
Guaranteed Discrete Energy Optimization on Large Protein Design
Problems
David Simoncini,† David Allouche,† Simon de Givry,† Ceĺine Delmas,† Sophie Barbe,‡,§,⊥

and Thomas Schiex*,†

†INRA MIAT, UR 875, Castanet-Tolosan, 31326 Cedex, France
‡Universite ́ de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
§CNRS, UMR5504, F-31400 Toulouse, France
⊥ INRA, UMR792 Ingeńierie des System̀es Biologiques et des Proced́eś, F-31400 Toulouse, France

*S Supporting Information

ABSTRACT: In Computational Protein Design (CPD),
assuming a rigid backbone and amino-acid rotamer library, the
problem of finding a sequence with an optimal conformation is
NP-hard. In this paper, using Dunbrack’s rotamer library and
Talaris2014 decomposable energy function, we use an exact
deterministic method combining branch and bound, arc
consistency, and tree-decomposition to provenly identify the
global minimum energy sequence-conformation on full-redesign
problems, defining search spaces of size up to 10234. This is
achieved on a single core of a standard computing server,
requiring a maximum of 66GB RAM. A variant of the algorithm
is able to exhaustively enumerate all sequence-conformations
within an energy threshold of the optimum. These proven
optimal solutions are then used to evaluate the frequencies and amplitudes, in energy and sequence, at which an existing CPD-
dedicated simulated annealing implementation may miss the optimum on these full redesign problems. The probability of finding
an optimum drops close to 0 very quickly. In the worst case, despite 1,000 repeats, the annealing algorithm remained more than 1
Rosetta unit away from the optimum, leading to design sequences that could differ from the optimal sequence by more than 30%
of their amino acids.

■ INTRODUCTION

The main objective of Computational Protein Design (CPD) is
to find amino-acid sequences that adopt a desired tertiary
structure, be it for functional or structural purposes.1 This
requires an energy function that accurately reflects protein
stability and a reliable search method to identify a sequence
with a conformation of optimal stability (Global Minimum
Energy Conformation or GMEC).
These two ingredients for success are not independent. A

perfect funnel-like energy function would directly lead to
optimal designs, while a perfect search method would enable us
to identify flaws in the energy function and improve it.2

The most usual description of the CPD GMEC problem
relies on a pairwise decomposable energy function, a discretized
description of the amino-acid conformational space based on a
library of frequent side-chain conformations (or rotamers)3 and
a rigid backbone. Under such assumptions, the problem of
searching for a sequence with a minimum energy conformation
is known to be NP-hard.4 On this basis, most CPD tools prefer
to rely on stochastic methods, with no finite time convergence
guarantees. As an example, simulated annealing5 is used in the

Rosetta Molecular Modeling suite6 and EGAD uses a Genetic
Algorithm.7

A conceptually more attractive solution would be to rely on a
deterministic algorithm, providing a direct finite-time access to
the ultimate meaning of the energy function, avoiding
stochastic sampling noise. The Dead End Elimination theorem
(DEE8) combined with an A* search, as available in the
OSPREY design suite,9 is the deterministic method of choice in
CPD. However, on medium or large size designs, the finite but
worst-case exponential time and space needed by DEE/A* is so
huge that it is often unusable in practice and stochastic
algorithms remain the only alternative.
Therefore, a majority of CPD research relies on stochastic

methods and implicitly or explicitly assumes that they lead to
optimal or very close to optimal solutions with high
frequency.10 This capacity to efficiently identify sequences
with optimal conformations is especially challenging in de novo
design, where the full sequence of a protein is designed. After
two decades of research, there only exists a handful of

Received: June 24, 2015
Published: November 11, 2015

Article

pubs.acs.org/JCTC

© 2015 American Chemical Society 5980 DOI: 10.1021/acs.jctc.5b00594
J. Chem. Theory Comput. 2015, 11, 5980−5989

D
ow

nl
oa

de
d

vi
a

U
N

IV
 O

F
C

A
L

IF
O

R
N

IA
 I

R
V

IN
E

 o
n

O
ct

ob
er

 1
7,

 2
01

8
at

 2
0:

13
:4

4
(U

T
C

).

Se
e

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n

ho
w

 to
 le

gi
tim

at
el

y
sh

ar
e

pu
bl

is
he

d
ar

tic
le

s.

experimentally verified de novo designs, half of which have been
obtained with the Rosetta Molecular Modeling suite.6 The designs
of the first globular protein with a novel fold11 and of an
enzyme catalyst for a stereoselective bimolecular Diels−Alder
reaction12 are two striking examples of these rare successes.
Beyond de novo design, accessing sequences with an optimal

conformation becomes of utmost importance when the aim is
not to design a new protein but to exploit the flaws of the
designs to improve the energy function. For example, this has
been done in the composition-constrained full redesign of the
56-residue β1 domain of streptococcal protein G.2

We show in this paper that it is possible to obtain a sequence
with a guaranteed optimal conformation in reasonable time, on
standard hardware, on computationally extremely challenging
problems of a size that is far beyond what has been solved with
the usual deterministic DEE/A* CPD approach13−15 or other
approaches (such as Mixed Integer or Quadratic Program-
ming).15−19 We achieve this assuming a rigid backbone, a
recent dense backbone-dependent rotamer library,3 and a
recent design-oriented decomposable energy function.20

As an example of the computational power in our hands, we
have estimated the reliability of the fixed-backbone simulated
annealing protocol available in the Rosetta Modeling suite on
roughly 100 full redesigns problems. We observe that on most
designs the stochastic algorithm misses the optimum sequence-
conformation with very high frequency. To further exercise our
computational capacities, we attempted to exhaustively
enumerate all sequence-conformations with energy within a
fixed threshold of the GMEC, providing direct access to a local
density of states.
With the drastic reduction of computational efforts they

offer, our new computational methods (available as an open
source tool) may have a wide impact in CPD, especially for
energy function refinement.2 The pairwise decomposable
energy optimization problem also appears as a subproblem in
a variety of more general situations, including design with
continuous rotamers or flexible (ensemble) backbone21 or in
multistate design.22 The efficiency of our approach will
therefore contribute to these generalized models. Its ability to
exhaustively and rapidly enumerate conformations could also
be useful for conformational affinity computations.23

■ METHODS

Modeling CPD as a Cost Function Network. In our
settings (fixed-backbone, rotamer library, and pairwise decom-
posable energies), the energy of a given sequence-conformation
can be written as

∑ ∑= + +
<

E c E E i E i j() () (,)t
i

r
i j

r s

where Et is the template energy, E(ir) captures internal side-
chain energies and rotamer-backbone interactions for rotamer r
at position i, and E(ir, js) captures pairwise interactions between
rotamers r and s at positions i and j respectively. These terms
can be precomputed and stored in a set of energy matrices. A
CFN is a discrete optimization structure introduced in Artificial
Intelligence, in Constraint Programming, also known as a
Weighted Constraint Satisfaction problem.24 The problem of
finding the GMEC can be easily reduced to solving this NP-
hard problem which we describe now.
Cost function networks (CFNs) are deterministic Graphical

Models that are derived from Constraint Satisfaction Problems.

Definition 1. A CFN (X, W, k) is def ined by
• a set X of discrete variables xi ∈ X indexed by I = {1,...,n},

each variable xi takes its values in a finite domain Di of
maximum cardinality d.
• a set of cost functions wS ∈W each involving a subset {xi ∈

X | i ∈ S} of all variables and taking non-negative values in [0,k].
• The value k is a finite or infinite cost representing an upper

bound on costs: a cost of k or above is considered as forbidden.
The set S ⊂ I of a cost function wS is called the scope of the

cost function. We denote by DS the Cartesian product of the
domains of all variables indexed in S: DS = ∏i∈SDi. Given a
tuple t ∈ DS and S′ ⊂ S we denote by t[S′] the projection of t

on DS′. We define two operations over cost functions:
1. The sum of two cost functions wS and wS′ is the cost

function (wS+wS′) with scope S ∪ S′ such that (wS+wS′)(t) =
wS(t[S]) + wS′(t[S′]).
2. The marginal of a cost function wS over a subset T ⊂ S is

the cost funct ion (wS) |T such that (wS) |T(t) =
mint′∈DS

,t′[T]=twS(t′).
The cost of an assignment t of all variables is defined as the

sum∑wS∈WwS(t[S]) of all cost functions. If it is strictly less than
k, the assignment is said to be a solution. The weighted
constraint satisfaction problem (WCSP) is to identify a solution
of guaranteed minimum cost over all t ∈ DX. Because of the
non-negativity of all cost functions, the cost function w⌀ ∈ W, a
constant cost function with no parameters, defines a lower
bound on this minimum cost.
Modeling the rigid backbone, discrete rotamer, decompos-

able energy GMEC problem as a CFN is immediate:15,17 each
position or residue i in the protein sequence defines a variable
xi which takes its values in the set of all possible rotamers for
this position. All terms in the energy matrices can be shifted by
a sufficient constant to make them all non-negative. This
preserves the optimal solution. In the resulting matrices, the
template energy term Et is represented as the constant cost
function w⌀, one body energy terms on position i are
represented as cost functions wi of one variable xi, and two
bodies energy terms between positions i and j are represented
as cost functions wij of the two variables xi and xj. Because this
defines one-to-one mappings, we confound in the rest of the
paper variables with amino-acid positions (or residues), values
with rotamers, and costs with energies.

Guaranteed GMEC Identification with CFN Methods.
Deterministic CPD methods are usually based on two
components:
• Dead End Elimination8,25 is a polynomial time

preprocessing algorithm that prunes rotamers (or combinations
of rotamers) that are locally dominated by other rotamers (or
combinations of rotamers) in terms of energy. This process
may prune suboptimal solutions, even close to the optimum,
but preserves the GMEC.
• Since finding the GMEC is NP-hard, DEE cannot suffice in

all cases. It is therefore followed by the exponential time and
space best-first search algorithm A*, using a dedicated lower
bound.26 This lower bound is used to prune branches that have
not been pruned by DEE, during the search.
Our algorithm combines instead arc consistency filtering, a

family of CFN pruning and lower bounding techniques27 with
Depth-First Branch and Bound28 enhanced with variable
elimination and graph-based problem decomposition techni-
ques.29−31

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00594
J. Chem. Theory Comput. 2015, 11, 5980−5989

5981

Local Consistency. In CFNs, local consistencies, such as Arc
Consistencies, define a family of polynomial time problem
reformulation techniques, called filtering algorithms, that take
as input an original CFN and that transform it in another
equivalent CFN. This final CFN has the same set of variables,
possibly different cost functions, and it must satisfy a specific
set of local properties associated with the given local
consistency enforced. The filtered CFN is equivalent to the
original CFN in the sense that it defines exactly the same set of
solutions, each with the same exact cost as in the original CFN.
Thus, solving the original CFN or the filtered CFN is
absolutely equivalent. This may have the advantage that the
filtered CFN has a larger constant cost w⌀, providing a stronger
lower bound on the optimum.
To perform these transformations, filtering relies on so-called

Equivalent Preserving Transformations32,33 that shift costs (or
energies) between cost functions wS and wS′, S′ ⊂ S, in such a
way that the sum of local costs is unchanged and no negative
costs appear.
The general form of these elementary operations is captured

by the procedure Shift(S, S′, t′, α) where S′ ⊂ S ⊂ I and t′∈
DS′, that shifts an amount of cost/energy α between wS′(t′) and
wS. Preconditions prevent the application of operations that
would create negative costs. By simple algebra, it is easy to see
that the sum of costs of any solution (optimal or not) is
unchanged by any such transformation.
We show how such operations can be used to reformulate a

CFN and increase w⌀ on a very simple example. A problem
with two variables and two values in each domain is represented
in Figure 1(b). We assume that k = ∞. This CFN satisfies the
preconditions for applying either Shift({1,2}, {2}, b, 1) ((a),
left) or Shift({1,2}, {1}, b, 1) ((c), right). This last problem
allows then to apply Shift({1}, ⌀, (), 1) leading to problem
1(d). The four problems in Figure 1 are all equivalent.
However, problem (d) is the most explicit since w⌀ explicitly
shows that 1 is a lower bound on the cost of any solution of this
problem.
Beyond these transformations, local consistencies will also

prune any rotamer/value for which it can directly be proved
that they cannot participate in a solution. This is the case if
wi(a) + w⌀ ≥ k since all cost functions are non-negative. Then,
the value a ∈ Di can be deleted. This preserves equivalence
over all solutions (optimal or not). The larger w⌀ and the lower

k, the stronger the pruning. In the example above, the cost of
the solution (x1 = a, x2 = a) is 2. If we are now interested in
finding solutions of cost strictly better than 2, we can simply set
k to 2. In this case, the value a satisfies the pruning condition
and can be removed from D1.
On a large problem, depending on the sequence of Shift

operations which are applied, the lower bound w⌀ may increase
more or less. A succession of results on different strategies of
application of these transformations, each corresponding to
specific local properties that need to be satisfied in the target
problem, have been proposed in the past decade. In this paper,
we use two of these, the first one is Virtual Arc Consistency,27

that builds a powerful sequence of transformations with a
strong final lower bound w⌀ and the less expensive but weaker
Existential Directed Arc Consistency.34 The crucial property
that guarantees that our method provides exact optima is that
these two strategies solely rely on Equivalence Preserving
Transformations. They are therefore guaranteed to produce an
equivalent problem, with a possibly strengthened lower bound
w⌀ and thus increased but safe pruning.

Depth First branch and Bound. Because arc consistencies
algorithms are polynomial time, they cannot solve all problems
and must be completed by the tree search. We use a polynomial
space Depth-First Branch and Bound algorithm.28 This
algorithm explores a tree whose root is the full CFN describing
the original CPD problem. The sons of each node are typically
defined by choosing a variable/position which has more than
one possible value/rotamer and either set the variable to one
value (left branch) or remove this value from the domain of the
variable (right branch). The leaves of this tree are complete
assignments whose cost can be easily computed. If the tree is
exhaustively explored, an optimal solution can be identified as
the best leaf encountered when visiting the tree. Depth First
Search visits the tree by always developing a deepest
unexplored node first. It requires only polynomial memory to
do so.35

To avoid exploring the whole tree, Branch and Bound prunes
branches using two bounds. An upper bound ub is defined by
the cost/energy of the best known solution. To find a solution
of cost less than ub or prove optimality, we set k to ub. Then, by
filtering the problem at any node of the tree, we obtain a local
lower bound w⌀ on the cost of any leaf/solution below the
current node. If w⌀ ≥ k, arc consistency will prune all values.
Since arc consistency preserves equivalence, this shows that the

Figure 1. Four equivalent CFNs represented as weighted n-partite graphs. Each vertex corresponds to a value a ∈ Di, ∀ i∈ I. All the values of the
same variable domain are gathered in a dotted rectangle. If a value a is such that wi(a) ≠ 0, the corresponding vertex is weighted by wi(a). Similarly,
an edge between the vertices of a ∈ Di and b ∈ Dj is used to represent the fact that wij(a,b) = 1. An arrow between two CFNs shows how the source
CFN can be transformed in the target CFN while preserving equivalence and non-negative costs.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00594
J. Chem. Theory Comput. 2015, 11, 5980−5989

5982

current branch cannot lead to a solution of cost better than k =
ub. It can therefore be safely pruned.
The pruning capacities of this algorithm follow from the

quality of the lower and upper bounds it exploits. Because of its
significant computational cost and associated strong lower
bound, we only use Virtual Arc Consistency (VAC27) as
preprocessing, to filter the problem at the root node. The
resulting filtered equivalent problem is used instead of the
original one. During the rest of the tree search, we use the
cheaper Existential Directed Arc Consistency (EDAC34) to
update the lower bound w⌀ following left and right branching
decisions. To start the search with a non-naiv̈e upper bound, we
use the cost of the solution of one Rosetta fixbb protocol to
initialize k. Furthermore, during the search, each time a new
improved solution is found, its cost is used to update the value
of k. This incrementally excludes many suboptimal assignments
from the set of solutions, leading to increased value pruning by
local consistency. The resulting algorithm is denoted as fixbb-
VAC-DFBB(EDAC,dyn-k) as it uses fixbb to initialize k and
VAC for preprocessing and then both maintains EDAC and
updates k dynamically during the search.
Arc consistency only prunes values/rotamers that are proved

to never appear in a solution (conformation of cost/energy
lower than k). Therefore, by adjusting k, we can precisely
control which rotamers are protected from deletion, in a much
simpler way than DEE. It is therefore easy to transform our
Branch and Bound optimization algorithm above, targeted at
finding the GMEC, into an algorithm capable of exhaustive
suboptimal sequence-conformation enumeration: the value of k
is initially set to the desired upper bound and never updated
during the search. Then, the leaves encountered during the
search will be the exhaustive list of solutions with cost/energy
less than k. The resulting algorithm is denoted as fixed-VAC-
DFBB(EDAC,stat-k) as it uses a fixed initial value of k and
VAC for preprocessing and then maintains EDAC while
keeping k fixed during the search.
Variable Elimination. Every CPD instance defines a so-

called interaction graph. In this graph, each position is a vertex,
and an edge exists between two vertices i and j if a nonconstant
interaction term E(ir,js) exists between the two residues. In
CFN theory, this graph is also defined and called the primal
graph of the CFN.36

Nonserial dynamic programming,37 also called variable or
bucket elimination,38 is a possible approach to efficiently solve
problems whose interaction graph is made of different loosely
coupled subproblems. This easily happens in protein design if
the energy computations are done using a cutoff function,39 as
is the case with Talaris2014 in Rosetta.
As an example, consider a CFN P = (X,W,k) in which a

variable x1 is only connected to variables x2 and x3 by cost
functions w12, w13 ∈ W. This variable has a degree of only 2 in
the interaction graph. It is possible to eliminate variable x1 from
the problem, similarly to what is done with Gaussian
elimination on linear equalities. We consider the cost functions
involving x1: these are w1, w12, and w13. We can remove the
variable x1 from X and the cost functions w1, w12, and w13 that
involve it and replace them by (w1+w12+w13)|23, a new cost
function with scope {2,3}. This defines a new CFN where
variable x1 has been eliminated and denoted as P−x1. By
distributivity of min and +, one can show that the CFN P−x1
has the same optimal cost as the original CFN P.37

Furthermore, from an optimal solution of P−x1 it is possible
to build an optimal solution of P by simply choosing the value

of x1 that minimizes the sum of the eliminated cost functions
(w1+w12+w13). The complexity of this process is dominated by
the computation of the new cost function. For a variable xi of
degree g, this is in O(dg+1) and is therefore inexpensive for small
degrees.
In our algorithm, we eliminate all variables of degree ≤2 as a

preprocessing step. We also eliminate all the variables of degree
2 that may appear during the tree search.40 Indeed, when a
variable is assigned during depth-first branch and bound, it
disappears from the scope of all the cost functions that involved
it, and the degrees of neighbor variable decreases.

Tree Decomposition. Usually, such variable elimination
algorithms are not restricted in the degree of the variables they
eliminate. All variables are eliminated successively. The
sequence of elimination steps is organized cleverly to try to
minimize the maximum elimination cost. This is more formally
captured by a graph parameter known as treewidth (or
dimension37).
A tree decomposition of a graph is defined by a tree (C,T).

The set of nodes of the tree is C = {C1, ..., Cm} where Ce is a set
of variables (Ce ⊆ X) called a cluster. T is a set of edges
connecting clusters and forming a tree (a connected acyclic
graph). The set of clusters C must cover all the variables
(∪Ce ∈ C Ce = X) and all the cost functions (∀ {i,j} ∈ E, ∃ Ce ∈C
s.t. i,j ∈Ce). Furthermore, if a variable i appears in two clusters
Ce and Cg, i must also appear in all the clusters Cf on the unique
path from Ce to Cg in (C,T). If the cardinality of the largest
cluster in a tree decomposition is ω+1, then the width of the
decomposition is ω. The treewidth of a graph is the minimum
width among all its decompositions.41 An example of a primal
graph and an associated tree-decomposition is shown in Figure
2.

Tree decomposition based variable elimination (dynamic
programming) eliminates variables from leaf clusters first. It
requires only n · dω steps to identify a proven optimal solution.
It has been exploited for exactly solving the WCSP,38 side-chain
packing42,43 and CPD instances,44 for decompositions of small
width. It becomes however unusable, even if ω is not too large,
when d increases. This is the case for protein design problems

Figure 2. A tree-decomposition of a primal graph. Each cluster is
represented as a gray region covering a set of vertices and edges. The
organization in a tree is shown on the right. This decomposition has
width 26 since the largest cluster C1 contains 27 variables/residues.
The whole problem has 100 variables. The cluster C1 intersects with
cluster C2 over 2 variables only (variable indexed 32 and 50).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00594
J. Chem. Theory Comput. 2015, 11, 5980−5989

5983

where mutations with several amino-acid types are authorized:
there may be several hundreds of rotamers per mutable residue.
Our algorithm does not use brute force variable elimination.

It instead simultaneously exploits a tree decomposition and the
pruning power of arc consistency filtering during the tree
search.30 We root the tree decomposition in an arbitrary cluster
(we use the largest cluster, e.g. C1 in Figure 2) and use our
fixbb-VAC-DFBB(EDAC,dyn-k) algorithm with a variable
assignment order that never assigns a variable from a cluster
before all the variables of parent clusters have been assigned.
When the variables in the intersection of a parent cluster and a
son cluster are assigned, the two subproblems become
independent. The son cluster can be solved recursively using
the same method, and the result memorized in association with
the corresponding assignment of the variables in the
intersection of the clusters. If later, this same separator
assignment is visited by Branch and Bound, the previous
memorized result can be reused instead of resolving the
subproblem from scratch leading to worst-case complexity in
O(dω).29,30 Because of rotamer and branch pruning by arc
consistency, only a very small fraction of the work that would
have been done using variable elimination is required. The
resulting algorithm is denoted as fixbb-VAC-TD-DFBB-
(EDAC,dyn-k) and the associated flowchart in Figure 3.

This algorithm has been implemented in our open source
solver toulbar2 (version 0.9.8, sources available at https://
mulcyber.toulouse.inra.fr/projects/toulbar2). The weighted-de-
gree46 and last-conflict heuristics,47 restricted to explore
successive clusters of the tree decomposition, are used to
choose the next variable to explore during the tree search. The
EDAC value34 of the selected variable is explored first.
Compared to previous experiments using CFN methods,15

this new algorithm differs in the fact that
1. it uses the nontrivial initial upper-bound provided by one

run of Rosetta fixbb protocol to initialize k,
2. it uses the recent Virtual Arc Consistency (VAC) for

preprocessing,
3. it exploits a tree decomposition during the search,
4. it abandons Dead End Elimination (adding DEE slightly

decreases the overall number of solved problems, see the SI).
For reproducibility, beyond the sources of our solver, we give

access to the Python script used to extract energy matrices from

Rosetta, compute the GMEC, and enumerate suboptimal
conformation as well as the relaxed backbones of the
benchmark set in the public BitBucket repository https://
bitbucket.org/satsumaimo/ptcfopd. This script can be directly
applied on any PDB backbone structure.

Benchmark Preparation. Our benchmark set has been
extracted from the PDB (Protein Data Bank48) and filtered
with the following criteria: monomeric proteins with an X-ray
resolved structure below 2 Å, with no missing or nonstandard
residues and no ligand. Chain length was limited to 100 amino
acids. A total of 107 proteins were extracted as of the 1st of
September 2014, retrieving only representative structures at
30% sequence identity. The chain lengths scale from 50 to 100
residues, defining a collection of problems of gradually
increasing complexity. Each protein was then relaxed 10
times with the default Rosetta relax protocol,6 using
Talaris2014 energy function20 and the backbone of lowest
energy used for benchmarking (see the SI for a detailed list of
the proteins).
The rotamer library used is the backbone dependent

extended version of Dunbrack library 2010 integrated in
Rosetta. The Talaris2014 energy function was used to compute
the energy matrices.20 The largest matrix took less than 10 min
to compute (see the SI). The energy matrices were extracted
through PyRosetta49 and compared to the energy matrices used
within Rosetta fixbb protocol in order to guarantee that all
optimizations use exactly the same scoring function. All
residues were considered as mutable with any of the 20 natural
amino acids, except for cysteines involved in disulfide bridges.

Production of Rosetta Samples. 1,000 sequences were
generated for each target with the Rosetta Molecular Modeling
suite. We used the f ixbb protocol with default parameters and
Talaris2014 energy function20 (see the SI).

■ RESULTS AND DISCUSSION
Our experiments are targeted at evaluating the computational
limits of the CFN methods on Computational Protein Design.
Our benchmark represents a collection of protein design
problems of gradually increasing size and hardness, with a
maximum design space of 10234 sequence-conformations.

Finding and Enumerating Sequence-Conformations.
Within a fixed time limit of 100 h, our algorithm identified and
proved the optimality of the GMEC for 98 protein design
problems out of 107, using a single core of an Intel Xeon CPU
E5-2690@2.90 GHz (dated Q1-2012) and a maximum of
66GB of memory on the largest problem (with a 1.7 GB energy
matrix file, see the SI).
As expected, the computation time needed to find the

GMEC with this algorithm grows exponentially with the size of
the problem. Figure 4 shows a plot of the running time (with a
logarithmic scale) as a function of the problem bit-size. We
define the problem bit-size as the number of bits needed to
represent the energy matrices with eight digits after the decimal
point, following compression. We use it here instead of the size
of the sequence-conformation space, as it gives a better linear
regression coefficient with CPU-time (r2 = 0.661 instead of
0.478).
The observed exponential time complexity defines a

computational barrier after which GMECs cannot be found
and proved optimal in reasonable time using current
algorithmic technology. This limit is however far enough so
that most of the proteins in our benchmark could be handled
efficiently on one CPU core. A few years ago, sizes of up to 1078

Figure 3. Flowchart of our method: the backbone structure is loaded
in Rosetta, relaxed and used to generate the energy matrices and run
one fixbb protocol to get an initial upper bound k. The fixbb-VAC-TD-
DFBB(EDAC,dyn-k) algorithm then applies EDAC, VAC, and
variable elimination of variables with degree less than 2 until a fixed
point is reached (preserving optimum) as a preprocessing step. The
resulting matrix defines an interaction graph, and a tree-decomposition
is computed using the min-fill heuristics.45 The matrix is also used in
an exhaustive Depth-First Branch and Bound search algorithm that
maintains EDAC and eliminates variables of degree less than 2 at each
node, updating the upper bound k each time a new solution is found
and exploiting the tree-decomposition to avoid redundant calculations.
This identifies the GMEC and proves its optimality.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00594
J. Chem. Theory Comput. 2015, 11, 5980−5989

5984

sequence-conformations had already been reached by BRO-
MAP,13,14 a software that does not seem to be publicly
available. Then sizes of up to 1098 were reached in less than 100
h.15

Within the same time limit, on a single core of a 2012
generation CPU, the largest problem provenly solved in this
paper has a sequence-conformation space size of 10234. More
than 80% of the solved problems needed less than 3 h each, and
the smallest problem for which we could not prove optimality
of the best conformation found in 100 h has size 10206. In the
rest of the paper, we only consider those 98 design problems
for which we could find the GMEC and prove its optimality.
This efficiency is the result of a variety of techniques inside

our optimization tool. The pruning provided by the
combination of arc consistency filtering both as preprocessing
and during the search and the good initial upper bound k on
the GMEC energy are essential.
To explore the capabilities of our fixed-VAC-DFBB-

(EDAC,stat-k) enumeration algorithm, we tried to exhaustively
enumerate all sequence-conformations within 0.2 Rosetta units
of the energy of the GMEC. Because of the size of the
problems, this small gap may already contain a very large
number of sequence-conformations. In the same time-limit as
above, the set of all sequence-conformations in this gap could
be enumerated on 92 of the 98 designs. The number of
different sequences in this gap ranges from 8 to 6,527, while the
total number of sequence-conformations ranges from 752 to
1.42 × 109. This variety of behaviors is represented as a scatter-
plot in Figure 5. The mean number of conformations per
sequence varied from 3 to close to 1 million, indicating very
different densities of states and levels of geometrical
constrainedness on rotamers in the different backbones (see
the SI).
Assessment of Stochastic Methods. The ability to

exactly solve problems of sizes beyond what was previously
considered as feasible offers an unprecedented opportunity to
evaluate the reliability of stochastic methods on challenging

problems.51 In the context of CPD, Rosetta fixed-backbone
design protocol (fixbb) can be considered as a reference.6,52

With the initial aim of estimating a probability of finding the
optimum, we performed this protocol with default parameters
for 1,000 runs on each protein backbone. For each run, we
computed the distance of the resulting sequence-conformation
to the optimum in terms of energy and in terms of sequence, in
Hamming distance (number of mutations).
With 1,000 runs, the Rosetta protocol could find the GMEC

for 13 targets out of 98. These 13 problems took a total of 36 h
to be solved to optimality by our guaranteed algorithm. The
corresponding fixbb runs took a total of more than 90 h, with
no optimality proof.
In one additional case, the optimal sequence was found with

a suboptimal conformation. The distribution of the best, mean,
and worst energy among the 1,000 conformations found by
Rosetta, in terms of distance to the optimum, is presented in
Figure 6. It shows that 1,000 runs of this protocol are not
sufficient to get reliable access to the optimal solution on these
full redesigns. For one backbone, the best Rosetta solution in
the 1,000 runs was almost 2 Rosetta units away from the
optimum.
The strength of the simulated annealing search is that it

always provides a result, despite the exponentially increasing
conformation space and the problem NP-hardness. Is there a
price to pay for this ability? In Figure 7, we present the best and
mean distance to the optimum for each protein backbone over
the same 1,000 runs, as a function of the size of the sequence-
conformation space. One can observe a clear tendency for this
mean gap to grow with the log-size of the sequence-
conformation space and thus the number of residues to design.
From this point of view, the price paid for the efficiency of
simulated annealing is an empirically growing expected
optimality gap.
The initial aim of this experiment was to empirically estimate

the probability of the fixbb protocol to find the GMEC on our
set of benchmarks. Figure 8 represents all benchmarks ordered
according to their hardness for the Rosetta fixbb protocol, as
indicated by the empirical frequency of finding the optimum,
when nonzero, or as the remaining gap to optimality after 1,000
runs otherwise (see the SI for a more detailed representation).
On our problems of gradually increasing sizes from 50 to 100
residues, we observe a very rapid drop in frequency, reaching

Figure 4. Execution times in seconds (Y logscale) as a function of
problem bit-size. In blue: protein design problems that were solved to
optimality (deterministic method). In black: design problems that
could not be solved in 100 h (deterministic method). In light gray,
CPU-time for the 1,000 runs of Rosetta fixbb protocol. The
exponential regression (r2 = 0.661) over provenly solved protein
designs (blue dots) is consistent with the expected worst-case
exponential run-time of deterministic methods. Hollow blue dots are
design cases for which Rosetta fixbb protocol could also find the
optimum in 1,000 runs. The largest problem solved requires 15 Gbits
uncompressed or 1 Gbits after strong Lempel-Ziv-Markov chain
(LZMA2) lossless compression, as implemented in xz.50

Figure 5. For each protein design for which the exhaustive
enumeration of all sequence-conformations within 0.2 Rosetta units
of the optimum finished in less than 100 h, we give the number of
sequences (X-axis) and sequence-conformations (Y-axis) found.
Hollow dots represent protein backbones for which Rosetta fixbb
protocol could find the GMEC in 1,000 runs.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00594
J. Chem. Theory Comput. 2015, 11, 5980−5989

5985

0.001 after just 7 problems. This is followed by a steadily
increasing gap to optimality. An extrapolation of this trend to
the right region would imply that the probability of finding the
GMEC on the hardest problems becomes rapidly extremely
small.
We more specifically focused on two hard protein design

problems maximizing either the mean or the minimum energy
gap over 1,000 fixbb samples (PDB ID: 2CJJ and 2CKX). We
executed fixbb 1,000,000 times on these (representing around 2
years of CPU-time). We used these samples to compute the
empirical cumulative density function cdf(θ) = p(E(X) < θ) as
the fraction of samples with energy less than θ in the sample.
Exploiting the fact that the minimum of p i.i.d. variables
sampled with a given cdf(θ) has a cumulative density function
defined by (1−(1−cdf(θ))p), it is possible to compute the
empirical average energy gap that would be obtained after p
iterations of fixbb. These averages are represented in Figure 9
and show that the improvement in energy rapidly decreases to
almost 0. Since the curves are convex, a linear extrapolation of
the curves will yield an optimistic lower bound on the time

Figure 6. Histograms giving the distribution of the solutions found by the fixbb protocol by distance to the optimal energy. The first bucket in the
histogram represents optimal solutions, with energy E*. In blue, the optimistic set of the best energy solution obtained for each design problem over
1,000 runs of the fixbb protocol. In black, all solutions for all runs and all backbones. In red, the pessimistic set of all worst energy solutions obtained
for each design problem over all 1,000 runs of the fixbb protocol. The X-scale has been truncated to 15 Rosetta-units, but the worst difference to the
optimum observed was equal to 37.5 Rosetta units.

Figure 7. Distance to the optimum energy for the best (blue) and
mean (red) energy over 1,000 fixbb runs, as a function of the log10-
conformation space. An exponential regression (r2 = 0.318) fit is
shown (marginally better than a linear − r2 = 0.309−also increasing
fit). Hollow dots represent protein backbones for which the optimum
was found in 1,000 runs.

Figure 8. In blue, we give the empirical frequency of correct identification of the optimum by fixbb (left scale). In red (right scale), we indicate the
smallest gap to optimality of all remaining protein backbones over 1,000 fixbb runs. Design problems are ordered in decreasing order of frequency
and then increasing order of energy gaps. In the background, we represent lower bounds or exact number of unique sequences with energy between
the GMEC and fixbb best solution using a logarithmic scale (in gray). A green box indicates an exact count; a red box indicates the lower bound
provided by the 0.2 Rosetta units enumeration.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00594
J. Chem. Theory Comput. 2015, 11, 5980−5989

5986

needed to get the GMEC. For 2CJJ, with a final slope of 1.6 ×
10−2 Rosetta units per million samples, this bound is equal to
1.8 × 107, representing more than 20 years of CPU-time. It is
only of 5.6 × 106 samples for 2CKX. This is probably caused by
the optimistic linear extrapolation: the curve being further away
from the optimum, it decreases faster, by 9.3 × 10−2 Rosetta
unit per million of samples.
Sequence Analysis. The Rosetta fixbb protocol also

defines a distribution over the distance of a predicted sequence
to the optimal sequence. To evaluate this induced distribution
at the sequence level, we computed the Hamming distance of
the predicted sequences with the optimal sequence for each
backbone on either the minimum energy fixbb design, on all
designs, and on the design maximizing the Hamming distance.
This is represented in Figure 10. If we consider only the best
Rosetta model over 1,000 runs (in terms of energy), we can see
that the designed sequence may exceptionally be up to 30%
away from the optimum sequence. Over all design problems,
the best model sequence disagrees with the GMEC for
approximately 8% of all residues. The core of all proteins is
however well conserved, with a difference of 2.4% in the core,
7% in the boundary, and close to 10% on the surface. Core
residues (as defined in Rosetta) only account for a small
fraction of all residues in our benchmark (10%).

The guaranteed optima give a direct access to the implicit
side effects of the scoring function. Table 1 shows the number

of hydrophobic, polar, charged, and aromatic amino acids
contained in the wild type, in the best Rosetta model, and in
the GMEC. Our interest in the wild type sequence follows from
the use of its sequence as a guide to improve energy
functions.2,53

One can see that compared to the native sequence,
Talaris2014 favors charged and aromatic amino acids at the
expense of the polar and hydrophobic residues.54 Removing the
effect of stochastic sampling, the GMEC shows these biases are
stronger than estimated otherwise and remain essentially
unchanged in the enumerated suboptimal solutions. Without
this noise, it should be easier to improve the energy weights as
it has been done before.2

Suboptimal sequences are clearly much closer to the GMEC
than to the native sequence, and this is confirmed by an
asymptotic test that cannot reject the assumption that the
proportion of each class in each protein comes from the same
distribution in the GMEC and suboptimal sequences (see the
SI).

■ CONCLUSION
Often, drastic progress in the ability to solve problems can
unlock access to new questions. This progress may come from
new hardware, as recently highlighted by the creation of the
Anton computer for molecular dynamics.55 In this paper, we
have shown how recent algorithmic progress in Artificial

Figure 9. Average value of the gap to the optimum of the minimum of
p fixbb samples (Y-axis) as p increases (X-axis), on the two hard
protein design problems 2CJJ and 2CKX, empirically estimated from
1,000,000 fixbb samples.

Figure 10. Histogram of the optimal sequence recovery rate of Rosetta fixbb protocol for sequences with the best energy among the 1,000 runs
(blue, best case), among all sequences (black, mean case) and among sequences with the largest Hamming distance to the optimal sequence (red,
worst-case).

Table 1. Distribution of Different Amino-Acid Types in the
Native Sequence, in Rosetta Best Solution, in All Rosetta
Solutions, in the GMEC Sequence, and in All Suboptimal
Sequences within 0.2 Rosetta Units of the GMEC on the 92
Designs Where the Enumeration Finisheda

type native fixbb best fixbb all GMEC suboptimal

charged 1,795 1,996 1,818.33 2,097 2,090.13
aromatic 585 616 611.235 622 624.79
polar 1,817 1,730 1,864.46 1,662 1,662.84
hydrophobic 2,585 2,440 2,487.99 2,401 2,404.23

aNonmutable cysteines involved in disulfide bridges are excluded from
these counts.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00594
J. Chem. Theory Comput. 2015, 11, 5980−5989

5987

Intelligence optimization techniques allows us to provide a
guaranteed global minimum energy conformation for much
larger redesign problems than was previously possible. On most
of the solved problems, we have also been able to exhaustively
enumerate all conformations within the neighborhood of the
optimum, providing a precise local image of the density of
states around the GMEC.23

Full protein redesign has previously been used as a basis for
tuning the energy function.2[The 1PGA backbone used in a
previous study2 is close to the 1PGX backbone in our
benchmark. Its GMEC is provenly identified but not produced
in 1,000 runs of fixbb protocol.] Since the GMEC is the true
meaning of the energy function, and given the qualitative
differences we observed between it and the best fixbb sampled
sequences (e.g., in term of compositional bias), these
algorithmic advances could be a new cornerstone of energy
function tuning.
Our benchmark uses rigid backbones and discrete rotamers,

but proteins are continuously flexible molecules. Accounting for
continuous rotamers and/or backbone flexibility in the
computational model has been shown to be more accurate.21

Such flexible models are however even more challenging to
solve. Existing provable algorithms for such models also directly
rely on discrete pairwise decomposable energy optimization
problems and should directly benefit from these results.
CFN algorithms are not limited to solving discrete pairwise

decomposable optimization problems. They can deal with
nonpairwise cost functions, including so-called global cost
functions that involve an arbitrary number of variables56 and
can handle constraints. These features will probably be
specifically handy for multistate protein design.22 On a longer
term, in the right hands, they may find numerous other usages
we cannot envision.
Because the GMEC identification problem is NP-hard, it has

become usual and accepted to rely on stochastic optimization
algorithms, such as simulated annealing, to identify ”close to
optimum” solutions. For the first time, we have been able to
measure the rate of success of the simulated annealing based
fixbb protocol of Rosetta Molecular Modeling suite on very large
problems, with previously unreachable guaranteed optima.
These results show that the probability of finding the GMEC
drops very quickly close to 0 as problems get harder. Even with
1,000 runs, the Monte Carlo algorithm was sometimes unable
to get within 1 Rosetta units of the optimum, leading to design
sequences that could differ from the optimal sequence by more
than 30% of their amino acids.
Over the full set of all solved backbones, we observed that

the CPU-time of the deterministic method tends to increase
exponentially, defining a clear limit to the maximum size of the
problems that can be currently solved. Over hundreds of
thousands of fixbb samples, we similarly observed that the mean
energy gap to optimality tends to increase with the number of
designed residues, putting a limit on the size of systems for
which a reasonably good solution can be found with
confidence. For the hardest problems, millions of samples did
not allow to close the gap.
For a large fraction of significant discretized protein design

problems, it may now be the case that guaranteed optimal
sequence-conformations can be produced more efficiently than
heuristic solutions.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.5b00594.

Document with precise references to source repositories
where the algorithms are available, Talaris2014 weight
parameters, description of the spreadsheet, statistical test
definition and results on all classes and samples, proof of
the cumulative density function of minimum, and a more
detailed box-plot based representation of the contents of
the fixbb samples (PDF)
Exhaustive spreadsheet including, for each protein design
problem, all the different characteristics of the problem,
its representation, and the results of CFN and fixbb
algorithms (XLSX)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: tschiex@toulouse.inra.fr.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was partially supported by the Agreenskill program
(D. Simoncini PostDoc funding). We are grateful to the
Genotoul (Toulouse) Bioinformatic platform for providing us
computational support for this work.

■ REFERENCES
(1) Khoury, G. A.; Smadbeck, J.; Kieslich, C. A.; Floudas, C. A.
Trends Biotechnol. 2014, 32, 99−109.
(2) Alvizo, O.; Mayo, S. L. Proc. Natl. Acad. Sci. U. S. A. 2008, 105,
12242−12247.
(3) Shapovalov, M. V.; Dunbrack, R. L. Structure 2011, 19, 844−858.
(4) Pierce, N. A.; Winfree, E. Protein Eng., Des. Sel. 2002, 15, 779−
782.
(5) Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Science 1983, 220,
671−680.
(6) Leaver-Fay, A.; Tyka, M.; Lewis, S. M.; Lange, O. F.; Thompson,
J.; Jacak, R.; Kaufman, K.; Renfrew, P. D.; Smith, C. A.; Sheffler, W.;
Davis, I. W.; Cooper, S.; Treuille, A.; Mandell, D. J.; Richter, F.; Ban,
Y.-E. A.; Fleishman, S. J.; Corn, J. E.; Kim, D. E.; Lyskov, S.; Berrondo,
M.; Mentzer, S.; Popovic,́ Z.; Havranek, J. J.; Karanicolas, J.; Das, R.;
Meiler, J.; Kortemme, T.; Gray, J. J.; Kuhlman, B.; Baker, D.; Bradley,
P. Methods Enzymol. 2011, 487, 545−574.
(7) Chowdry, A. B.; Reynolds, K. A.; Hanes, M. S.; Voorhies, M.;
Pokala, N.; Handel, T. M. J. Comput. Chem. 2007, 28, 2378−2388.
(8) Desmet, J.; De Maeyer, M.; Hazes, B.; Lasters, I. Nature 1992,
356, 539−542.
(9) Gainza, P.; Roberts, K. E.; Georgiev, I.; Lilien, R. H.; Keedy, D.
A.; Chen, C.-Y.; Reza, F.; Anderson, A. C.; Richardson, D. C.;
Richardson, J. S.; Donald, B. R. Methods Enzymol. 2013, 523, 87−107.
(10) Kuhlman, B.; Baker, D. Proc. Natl. Acad. Sci. U. S. A. 2000, 97,
10383−10388.
(11) Kuhlman, B.; Dantas, G.; Ireton, G. C.; Varani, G.; Stoddard, B.
L.; Baker, D. Science (Washington, DC, U. S.) 2003, 302, 1364−1368.
(12) Siegel, J. B.; Zanghellini, A.; Lovick, H. M.; Kiss, G.; Lambert, A.
R.; St Clair, J. L.; Gallaher, J. L.; Hilvert, D.; Gelb, M. H.; Stoddard, B.
L.; Houk, K. N.; Michael, F. E.; Baker, D. Science (Washington, DC, U.
S.) 2010, 329, 309−313.
(13) Hong, E.-J.; Lippow, S. M.; Tidor, B.; Lozano-Peŕez, T. J. J.
Comput. Chem. 2009, 30, 1923−1945.
(14) Biddle, J. C. Methods and Applications in Computational
Protein Design. M.Sc. thesis, Massachusetts Institute of Technology,
2010.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00594
J. Chem. Theory Comput. 2015, 11, 5980−5989

5988

(15) Traore,́ S.; Allouche, D.; Andre,́ I.; de Givry, S.; Katsirelos, G.;
Schiex, T.; Barbe, S. Bioinformatics 2013, 29, 2129−2136.
(16) Zhou, Y.; Wu, Y.; Zeng, J. Computational Protein Design Using
AND/OR Branch-and-Bound Search. In Proceedings of the International
Conference on Research in Computa-tional Molecular Biology, Warsaw,
Poland, 2015; Przytycka, T. M., Ed.; Springer Verlag: Berlin, 2015; pp
354−366.
(17) Allouche, D.; Andre,́ I.; Barbe, S.; Davies, J.; de Givry, S.;
Katsirelos, G.; O’Sullivan, B.; Prestwich, S.; Schiex, T.; Traore,́ S. Artif.
Intell. 2014, 212, 59−79.
(18) Klepeis, J.; Floudas, C.; Morikis, D.; Tsokos, C.; Lambris, J. Ind.
Eng. Chem. Res. 2004, 43, 3817−3826.
(19) Zhu, Y. Ind. Eng. Chem. Res. 2007, 46, 839−845.
(20) O’Meara, M. J.; Leaver-Fay, A.; Tyka, M.; Stein, A.; Houlihan,
K.; DiMaio, F.; Bradley, P.; Kortemme, T.; Baker, D.; Snoeyink, J.;
Kuhlman, B. J. J. Chem. Theory Comput. 2015, 11, 609−622.
(21) Hallen, M. A.; Keedy, D. A.; Donald, B. R. Proteins: Struct.,
Funct., Genet. 2013, 81, 18−39.
(22) Ambroggio, X. I.; Kuhlman, B. J. Am. Chem. Soc. 2006, 128,
1154−1161.
(23) Silver, N. W.; King, B. M.; Nalam, M. N.; Cao, H.; Ali, A.; Kiran
Kumar Reddy, G.; Rana, T. M.; Schiffer, C. A.; Tidor, B. J. Chem.
Theory Comput. 2013, 9, 5098−5115.
(24) Meseguer, P.; Rossi, F.; Schiex, T. Soft Constraint Processing.
Handbook of Constraint Programming; Rossi, F., van Beek, P., Walsh,
T., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp 281−328.
(25) Goldstein, R. F. Biophys. J. 1994, 66, 1335−1340.
(26) Georgiev, I.; Lilien, R. H.; Donald, B. R. J. Comput. Chem. 2008,
29, 1527−1542.
(27) Cooper, M.; de Givry, S.; Sanchez, M.; Schiex, T.; Zytnicki, M.;
Werner, T. Artif. Intell. 2010, 174, 449−478.
(28) Lawler, E.; Wood, D. Oper. Res. 1966, 14, 699−719.
(29) Jeǵou, P.; Terrioux, C. Artif. Intell. 2003, 146, 43−75.
(30) de Givry, S.; Schiex, T.; Verfaillie, G. Exploiting Tree
Decomposition and Soft Local Consistency in Weighted CSP. In
Proceedings of the National Conference on Artificial Intelligence, Boston,
MA, USA, 2006; Gil, Y., Mooney, R. J., Eds.; AAAI Press: Palo Alto,
CA, 2006; pp 22−27.
(31) Dechter, R.; Mateescu, R. Artif. Intell. 2007, 171, 73−106.
(32) Cooper, M. C.; Schiex, T. Artif. Intell. 2004, 154, 199−227.
(33) Schiex, T. Arc consistency for soft constraints. In Proceedings of
the International Conference on Principles and Practice of Constraint
Programming, Singapore, 2000; Dechter, R., Ed.; Springer Verlag:
Berlin, 2000; pp 411−424.
(34) Larrosa, J.; de Givry, S.; Heras, F.; Zytnicki, M. Existential arc
consistency: getting closer to full arc consistency in weighted CSPs. In
Proceedings of the International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, 2005; Kaelbling, L. P., Saffiotti, A., Eds.;
Professional Book Center: Denver, Colorado, USA, 2005; pp 84−89.
(35) van Beek, P. Bactrack Search Algorithms. Handbook of
Constraint Programming; Rossi, F., van Beek, P., Walsh, T., Eds.;
Elsevier: Amsterdam, The Netherlands, 2006; pp 85−134.
(36) Dechter, R. Tractable Structures for Constraint Satisfaction
Problems. Handbook of Constraint Programming; Rossi, F., van Beek,
P., Walsh, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp
209−244.
(37) Bertele,́ U.; Brioshi, F. Nonserial Dynamic Programming;
Academic Press: London, 1972.
(38) Dechter, R. Constraints 1997, 2, 51−55.
(39) Brooks, C. L., III; Pettitt, B. M.; Karplus, M. J. Chem. Phys. 1985,
83, 5897−5908.
(40) Larrosa, J. Boosting search with variable elimination. In
Proceedings of the International Conference on Principles and Practice of
Constraint Programming, Singapore, 2000; Dechter, R., Ed.; Springer
Verlag: Berlin, 2000; pp 291−305.
(41) Robertson, N.; Seymour, P. D. J. Algorithms 1986, 7, 309−322.
(42) Xu, J.; Berger, B. J. Assoc. Comput. Mach. 2006, 53, 533−557.
(43) Leaver-Fay, A.; Kuhlman, B.; Snoeyink, J. An adaptive dynamic
programming algorithm for the side chain placement problem. In

Proceedings of the Pacific Symposium on Biocomputing, Fairmont Orchid,
Big Island of Hawaii, 2005; Altman, R. B., Dunke, A. K., Hunter, L.,
Eds.; World Scientific Press: Singapore, 2005; pp 16−27.
(44) Jou, J. D.; Jain, S.; Georgiev, I.; Donald, B. R. BWM*: A Novel,
Provable, Ensemble-Based Dynamic Programming Algorithm for
Sparse Approximations of Computational Protein Design. In
Proceedings of the International Conference on Research in Computational
Molecular Biology, Warsaw, Poland, 2015; Przytycka, T. M., Ed.;
Springer Verlag: Berlin, 2015; pp 154−166.
(45) Kjærulff, U. Triangulation of graphs−algorithms giving small total
state space; R-90-091990; Univ. of Aalborg: Denmark, 1990.
(46) Boussemart, F.; Hemery, F.; Lecoutre, C.; Sais, L. Boosting
systematic search by weighting constraints. In Proceedings of the
European Conference on Artificial Intelligence, Valencia, Spain, 2004; De
MÃntaras, L., Saitta, A. K., Eds.; IOS Press: Amsterdam, 2004; pp
146−150.
(47) Lecoutre, C.; Saïs, L.; Tabary, S.; Vidal, V. Artif. Intell. 2009,
173, 1592−1614.
(48) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.;
Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000,
28, 235−242.
(49) Chaudhury, S.; Lyskov, S.; Gray, J. J. Bioinformatics 2010, 26,
689−691.
(50) Ziv, J.; Lempel, A. IEEE Trans. Inf. Theory 1977, 23, 337−343.
(51) Voigt, C. A.; Gordon, D. B.; Mayo, S. L. J. Mol. Biol. 2000, 299,
789−803.
(52) Dantas, G.; Kuhlman, B.; Callender, D.; Wong, M.; Baker, D. J.
Mol. Biol. 2003, 332, 449−460.
(53) Leaver-Fay, A.; O’Meara, M.; Tyka, M.; Jacak, R.; Song, Y.;
Kellogg, E.; Thompson, J.; Davis, I. W.; Pache, R.; Lyskov, S.; Gray, J.;
Kortemme, T.; Richardson, J.; Havranek, J.; Snoeyink, J.; Baker, D.;
Kuhlman, B. Methods Enzymol. 2013, 523, 109.
(54) Jackson, E. L.; Ollikainen, N.; Covert, A. W., III; Kortemme, T.;
Wilke, C. O. PeerJ 2013, 1, e211.
(55) Shaw, D. E.; Deneroff, M. M.; Dror, R. O.; Kuskin, J. S.; Larson,
R. H.; Salmon, J. K.; Young, C.; Batson, B.; Bowers, K. J.; Chao, J. C.;
Eastwood, M. P.; Gagliardo, J.; Grossman, J. P.; Ho, C. R.; Ierardi, D.
J.; Kolossvaŕy, I.; Klepeis, J. L.; Layman, T.; McLeavey, C.; Moraes, M.
A.; Mueller, R.; Priest, E. C.; Shan, Y.; Spengler, J.; Theobald, M.;
Towles, B.; Wang, S. C. Anton, a special-purpose machine for
molecular dynamics simulation. In Proceedings of the Annual Interna-
tional Symposium on Computer Architecture, San Diego, California,
USA, 2007; Tullsen, D. M., Calder, B., Eds.; ACM: New York, USA,
2007; pp 1−12.
(56) Allouche, D.; Bessiere, C.; Boizumault, P.; De Givry, S.;
Gutierrez, P.; Loudni, S.; Met́ivier, J.-P.; Schiex, T. Filtering
decomposable global cost functions. In Proceedings of the National
Conference on Artificial Intelligence, Toronto, Ontario, Canada, 2012;
Hoffmann, J., Selman, B., Eds.; AAAI Press: Palo Alto, CA, 2012; pp
7−12.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00594
J. Chem. Theory Comput. 2015, 11, 5980−5989

5989

