
Valued Constraint Satisfaction
Tutorial – CP 2010

with contributed slides by Thomas Schiex (INRA, France), Javier Larrosa (UPC, Spain),
D. Allouche & A. Favier (INRA, France), R. Dechter (UCI, USA), R. Marinescu (4C, Ireland)

Peter Jeavons
University of Oxford, UK

Martin Cooper
IRIT, Toulouse, France

Simon de Givry
INRA, Toulouse, France

2

What is it and why do we need it?

Can it be done efficiently?

Search

Problem transformations

Open problems

Valued Constraint Satisfaction

Chapter 1. What is it?

Motivation,

Definitions,

Some general theorems

A unifying abstraction

= Talks to be scheduled at conference

Transmitters to be assigned frequencies

Amino acids to be located in space

Circuit components to be placed on a chip

Variables

A unifying abstraction

= All invited talks on different days

No interference between near transmitters

x + y + z > 0

Foundations dug before walls built

Constraints

A unifying abstraction

A solution is an assignment of values to variables that

satisfies all the constraints

7

But what if…

There are lots of solutions, but some are better

than others?

There are no solutions, but some assignments
satisfy more constraints than others?

We don’t know the exact constraints, only

probabilities, or fuzzy membership functions?

We’re willing to violate some constraints if we

can get a better overall solution that way?

8

Fragmentation

COP

Max-CSP
Max-SAT
WCSP

FCSP
HCLP

Pseudo-Boolean Optimisation
Bayesian Networks
Random Markov Fields

Integer Programming
…

A solution is an assignment of values to variables that

satisfies all the constraints

A unifying abstraction

associate costs with each assignmentConstraints

A solution is an assignment of values to variables that

minimises the combined costs

10

Definition of a VCSP instance

a set of n variables Xi with domains di

a set of valued constraints, where each
constraint has a

 scope (list of variables)

 cost function (function from assignments
to costs)

It only remains to specify what the possible costs are,
and how to combine them

11

Definition of a valuation structure

a set S of costs

a total order <

minimum and maximum elements:

we denote these by 0 and 

an aggregation operator  which is
commutative, associative, monotonic,
and such that , 0=

12

Examples of valuation structures

If S = {0, }, then VCSP  CSP

If S = {0, 1, 2, …, }, and  is addition,

then VCSP generalizes MAX-CSP

If S = [0,1], and  is max, then VCSP  Fuzzy CSP

If S = {0, 1, …., k}, and  is bounded addition +k

where +k  = min {k, +}, then VCSP  WCSP

13

Families of valuation structures

A valuation structure is idempotent if
, =

All idempotent valuation structures

are equivalent to Fuzzy CSP

14

Families of valuation structures

A valuation structure is strictly monotonic if
<, <,  < 

All strictly monotonic valuation structures

can be embedded in a fair valuation structure

A valuation structure is fair if

aggregation has a partial inverse, that is,

,  such that =

15

Families of valuation structures

A valuation structure is discrete if between any

pair of finite costs there are finitely many

other costs

All discrete and fair valuation structures

can be decomposed into

a contiguous sequence of valuation structures

with aggregation operator +k

Bibliography

For general background on VCSP and other

formalisms for soft constraints, see the

chapter on “Soft Constraints” by Meseguer,

Rossi and Schiex, in the Handbook of
Constraint Programming, Elsevier, 2006.

For classification results on valuation

structures see “Arc Consistency for Soft
Constraints”, Cooper & Schiex, AIJ, 2004.

16

Chapter 2. Efficiency

Structural restrictions,

Valued constraint languages,

Submodularity,

Multimorphisms

General question

Having a unified formulation allows us to
ask general questions about efficiency:

When is the VCSP

tractable?

Problem features

This picture illustrates the constraint scopes

The set of scopes is sometimes called the
constraint hypergraph, or the scheme

Restricting the scheme can lead to
tractability, as in the standard CSP

20

Structural tractability

Tree-structured binary VCSPs are tractable

x1

x2 x3

x4 x5 x6 x7

Project out leaf nodes by minimising over possible assignments

Proceed from the leaf nodes to a chosen root node

Time complexity O(e d2)
Space complexity O(n d)

n: number of variables
d: maximum domain size
e: number of cost functions

E1

E2

E3
E4

Bounded treewidth VCSPs are tractable

Tree decomposition

E1

E2

E3

E4

Time complexity O(e dw+1)
Space complexity O(n ds)

w: bounded treewidth
= max |Ei| - 1

s: max {|Ei  Ej|: i≠j}

Finding a tree decomposition with minimum w* is NP-hard!

21

Tree decomposition example

22

CELAR scen06r
n = 82

d = 44
e = 327

w = 26
s = 3

Benchmark problem
assigning frequencies
to transmitters
to minimise total interference

Problem features

We have seen that structural features of a
problem can lead to tractability

This is very similar to the standard CSP

What about other kinds of restrictions to the VCSP?

More problem features

The picture now emphasises the cost functions

Restricting the cost functions we allow can also

lead to tractability

C1

C2

C3
C4

25

Valued constraint languages

A set of cost functions is called a valued constraint
language

VCSP() represents the set of VCSP instances whose
cost functions belong to the valued constraint
language 

For some choices of , VCSP() is tractable

We will consider some examples where the valuation
structure contains non-negative real values and
infinity, and aggregation is standard addition

26

Submodular functions

where min and max are applied component-wise, i.e.

min(<s1,…,sk>,<t1,…,tk>) = <min(s1,t1),…,min(sk,tk)>

VCSP(submodular) is tractable

A cost function c is submodular if s,t

c(min(s,t)) + c(max(s,t))  c(s) + c(t)

A class of functions that has been widely studied in OR is
the submodular functions…

x y z

0 0 0 0

0 0 1 1

0 1 0 7

0 1 1 1

1 0 0 ∞

1 0 1 3

1 1 0 ∞

1 1 1 0

0 0 1 1

1 0 1  Maximum

1 0 0 ∞

Examples of submodular functions

x y z

0 0 0 0

0 0 1 1

0 1 0 7

0 1 1 1

1 0 0 ∞

1 0 1 3

1 1 0 ∞

1 1 1 0

0 0 1 1

1 0 0 ∞

1 0 1 3 Maximum

0 0 0 0 Minimum

+ = 3

+ = ∞

s,t Cost(Min(s,t)) + Cost(Max(s,t))  Cost(s) + Cost(t)

Examples of submodular functions

s

t

29

Examples of submodular functions

all unary functions

all linear functions (of any arity)

the binary function cut

where cut(a,b)=1 if (a,b)=(0,1) (0 otherwise)

the rank function of a matroid

the Euclidean distance function between two
points (x1, x2), (x3, x4) in the plane

(x,y)=(x-y)r if x ≥ y ( otherwise) for r ≥ 1
(compare “Simple Temporal CSPs with strictly monotone preferences”

Khatib et al, IJCAI 2001)

30

Example: Min-Cut

The Min-Cut problem can be modelled by the

single submodular binary cost function cut

1

00

00

0

0 0

Solution to VCSP is a Min-Cut

cut(a,b)=1 if (a,b)=(0,1)

Valued constraints on
all edges (both ways)

with cost function cut

VCSP with domain {0,1}

31

Algorithms

The best known general algorithm for

Boolean submodular function minimisation

is O(n6)

(see Orlin “A faster strongly polynomial time algorithm for submodular

function minimization”, Mathematical Programming, 2009)

However, many special cases can be solved
much more efficiently…

Boolean submodular functions
Many Boolean submodular functions can be

expressed using the binary function cut

(these include all {0,1}-valued Boolean submodular
functions, all binary and all ternary Boolean

submodular functions, and many others)
(

32

VCSP({cut}) is O(n3)

See Zivny & Jeavons “Classes of submodular constraints
expressible by graph cuts”, Constraints, 2010

Binary submodular functions

x1

x2

33

Binary VCSP(submodular) is O(n3d3)

See Cohen et al “A maximal tractable class of soft constraints”, JAIR 2004

Binary submodular functions
over any finite domain

can be expressed as a sum of

”Generalized Interval” functions

(they correspond to Monge matrices)

x y z

0 0 0 0

0 0 1 1

0 1 0 7

0 1 1 1

1 0 0 ∞

1 0 1 3

1 1 0 ∞

1 1 1 0

s,t Cost(Min(s,t)) + Cost(Max(s,t))  Cost(s) + Cost(t)

By choosing other functions,

we can obtain other tractable

valued constraint languages…

We say that the cost function has

the multimorphism (Min,Max)

Beyond submodularity

Known tractable cases

1) (Min,Max)

2) (Max,Max)

3) (Min,Min)

4) (Majority,Majority,Majority)

5) (Minority,Minority,Minority)

6) (Majority,Majority,Minority)

7) (Constant 0)

8) (Constant 1)

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable:

See Cohen et al “The complexity of soft constraint satisfaction”, AIJ 2006

A dichotomy theorem

1) (Min,Max)

2) (Max,Max)

3) (Min,Min)

4) (Majority,Majority,Majority)

5) (Minority,Minority,Minority)

6) (Majority,Majority,Minority)

7) (Constant 0)

8) (Constant 1)

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable:

See Cohen et al “The complexity of soft constraint satisfaction”, AIJ 2006

For Boolean cost

functions…

In all other cases the
cost functions have
no significant

common
multimorphisms and

the VCSP problem is
NP-hard.

37

Benefits of a general approach

The dichotomy theorem immediately implies
earlier results for SAT, MAX-SAT, Weighted
Min-Ones and Weighted Max-Ones

Multimorphisms have also been used to show
that not all submodular functions can be
expressed using binary functions (see Zivny et al
“The expressive power of binary submodular functions”, Discrete
Applied Maths, 2009)

Multimorphisms allow submodularity to be
generalised to a bigger class of tractable
languages (see Cohen et al “Generalizing submodularity and
Horn clauses: Tractable optimisation problems defined by tournament
pair multimorphisms”, Theoretical Computer Science, 2008)

Bibliography

For general background on tractable structures,

see the chapter on “Tractable Structures” by

Dechter, in the Handbook of Constraint
Programming, Elsevier, 2006.

For tractable valued constraint languages see

“The complexity of soft constraint satisfaction”,

Cohen, Cooper, Jeavons & Krokhin, AIJ 2006.

38

Chapter 3. Search
using problem transformations

Branch and Bound,
Equivalence-preserving operations,
Soft local consistency (node, arc,
directional, virtual, optimal),
Soft global constraints.

Depth­First Branch and Bound (DFBB)

(LB) Lower Bound

(UB) Upper Bound

If  UB then prune

V
a
ri
a
b
le

s
(d

yn
a
m

ic
 o

rd
e
ri
n
g
)

under estimation of the
best solution

in the sub-tree

= best solution found so far

Each node is a VCSP subproblem
(defined by current conditioning)

LBc

= c

= k

k

Obtained by enforcing local consistency

40

41

Equivalence-preserving
transformations (EPT)

An EPT transforms VCSP instance P1
into another VCSP instance P2 with the
same objective function.

Examples of EPTs:

- Propagation of inconsistencies ( costs)

- UnaryProject

- Project/Extend

INCREMENTALITY!

42

UnaryProject(i,)

Precondition: 0    min{ci(a) : a  di}

c0 := c0 +  ;

for all a  di do

ci(a) := ci(a) -  ;

Increases the lower bound c0 if all unary

costs ci(a) are non-zero.

43

Project(M,i,a,)

Precondition: iM, adi, -ci(a)    min{cM(x): x[i]=a}

ci(a) := ci(a) +  ;

for all x  labelings(M) s.t. x[i]=a do

cM(x) := cM(x) -  ;

If >0, this projects costs from cM to ci

If <0, this extends costs from ci to cM

44

Node and soft arc consistency

Node consistent (NC) if i

no UnaryProject(i,) is possible for >0 and
no propagation of  costs possible between ci

and c0 (forbidden values removed if ci+c0  k)

Soft arc consistent (SAC) if M,i,a

no Project(M,i,a,) is possible for >0

45

The SAC closure is not unique

1

1

1

1

1

1

••

•

•

•

•

•

•

•

••

•

OR

46

Different soft AC notions:

Directional: send costs from Xj to Xi if i<j (in
the hope that this will increase c0)

Existential: i, send costs to Xi

simultaneously from its neighbor variables if
this increases c0

Virtual: no sequence of Projects/Extends
increases c0

Optimal: no simultaneous set of
Projects/Extends increases c0

47

Directional Arc Consistency

for all i<j, a  di b  dj such that

cij(a,b) = cj(b) = 0.

Solves tree-structured VCSPs

FDAC (Full Directional AC) =

Directional AC + Soft AC

FDAC can be established in O(end3)
time (or in O(ed2) time if +k is +)

48

Existential Arc Consistency

node consistent and i, adi such
that ci(a) = 0 and for all cost functions
cij , b  dj such that cij(a, b) = cj(b) =0

EDAC = Existential AC + FDAC

EDAC can be established in

O(ed2 max{nd,k}) time

49

Virtual Arc Consistency (VAC)

If P is a VCSP instance then Bool(P) is
the CSP instance whose allowed tuples
are the zero-cost tuples in P-c0

If Bool(P) has a solution, then P has a
solution of cost c0 (but usually Bool(P)
has no solution)

Definition: P is VAC if Bool(P) is AC.

50

Approximating VAC

If a sequence of AC operations in Bool(P)
leads to a domain wipe-out, then a similar
sequence of SAC operations in P increases c0

But, in this sequence, costs may need to be
sent in more than one direction from the
same cM  Introduction of fractional weights

VAC algorithm may converge to a local
minimum (and more, an instance P’ which is
not VAC)

VAC can be established in O(ed2 k/) time

51

Optimal Soft Arc Consistency

We can overcome this problem of
convergence by solving a LP to find the set of
simultaneous UnaryProject and Project
operations which maximises c0.

The resulting VCSP instance is OSAC
(Optimal Soft Arc Consistent).

OSAC is strictly stronger than VAC.

Unfortunately, the LP has O(edr+n) variables
and O(edr+nd) constraints, and hence only
useful for pre-processing.

Example
-1

1

1

1

1

1

1

c0 = 1

a

bb

c

a c

c

ca

a

X
1

X
2

X
3

X
4

AC,DAC,FDAC,EDAC,VAC

52

Hierarchy

NC*

AC* DAC*

FDAC*

AC

NC

DAC

Special case: CSP (k=1)

EDAC*

VAC

OSAC

Solve tree-like
primal graphs

Solve submodular
cost functions



53

Some practical observations

For very hard-to-solve instances,
maintaining VAC provides a significant
speed-up, however for many problems,
maintaining a simpler form of soft arc
consistency (e.g. EDAC) is faster.

Unary costs ci(a) and EAC value inform
value and variable ordering heuristics

54

55

AC for soft global constraints

Suppose that a global cost function cM can

be coded as the minimum cost of a maximum

flow in a network in which (a) there is a one-

to-one correspondence between max-flows
and global labellings and (b) each assignment

(xi,a) has a corresponding edge eia such that
the max-flow is 1 in eia if xia (0 if xia).

Then it is possible to project  from cM to

ci(a) by reducing cost(eia) by .

(van Hoeve et al, J. Heur. 2006) (Lee & Leung, IJCAI’09)

56

Network representing soft Alldiff
 Min number of variables with same value

variable-based costs (Beldiceanu & Petit, CPAIOR’04)

1

1

2

2
a

b

c

d

x1

x2

x3

x4

All edge capacities
are equal to 1

All edge costs are 0
if not indicated

The flow shown is a min-cost max-flow with x1=a.
We can project 1 from cM to c1(a) by reducing the

cost of the blue edge from 0 to –1.

Latin Square N x N with costs

Example of solution for N = 5:

2 1 3 5 4

4 2 1 3 5

1 5 4 2 3

5 3 2 4 1

3 4 5 1 2

Objective: 49

57

All variables take a different value
in each row and each column

A unary cost function for each cell
fi,j(xi,j) : D  [0,MaxCost[

Objective = i j fi,j(xi,j)

Latin Square with costs
in CHOCO

//1- Create the model

int n = 4;

int maxcost = 10;

CPModel m = new CPModel();

//2- Create the variables

IntegerVariable[] nvars = makeIntVarArray("Q", n * n, 1, n);

IntegerVariable[] costvars = makeIntVarArray("C", n * n, 0, maxcost-1);

IntegerVariable obj = makeIntVar("O", 0, (maxcost-1)*n*n, Options.V_OBJECTIVE);

int[][][] costs = new int[n][n][n];

//3- Create the random unary costs

Random rand = new Random();

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

for (int k = 0; k < n; k++) {

costs[i][j][k] = rand.nextInt(maxcost);}}}

58

Latin Square with costs
in CHOCO

//4- Post constraints

for (int i = 0; i < n; i++) {

IntegerVariable[] line = new IntegerVariable[n];

IntegerVariable[] column = new IntegerVariable[n];

for (int j = 0; j < n; j++) {

row[j] = nvars[i*n +j];

column[j] = nvars[i+j*n];

m.addConstraint(Options.C_NTH_G, nth(nvars[i*n+j], costs[i][j], costvars[i*n+j], 0));

}

m.addConstraint(allDifferent(row));

m.addConstraint(allDifferent(column));

}

m.addConstraint(eq(sum(costvars), obj));

//5- Create the solver

Solver s = new CPSolver();

s.read(m);

s.minimize(false);
59

Latin Square with costs
in toulbar2

latin4 16 4 24 145

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 0 1 2 3 -1 salldiff var 1000000

4 4 5 6 7 -1 salldiff var 1000000

4 8 9 10 11 -1 salldiff var 1000000

4 12 13 14 15 -1 salldiff var 1000000

4 0 4 8 12 -1 salldiff var 1000000

4 1 5 9 13 -1 salldiff var 1000000

4 2 6 10 14 -1 salldiff var 1000000

4 3 7 11 15 -1 salldiff var 1000000

1 0 0 4

0 0

1 3

2 9

3 1

60

pbname, n, d, e, k

domain sizes

hard AllDifferent on rows

hard AllDifferent on columns

unary cost functions
value,cost

#vars, scope, defcost, #tuples

Latin Square with costs

61choco v2.1.1, toulbar2 v0.9.3, sicstus v4.1.2 on linux PC 2.66 Ghz 64GB

GCC_Cost (Régin, Constraints 2002)
EDGAC (Lee & Leung, AAAI 2010)

Bibliography

For an overview of soft local consistencies, see

“Soft arc consistency revisited”,
Cooper, de Givry, Sanchez, Schiex, Zytnicki &

Werner, AIJ 2010.

For soft global constraints (FDGAC), see

“Towards Efficient Consistency Enforcement for
Global Constraints in Weighted Constraint
Satisfaction”, Lee & Leung, IJCAI 2009.

62

Chapter 4. Search
exploiting the problem structure

BB-VE(2), BTD, AND/OR search

Solving methods

Search: Conditioning

Complete

Incomplete

Simulated Annealing
Tabu Search, VNS,

Complete

Incomplete

Cluster Tree Elimination

Variable Elimination

Local Consistency

Mini-bucket(i)

Stochastic Local SearchDepth-First

Branch & Bound

A*

Inference: Elimination
Time: exp(treewidth)

Space:exp(treewidth)

Time: exp(n)

Space: linear

Hybrids

BTD, AND/OR graph

search
Time: exp(treewidth)

Space: exp(treewidth)

(slide from IJCAI’09 tutorial) 64

BB-VE

Time: exp(n)

Space: linear

65

Many real applications have a structured network

SPOT5 #509 (Constraints 4(3), 1999)

langladeM7 sheep pedigree

(Constraints 13(1), 2008)

CELAR SCEN-07r

(Constraints 4(1), 1999)

Earth

Observation

Satellite

Management

Radio
Link

Frequency
Assignment

Mendelian
Error

Detection

Tag
SNP

Selection

HapMap chr01 r2≥0.8 #14481

(Bioinformatics 22(2), 2006)

CELAR 6 results since 1993
n. of vars: n=100, domain size: d=44, n. of cost functions: e=1222

66

Time of optimality proof Method(s) used Publication

26 days
(SUN UltraSparc 167 MHz)

Ad-hoc problem
decomposition & Russian
Doll Search (22 vars only)

(de Givry, Verfaillie,
Schiex, CP 1997)

3 days
(SUN Sparc 2)

Ad-hoc problem
decomposition & PFC-
MRDAC (22 vars only)

(Larrosa, Meseguer,
Schiex, AIJ 1998)

8 hours
(DEC Alpha 500MP)

Preprocessing rules &
Cluster Tree Elimination

(Koster PhD thesis, 1999)

3 hours
(PC 2.4 GHz)

B&B with EDAC & tree
decomposition (BTD)

(de Givry, Schiex,
Verfaillie, AAAI 2006)

3 minutes
(PC 2.6 GHz)

BTD & variable ordering
heuristisc &dicho branching

(Sanchez, Allouche, de
Givry,Schiex, IJCAI 2009)

CELAR 7 (n=200) solved in 4.5 days (Sanchez et al, IJCAI 2009)

CELAR 8 (n=458) solved in 127 days (Allouche et al, CP 2010)

All CELAR and GRAPH instances are closed!

(slide from IJCAI’09 tutorial) 67

Conditioning vs. Elimination

A

G

B

C

E

D

F

Conditioning (search) Elimination (inference)

A=1 A=d…

G

B

C

E

D

F

G

B

C

E

D

F

A

G

B

C

E

D

F

G

B

C

E

D

F

d “sparser” problems 1 “denser” problem

First hybrids:
Search & Variable Elimination

Condition, condition, condition … and
then only eliminate (Cycle-Cutset)

Eliminate, eliminate, eliminate … and
then only search

Interleave conditioning and elimination

(slide from IJCAI’09 tutorial) 68

Interleaving Conditioning and Elimination

BB-VE(2) (Larrosa & Dechter, CP 2002)

(slide from IJCAI’09 tutorial) 69

Interleaving Conditioning and Elimination

BB-VE(2)

(slide from IJCAI’09 tutorial) 70

Interleaving Conditioning and Elimination

BB-VE(2)

(slide from IJCAI’09 tutorial) 71

Interleaving Conditioning and Elimination

BB-VE(2)

(slide from IJCAI’09 tutorial) 72

Interleaving Conditioning and Elimination

BB-VE(2)

(slide from IJCAI’09 tutorial) 73

Interleaving Conditioning and Elimination

BB-VE(2)

(slide from IJCAI’09 tutorial) 74

Interleaving Conditioning and Elimination

BB-VE(2)

...

...

(slide from IJCAI’09 tutorial) 75

Second hybrids:
Search & Cluster Tree Elimination

Depth-First Branch and Bound
exploiting a tree decomposition with:

 A restricted variable ordering

 Graph-based backjumping

 Graph-based learning

 Lazy elimination of subproblems

using search

76

IJCAI 2009 77

Soft 2-Coloring example

A

D

B C

E

F

G
J

I
H

K

Xi Xj cij

1

0

0

1

IJCAI 2009 78

Soft 2-Coloring example

A

D

B C

E

F

G
J

I
H

K

Optimal solution
with a cost of 5

IJCAI 2009 79

C5

C4

C3

C2

C1

Tree Decomposition

C3

C1

C4C2

C5

A

D

B C

E

F

G
J

I H

K

{D} {D}

{E,F} {D,I,J}

IJCAI 2009 80

C4

C3

C

2

C1

Search with Tree Decomposition

C5

A

D

B C

E

F

G
J

I
H

K

The assignment
of a separator
disconnects the problem
into two independent
subproblems

C3

C1

C4C2

C5

{D} {D}

{E,F} {D,I,J}

IJCAI 2009 81

C4
C5

C3

C2

0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1

E

G

F

D0 1

A

D

B C

E

F

G

J

I H

K

Search with Tree Decomposition

K

J

I

H

P2 / {(D=red)}

C3

C1

C4C2

C5

P4 / {(D=red)}

P2 / {(D=green)}

P4 / {(D=green)}

{D} {D}

{E,F} {D,I,J}

AND/OR tree search
(Marinescu & Dechter, AIJ 2009)

time O(exp(w log(n))
linear space

IJCAI 2009 82

Search with Tree Decomposition

0 1 0 1

0 1 0 1 0 1 0 1

0 1

F

G

E

D
0

P2 / {(D=red)}

C4
C5

C3

C2

A

D

B C

E

F

G

J

I H

K

(Marinescu & Dechter, AAAI 2006)

IJCAI 2009 83

Search with Tree Decomposition

0 1 0 1

0 1 0 1 0 1 0 1

0 1

F

G

E

D
0

Record the optimum
of P2 / {(D=red)}

LBP2 / {(D=red)} = 1
OPTP2 / {(D=red)} = true

P2 / {(D=red)}

Assume a global upper
bound k = 5.

It may be useless to
compute the optimum of
P2 / {(D=red)},
only a lower bound is
needed!

C4
C5

C3

C2

A

D

B C

E

F

G

J

I H

K

AND/OR graph search
(Marinescu & Dechter, AIJ 2009)

time O(exp(w))
space O(exp(w))

IJCAI 2009 84

Backtrack bounded by Tree Decomposition

0 1 0 1

0 1 0 1 0 1 0 1

0 1

F

G

E

D
0

P2 / {(D=red)}

Assume a global upper
bound k = 5.

It may be useless to compute the

optimum of P2,

only a lower bound is needed!

Add a local upper bound:
UBP2 / {(D=red)} = k – 3 – LBP4 / {(D=red)}

UBP2 / {(D=red)} = k – 3 – max (c
C4 + c

C5, LBP4 / {(D=red)})

Maintaining local consistency Recorded during search

C3

C1

C4C2

C5

C4
C5

C3

C2

A

D

B C

E

F

G

J

I H

K

BTD
(Jégou & Terrioux, ECAI 2004)
(de Givry et al., AAAI 2006)
time O(k*exp(w))
space O(exp(w))

Some practical observations

BTD may use much less memory than

Variable Elimination thanks to pruning

Impact of root cluster

 Choose the largest / most costly cluster as root

Exploit small separators only
(Jégou, Ndiaye & Terrioux, CP 2007)

 Give more freedom for the dynamic variable

ordering heuristic

 Tuning based on treewidth versus separator size

BB-VE(2) often faster than BTD
85

Haplotype reconstruction in
half-sib pedigrees

86

(Favier et al, WCB’10)

Read dataset
HAPMAP

Chr.X with
36,000 markers
treewidth < 15

Bibliography

For hybrids of search and inference, see the

chapter 10 in Constraint Processing, Dechter,

Morgan Kaufmann, 2003.

For exploiting tree decomposition, see

 “Exploiting Tree Decomposition and Soft Local
Consistency in Weighted CSP”, de Givry, Schiex
& Verfaillie , AAAI 2006.

 “Memory intensive AND/OR search for combinatorial
optimization in graphical models (Part I&II)”,
Marinescu & Dechter, AIJ 2009.

87

88

Applications / benchmarks
Resource Allocation

 Frequency assignment (Allouche et al, CP 2010) CTE, BTD, VAC
n ≤ 458, d=44, e(2) ≤ 5,000

 Satellite management (Verfaillie et al, AAAI 1996) RDS, RDS-BTD
n ≤ 364, d=4, e(2-3) ≤ 10,108

 Uncapacitated warehouse location (Zytnicki et al, IJCAI 2005) EDAC,VAC,
n ≤ 1,100, d ≤ 300, e(2) 100,000 ILP0/1

Bioinformatics

 Genetic linkage analysis (Marinescu & Dechter, AAAI 2006) AND/ORsearch
n≤1,200, d≤7, e(2-5)≤2,000

 Mendelian error detection (Sanchez et al, Constraints 2008) EDAC3,BB-VE
n≤20,000, d≤66, e(3)≤30,000

 RNA gene finding (Zytnicki et al, Constraints 2008) BAC
n≈20, d>100 million, e(4)≈10

 Tag SNP selection (Sanchez et al, IJCAI 2009) RDS-BTD, ILP0/1
n≤1,500, d≤266, e(2) ≤ 150,000

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

toulbar2, aolib

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

Chapter 5. Open problems

Concerning problem definition,
search, transformations, tractable
classes

90

Possible extensions to VCSP

Partial order instead of total order

2 arbitrary binary operators (e.g.
calculating the sum of products instead
of the min of the sum subsumes #CSP)

Objective function not constructible
using a binary aggregation operator
(e.g. the median of the set of costs)

91

Tractability

Can we characterize/unify all tractable
classes of VCSP over non-Boolean
domains?

Are there interesting tractable classes
apart from submodular functions?

Are there more efficient algorithms for
submodular function minimisation?

92

New search methods

Identify and exploit good
tree decompositions automatically

 Small treewidth versus small separators

 Dynamic tree decomposition

Variable and value ordering heuristics

Incomplete search strategies

 Large Neighbourhood Search,...

Parallel B & B / CTE methods

93

New problem transformations

Applying rules involving ≥2 constraints

Transformations which preserve

at least one solution (if it exists)

but do not necessarily preserve costs.

Decomposition into several problems
whose sum is equal to the original VCSP

94

Conclusion

VCSP combines CSP and optimisation
in a unified way

Many CSP notions have been extended
to the VCSP framework (consistency,
global constraints, expressibility,
tractability,…)

Technology is usable and useful, but
still maturing

