
Toulbar2: optimizing discrete
multivariate models

Graphical models &
Constraint programming

Thomas Schiex & Simon de Givry
firstname.name@inrae.fr

github.com/toulbar2/toulbar2 toulbar2.github.io/toulbar2pip3 install pytoulbar2

http://github.com/toulbar2/toulbar2
http://toulbar2.github.io/toulbar2

Modeling: Cost Function Networks (CFN)
● Discrete variables: X1,...Xn
● Joint function on these: E(X1,...Xn) = -log(P(X1,...,Xn)) + cte
● E is “infinite-valued” (E = ∞ ≍ false ≍ zero probability)
● Described as the sum of “elementary” functions

○ Cost tensors (space exponential in the number of involved variables)
○ Predefined global functions: AllDiff(X1,...Xm), Regular(A, X1,.., Xm), Knapsack(A,c,X1,.., Xn)...

● Many representable frameworks (many file formats):
○ SAT, weighted MaxSAT, Pseudo-Boolean & 01LP, Q(U)BO, CP/COP (XCSP3)
○ Hidden Markov Models, Markov Random Fields, Bayesian nets (UAI)

 64 bits
fixed point

saturating arithmetics

Graphs (V,E) & colors (k)
● One variable Xi per vertex i ∈ V
● Domains = possible colors
● k-coloring : for each (i,j) ∈ E, fij ∝

eye(k)
● min-cost k-coloring : adding fi
● max-k-coloring: relaxing fij
● Cost from fij and fi are added
● possible separation of costs (Pareto)

∞ 0 0

0 ∞ 0

0 0 ∞

1 0 0

0 1 0

0 0 1

0 1 2

vj

vi

infinite = 1000000
cfn = pytoulbar2.CFN(infinite)
for i in V: cfn.AddVariable(f'X{i}',range(k))
for (i,j) in E: cfn.AddFunction([f'X{i}',f'X{j}'],infinite*np.eye(k).flatten())
cfn.Solve()

Hidden Markov Model
● Variables Xt and Yt with their domains
● Functions f(Xt, Yt) = -log(p(Yt|Xt)) and f(Xt+1,Xt) = -log(p(Xt+1|Xt))
● Treewidth = 1 (acyclic)... dynamic programming
● A specialized Viterbi will be better, but…

Hidden Markov Model
● Variables Xt and Yt with their domains
● Functions f(Xt, Yt) = -log(p(Yt|Xt)) and f(Xt+1,Xt) = -log(p(Xt+1|Xt))
● Treewidth = 1 (acyclic)... dynamic programming
● The succession of hidden states belongs to a regular language (automata)
● Regular(A,X1,...,Xn) decomposable in 3D-tensors A(Si,Xi,Si+1)

St-1 St St+1

Various algorithms for 3 main queries
1. Find (x1,...xn) minimizing E(x1,...,xn) decision NP-complete

a. optimality proof by default (logical reasoning & reductio ad absurdum)
b. anytime, with shrinking optimality gap (predefined or on the fly)
c. branch & bound with dedicated bounds (generalized CP/SAT inference, cvgt Message Passing)
d. depth-first or hybrid best/depth first search (default)
e. can exploit the problem structure (treewidth)
f. local search solvers (VNS, PILS,...), better solutions faster but…
g. SDP low rank solver (ICML’22)
h. C++ (MPI) implementation with Python API (pytoulbar2) - Linux/MacOS (Windows soon!)

2. Counting (solutions, partition function) #P-complete
a. exact algorithms (very expensive except for structured problems)
b. approximation with deterministic guarantee (same, but tunable)

3. Bi-objective optimization (Pareto front, CPAIOR’24)

Winner of Max-CSP/COP (CPAI08, XCSP3 2022, 2023, 2024) and graphical models (UAI 2008, 2010, 2014, 2022 MAP task) challenges.

forgemia.inra.fr/samuel.buchet/tb2_twophase

http://www.cril.univ-artois.fr/CPAI08/
https://xcsp.org/competitions/
https://www.ics.uci.edu/~dechter/softwares/benchmarks/UAI08/uai08-evaluation-2008-09-15.pdf
http://www.cs.huji.ac.il/project/UAI10/summary.php
http://auai.org/uai2014/competition.shtml
https://uaicompetition.github.io/uci-2022/
https://forgemia.inra.fr/samuel.buchet/tb2_twophase

Max-Cut vs Min-Cut, MRF-based image segmentation
● Graph (V,E) with two colors (vertices partition, symmetry)
● MaxCut: for every eij ∈ E, fij = -𝟙[Xi ≠ Xj] (minimization)

○ fij is supermodular: NP-hard
● MinCut: for every eij ∈ E, fij = 𝟙[Xi ≠ Xj]

○ fij is submodular: polytime (one bound, VAC, gives this polytime behavior)

● Image segmentation: Hidden Markov Random Field, still submodular
○ use dedicated implementations (V. Kolmogorov) for pure segmentation
○ used as the last “layer” of neural architectures for detailed semantic segmentation.

Radio Link Frequency Assignment (CELAR)
● Generalization of k-coloring
● Set of radio links with available frequencies (variables)
● “Nearby” links must use sufficiently different frequencies fij = ∞⨉ 𝟙|Xi-Xj<k|
● Extra technological constraints (constant emission/reception frequency shift)

● Criteria:
○ minimize the number of frequencies used (N-values global constraint)
○ minimize the number of links subject to interference (replace ∞ by dedicated costs)

● Spatial interactions => smaller treewidth.

Weaknesses & Strengths
● Not good for very large domains (time, scheduling)
● Not so good for random problems
● Optimization>feasibility (use SAT/ILP/CP if natural)

● Loves problem with a majority of functions over few (<=3) variables
● Useful when ‘small’ treewidth, or submodularity is present
● Unexpected efficiency on physics-based Computational Protein Design

Learning models from solutions (self-supervised, stochastic interpretation)

● From a set of ‘good’ solutions
○ Approximate log-likelihood with L1/L2 regularisation (sparsistent, sufficient statistics)
○ Relies on convex optimisation (ADMM)
○ CFN-learn numpy-based package, separate from toulbar2.

Learn customer preferences from configurations (Renault)
Learn how to play Sudoku (9,000 solved grids)

● From a set of good solutions with associated information (supervision):
○ Deep learning based (in: informations, out: a CFN)
○ Emmental-PLL loss (improves Besag consistent pseudo-loglikelihood - IJCAI’23)
○ Emmental-PLL torch-based Package, separate from toulbar2 - limitations

Learn customer preferences from configurations (Renault) given age, SCP, gender
Learn how to play Sudoku from the grid geometry (200 solved grids, image input)

https://forgemia.inra.fr/marianne.defresne/emmental-pll

https://github.com/toulbar2/CFN-learn

https://forgemia.inra.fr/marianne.defresne/emmental-pll
https://github.com/toulbar2/CFN-learn

Learning preferences from configurations
Renault utility van with combinatorial options:

● 68 variables, 324 values, 332 constraints (12 vars), 8,337 configurations
● Up to 24, 566, 537, 954, 855, 758, 069, 760 different vehicles
● Learning user preferences from passed valid configurations
● 10-fold cross validation

Learning how to design proteins (or play Sudoku)

The learned representation of p(y|ω) can be constrained or biased arbitrarily w/o retraining.

toulbar2

Learning how to design proteins

► DDPM (loop generation)
► Affinity & specificity

NanobodiesAncestral protein

► Symmetry
► Simple chemistry

Self-assembling complex

► Complex symmetry
► Specific interactions

