 days (Sanchez et al, IJCAI 2009)

CELAR 8 (n=458) solved in 127 days (Allouche et al, CP 2010)

All CELAR and GRAPH instances are closed!



(slide from IJCAI’09 tutorial) 67

Conditioning vs. Elimination

A

G

B

C

E

D

F

Conditioning (search) Elimination (inference)

A=1 A=d…

G

B

C

E

D

F

G

B

C

E

D

F

A

G

B

C

E

D

F

G

B

C

E

D

F

d “sparser” problems 1 “denser” problem



First hybrids:
Search & Variable Elimination

Condition, condition, condition … and 
then only eliminate (Cycle-Cutset)

Eliminate, eliminate, eliminate … and
then only search

Interleave conditioning and elimination

(slide from IJCAI’09 tutorial) 68



Interleaving Conditioning and Elimination

BB-VE(2) (Larrosa & Dechter, CP 2002)

(slide from IJCAI’09 tutorial) 69



Interleaving Conditioning and Elimination

BB-VE(2)

(slide from IJCAI’09 tutorial) 70



Interleaving Conditioning and Elimination

BB-VE(2)

(slide from IJCAI’09 tutorial) 71



Interleaving Conditioning and Elimination

BB-VE(2)

(slide from IJCAI’09 tutorial) 72



Interleaving Conditioning and Elimination 

BB-VE(2)

(slide from IJCAI’09 tutorial) 73



Interleaving Conditioning and Elimination

BB-VE(2)

(slide from IJCAI’09 tutorial) 74



Interleaving Conditioning and Elimination

BB-VE(2)

...

...

(slide from IJCAI’09 tutorial) 75



Second hybrids:
Search & Cluster Tree Elimination

Depth-First Branch and Bound
exploiting a tree decomposition with:

 A restricted variable ordering

 Graph-based backjumping

 Graph-based learning

 Lazy elimination of subproblems

using search

76
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Soft 2-Coloring example

A

D

B C

E

F

G
J

I
H

K

Xi Xj cij

1

0

0

1
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Soft 2-Coloring example

A

D

B C

E

F

G
J

I
H

K

Optimal solution 
with a cost of 5
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C5

C4

C3

C2

C1

Tree Decomposition

C3

C1

C4C2

C5

A

D

B C

E

F

G
J

I H

K

{D} {D}

{E,F} {D,I,J}
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C4

C3

C

2

C1

Search with Tree Decomposition

C5

A

D

B C

E

F

G
J

I
H

K

The assignment
of a separator
disconnects the problem
into two independent
subproblems

C3

C1

C4C2

C5

{D} {D}

{E,F} {D,I,J}
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C4
C5

C3

C2

0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1

E

G

F

D0 1

A

D

B C

E

F

G

J

I H

K

Search with Tree Decomposition

K

J

I 

H 

P2 / {(D=red)}

C3

C1

C4C2

C5

P4 / {(D=red)}

P2 / {(D=green)}

P4 / {(D=green)}

{D} {D}

{E,F} {D,I,J}

AND/OR tree search
(Marinescu & Dechter, AIJ 2009)

time O(exp(w log(n))
linear space
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Search with Tree Decomposition

0 1 0 1

0 1 0 1 0 1 0 1

0 1

F

G

E

D
0

P2 / {(D=red)}

C4
C5

C3

C2

A

D

B C

E

F

G

J

I H

K



(Marinescu & Dechter, AAAI 2006)

IJCAI 2009 83

Search with Tree Decomposition

0 1 0 1

0 1 0 1 0 1 0 1

0 1

F

G

E

D
0

Record the optimum 
of P2 / {(D=red)}

LBP2 / {(D=red)} = 1
OPTP2 / {(D=red)} = true

P2 / {(D=red)}

Assume a global upper
bound k = 5.

It may be useless to 
compute the optimum of 
P2 / {(D=red)},
only a lower bound is
needed!

C4
C5

C3

C2

A

D

B C

E

F

G

J

I H

K

AND/OR graph search
(Marinescu & Dechter, AIJ 2009) 

time O(exp(w))
space O(exp(w))
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Backtrack bounded by Tree Decomposition 

0 1 0 1

0 1 0 1 0 1 0 1

0 1

F

G

E

D
0

P2 / {(D=red)}

Assume a global upper
bound k = 5.

It may be useless to compute the 

optimum of P2,

only a lower bound is needed!

Add a local upper bound:
UBP2 / {(D=red)} = k – 3 – LBP4 / {(D=red)}

UBP2 / {(D=red)} = k – 3 – max ( c
C4 + c

C5, LBP4 / {(D=red)} )

Maintaining local consistency Recorded during search

C3

C1

C4C2

C5

C4
C5

C3

C2

A

D

B C

E

F

G

J

I H

K

BTD
(Jégou & Terrioux, ECAI 2004)
(de Givry et al., AAAI 2006)
time O(k*exp(w))
space O(exp(w))



Some practical observations

BTD may use much less memory than 

Variable Elimination thanks to pruning

Impact of root cluster

 Choose the largest / most costly cluster as root

Exploit small separators only
(Jégou, Ndiaye & Terrioux, CP 2007)

 Give more freedom for the dynamic variable 

ordering heuristic

 Tuning based on treewidth versus separator size

BB-VE(2) often faster than BTD
85



Haplotype reconstruction in 
half-sib pedigrees

86

(Favier et al, WCB’10)

Read dataset 
HAPMAP

Chr.X with 
36,000 markers
treewidth < 15
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Applications / benchmarks
Resource Allocation

 Frequency assignment (Allouche et al, CP 2010) CTE, BTD, VAC
n ≤ 458, d=44, e(2) ≤ 5,000

 Satellite management (Verfaillie et al, AAAI 1996) RDS, RDS-BTD
n ≤ 364, d=4, e(2-3) ≤ 10,108

 Uncapacitated warehouse location (Zytnicki et al, IJCAI 2005) EDAC,VAC,
n ≤ 1,100, d ≤ 300, e(2) 100,000 ILP0/1

Bioinformatics

 Genetic linkage analysis (Marinescu & Dechter, AAAI 2006) AND/ORsearch
n≤1,200, d≤7, e(2-5)≤2,000

 Mendelian error detection (Sanchez et al, Constraints 2008) EDAC3,BB-VE
n≤20,000, d≤66, e(3)≤30,000

 RNA gene finding (Zytnicki et al, Constraints 2008) BAC
n≈20, d>100 million, e(4)≈10

 Tag SNP selection (Sanchez et al, IJCAI 2009) RDS-BTD, ILP0/1
n≤1,500, d≤266, e(2) ≤ 150,000

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

toulbar2, aolib

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP


Chapter 5. Open problems

Concerning problem definition, 
search, transformations, tractable 
classes



90

Possible extensions to VCSP

Partial order instead of total order

2 arbitrary binary operators (e.g. 
calculating the sum of products instead 
of the min of the sum subsumes #CSP)

Objective function not constructible 
using a binary aggregation operator 
(e.g. the median of the set of costs)
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Tractability

Can we characterize/unify all tractable 
classes of VCSP over non-Boolean 
domains?

Are there interesting tractable classes 
apart from submodular functions?

Are there more efficient algorithms for 
submodular function minimisation?
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New search methods

Identify and exploit good
tree decompositions automatically

 Small treewidth versus small separators

 Dynamic tree decomposition

Variable and value ordering heuristics

Incomplete search strategies

 Large Neighbourhood Search,...

Parallel B & B / CTE methods
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New problem transformations

Applying rules involving ≥2 constraints

Transformations which preserve 

at least one solution (if it exists)

but do not necessarily preserve costs.

Decomposition into several problems 
whose sum is equal to the original VCSP
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Conclusion

VCSP combines CSP and optimisation  
in a unified way

Many CSP notions have been extended 
to the VCSP framework (consistency, 
global constraints, expressibility, 
tractability,…)

Technology is usable and useful, but 
still maturing


