
Structured Set Variable Domains in Bayesian1

Network Structure Learning2

Fulya Trösser @3

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France4

Simon de Givry @ ORCID5

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France6

George Katsirelos @ ORCID7

Université Fédérale de Toulouse, ANITI, INRAE, MIA Paris, AgroParisTech, 75231 Paris, France8

Abstract9

Constraint programming is a state of the art technique for learning the structure of Bayesian10

Networks from data (Bayesian Network Structure Learning – BNSL). However, scalability both for11

CP and other combinatorial optimization techniques for this problem is limited by the fact that the12

basic decision variables are set variables with domain sizes that may grow super polynomially with13

the number of random variables. Usual techniques for handling set variables in CP are not useful,14

as they lead to poor bounds. In this paper, we propose using decision trees as a data structure for15

storing sets of sets to represent set variable domains. We show that relatively simple operations are16

sufficient to implement all propagation and bounding algorithms, and that the use of these data17

structures improves scalability of a state of the art CP-based solver for BNSL.18

2012 ACM Subject Classification Computing methodologies → Learning in probabilistic graphical19

models; Theory of computation → Discrete optimization20

Keywords and phrases Combinatorial Optimization, Bayesian Networks, Decision Trees21

Digital Object Identifier 10.4230/LIPIcs.CP.2022.4022

Supplementary Material Software (Source Code): https://gkatsi.github.io/elsa-cp22.tar.gz23

Funding This work has been partly funded by the “Agence nationale de la Recherche” (ANR-16-24

CE40-0028 Demograph project and ANR-19-PIA3-0004 ANTI-DIL chair of Thomas Schiex).25

Acknowledgements Thanks to the GenoToul (Toulouse, France) Bioinformatics platform for com-26

putational support.27

1 Introduction28

Bayesian Networks (BNs) are directed probabilistic graphical models, which can describe a29

normalized joint probability distribution over a potentially large set of random variables, by30

exploiting conditional independence to decompose the function. Learning the structure of31

BNs from data (the Bayesian Network Structure Learning problem, BNSL) is a challenging32

combinatorial optimization problem. There exist constraint-based approaches to learn BNs,33

which use local conditional independence tests, and score-based approaches, which use a34

decomposable score function to score each potential structure and aim to find the structure35

that minimizes this score. The former are known to be efficient, but have trouble with noisy36

data. The latter yield a known to be NP-hard problem [4], which additionally has proved37

very challenging in practice.38

There exist complete methods for score-based BNSL based on dynamic programming [20],39

heuristic search [24, 8], maximum satisfiability [2], branch-and-cut [1] and constraint pro-40

gramming [22, 21]. Branch-and-cut and constraint programming have proven to be the most41

successful of these methods. However, scaling them up remains challenging. One challenge42

© Fulya Trösser, Simon de Givry, and George Katsirelos;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 40; pp. 40:1–40:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fulya.trosser@hotmail.com
mailto:simon.degivry@inrae.fr
mailto:gkatsi@gmail.com
https://doi.org/10.4230/LIPIcs.CP.2022.40
https://gkatsi.github.io/elsa-cp22.tar.gz
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Structured Set Variable Domains in Bayesian Network Structure Learning

has to do with the decomposition of the scoring functions: these assign a score to each43

potential set of parents of each vertex and the score of a specific structure is the sum of the44

scores of each parent set. This means that the objective function must have a term for each45

potential parent set, a potentially exponential number of terms. There are various methods46

by which this number is made manageable, but it is still among the greatest obstacles to47

scalability. Moreover, the best solvers, ILP-based GOBNILP [1], and CP-based ELSA [21]48

also explicitly have this set of parent sets in other parts of the model as well, in the case of49

ELSA as domains of variables.50

Here, we propose exploiting the fact that these domains are structured, i.e., that each51

value is a set. Specifically, we show that we can represent potential parent sets as paths on52

decision trees and that using these decision trees we can answer queries more efficiently than53

by traversing a list of domain values. This feature has not been exploited in BNSL in the54

past and allows us to solve large instances more efficiently.55

2 Background56

2.1 Bayesian Networks57

A Bayesian Network is a directed graphical model B = 〈G,P 〉 where G = 〈V,E〉 is a directed58

acyclic graph (DAG) called the structure of B and P are its parameters. A BN describes59

a normalized joint probability distribution. Each vertex of the graph corresponds to a60

random variable and presence of an edge between two vertices denotes direct conditional61

dependence. Each vertex vi is also associated with a Conditional Probability Distribution62

P (vi | parents(vi)). The CPDs are the parameters of B.63

Learning a BN from a set of multivariate discrete data using the score based method uses64

a decomposable scoring function (such as BIC [19, 14] or BDeu [3, 12]) which assigns, based65

on the data, a score to each potential parent set of each vertex. The BNSL problem is the66

problem of finding the structure G which minimizes this scoring function.67

The number of candidate parent sets can in principle be exponentially large, but it is68

typically kept in check. For one, the BIC scoring function [19, 14] guarantees that the number69

of candidate parent sets grows only logarithmically with the size of the data set. Second,70

there exist dedicated pruning rules [7, 6] which reduce the set further. As a last resort, an71

upper bound can be placed on the cardinality of parent sets. This is necessary especially in72

larger instances, where it is necessary to limit cardinality to as low as 3 in some cases.73

2.2 CP-based BNSL74

ELSA [21] is a CP-based solver for the BNSL, based on the CPBayes solver [22]. The75

constraint model used in ELSA has several features that we do not discuss here. Instead,76

we focus on the part that is relevant to our contribution. For each random variable X,77

there exists a corresponding CSP variable PX whose domain is the set of candidate parent78

sets of X. These are unsurprisingly called parent set variables. There exists an acyclicity79

constraint over these which requires that their instantiation yields an acyclic graph. ELSA80

enforces GAC on this constraint. The central part of the GAC algorithm is algorithm 1,81

acycChecker. acycChecker determines in time O(n2d) whether the current set of domains82

admits an acyclic solution, based on the property that in any acyclic graph, for any subset83

of vertices C, at least one of the vertices v ∈ C has a parent set that does not intersect C.84

In addition, ELSA computes lower bounds by approximately solving the linear relaxation85

F. Trösser, S. de Givry, and G. Katsirelos 40:3

Algorithm 1 Acyclicity checker

1 acycChecker (P, D)
2 order ← {}
3 changes← true

4 while changes do
5 changes← false

6 foreach v ∈ P \ order do
88 if ∃S ∈ D(v) s.t. S ⊆ order then

1010 order ← order + v

11 changes← true

12 return order

of the ILP (1), which was proposed by Bartlett and Cussens [1] for the GOBNILP solver.86

min
∑

v∈P,S⊆V \{v}

σv(S)xv,S (1a)87

s.t.
∑

S∈P S(v)

xv,S = 1 ∀v ∈ P (1b)88

∑
v∈C,S∈P S−C (v)

xv,S ≥ 1 ∀C ⊆ P (1c)89

xv,S ∈ {0, 1} ∀v ∈ P, S ∈ PS(v) (1d)90
91

92

This is an exponentially large ILP, but on the flip side, the constraints (1c), called cluster93

constraints are facets of the polytope [5]. Hence, following GOBNILP, ELSA starts with none94

of the cluster constraints in the linear relaxation and then adds only those that can improve95

the dual bound. This is an NP-hard problem. GOBNILP solves this NP-hard problem to find96

violated cluster constraints, while ELSA uses a polynomial time algorithm which can identify97

a strict subset of all improving cluster constraints. The central element of the algorithm used98

in ELSA to find cluster constraints uses algorithm 1 on the domains restricted only to values99

which have reduced cost 0 in the current dual solution of the linear relaxation.100

Both in finding improving cluster constraints and in enforcing GAC on the acyclicity101

constraint, the main bottleneck is line 8 of algorithm 1, which tests whether there exists in102

D(v) a value which is a subset of a given set. As domain sizes grow drastically faster than103

the number of random variables, it is crucial to optimize this step. In practical terms, even104

given the mitigations mentioned earlier, the average domain size can be in the thousands for105

larger instances.106

3 Related work107

A typical approach to dealing with large domain sizes in constraint programming is to enclose108

the set of domain values with an underestimation and an overestimation and reason with109

those instead. Sometimes, this can even be achieved without any loss in strength of inference.110

This is the case, for example, when representing only the bounds of a variables that are only111

used in linear inequalities. In the case where the values of a domain are sets, the variable is112

called a set variable. Its domain can be represented with the subset bound scheme [9], which113

CP 2022

40:4 Structured Set Variable Domains in Bayesian Network Structure Learning

underestimates by a set indicating all elements which appear in all remaining domain values114

and overestimates by a set indicating all elements which appear in any remaining domain115

value. The length-lex scheme uses lexicographic and cardinality information to get a tighter116

under- and over-estimation [10]. However, detecting infeasibility of the acyclicity constraint117

is crucial for the performance of CPBayes and even more for ELSA. Hence, over-estimating118

the actual domain in our case would lead to poor performance.119

Hawkins et al. [11] followed an approach which is closer to our own, by using ROBDDs120

(reduced ordered binary decision diagrams) to represent domains. ROBDDs are diagrams121

like decision trees, but they require the same variable ordering in each branch and isomorphic122

subgraphs are merged, so that the underlying graph is a DAG rather than a tree. They can123

be significantly more compact than decision trees. However, Hawkins et al. used them in a124

setting where all constraints can be expressed as operations on ROBDDs. They do not deal125

with costs of the domain values, and in particular with reduced cost filtering.126

4 Decision Trees as domain store127

The set of sets that are in a domain can be seen as the set of solutions of a propositional128

formula, in which we have a propositional variable for each element of the universe. Therefore,129

knowledge compilation languages such as ROBDDs can be used to represent a domain.130

There exist several queries and operations performed on the domains in ELSA, but not131

all are critical to optimize, as they are not performed often enough to dominate the runtime.132

In particular, we want to address the test in line 8, which asks whether the domain contains133

a set which is a subset of another given set. Therefore, the main queries that need to be134

supported efficiently by a domain store for our purposes are:135

1. Does there exist a domain value S such that S ⊆ T for some T?136

2. Does there exist a domain value S with reduced cost 0 such that S ⊆ T for some T?137

And the main operations, which also have to support backtracking, are:138

1. Pruning a single value S139

2. Updating the reduced cost of a value140

The main issue that disqualifies ROBDDs and other reduced representations for us is141

that operation 1, reduced cost filtering, may remove arbitrary values, shattering the shared142

suffixes that an ROBDD exploits, which means that pruning may result in increasing the143

size of the representation and is not even guaranteed to be in linear time. Instead, we use144

decision trees here, in particular binary decision trees with implied literals, inspired by a145

similar technique in BDDs [13]. The main use of decision trees is in machine learning for146

classification, but their use as a data structure for representing sets of sets (or, equivalently,147

a knowledge compilation language) is straightforward.148

We give below definitions for the specific case of binary decision trees and binary classi-149

fication, as that is all we need.150

I Definition 1 (Binary decision tree). Let A be a set of features {a1, . . . , an} with Boolean151

domains and C1, C2 be two classes. A binary decision tree T over the features A is a directed152

rooted binary tree. Each internal node n of T is labeled with a feature l(n) ∈ A and each153

arc e (of the at most two outgoing arcs) from n is labeled with l(e) ∈ {true, false} and are154

mutually exclusive. Each leaf node t is labeled with l(t) ∈ {C1, C2}. Given an instantiation I155

of the features, there is a unique path from the root to a leaf t so that for each arc e = (n, c)156

F. Trösser, S. de Givry, and G. Katsirelos 40:5

along that path, it holds that I(l(n)) = l(e). We say that T classifies I as l(n) and that I157

and the path from the root to n are consistent with each other, or simply that I and n are158

consistent with each other.159

To see how we can use binary decision trees as a data structure for a set of sets, observe160

that we can set the features to be the variables of the indicator function of the sets in the161

domain and the classes as in-set and not-in-set.162

This allows us to further optimize the representation. Since we only care about the in-set163

class, from now on we assume that all nodes and arcs that do not appear on a path from the164

root to a leaf n with l(n) = in-set are removed from the decision tree.165

Additionally, we can eliminate some nodes by adding implied literals in each node of the166

tree.167

I Definition 2 (Binary decision tree with implied literals). A binary decision tree with implied168

literals is a decision tree in which each node n (internal or leaf) is additionally labeled with a169

set of literals lit(n,Ci) ⊆ {a = v | a ∈ A, v ∈ {true, false}} for i ∈ {1, 2}. An instantiation170

I is consistent with a path to a leaf t with l(t) = Ci if it is consistent with all the arcs it171

follows and all implied literal labels lit(n,Ci) for each node n on the path from the root to t.172

In our case, we abbreviate lit(n, in-set) to lit(n), as we ignore the class not-in-set.173

Decision trees with implied literals allow us to collapse chains, i.e., paths along which every174

node has outdegree 1, into a single node. Hence, they are not more compact than those175

without implied literals by more than a linear factor, but they have almost no overhead and,176

in preliminary experiments, we found them to provide some performance improvement.177

In machine learning, the objective is not only to construct models that perform well on178

the training set, but that also generalize. Hence, it is not only acceptable, but also desirable179

to misclassify some samples in training sets, if that means a smaller and hence more general180

decision tree. In our setting, however, where we use decision trees to model a Boolean181

function, we accept no error. So no two sets that belong to different classes, i.e., one in in-set182

and one in not-in-set, are allowed to both be consistent with the same leaf node.183

We place an additional constraint on the decision trees we construct, which is that each184

leaf node must be consistent with exactly one positive instantiation. This ensures that185

there exists a bijection between leaves of the tree and values in the domain. This is not186

as significant a constraint as it might seem at first. A leaf node n that is consistent only187

with positive instantiations but more than one of them is expanded into a full binary tree188

of depth k, where k is the number of variables (features) which have not appeared on the189

path from the root to n. However, for the queries that we care about, this means only that190

the corresponding algorithm will have to traverse an additional k nodes before answering,191

and, crucially, will only arrive at this point when it is guaranteed that it will give a positive192

answer. Even that overhead can be eliminated with some care. Indeed, while traversing193

the decision tree, we can determine that we have reached such a node n if the number of194

possible instantiations that are consistent with n is equal to the number of leaves reachable195

from n. The former is 2n−lvl, where lvl is the distance from the root to n. The latter can be196

computed on construction and updated as values are removed. If these are equal, we know197

that the subtree contains all possible subsets and we can answer our query without more198

search. We give more detail later.199

Constructing decision trees.200

Constructing a minimum decision tree is NP-hard with respect to several metrics [15]. We201

use the information gain heuristic [17] to choose which variable to branch on in each node.202

CP 2022

40:6 Structured Set Variable Domains in Bayesian Network Structure Learning

It is a natural side effect of computing the information gain that we learn how many of the203

sets that are consistent with a node n contain the literals a = true and a = false for all204

a ∈ A. If either of these is 0, then its negation is added to the implied literal label for n and205

a is not considered as a candidate for branching. We also experimented with optimizing the206

in-memory layout for better cache behavior. Compared to the van-Emde Boas layout [23], a207

depth-first, false-child first layout performed better.208

Maintaining a decision tree during search209

It is fairly straightforward to update a decision tree for a pruning. In order to prune a value,210

we remove the unique leaf node that corresponds to it. Once we remove a leaf, its parent211

may no longer be able to reach any more leaves, hence we propagate this removal upwards.212

We associate each removed node with the decision level in which it was removed, so on213

backtracking we add them back to restore the tree to its correct state.214

This guarantees that the tree representation of a domain only shrinks down a branch of215

the branch and bound tree. Hence, the tree can remain static and we only mask nodes that216

do not lead to any leaves that correspond to unpruned values, which is simple to implement.217

Reduced costs218

ELSA solves the linear relaxation (1) from scratch at every node, and then strengthens it by219

discovering new violated cluster inequalities using the acyclicity checker (algorithm 1). Both220

these algorithms require an efficient implementation of the subset query on the subset of221

values which have reduced cost 0. In contrast to the domain itself, however, this set is reset222

to the empty set at the beginning of every node and grows monotonically until it admits an223

acyclic solution. Here again, the fact that there exists a bijection between values and leaves224

of the tree allows us to represent the set of 0-cost values as a subset of the full decision tree.225

Every time the reduced cost of a value reaches 0, the unique leaf it corresponds to, as well as226

all its parents, are added to the set of visible nodes for these queries. This is implemented as227

an additional mask on top of that which hides pruned values.228

Subset queries229

To answer the query “does the domain contain a value S such that S ⊆ T?”, we perform a230

depth first traversal of the tree. At each node n, we check l(n). If l(n) /∈ T , we only allow231

DFS to follow the outgoing arc labeled with false. If l(n) ∈ T , we allow DFS to follow both232

outgoing arcs. If the label lit(n) contains a literal p /∈ T , we backtrack. If we reach a leaf, we233

stop and report success. If we exhaust the search without reaching a leaf, we report failure.234

When this procedure reaches a node which is the root of a complete subtree of depth k,235

with no additional implied literal labels, it is guaranteed to terminate after visiting exactly k236

nodes and report success. Indeed, since this is a complete subtree, one of the outgoing arcs237

is always available to the depth first search, and it will reach a leaf after k more steps.238

This procedure can be used to answer subset queries either on the entire domain, masking239

away only pruned values, or on those values which have reduced cost 0, masking away both240

pruned values and those whose reduced cost is greater than 0.241

5 Experimental Results242

We implemented decision trees as the domain representation on top of ELSA. The default243

implementation of a subset query in ELSA iterates over all domain values and returns if244

F. Trösser, S. de Givry, and G. Katsirelos 40:7

it finds one that is a subset of T . We replaced this by the depth-first traversal described245

in section 4 and denote this solver 1 ELSAIG. We compare against the previous version of246

ELSA2, GOBNILP3, and CPBayes4.247

The datasets come from the UCI Machine Learning Repository5, the Bayesian Network248

Repository6, and the Bayesian Network Learning and Inference Package7. We have 51249

medium datasets with |V | < 64, and 18 large datasets with 64 ≤ |V | < 128.250

Local scores were computed from the datasets using B. Malone’s code8. BDeu and BIC251

scores were used for medium datasets (less than 64 variables) and only BIC score for large252

datasets (above 64 variables). The maximum number of parents was limited to 5 for large253

datasets (except for accidents.test with maximum of 8), a high value that allows learning254

even complex structures [18]. For example, jester.test has 100 random variables, a sample255

size of 4, 116 and 770, 950 parent set values. For medium datasets, no restriction was applied256

except for some BDeu scores, where we limit sets to 6 or 8 to complete the computation of257

the local scores within 24 hours of CPU-time [16].258

For the experiments, we modified the C++ source of CPBayes v1.1 just to allow us to259

run it with datasets having more than 64 variables. All computations were performed on260

a single core of Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz and 1 TB of RAM with261

a 1-hour CPU time limit for the 51 medium datasets, as well as 3 of the large datasets:262

kdd.ts, kdd.test, and kdd.valid. For the remaining 15 large datasets, we had a 10-hour263

CPU time limit. For the preprocessing phase, we used two different settings depending264

on problem size n = |V |: lmin = 20, lmax = 26, rmin = 50, rmax = 500 if n ≤ 64, else265

lmin = 20, lmax = 20, rmin = 15, rmax = 30, where lmin, lmax are partition lower bound sizes266

and rmin, rmax are the number of restarts for the local search.267

In Table 1, we show the time needed to find the optimal solution and prove optimality for268

all these solvers. We see that, while the use of decision trees has little effect, either positive269

or negative, for the smaller instances, it makes a great difference in the larger instances.270

In particular, ELSAIG is the only solver that can prove optimality for the baudio.test271

and jester.valid datasets. For the only instances where ELSA is significantly worse272

than CPBayes, bnetflix.ts, bnetflix.test, and bnetflix.valid, ELSAIG either closes273

the gap back down (bnetflix.valid) or is faster yet than CPBayes (bnetflix.ts and274

bnetflix.test). However, ELSAIG regresses with respect to ELSA in the accidents275

dataset and in plants.test. Part of the reason for this is that the benefit of the decision276

trees in terms of the reduction of the cost in answering the subset queries is comparatively277

reduced, hence the other overheads of decision trees dominate. For example, in bnetflix.ts,278

where ELSAIG significantly outperforms ELSA, ELSA looks at an average of 3315 values to279

answer each subset test, while ELSAIG visits just 90 nodes of the decision tree. On the other280

hand, in accidents.test, ELSA looks at an average of 80 values to answer each subset test,281

while ELSAIG visits 20 nodes of the decision tree. This difference is not enough to overcome282

other overheads.283

With respect to GOBNILP, ELSAIG mostly outperforms it, but there are some instances284

1 Available at https://gkatsi.github.io/elsa-cp22.tar.gz
2 Available at https://gkatsi.github.io/elsa-ijcai21.tar.gz
3 Version 1.6.3 with CPLEX 12.7.1
4 Retrieved from http://cs.uwaterloo.ca/~vanbeek/Publications/CPBayes.zip
5 http://archive.ics.uci.edu/ml
6 http://www.bnlearn.com/bnrepository
7 https://ipg.idsia.ch/software.php?id=132
8 http://urlearning.org

CP 2022

https://gkatsi.github.io/elsa-cp22.tar.gz
https://gkatsi.github.io/elsa-ijcai21.tar.gz
http://cs.uwaterloo.ca/~vanbeek/Publications/CPBayes.zip
http://archive.ics.uci.edu/ml
http://www.bnlearn.com/bnrepository
https://ipg.idsia.ch/software.php?id=132
http://urlearning.org

40:8 Structured Set Variable Domains in Bayesian Network Structure Learning

n sum |D| GOBNILP CPBayes ELSA ELSAIG

carpo100_BIC 60 423 0.5 76.7 (27.5) 52.6 (0.1) 52.5 (0.0)
insurance1000_BIC 27 506 0.6 31.6 (0.0) 32.8 (0.0) 37.2 (0.0)
spectf_BIC 45 610 1.4 4.2 (3.5) 0.8 (0.0) 1.0 (0.1)
sponge_BIC 45 618 1.6 5.1 (3.3) 1.8 (0.0) 2.1 (0.0)
insurance1000_BDe 27 792 0.6 34.8 (0.0) 34.3 (0.0) 39.2 (0.0)
alarm1000_BIC 37 1002 1.3 191.1 (159.1) 34.4 (1.0) 37.9 (1.9)
flag_BDe 29 1324 4.0 16.6 (15.6) 1.0 (0.2) 1.3 (0.2)
autos_BIC 26 2391 11.9 18.4 (0.0) 19.2 (0.0) 19.9 (0.1)
soybean_BIC 36 5926 48.9 51.9 (1.7) 50.8 (3) 49.6 (0.0)
wdbc_BIC 31 14613 86.3 459.4 (398.0) 56.0 (2.4) 61.7 (1.7)
autos_BDe 26 25238 1005.2 239.5 (0.1) 145.8 (0.8) 177.1 (0.3)
kdd.ts 64 43584 508.8 † 1452.3 (274.6) 1355.2 (141.3)
steel_BIC 28 93026 † 1265.6 (1196.1) 124.2 (71.8) 100.6 (45.7)
kdd.test 64 152873 3178.0 † 1594.3 (224.4) 1519.6 (48.9)
mushroom_BDe 23 438185 † 167.0 (4.9) 182.6 (58.9) 150.1 (16.7)
bnetflix.ts 100 446406 † 1086.9 (876.3) 2103.1 (1900.9) 557.9 (358.4)
plants.test 111 520148 † † 28049.6 (26312.9) 35961.7 (33712.7)
jester.ts 100 531961 † † 21550.5 (21003.7) 7951.4 (7301.6)
accidents.ts 100 568160 1932.2 † 2302.2 (930.0) †
plants.valid 111 684141 † † 17801.6 (14080.2) 19819.2 (14547.9)
jester.test 100 770950 † † 30186.8 (29455.0) 9644.5 (8742.8)
baudio.test 100 1016403 † † † 31077.1 (29028.1)
bnetflix.test 100 1103968 † 5794.5 (5486.2) 10333.1 (10096.5) 1448.8 (1137.7)
bnetflix.valid 111 1325818 † 998.1 (451.0) 10871.7 (10527.7) 1476.5 (1041.5)
accidents.test 100 1425966 14453.1 † 3641.7 (680.7) 8434.1 (4723.0)
jester.valid 100 1463335 † † † 31949.5 (30624.2)
accidents.valid 100 1617862 27730.5 † † †
Table 1 Comparison of GOBNILP, CPBayes, ELSA, and ELSAIG in terms of total running (and

search) time in seconds. Time limit for the datasets above the line is 1 hour, and for the rest it is 10
hours. Datasets are sorted by increasing total domain size for each time limit category. For CPBayes
as well as all variants of ELSA we report in parentheses time spent in search, after preprocessing
finishes. † indicates a timeout.

where neither ELSA nor ELSAIG can match it. It seems, however, that ELSAIG is overall285

the best performer.286

6 Conclusion287

We have shown that, in the BNSL problem, we can exploit the structure of domains to get288

a significant speedup in learning the structure of BNs of larger datasets. Specifically, we289

have shown that by treating domains as sets of sets instead of sets of values, and using290

decision trees to represent these sets, we can answer subset queries significantly faster. This291

is unlike the typical approach to handling large domains in CP, which uses over- and under-292

approximations. Although the current implementation shows some significant improvements,293

answering subset queries is still the most time consuming operation performed by the solver.294

Moreover, the fact remains that decision trees as a knowledge compilation language are fairly295

weak in terms of conciseness. It remains an open question whether we can overcome the296

issues with ROBDDs or even DNNFs to achieve even more significant speedups.297

References298

1 Mark Bartlett and James Cussens. Integer linear programming for the bayesian network299

structure learning problem. Artificial Intelligence, pages 258–271, 2017.300

F. Trösser, S. de Givry, and G. Katsirelos 40:9

2 Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning optimal bounded treewidth301

bayesian networks via maximum satisfiability. In Artificial Intelligence and Statistics, pages302

86–95. PMLR, 2014.303

3 Wray Buntine. Theory refinement on bayesian networks. In Proc. of UAI, pages 52–60.304

Elsevier, 1991.305

4 David Maxwell Chickering. Learning bayesian networks is NP-Complete. In Proc. of Fifth306

Int. Workshop on Artificial Intelligence and Statistics (AISTATS), pages 121–130, Key West,307

Florida, USA, 1995. URL: https://doi.org/10.1007/978-1-4612-2404-4_12, doi:10.1007/308

978-1-4612-2404-4_12.309

5 James Cussens, Matti Järvisalo, Janne H Korhonen, and Mark Bartlett. Bayesian network310

structure learning with integer programming: Polytopes, facets and complexity. Journal of311

Artificial Intelligence Research, 58:185–229, 2017.312

6 Cassio P de Campos, Mauro Scanagatta, Giorgio Corani, and Marco Zaffalon. Entropy-based313

pruning for learning bayesian networks using BIC. Artificial Intelligence, 260:42–50, 2018.314

7 Cassio Polpo de Campos and Qiang Ji. Properties of bayesian dirichlet scores to learn bayesian315

network structures. In Proc. of AAAI-10, Atlanta, Georgia, USA, 2010.316

8 Xiannian Fan and Changhe Yuan. An improved lower bound for bayesian network structure317

learning. In Proc. of AAAI-15, Austin, Texas, 2015.318

9 Carmen Gervet. Conjunto: Constraint logic programming with finite set domains. In Maurice319

Bruynooghe, editor, Logic Programming, Proceedings of the 1994 International Symposium,320

Ithaca, New York, USA, November 13-17, 1994, pages 339–358. MIT Press, 1994.321

10 Carmen Gervet and Pascal Van Hentenryck. Length-lex ordering for set CSPs. In Proceedings322

of AAAI, 2006.323

11 Peter Hawkins, Vitaly L. Lagoon, and Peter J. Stuckey. Solving set constraint satisfaction324

problems using ROBDDs. Journal of Artificial Intelligence Research, 24:109–156, 2005.325

12 David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks: The326

combination of knowledge and statistical data. Machine learning, 20(3):197–243, 1995.327

13 Y. Lai, D. Liu, and S. Wang. Reduced ordered binary decision diagram with implied literals:328

A new knowledge compilation approach. Knowledge and Information Systems, 35(3):665–712,329

2013.330

14 Wai Lam and Fahiem Bacchus. Using new data to refine a bayesian network. In Proc. of UAI,331

pages 383–390, 1994.332

15 Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is NP-complete.333

Information processing letters, 5(1):15–17, 1976.334

16 Colin Lee and Peter van Beek. An experimental analysis of anytime algorithms for bayesian335

network structure learning. In Advanced Methodologies for Bayesian Networks, pages 69–80,336

2017.337

17 J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81–107, 1986.338

18 Mauro Scanagatta, Cassio P de Campos, Giorgio Corani, and Marco Zaffalon. Learning339

bayesian networks with thousands of variables. Proc. of NeurIPS, 28:1864–1872, 2015.340

19 Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,341

1978.342

20 Tomi Silander and Petri Myllymäki. A simple approach for finding the globally optimal343

bayesian network structure. In Proc. of UAI’06, Cambridge, MA, USA, 2006.344

21 Fulya Trösser, Simon de Givry, and George Katsirelos. Improved acyclicity reasoning for345

bayesian network structure learning with constraint programming. In Proceedings of IJCAI,346

pages 4250–4257, 2021.347

CP 2022

https://doi.org/10.1007/978-1-4612-2404-4_12
http://dx.doi.org/10.1007/978-1-4612-2404-4_12
http://dx.doi.org/10.1007/978-1-4612-2404-4_12
http://dx.doi.org/10.1007/978-1-4612-2404-4_12

40:10 Structured Set Variable Domains in Bayesian Network Structure Learning

22 Peter van Beek and Hella-Franziska Hoffmann. Machine learning of bayesian networks using348

constraint programming. In Proc. of International Conference on Principles and Practice of349

Constraint Programming, pages 429–445, Cork, Ireland, 2015.350

23 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proceedings351

of the 16th Annual Symposium on Foundations of Computer Science, pages 75–84, 1975.352

24 Changhe Yuan and Brandon Malone. Learning optimal bayesian networks: A shortest path353

perspective. J. of Artificial Intelligence Research, 48:23–65, 2013.354

	1 Introduction
	2 Background
	2.1 Bayesian Networks
	2.2 CP-based BNSL

	3 Related work
	4 Decision Trees as domain store
	5 Experimental Results
	6 Conclusion

