
Relaxation-Aware Heuristics for Exact
Optimization in Graphical Models

Supplementary figures of CPAIOR’2020 paper

Fulya Trösser1, Simon de Givry1, and George Katsirelos2

1 MIAT, UR-875, INRAE, F-31320 Castanet Tolosan, France
{fulya.ural,simon.de-givry}@inrae.fr

2 UMR MIA-Paris, INRAE, AgroParisTech, Universit Paris-Saclay, 75005 Paris,
France

gkatsi@gmail.com

Abstract. Exact solvers for optimization problems on graphical models,
such as Cost Function Networks and Markov Random Fields, typically
use branch-and-bound. The efficiency of the search relies mainly on two
factors: the quality of the bound computed at each node of the branch-
and-bound tree and the branching heuristics. In this respect, there is a
trade-off between quality of the bound and computational cost. In par-
ticular, the Virtual Arc Consistency (VAC) algorithm computes high
quality bounds but at a significant cost, so it is mostly used in prepro-
cessing, rather than in every node of the search tree.
In this work, we identify a weakness in the use of VAC in branch-and-
bound solvers, namely that they ignore the information that VAC pro-
duces on the linear relaxation of the problem, except for the dual bound.
In particular, the branching heuristic may make decisions that are clearly
ineffective in light of this information. By eliminating these ineffective
decisions, we significantly reduce the size of the branch-and-bound tree.
Moreover, we can optimistically assume that the relaxation is mostly cor-
rect in the assignments it makes, which helps find high quality solutions
quickly. The combination of these methods shows great performance in
some families of instances, outperforming the previous state of the art.

Keywords: Graphical model · Cost function network · Weighted con-
straint satisfaction problem · Virtual arc consistency · Branch-and-bound
· Linear relaxation · Local polytope · Variable ordering heuristic.

2 F. Trösser et al.

x y
1

a

b

a

b

P1

x
y

a a

b

Bool(P1)

2

43

x y
a a

AC(Bool(P1))

x y
1

a

b

a

b

P2

2

4

x
a

Bool(P2)

y

a

b

x
a

Bool(P2) already AC

y

a

b

Fig. 1: Two WCSP instances P1, P2, Bool(P1), Bool(P2), and their arc consis-
tency closures. Variable x is VAC-integral in P1 and P2, but it is Strict AC only
in P1. Variable y is VAC-integral in P1 but not in P2, whereas it has a Full EAC
value in both problems, assuming these values are taken inside AC(Bool(Pi)).

Fig. 2: Evolution of θi, ri and αi over VAC iterations i ∈ {1, . . . , 39} for the
cnd1threeL1 1228061 instance from the Worms benchmark. This instance has
558 variables, maximum domain size of 71, and 15,148 cost functions. This figure
includes the VAC threshold θi, the ratio of VAC-integral variables ri, and the
value αi = ri/θi shown by purple, green and blue curves, respectively. Note
that the θi’s are normalized, ranging from 1 to θ39

θ1
, in order for the plot to be

readable. The ratio of VAC-integral variables starts from 0 and goes until 0.94
in the last iteration, when θ39 = 1. Note that the αi has the same range as ri,
although a different behavior. We select the VAC threshold value when the angle
of the αi curve reaches 10 degrees. In this case, this occurs at iteration 30.

Relaxation-Aware Heuristics 3

(a) Backtracks

(b) CPU time (seconds)

Fig. 3: Comparison with and without VAC-integrality for VAC during search.

4 F. Trösser et al.

(a) Backtracks

(b) CPU time (seconds)

Fig. 4: Comparison with and without threshold for VAC during search.

Relaxation-Aware Heuristics 5

(a) Backtracks

(b) CPU time (seconds)

Fig. 5: Comparison with and without VAC-integrality and threshold for VAC
during search.

6 F. Trösser et al.

(a) Backtracks

(b) CPU time (seconds)

Fig. 6: Comparison with and without RASPS in preprocessing and VAC during
search.

Relaxation-Aware Heuristics 7

(a) Backtracks

(b) CPU time (seconds)

Fig. 7: Comparison with and without VAC-integrality, threshold, and RASPS in
preprocessing for VAC during search.

8 F. Trösser et al.

(a) Backtracks

(b) CPU time (seconds)

Fig. 8: Comparison with and without RASPS for VAC in preprocessing and
EDAC during search.

Relaxation-Aware Heuristics 9

(a) Backtracks

(b) CPU time (seconds)

Fig. 9: Comparison between VAC-integrality, threshold, and RASPS in prepro-
cessing for VAC during search compared to VAC in preprocessing and EDAC
during search.

10 F. Trösser et al.

(a) Backtracks

(b) CPU time (seconds)

Fig. 10: Comparison between VAC and RASPS in preprocessing and EDAC with
Full EAC during search compared to VAC in preprocessing and EDAC during
search.

Relaxation-Aware Heuristics 11

(a) Backtracks

(b) CPU time (seconds)

Fig. 11: Comparison between VAC and RASPS in preprocessing and EDAC with
Full EAC during search compared to VAC-integrality, threshold, and RASPS in
preprocessing for VAC during search.

12 F. Trösser et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30

C
P

U
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of solved worms instances

CombiLP (VAC+VAC-integral+threshold+RASPS)
CombiLP (VAC-in-preprocessing)

toulbar2 (VAC-in-preprocessing+FullEAC+RASPS)
toulbar2 (VAC+VAC-integral+threshold+RASPS)

toulbar2 (VAC-in-preprocessing)

(a) Worms instances.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20

C
P

U
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of solved CPD instances

toulbar2 (VAC-in-preprocessing+FullEAC+RASPS)
CombiLP (VAC+VAC-integral+threshold+RASPS)

CombiLP (VAC-in-preprocessing)
toulbar2 (VAC+VAC-integral+threshold+RASPS)

toulbar2 (VAC-in-preprocessing)

(b) CPD instances.

Fig. 12: Comparison with CombiLP on Worms and CPD instances.

	Relaxation-Aware Heuristics for Exact Optimization in Graphical Models Supplementary figures of CPAIOR'2020 paper

