
Computational Protein Design as an Optimization Problem

David Allouche, Jessica Davies, Simon de Givry, George Katsirelos, Thomas Schiex∗

UBIA, UR-875, INRA, F-31320 Castanet Tolosan, France

Seydou Traoré, Isabelle André, Sophie Barbe

LISBP, INSA, UMR INRA 792/CNRS 5504, F-31400 Toulouse, France

Steve Prestwich, Barry O’Sullivan

Insight Centre for Data Analytics, University College Cork, Ireland

Abstract

Proteins are chains of simple molecules called amino acids. The three-dimensional shape
of a protein and its amino acid composition define its biological function. Over millions
of years, living organisms have evolved a large catalog of proteins. By exploring the
space of possible amino acid sequences, protein engineering aims at similarly designing
tailored proteins with specific desirable properties. In Computational Protein Design
(CPD), the challenge of identifying a protein that performs a given task is defined as the
combinatorial optimization of a complex energy function over amino acid sequences.

In this paper, we introduce the CPD problem and some of the main approaches that
have been used by structural biologists to solve it, with an emphasis on the exact method
embodied in the dead-end elimination/A* algorithm (DEE/A*). The CPD problem is
a specific form of binary Cost Function Network (CFN, aka Weighted CSP). We show
how DEE algorithms can be incorporated and suitably modified to be maintained during
search, at reasonable computational cost.

We then evaluate the efficiency of CFN algorithms as implemented in our solver
toulbar2, on a set of real CPD instances built in collaboration with structural biologists.
The CPD problem can be easily reduced to 0/1 Linear Programming, 0/1 Quadratic
Programming, 0/1 Quadratic Optimization, Weighted Partial MaxSAT and Graphical
Model optimization problems. We compare toulbar2 with these different approaches
using a variety of solvers. We observe tremendous differences in the difficulty that each
approach has on these instances.

Overall, the CFN approach shows the best efficiency on these problems, improving
by several orders of magnitude against the exact DEE/A* approach. The introduction
of dead-end elimination before or during search allows to further improve these results.

Keywords: weighted constraint satisfaction problem, soft constraints, neighborhood
substitutability, constraint optimization, graphical model, cost function networks,
integer linear programming, quadratic programming, computational protein design,
bioinformatics, maximum a posteriori inference, maximum satisfiability

Preprint submitted to Elsevier February 19, 2014



1. Introduction

A protein is a sequence of basic building blocks called amino acids. Proteins are
involved in nearly all structural, catalytic, sensory, and regulatory functions of living sys-
tems [26]. Performing these functions generally requires that proteins are assembled into
well-defined three-dimensional structures specified by their amino acid sequence. Over
millions of years, natural evolutionary processes have shaped and created proteins with
novel structures and functions by means of sequence variations, including mutations,
recombinations and duplications. Protein engineering techniques coupled with high-
throughput automated procedures make it possible to mimic the evolutionary process on
a greatly accelerated time-scale, and thus increase the odds to identify the proteins of
interest for technological uses [71]. This holds great interest for medicine, synthetic biol-
ogy, nanotechnologies and biotechnologies [67, 75, 39]. In particular, protein engineering
has become a key technology to generate tailored enzymes able to perform novel spe-
cific transformations under specific conditions. Such biochemical transformations enable
to access a large repertoire of small molecules for various applications such as biofuels,
chemical feedstocks and therapeutics [45, 11]. The development of enzymes with required
substrate selectivity, specificity and stability can also be profitable to overcome some of
the difficulties encountered in synthetic chemistry. In this field, the in vitro use of arti-
ficial enzymes in combination with organic chemistry has led to innovative and efficient
routes for the production of high value molecules while meeting the increasing demand
for ecofriendly processes [61, 13]. Nowadays, protein engineering is also being explored
to create non-natural enzymes that can be combined in vivo with existing biosynthetic
pathways, or be used to create entirely new synthetic metabolic pathways not found in
nature to access novel biochemical products [28]. These latest approaches are central
to the development of synthetic biology. One significant example in this field is the
full-scale production of the antimalarial drug (artemisinin) from the engineered bacteria
Escherichia coli [66].

With a choice among 20 naturally occurring amino acids at every position, the size
of the combinatorial sequence space is out of reach for current experimental methods,
even for short sequences. Computational protein design (CPD) methods therefore try
to intelligently guide the protein design process by producing a collection of proteins,
that is rich in functional proteins, but small enough to be experimentally evaluated.
The challenge of choosing a sequence of amino acids to perform a given task is formu-
lated as an optimization problem, solvable computationally. It is often described as the
inverse problem of protein folding [70]: the three-dimensional structure is known and
we have to find amino acid sequences that fold into it. It can also be considered as a
highly combinatorial variant of side-chain positioning [82] because of possible amino acid
mutations.

Various computational methods have been proposed over the years to solve this prob-
lem and several success stories have demonstrated the outstanding potential of CPD
methods to engineer proteins with improved or novel properties. CPD has been suc-
cessfully applied to increase protein thermostability and solubility; to alter specificity
towards some other molecules; and to design various binding sites and construct de novo
enzymes (see for example [46]).

∗Corresponding author

2



Despite these significant advances, CPD methods must still mature in order to bet-
ter guide and accelerate the construction of tailored proteins. In particular, more effi-
cient computational optimization techniques are needed to explore the vast combinatorial
space, and to facilitate the incorporation of more realistic, flexible protein models. These
methods need to be capable of not only identifying the optimal model, but also of enu-
merating solutions close to the optimum.

We begin by defining the CPD problem with rigid backbone, and then introduce
the approach commonly used in structural biology to exactly solve CPD. This approach
relies on dead-end elimination (DEE), a specific form of dominance analysis that was
introduced in [24], and later strengthened in [37]. If this polynomial-time analysis does
not solve the problem, an A∗ algorithm is used to identify an optimal protein design.

We observe that the rigid backbone CPD problem can be naturally expressed as a
Cost Function Network (aka Weighted Constraint Satisfaction Problem). In this context,
DEE is similar to neighbourhood substitutability [27]. We show how DEE can be suitably
modified so as to be maintained during search at reasonable computational cost, in
collaboration with the usual soft local consistencies.

To evaluate the efficiency of the CFN approach, we model the CPD problem using
several combinatorial optimization formalisms. We compare the performance of the
0/1 linear programming and 0/1 quadratic programming solver cplex, the semidefinite
programming based Boolean quadratic optimization tool biqmac, several weighted partial
MaxSAT solvers, the Markov random field optimization solvers daoopt and mplp [80], and
the CFN solver toulbar2, against that of a well-established CPD approach implementing
DEE/A∗, on various realistic protein design problems. We observe drastic differences in
the difficulty that these instances represent for different solvers, despite often closely
related models and solving techniques.

2. The Computational Protein Design approach

A protein is a sequence of organic compounds called amino acids. All amino acids
consist of a common peptidic core and a side chain with varying chemical properties
(see Figure 1). In a protein, amino acid cores are linked together in sequence to form
the backbone of the protein. A given protein folds into a 3D shape that is determined
from the sequence of amino acids. Depending upon the amino acid considered, the
side chain of each individual amino acid can be rotated along up to 4 dihedral angles
relative to the backbone. After Anfinsen’s work [3], the 3D structure of a protein can
be considered to be defined by the backbone and the set of side-chain rotations. This
is called the conformation of the protein and it determines its chemical reactivity and
biological function.

Computational Protein Design is faced with several challenges. The first lies in the
exponential size of the conformational and protein sequence space that has to be explored,
which rapidly grows out of reach of computational approaches. Another obstacle to
overcome is the accurate structure prediction for a given sequence [47, 38]. Therefore, the
design problem is usually approached as an inverse folding problem [70], in order to reduce
the problem to the identification of an amino acid sequence that can fold into a target
3D-scaffold that matches the design objective [9]. In structural biology, the stability of
aconformation can be directly evaluated through the energy of the conformation, a stable
fold being of minimum energy [3].

3



Figure 1: A representation of how amino acids, carrying specific side chains R and R′, can link together
through their core to form a chain (modified from wikipedia). One molecule of water is also generated
in the process.

In CPD, two approximations are common. First, it is assumed that the resulting
designed protein retains the overall folding of the chosen scaffold: the protein backbone
is considered fixed. At specific positions chosen by the computational biologist (or au-
tomatic selection), the amino acid can be modified by changing the side chain as shown
in Fig. 2. Second, the domain of conformations available to each amino acid side chain
is actually continuous. This continuous domain is approximated using a set of discrete
conformations defined by the value of their inner dihedral angles. These conformations,
or rotamers [44], are derived from the most frequent conformations in the experimental
repository of known protein structures, PDB (Protein Data Bank, www.wwpdb.org). Dif-
ferent discretizations have been used in constraint-based approaches to protein structure
prediction [10].

The CPD is then formulated as the problem of identifying a conformation of minimum
energy via the mutation of a specific subset of amino acid residues, i.e. by affecting their
identity and their 3D orientations (rotamers). The conformation that minimizes the
energy is called the GMEC (Global Minimum Energy Conformation).

In order to solve this problem, we need a computationally tractable energetic model
to evaluate the energy of any combination of rotamers. We also require computational
optimization techniques that can efficiently explore the sequence-conformation space to
find the sequence-conformation model of global minimum energy.

Energy functions. Various energy functions have been defined to make the energy com-
putation manageable [7]. These energy functions include non-bonded terms such as van
der Waals and electrostatics terms, often in conjunction with empirical contributions
describing hydrogen bonds. The surrounding solvent effect is generally treated implic-
itly as a continuum. Statistical terms may be added in order to approximate the effect
of mutations on the unfolded state or the contribution of conformational entropy. Fi-
nally, collisions between atoms (steric clashes) are also taken into account. In this work,
we used the state-of-the-art energy functions implemented in the CPD dedicated tool
osprey 2.0 [30].

4



Figure 2: A local view of combinatorial sequence exploration considering a common backbone. Changes
can be caused by amino acid identity substitutions (for example D/L or R/Q) or by amino acid side-
chain reorientations (rotamers) for a given amino acid. A typical rotamer library for one amino acid is
shown on the right (ARG=Arginine).

These energy functions can be reformulated in such a way that the terms are locally
decomposable. Then, the energy of a given protein conformation, defined by a choice of
one specific amino acid with an associated conformation (rotamer) for each residue, can
be written as:

E = E∅ +
∑
i

E(ir) +
∑
i

∑
j>i

E(ir, js) (1)

where E is the potential energy of the protein, E∅ is a constant energy contribution
capturing interactions between fixed parts of the model, E(ir) is the energy contribution
of rotamer r at position i capturing internal interactions (and a reference energy for the
associated amino acid) or interactions with fixed regions, and E(ir, js) is the pairwise
interaction energy between rotamer r at position i and rotamer s at position j [24]. This
decomposition brings two properties:

• Each term in the energy can be computed for each amino acid/rotamer (or pair for
E(ir, js)) independently.

• These energy terms, in kcal/mol, can be precomputed and cached, allowing to
quickly compute the energy of a design once a specific rotamer (an amino acid-
conformation pairing) has been chosen at each non-rigid position.

The rigid backbone dicrete rotamer Computational Protein Design problem is there-
fore defined by a fixed backbone with a corresponding set of positions (residues), a
rotamer library and a set of energy functions. Each position i of the backbone is associ-
ated with a subset Di of all (amino-acid,rotamer) pairs in the library. The problem is to
identify at each position i a pair from Di such that the overall energy E is minimized. In

5



practice, based on expert knowledge or on pecific design protocols, each position can be
fixed (Di is a singleton), flexible (all pairs in Di have the same amino-acid) or mutable
(the general situation).

2.1. Exact CPD methods

The protein design problem as defined above, with a rigid backbone, a discrete set
of rotamers, and pairwise energy functions has been proven to be NP-hard [74]. Hence,
a variety of meta-heuristics have been applied to it, including Monte Carlo simulated
annealing [53], genetic algorithms [77], and other algorithms [25]. The main weakness
of these approaches is that they may remain stuck in local minima and miss the GMEC
without notice.

However, there are several important motivations for solving the CPD problem ex-
actly. First, because they know when an optimum is reached, exact methods may stop
before meta-heuristics. Voigt et al. [84] reported that the accuracy of meta-heuristics also
degrades as problem size increases. More importantly, the use of exact search algorithms
becomes crucial in the usual experimental design cycle, that goes through modelling,
solving, protein synthesis and experimental evaluation: when unexpected experimental
results are obtained, the only possible culprit lies in the CPD model and not in the
algorithm.

Current exact methods for CPD mainly rely on the dead-end elimination (DEE)
theorem [24, 19] and the A∗ algorithm [58, 33]. DEE is used as a pre-processing technique
and removes rotamers that are locally dominated by other rotamers, until a fixpoint is
reached. The rotamer r at position i (denoted by ir) is removed if there exists another
rotamer u at the same position such that [24]:

E(ir) +
∑
j 6=i

min
s
E(ir, js) ≥ E(iu) +

∑
j 6=i

max
s
E(iu, js) (2)

This condition guarantees that for any conformation with this r, we get a conforma-
tion with lower energy if we substitute u for r. Then, r can be removed from the list
of possible rotamers at position i. This local dominance criterion was later improved by
Goldstein [37] by directly comparing energies of each rotamer in the same conformation:

E(ir)− E(iu) +
∑
j 6=i

min
s

[E(ir, js)− E(iu, js)] ≥ 0 (3)

where the best and worst-cases are replaced by the worst difference in energy. It is
easy to see that this condition is always weaker than the previous one, and therefore
applicable to more cases. These two properties define polynomial time algorithms that
prune dominated values.

Since its introduction in 1992 by Desmet, DEE has become the fundamental tool
of exact CPD, and various extensions have been proposed [73, 63, 32]. All these DEE
criteria preserve the optimum but may remove suboptimal solutions. However CPD is
NP-hard, and DEE cannot solve all CPD instances. Therefore, DEE pre-processing is
usually followed by an A∗ search. After DEE pruning, the A∗ algorithm allows to expand
a sequence-conformation tree, so that sequence-conformations are extracted and sorted
on the basis of their energy values. The admissible heuristic used by A∗ is described
in [33].

6



When the DEE algorithm does not significantly reduce the search space, the A∗ search
tree can be too slow or memory demanding and the problem cannot be solved. Therefore,
to circumvent these limitations and increase the ability of CPD to tackle problems with
larger sequence-conformation spaces, novel alternative methods are needed. We now
describe alternative state-of-the-art methods for solving the GMEC problem that offer
attractive alternatives to DEE/A∗.

3. From CPD to CFN

CPD instances can be directly represented as Cost Function Networks.

Definition 1. A Cost Function Network (CFN) is a pair (X,W ) where X = {1, . . . , n}
is a set of n variables and W is a set of cost functions. Each variable i ∈ X has a finite
domain Di of values that can be assigned to it. A value r ∈ Di is denoted ir. For a set
of variables S ⊆ X, DS denotes the Cartesian product of the domains of the variables in
S. For a given tuple of values t, t[S] denotes the projection of t over S. A cost function
wS ∈ W , with scope S ⊆ X, is a function wS : DS 7→ [0, k] where k is a maximum
integer cost used for forbidden assignments.

We assume, without loss of generality, that every CFN includes at least one unary
cost function wi per variable i ∈ X and a nullary cost function w∅. All costs being
non-negative, the value of this constant function, w∅, provides a lower bound on the cost
of any assignment.

The Weighted Constraint Satisfaction Problem (WCSP) is to find a complete as-
signment t minimizing the combined cost function

⊕
wS∈W wS(t[S]), where a ⊕ b =

min(k, a + b) is the k-bounded addition. This optimization problem has an associated
NP-complete decision problem. Notice that if k = 1, then the WCSP is nothing but the
classical CSP (and not the Max-CSP).

Modeling the CPD problem as a CFN is straightforward. The set of variables X
has one variable i per residue i. The domain of each variable is the set of (amino
acid,conformation) pairs in the rotamer library used. The global energy function can
be represented by 0-ary, unary and binary cost functions, capturing the constant energy
term w∅ = E∅, the unary energy terms wi(r) = E(ir), and the binary energy terms
wij(r, s) = E(ir, js), respectively. In the rest of the paper, for simplicity and consistency,
we use notations E∅, E(·) and E(·, ·) to denote cost functions and restrict ourselves to
binary CFN (extensions to higher orders are well-known).

Notice that there is one discrepancy between the original formulation and the CFN
model: energies are represented as arbitrary floating point numbers while CFN uses
positive costs. This can simply be fixed by first subtracting the minimum energy from
all energies. These positive costs can then be multiplied by a large integer constant M
and rounded to the nearest integer if integer costs are required.

3.1. Local consistency in CFN

The usual exact approach to solve a CFN is to use a depth-first branch-and-bound
algorithm (DFBB). A family of efficient and incrementally computed lower bounds is
defined by local consistency properties.

7



Node consistency [54] (NC) requires that the domain of every variable i contains a
value r that has a zero unary cost (E(ir) = 0). This value is called the unary support
for i. Furthermore, in the scope of the variable i, all values should have a cost below k
(∀r ∈ Di, E∅ + E(ir) < k).

Soft arc consistency (AC∗) [79, 54] requires NC and also that every value r of every
variable i has a support on every cost function E(ir, js) involving i. A support of ir is a
value js ∈ Dj such that E(ir, js) = 0.

Stronger local consistencies such as Existential Directional Arc Consistency (EDAC)
have also been introduced [55]. See [14] for a review of existing local consistencies.

As in classical CSP, enforcing a local consistency property on a problem P involves
transforming P = (X,W ) into a problem P ′ = (X,W ′) that is equivalent to P (all com-
plete assignments keep the same cost) and that satisfies the considered local consistency
property. Enforcing a local consistency may increase E∅ and thus improve the lower
bound on the optimal cost. This bound is used to prune the search tree during DFBB.

Local consistency is enforced using Equivalence Preserving Transformations (EPTs)
that move costs between different cost functions [79, 54, 57, 18, 55, 15, 17, 16, 14]. For
example, a variable i violating the NC property because all its values ir have a non-zero
E(ir) cost, can be made NC by subtracting the minimum cost from all E(ir) and adding
this cost to E∅. The resulting network is equivalent to the original network, but it has
an increased lower bound E∅.

Interestingly, in CPD, the admissible heuristic used in the DEE/A∗ algorithm at
depth d of the search tree is [33]:

d∑
i=1

[
E(ir) +

d∑
j=i+1

E(ir, js)
]

︸ ︷︷ ︸
Assigned

+

n∑
j=d+1

[
min
s

(E(js) +

d∑
i=1

E(ir, js)︸ ︷︷ ︸
Forward checking

+

n∑
k=j+1

min
u
E(js, ku)︸ ︷︷ ︸

DAC counts

)
]

From a WCSP perspective, interpreting energies as cost functions, this heuristic is
exactly the PFC-DAC lower bound [85, 56] used in WCSP. In WCSP, this lower bound is
considered obsolete, and indeed it is proven to be weaker than soft arc consistency [79].

3.2. Maintaining dead-end elimination

Dead-end elimination is the key algorithmic tool of exact CPD solvers. From an AI
perspective, in the context of CSP (if k = 1), the DEE Equation 3 is equivalent to neigh-
borhood substitutability [27]. For MaxSAT, it is equivalent to the Dominating 1-clause
rule [68]. In the context of CFN, the authors of [59] introduced partial soft neighborhood
substitutability with a definition that is equivalent to Equation 3 for pairwise decomposed
energies.

The DEE Equation 3 (cf. Section 2.1) can be strengthened and adapted to the CFN
context as follows:

E(ir)− E(iu) +
∑
j 6=i

min
s

E∅+E(ir)+E(js)+E(ir,js)<k

[E(ir, js)− E(iu, js)] ≥ 0 (4)

This new condition differs from Equation 3 by the fact that some values have been
discarded from the min operation. These values correspond to forbidden assignments

8



because the sum of the corresponding binary term plus the two unary costs plus the
current lower bound E∅ (produced by soft arc consistency) is greater than or equal
to the current upper bound k. Such values s do not need to be considered by the min
operation because {ir, js} does not belong to any optimal solution, whereas {iu, js}may1.

Example 1. Let X = {1, 2, 3} be a set of three variables with domains D1 = {a, b, c},
D2 = {e, f}, and D3 = {g, h}. Suppose there are three cost functions, where E(1b) = 2,
E(1a, 2e) = 2, E(1b, 2e) = E(1c, 2f ) = 1, E(1a, 3g) = E(1c, 3h) = 2, and all other
costs are null. Let k = 3. The problem is EDAC. Then, 1a dominates 1b as shown by
the new rule of Equation 4 that is satisfied: E(1b) − E(1a) + E(1b, 2f ) − E(1a, 2f ) +
min(E(1b, 3g) − E(1a, 3g), E(1b, 3h) − E(1a, 3h)) = 2 − 0 + 0 − 2 ≥ 0, discarding tuple
{2e} because E(1b, 2e) + E(1b) + E(2e) + E∅ = 1 + 2 + 0 + 0 ≥ k, whereas the old
rule of Equation 3 is unsatisfied: E(1b)−E(1a) + min(E(1b, 2e)−E(1a, 2e), E(1b, 2f )−
E(1a, 2f )) + min(E(1b, 3g)− E(1a, 3g), E(1b, 3h)− E(1a, 3h)) = 2− 0− 1− 2 < 0.

In the following, we recall how to enforce Equation 4 by an immediate adaptation of
the original algorithm in [59]. Then, we present a modified version to partially enforce a
novel combination of Equation 4 and Equation 2 with a much lower time complexity.

3.2.1. Enforcing DEE

Assuming a soft arc consistent WCSP (see e.g., W-AC∗2001 algorithm in [57]), en-
forcing DEE is described by Algorithm 1. For each variable i, all the pairs of values
(u, r) ∈ Di × Di with u < r are checked by the function DominanceCheck to see if r is
dominated by u or, if not, vice versa (line 3). At most one dominated value is added to
the value removal queue ∆ at each inner loop iteration (line 2). Removing dominated
values (line 4) can make the problem arc inconsistent, requiring us to enforce soft arc
consistency again. Procedure AC∗-DEE successively enforces AC∗ and DEE until no value
removal is made by the enforcing algorithms.

Function DominanceCheck(i, u, r) computes the sum of worst-cost differences as de-
fined by Equation 4 and returns a non-empty set containing value r if Equation 4 is true,
meaning that r is dominated by value u. It exploits early breaks as soon as Equation 4
can be falsified (lines 5 and 6). Worst-cost differences are computed by the function getD-
ifference(j, i, u, r) applied to every binary cost function related to i, discarding forbidden
assignments with {ir, js} (line 8), as suggested by Equation 4. Worst-cost differences are
always negative or zero (line 7) due to AC∗.

The worst-case time complexity of getDifference is O(d) for binary WCSPs. Dom-
inanceCheck is O(nd) assuming a complete graph. Thus, the time complexity of one
iteration of Algorithm 1 (DEE) is O(nd2nd + nd) = O(n2d3). Interleaving DEE and
AC∗ until a fixed point is reached is done at most nd times, resulting in a worst-case
time complexity in O(n3d4). Its space complexity is O(nd2) when using the residues
structure [59].

Note that using the new Equation 4 (line 8) or the Equation 3 (without line 8) does
not change the complexities.

1Depending on the definition of soft arc consistency, from [54] (as presented in Section 3.1) or from
[18], Equation 4 is stronger than or equivalent to Equation 3.

9



3.2.2. Enforcing DEE1

In order to reduce the time (and space) complexity of pruning by dominance, we
test only one pair of values per variable. Hence the name, DEE1, for the new algorithm
described in Algorithm 2. We select the pair (u, r) ∈ Di ×Di in an optimistic way such
that u is associated with the minimum unary cost and r to the maximum unary cost
(lines 9 and 10). Because arc consistency also implies node consistency, we always have
E(iu) = 0.2 If all the unary costs (including the maximum) are equal to zero (line 11), we
select as r the maximum domain value (or its minimum if this value is already used by u).
By doing so, we should favor more pruning on max-closed or submodular subproblems3.

Instead of just checking the new Equation 4 for the pair (u, r) alone, we use the
opportunity to also check the original DEE rule of Equation 2 for all the pairs (u, v)
such that v ∈ Di \ {u}. This is done in the function MultipleDominanceCheck (lines 15
and 16). Notice that Equation 2 simplifies to E(iv) ≥ ubu (line 16) due to AC∗. This
function computes at the same time the sum of maximum costs ubu for value u (lines 12
and 13) and the sum of worst-cost differences δur for the pair (u, r). The new function
getDifference-Maximum(j, i, u, r) now returns the worst-cost difference, as suggested by
Equation 4, and also the maximum cost in E(i, j) for i assigned u. When the maximum
cost of a value is null for all its cost functions, we can directly remove all the other values
in the domain avoiding any extra work (line 14). Finally, if the selected pair (u, r) for
the variable i satisfies Equation 4, removing the value r of Di, then a new pair for i
will be checked at the next iteration of Algorithm 2 in the modified procedure AC∗-DEE1

(replacing Algorithm 1 by Algorithm 2 in AC∗-DEE).
Notice that DEE1 is equivalent to DEE on problems with Boolean variables, such

as MaxSAT. For problems with non-Boolean domains, DEE1 is still able to detect and
prune several values per variable. Clearly, its time (resp. space) complexity is O(n3d2)
(resp. O(n) using only one residue per variable), reducing by a factor d2 the time and
space complexity compared to DEE.

4. Computational Protein Design instances

In our initial experiments with CPD in [2], we built 12 designs using the CPD dedi-
cated tool osprey 1.0. A new version of osprey being available since, we used this new
2.0 version [30] for all computations. Among different changes, this new version uses
a modified energy field that includes a new definition of the “reference energy” and a
different rotamer library. We therefore rebuilt the 12 instances from [2] and additionally
created 35 extra instances from existing published designs, as described in [83]. We must
insist on the fact that the 12 rebuilt instances do not define the same energy landscape
or search space as the initial [2]’s instances (due to changes in rotamers set).

These designs include protein structures derived from the PDB that were chosen for
the high resolution of their 3D-structures, their use in the literature, and their distri-
bution of sizes and types. Diverse sizes of sequence-conformation combinatorial spaces

2In practice, we set the value u to the unary support offered by NC [54] or EDAC [55].
3Assuming a problem with two variables i and j having the same domain and a single submodular

cost function, e.g., E(iu, js) = 0 if u ≤ s else u− s, or a single max-closed constraint, e.g., u < s, then
DEE1 assigns min(Di) to i and max(Dj) to j.

10



are represented, varying by the number of mutable residues, the number of alternative
amino acid types at each position and the number of conformations for each amino acid.
The Penultimate rotamer library was used [64]. Over these 47 designs, we only report
results on the 40 designs for which a GMEC could be identified and proven by one of
the tested solvers. All 47 designs are available for download both in native and WCSP
formats at http://genotoul.toulouse.inra.fr/~tschiex/CPD-AIJ.

Preparation of CPD instances. Missing heavy atoms in crystal structures and hydrogen
atoms were added with the tleap module of the AMBER9 software package [12]. Each
molecular system was then minimized in implicit solvent (Generalized Born model [42])
using the Sander program and the all-atom ff99 force field of AMBER9. All E∅, E(ir),
and E(ir, js) energies of rotamers (see Equation 1) were pre-computed using osprey

2.0. The energy function consisted of the Amber electrostatic, van der Waals and the
solvent terms. Rotamers and rotamer pairs leading to sterical clashes between molecules
are associated with huge energies (1038) representing forbidden combinations. For n
residues to optimize with d possible (amino acid,conformation) pairs, there are n unary

and n.(n−1)
2 binary cost functions that can be computed independently.

Translation to WCSP format. The native CPD problems were translated to the WCSP
format before any pre-processing. To convert the floating point energies of a given
instance to non-negative integer costs, we subtracted the minimum energy to all energies
and then multiplied energies by an integer constant M and rounded to the nearest integer.
The initial upper bound k is set to the sum, over all cost functions, of the maximum
energies (excluding forbidden sterical clashes). High energies corresponding to sterical
clashes are represented as costs equal to the upper bound k (the forbidden cost). The
resulting WCSP model was used as the basis for all other solvers (except osprey). To
keep a cost magnitude compatible with all the compared solvers, we used M = 102.
Experiments with a finer discretization (M = 108) was used in previous experiments [83]
with no significant difference in computing efforts.

4.1. A new cost-based variable ordering heuristics

We analyzed the distribution of costs for the CPD problem in order to infer a new
variable ordering heuristics. Figure 3-left shows the histogram of a typical binary cost
function for one of the CPD instances (1ENH, one of the open instances). Although
the distribution has several modes, we chose to collect as an important feature of a cost
function its median cost, which is less sensitive to extrema than the mean cost.

Figure 3-right shows the histogram of median costs for this instance. The problem
has 666 binary cost functions and we collected the median cost in every cost function.
The distribution of median costs has a heavy right tail. This feature can be exploited
during search to focus on the most important variables first. For that, we define a new
dynamic variable ordering heuristics selecting at each node of the search tree the variable
minimizing the ratio of its current domain size divided by the sum of the median costs of
all its current cost functions (including its unary cost function). The sum of the median
costs gives a rough estimate of the average lower bound increase if we select that variable,
relating this heuristics to strong branching in Operations Research [62, 1]. In order to
save computation time, median costs of binary cost functions are computed only once,
just after enforcing EDAC (and DEE), before the search.

11



Figure 3: Histograms of E(1, 12) costs (left) and of median costs of all binary cost functions (right) for
the 1ENH instance (M = 102).

5. Alternative models for the CPD

The rigid backbone CPD problem has a simple formulation and can be easily written
in a variety of combinatorial optimization frameworks. To evaluate CFN algorithms, the
new DEE1 algorithm and our domain specific heuristics, we compared these different
variants with a variety of other solvers, coming from different fields. We present now the
different models used in the comparison.

5.1. CPD as a probabilistic graphical model

The notion of graphical model has been mostly associated with probabilistic graphi-
cal models, the most famous examples of these are Markov random fields and Bayesian
networks [49]. In those formalisms, a concise description of a joint distribution of proba-
bilities over a set of variables is obtained through a factorization in local terms, involving
only few variables. For terms involving at most two variables, if vertices represent vari-
ables and edges represent terms, a factorization can be represented as a graph, hence the
name of graphical models. The same idea is used for concisely describing set of solutions
(relations) in CSP or cost distributions in CFN.

Definition 2. A discrete Markov random field (MRF) is a pair (X,Φ) where X =
{1, . . . , n} is a set of n random variables and Φ is a set of potential functions. Each
variable i ∈ X has a finite domain Di of values that can be assigned to it. A potential
function φS ∈ Φ, with scope S ⊆ X, is a function φS : DS 7→ R.

A discrete Markov random field (MRF) implicitly defines a non-normalized probabil-
ity distribution over X. For a given tuple t, the probability of t is defined as:

12



P (t) =
exp(−

∑
φS∈Φ φS(t[S]))

Z

where Z is a normalizing constant.
From the sole point of view of optimization, the problem of finding an assignment

of maximum probability, also known as the maximum a posteriori (MAP) assignment
in a MRF or a minimum cost solution of a CFN (the Weighted CSP) are equivalent
by monotonicity of the exp() function. Some technical differences remain: CFN are
restricted to non-negative costs (and some tools are restricted to integer costs). Being
focused on optimization, CFN also emphasizes the possible existence of a finite upper
bound k that leads to the use of bounded addition to combine costs instead of plain
addition of potentials in MRFs.

The CPD problem can therefore directly be modeled as the MAP problem in a MRF
exactly as we have described for CFN before, additive using potentials to capture energies
(see for example [86]). Combinations of values with cost k (forbidden) are mapped to an
infinite additive potential or a 0 value if multiplicative (exponential) potentials are used.

These models can be solved using MAP-MRF solvers such as daoopt [69] (winner of
the Pascal Inference Challenge in 20114) or the recent version of the mplp [80] solver.

5.2. Integer linear programming model

A 0/1 linear programming (01LP) problem is defined by a linear criterion to optimize
over a set of Boolean variables under a conjunction of linear equalities and inequalities.
The previous optimization problem over a graphical model can also be represented as a
01LP problem using the encoding proposed in [51].

For every assignment ir of every variable i, there is a Boolean variable dir that is
equal to 1 iff i = r. Additional constraints enforce that exactly one value is selected for
each variable. For every pair of values of different variables (ir, js) involved in a binary
energy term, there is a Boolean variable pirjs that is equal to 1 iff the pair (ir, js) is
used. Constraints enforce that a pair is used iff the corresponding values are used. Then,
finding a GMEC reduces to the following ILP:

min
∑
i,r

E(ir)6=k

E(ir).dir +
∑
i,r,j,s

j>i,E(ir,js) 6=k

E(ir, js).pirjs

s.t.
∑
r

dir = 1 (∀i) (5)∑
s

pirjs = dir (∀i, r, j) (6)

dir = 0 (∀i, r)E(ir) = k (7)

pirjs = 0 (∀i, r, j, s)E(ir, js) = k (8)

dir ∈ {0, 1} (∀i, r) (9)

pirjs ∈ {0, 1} (∀i, r, j, s) (10)

4See http://www.cs.huji.ac.il/project/PASCAL/.

13



This model is also the ILP model IP1 proposed in [48] for side-chain positioning. It
has a quadratic number of Boolean variables. Constraints (7) and (8) explicitely forbid
values and pairs with cost k (sterical clashes).

This model can be simplified by relaxing the integrality constraint on the pirjs: in-
deed, if all dir are set to 0 or 1, the constraints (5) and (6) enforce that the pirjs are
set to 0 or 1. The same observation has been previously done for in the context of the
linearization of a quadratic optimization model for wind farm design in [87]. In the rest
of the paper, except where it is otherwise mentioned, we relax constraint (10). This type
of ILP model can be handled by various ILP solvers such as IBM ILOG cplex.

5.3. 0/1 quadratic programming model

A 01QP problem is defined by a quadratic criterion to optimize over a set of Boolean
variables under a conjunction of linear equality and inequality constraints. A compact
encoding of the problem can be obtained using the ability of expressing the product of
Boolean variables, getting rid of a quadratic number of pirjs variables of the 01LP model.

For every value ir, there is again a Boolean variable dir that is equal to 1 iff i = r.
Additional linear constraints enforce that exactly one value is selected for each variable.
The use of a given pair of rotamers at positions (ir, js) can then be simply captured by
the product dir.djs. Then, finding a GMEC reduces to the following compact QP:

min
∑
i,r

E(ir).dir +
∑
i,r,j,s
j>i

E(ir, js).dir.djs

s.t.
∑
r

dir =1 (∀i)

dir ∈ {0, 1} (∀i, r)
dir = 0 (∀i, r)E(ir) = k (11)

dir + djs ≤ 1 (∀i, r, j, s)E(ir, js) = k (12)

Values and pairs generating sterical clashes are explicitely forbidden by constraints
(11) and (12). This model can be handled by the QP solver of IBM ILOG CPLEX.

5.4. 0/1 quadratic optimization model

Another compact model can be obtained in the more restricted case of pure Boolean
Quadratic Optimization (BQO), where a quadratic criterion is optimized but no linear
constraints can be expressed.

For every value ir, there is again a Boolean variable dir that is equal to 1 iff i = r.
We must integrate the fact that exactly one value must be selected in each domain in the
criterion itself. To capture the fact that there is at most one value selected per domain,
we penalize the simultaneous selection of every pair ir, is of rotamers of the same variable
i with a sufficiently large penalty M . To guarantee that at least one value will be selected
in each domain, we shift all finite energies by a constant negative term N such that all
shifted finite energies are strictly negative. If an assignment selects no value in a given
domain, then selecting one value can only result in an assignment with a lower cost, by

14



introducing new negative terms in the global energy. An optimal solution must therefore
contain exactly one value per domain.

The corresponding model can be written as:

min
∑
i,r

(E(ir)−N).dir +
∑
i,r,j,s
j>i

(E(ir, js)−N).dir.djs +
∑
i,r,s
s>r

M.dir.dis

For N ,we just use the largest negative integer that is strictly below the opposite of
the largest finite energy in a given instance. M must be chosen in such a way that no
combination of energy can compensate for the cost M . The selection of one additional
value ir can just contribute to the criterion by the addition of the energy E(ir) and the
energies E(ir, js) for all other variables j and their rotamers js. M is therefore set to the
opposite of the largest negative integer below the most negative sum of these energies,
overall all variables i and rotamers ir.

The corresponding Boolean quadratic optimization problem can be solved using the
semidefinite programming based exact best-first branch-and-bound solver biqmac [78].

5.5. Weighted partial MaxSAT

Definition 3. A weighted partial MaxSAT (WPMS) instance is a set of pair 〈C,w〉,
where C is a clause and w is a number in N ∪ {∞}, which is called the weight of that
clause. A clause is a disjunction of literals. A literal is a Boolean variable or its negation.

If the weight of a clause is ∞, it is called a hard clause, otherwise it is a soft clause. The
objective is to find an assignment to the variables appearing in the clauses such that all
hard clauses are satisfied and the weight of all falsified soft clauses is minimized.

The CPD problem can be encoded into a WPMS instance. We present two encodings,
which are based on existing translations of CSP into SAT: the direct encoding [5], which
is closer to the CFN model, and the tuple encoding, which was presented but not named
by Bacchus [6] and is quite similar to the ILP model.

Direct encoding. In the direct encoding, we have one proposition dir for each vari-
able/value pair (i, r), which is true if variable i is assigned the value r. We have hard
clauses (¬dir ∨ ¬dis) for all i ∈ [1, n] and all r < s, r, s ∈ Di, as well as a hard clause
(
∨
r dir) for all i. These clauses ensure that the propositional encoding of the CFN allows

exactly one value for each variable. The cost functions are represented respectively by
an empty clause with weight E∅, unit clauses ¬dir with weight E(ir) and binary clauses
¬dir ∨ ¬djs with weight E(ir, js).

Tuple encoding. The tuple encoding encodes variable domains the same way as the direct
encoding, therefore we have a proposition dir for each variable/value pair i = r, along
with clauses that enforce that each variable is assigned exactly one value. The constant
and unary energy terms are also respectively represented as an empty soft clause with
weight E∅ and soft unit clauses ¬dir with weight E(ir).

For all non-zero pairwise energy term E(ir, js), we have a proposition pirjs as well
as the soft clause (¬pirjs) with weight E(ir, js). This represents the cost to pay if the
corresponding pair (energy term) is used. We also have the hard clauses (dir ∨ ¬pirjs)
and (djs ∨ ¬pirjs). These enforce that if a pair is used, the corresponding values must

15



be used. Finally, for all the pairs of variables (i, j) and all the values ir, hard clauses
(¬dir ∨

∨
s∈Dj

pirjs) enforce that if a value ir is used, one of the pair pirj· must be used.
This encoding is similar to the 01LP encoding and was originally proposed in the

context of SAT encodings for classical CSP [6]. Unit Propagation (UP) on the tuple
encoding enforces arc consistency in the original CSP (the set of values that are deleted
by enforcing AC have their corresponding literal set to false by UP).

5.6. Constraint programming model

In [72], a generic translation of WCSPs into crisp CSPs with extra cost variables has
been proposed. In this transformation, the decision variables remain the same as in the
original WCSP and every cost function is reified into a constraint, which applies on the
original cost function scope augmented by one extra variable representing the assignment
cost. This reification of costs into domain variables transforms a WCSP in a crisp CSP
with more variables and augmented arities. Typically, unary and binary cost functions
are converted into table constraints of arity two and three respectively. Another extra
cost variable encodes the global GMEC criterion, related by a sum constraint to all the
unary and binary cost variables. All the cost variables are positive integer bounded by
the same initial upper bound k as in the WCSP format.

The resulting CSP model has been expressed in the minizinc [65] constraint program-
ming (CP) language. It can be solved using any CP solvers such as gecode, mistral, or
Opturion/CPX, the recent winner of the MiniZinc Challenge 2013.

6. Experimental results

For computing the GMEC, all computations were performed on a single core of an
AMD Operon 6176 at 2.3 GHz, 128 GB of RAM, and a 9,000-second time-out. These
computations were performed on the GenoToul cluster.

6.1. Solvers tested

The solvers tested have different configurability in terms of parameters. Solvers such
as mplp offer essentially no tuning, while others offer a large number of options. SAT
solvers that participate routinely in the SAT competition have excellent default settings
and those settings were kept unmodified. For one solver that explicitly requires tuning,
we contacted the author for some advice. There is always a question whether dramatically
different results could be obtained by different settings. The situation here corresponds
to the situation of a non-naive user faced with several optimization tools.

DEE/A* optimization. The underlying principles of DEE/A* have been described in
Section 2.1. To solve the different protein design cases, we used osprey version 2.0
(cs.duke.edu/donaldlab/osprey.php). The procedure starts by extensive DEE pre-
processing (algOption = 3, includes simple Goldstein, Magic bullet pairs, 1 and 2-split
positions, Bounds and pairs pruning) followed by A∗ search. Only the GMEC conforma-
tion is generated by A∗ (initEw=0).

16



CFN solver. toulbar2 is a depth-first branch-and-bound solver using soft local consis-
tencies for bounding and specific variable and value ordering heuristics for efficiency.
The default EDAC [55] consistency may simultaneously reformulate all the cost func-
tions involving one variable (a star subgraph). The default variable ordering strategy is
based on the Weighted Degree heuristics [8] with Last Conflict [60], while the default
value ordering consists in choosing for each variable its fully supported value as defined
by EDAC.

We used toulbar2 version 0.9.6 (mulcyber.toulouse.inra.fr/projects/toulbar2/)
using binary branching and an initial limited discrepancy search phase [41] with discrep-
ancy less than or equal to 1. We tested this vanilla version (options -d: -l=1 -dee=0)
and incrementally introduced our new cost-based variable ordering heuristics (option
-m) and different levels of DEE processing: maintaining DEE1 during search (-dee=1),
pre-processing with DEE (-dee=4), both together (-dee=2), or maintaining DEE during
search (-dee=3).

daoopt solver. We decided to include daoopt as the winning solver of the 2011 PASCAL
probabilistic inference challenge in the ‘’MAP” category. We downloaded daoopt ver-
sion 1.1.2 from its repository (https://github.com/lotten/daoopt) and contacted the
author for some advice. The distributed version of daoopt is not the same as the PIC
challenge version. It lacks the Dual Decomposition bound strengthening component [69]
that relies on private code.

This solver relies on Stochastic Local Search for finding initial solutions followed by
depth-first AND/OR search [22] and mini-bucket lower bounds [23] for pruning. Mini-
bucket lower bounds require space and time in O(di) (where i is a user controlled pa-
rameter). CPD is certainly not an ideal domain for daoopt: the complete graph makes
AND/OR search useless and the large maximum domain size d makes mini-buckets space
and time intensive. We used the ‘’1 hour” settings for the PIC challenge from [69],
modified to account for the complete graph that makes optimization of the AND/OR
decomposition useless. This leads to the parameters -i 35 --slsX 10 --slsT 6 -lds

1 and tried to allocate different amounts of memory to mini-buckets (option -m with
500MB, 5GB or 50GB), the i parameter being then automatically set by the solver to
use a maximum amount of memory. We kept only the results for the best tuning (5GB,
the worst results being obtained with 50GB). Note that because of large domain sizes,
and the O(di) space complexity of mini-buckets, a fine tuning of this parameter should
have limited influence on the results.

The WCSP instances were transformed into the UAI ‘’MARKOV” format through
the application of an exponential transformation of costs into multiplicative potentials.
Costs above the upper bound were translated to zero potentials to preserve pruning. The
exponential basis was chosen so that the largest multiplicative potentials are equal to 1.

MPLP MAP-MRF solver. We downloaded the sources for the recent version 2 of the
mplp (Message Passing Linear Programming) implementation [80, 81] available at http:
//cs.nyu.edu/~dsontag/.

This solver uses a Message Passing based bound and duality theory to identify optimal
solutions of a MAP-MRF problem through successive tightening of subsets of variables.
The message passing used in mplp defines reparametrizations of the underlying MRF.
These reparametrizations are similar to the reformulations done by local consistencies in

17



CFN [79, 18]. The solver is unique in all the solvers considered in that it does not use
branching but only increasingly strong inference by applying reparametrizations to set of
variables that initially contain only pairwise potentials, reasoning on stars [35], and are
incrementally enlarged to include several potentials and strengthen the corresponding
bound [81, 80].

All costs were divided by 1,000 and the optimality gap threshold kept to the default
of 2 · 10−4. The solver does not have any parameter.

ILP and QP optimization. We used cplex version 12.2 with parameters EPAGAP, EP-
GAP, and EPINT set to zero to avoid premature stop. No other tuning was done.

Boolean quadratic optimization. We used the biqmac [78] solver (http://biqmac.uni-klu.
ac.at/biqmaclib.html) from sources provided by Angelika Wiegele. biqmac is a branch-
and-bound solver relying on a strong Semi-Definite Programming (SDP) bound for
Boolean quadratic optimization. The SDP framework is known to provide strong bounds
for a variety of combinatorial optimization problems among which MaxCut and Max2SAT,
with guaranteed approximation ratios [36]. Two solver settings (with branching rule set
to 2 or 3, as advised by the author) were tried with no significant difference in the
performances.

Weighted partial MaxSAT optimization. The same problems have been translated to
WPMS using the two previously described encodings. There are two categories of
complete WPMS solvers that we consider here: branch-and-bound (B&B) solvers and
sequence-of-SAT solvers.

• Sequence-of-SAT solvers reformulate the WPMS problem as a series of SAT in-
stances that allow us to successively increase the lower bound or decrease the upper
bound for the optimal solution of the WPMS instance. A particular technique used
by several sequence-of-SAT solvers, such as WPM1 [4] and maxhs [20], is identifying
unsatisfiable cores of the WPMS instance. An unsatisfiable core is a subset of the
soft clauses of the instances which, taken together with the hard clauses of the in-
stances, cannot all be satisfied by any assignment. The sequence of SAT instances
then builds a collection of cores. The last SAT instance produces an assignment
that violates at least one clause from each core but satisfies all other clauses. This
assignment can be shown to be optimal.

• B&B solvers explore a backtracking search tree. At each node of the tree, they
compute a lower bound on the cost of the best solution that can be found in the
subtree rooted at that node. If that lower bound is higher than the cost of the best
solution found so far, the solver backtracks. The solver minimaxsat [43] employs
a method that is typically used in B&B solvers. In its case, the lower bound com-
putation consists in performing unit propagation over the entire formula, including
soft clauses. Unit propagation is able to detect some but not all unsatisfiable cores
of the reduced formula at the current node. These cores are collected and used to
transform the formula into an equivalent formula with a higher lower bound.

As B&B solvers, we have used akmaxsat [52] as it was among the best B&B performers
in the latest MaxSAT evaluation and minimaxsat [43], which was shown to be one of the

18



best solvers over all the instances of all MaxSAT evaluations in [21]. Among sequence-of-
SAT solvers, we have used bin-c-d, wpm1 and wpm2, which are among the best performers
in recent evaluations, as well as maxhs, which was shown to be the best solver for the
entire ensemble of instances of MaxSAT evaluations [21].

We can observe that there exists a bijection between cores of the direct encoding of
an instance and cores of the tuple encoding. However, there exist cores in the tuple
encoding that can be detected just by unit propagation, but require a longer refutation
in the direct encoding. On the other hand, the tuple encoding is larger and hence unit
propagation is slower. Since both B&B and sequence-of-SAT solvers essentially rely on
collecting cores of the formula, both types of solver can benefit from the tuple encoding
by detecting more cores with less search. However, the overhead of performing unit
propagation on a larger formula may not pay off in runtime.

CP solvers. We used gecode version 4.2.0 (http://www.gecode.org/), mistral ver-
sion 1.3.40 (using its Python interface numberjack at http://numberjack.ucc.ie/

and http://github.com/eomahony/Numberjack/tree/fzn), and Opturion/CPX version
1.0.2 (http://www.opturion.com/cpx.html). mistral uses a Weighted Degree heuris-
tics [8] and a restart strategy with geometric factor 1.3 and base 256. Opturion/CPX

combines CP and SAT solving techniques, learning clauses from failures. By default,
it uses a Luby restart policy. No tuning was done for gecode nor Opturion/CPX (both
using free search mode).

All the Python and C translating scripts used are available together with the CPD
instances at http://genotoul.toulouse.inra.fr/~tschiex/CPD-AIJ.

6.2. Results

Several solvers were unable to solve any of the instances in the 9,000 seconds allocated
per problem for each overall approach (including any preprocessing used in the method
such as DEE in the DEE/A* approach). Despite the compact associated models, neither
cplex for the quadratic programming model, nor biqmac for the quadratic Boolean
optimization model could solve any single instance in less than 9,000 seconds. Similarly,
most of the WPMS solvers failed to solve any instance, in either of the two encoding
tested. The only exception to this is the maxhs solver when applied to the tuple encoding.
Finally, neither Opturion/CPX nor gecode nor mistral could solve any single instance.
In Table 1, we therefore only report the results obtained by the WPMS solver maxhs,
the CPD solver osprey, the ILP solver cplex, the MAP-MRF solvers daoopt and mplp,
and the CFN solver toulbar2 in its vanilla version (using the default variable ordering
heuristics and no DEE).

The detailed results are given in Table 1. The table shows that the cpu-times are very
well correlated across different models and solvers, and show a clear ordering in terms
of difficulty of these problems for all solvers, from WPMS/maxhs, MAP-MRF/daoopt,
DEE/A∗/osprey, ILP/cplex, MAP-MRF/mplp, and CFN/toulbar2.

The variant of the ILP model originally proposed by [51], where the pirjs variables
are constrained to be 0/1 variables was also tested. It was overall less efficient than the
relaxed model we used. The ratio in terms of speedup was never very important (between
0.2 and 3.4 with a mean of 1.4 over all the solved instances) showing the robustness of
cplex. It is often claimed, following [86], that LP technology is not able to deal with
large instances of MRF. This experiment, on realistically designed instances of CPD,

19



Figure 4: A figure showing the number of problems that can be solved by each approach (X-axis) as a
function of cumulative time (Y-axis), assuming that each solver tackles problems in increasing order of
cpu-time needed to solve it.

using state-of-the-art energy functions, including sterical clashes, shows that the recent
12.2 version of cplex gives reasonably good results on these problems.

6.3. Non-vanilla toulbar2

The results obtained on the same 40 CPD instances using the vanilla toulbar2,
enhanced with our new variable ordering heuristics and increasingly stronger DEE pro-
cessing are given in Table 2. None of the 7 open unreported instances could be solved
by these new variants.

The new variable ordering heuristics consistently offer improved results. The effect
of additional DEE processing is mostly visible on the difficult instances, the most visible
and persistent improvements being obtained when using DEE in pre-processing, and for
some instances (e.g., 1BRS, 1RIS) also maintaining DEE1 during search. They offer
speedups up to 6 (on 1GVP). Further tests on a variety of CFN benchmarks (http:
//costfunction.org) are reported in [34]. They show that DEE1 allows to solve more
problems and DEE1 is now a default option of toulbar2.

6.4. Analysis of results

It is unusual to apply such a wide range of NP-complete solving methods on a common
set of benchmarks. Most comparisons are usually performed on a closely related family
of solvers, sharing a common modeling language (SAT, CSP, MRF. . . ).

Solvers are complex systems involving various mechanisms. The effect of their in-
teractions during solving is hard to predict. Therefore, explaining the differences in
efficiency observed between the different approaches is not straightforward. However,
given the simplicity of our encodings, the fact that these instances are challenging for
some approaches while at the same time being simpler to solve for other approaches
should provide a source of inspiration for solver designers.

20



Quadratic programming and Quadratic optimization. One of the first surprising results
is the difficulty of these instances for quadratic programming with cplex. The quadratic
model is very dense with nd Boolean variables only. cplex is a totally closed-source black
box but the behavior of the solver provides some information on its weak spot here. On
the simplest problems, QP/cplex consumes memory very quickly and grows a very large
node file. On the simple 2TRX problem (n = 11, first line of Table 1), QP/cplex solver
explored 51, 003, 970 nodes and was interrupted by the time-out with an optimality gap
of 774%. This indicates a poor lower bound that leads to memory intensive best first
search. On bigger problems, the number of nodes is never large because each node takes
quite a time to explore. On the 1UBI problem (n = 13, d = 148), it explored only
5,233 nodes with an unbounded gap. It is therefore reasonable to assume that the lower
bound used by cplex is too slow to compute on these problems and does not provide
the additional strength that would compensate for the computing cost.

The model we devised for BQO using biqmac is compact, with the same n.d 0/1
variables. biqmac uses a semidefinite programming lower bound that is known to pro-
vide among the strongest polynomial time lower bounds for a variety of optimization
problems [76]. Despite this, even the smallest CPD instances could not be solved. We
tried to extend the 9,000-second deadline for the simplest instance. After several hours
of computing, biqmac stopped and reported that only a few nodes had been explored.
The SDP technology used in biqmac may provide excellent bounds, but the time needed
to compute them is currently too large to offer a viable alternative for CPD. The biqmac

library at http://biqmac.uni-klu.ac.at/biqmaclib.html contains a variety of QP
and (closely related) MaxCut problems that can be used for benchmarking. We tested
toulbar2 on the 10 beasley instances of size n = 100. They are solved in less than
1 second each by toulbar2, whereas biqmac took around 1 minute each, as reported
in [78].

Integer linear programming. Considering 01LP, it is known that the continuous LP re-
laxation of the 0/1 linear programming model we used in Section 5.2 is the dual of the
LP problem encoded by Optimal Soft Arc Consistency (OSAC) [17, 14] when the upper
bound k used in CFN is infinite. OSAC is known to be stronger than any other soft arc
consistency level, including EDAC and Virtual Arc Consistency (VAC) [16]. However, as
soon as the upper bound k used for pruning in CFN decreases to a finite value, soft local
consistencies may prune values and EDAC becomes incomparable with the dual of these
relaxed LPs. To better evaluate the pruning power of cplex, we compared the number
of nodes it explored with those explored by toulbar2 in its vanilla mode or with the new
heuristics and DEE pre-processing. Table 3 shows that among the 28 instances solved,
18 are solved by cplex before search starts, 7 are solved by the non-vanilla version of
toulbar2 w/o backtracks. For the remaining less trivial problems, the number of nodes
explored by cplex and toulbar2 are often similar with no clear winner. Overall, these
results show comparable pruning power. It also shows that the problems solved by cplex

are relatively simple problems but the computation of the lower bound is quite expensive
in cplex. It typically develops from 1 to 50 nodes per minute while toulbar2 develops
from 1 to 40 thousand nodes per minute. Note that the problems that are not solved
by cplex are much harder, requiring more than 120,000 nodes to explore for the hardest
solved problem (not shown in the Table).

21



Markov Random Field MAP. The relaxed LP is also equivalent, in the pairwise case, to
the LP relaxation of MRFs in the so-called local polytope [81]. In its original version [35],
mplp is only guaranteed to produce this LP bound if domains are Boolean. It is there-
fore weaker than OSAC for CFN and comparable to Virtual AC [14]. With the recent
additions described in [81, 80], mplp has the ability to incrementally tighten its bound
by performing local inference on several potentials (or cost functions) organized in cyclic
structures. The strength of this lower bound is such that mplp version 2 is often able to
prove optimality based just on this bound and the cost of the assignment that optimizes
unary reparameterized potentials. Still, weaker but faster CFN lower bounds combined
with search apparently offer a better solution on these realistic CPD instances.

In the MRF community, the inefficiency of pure LP on large MRF instances is well-
known [86]. These experiments show that, combined with branching, the incrementality
of the LP bound allows 01LP to get very decent results on these problems. However, the
quadratic size of the 01LP model probably explains the better efficiency of mplp.

MaxSAT. The most surprising result is probably the difficulty of these problems for
MaxSAT solvers, either branch-and-bound based or core-based. To analyze branch and
bound based algorithm behavior, we instrumented the two solvers MiniMaxSat and
akmaxsat to report the best upper bound found and the number of nodes explored.
Additionally, akmaxsat reports the lower bound computed at the root node of the search
tree. In the direct encoding, MiniMaxSat is fast and may explore up to 36 thousand
nodes per second (two orders of magnitude faster than toulbar2). In 15 problems, it
was able to identify sub-optimal solutions ending up with a non-trivial upper bound
(within 3.2% to 0.26% of the optimum) but never started the final optimality proof,
showing a weak lower bound. Indeed, the lower bound computed by akmaxsat at the
root of the search tree is never higher than 27% of the optimum. In contrast, the lower
bound computed by toulbar2 at the root was often 99% of the optimum and never less
than 97%. We conclude that the direct encoding does not allow for strong propagation
and lower bouds.

The tuple encoding was chosen to put WPMS solvers in a situation where UP applied
to a hardened version of the formula would be able to detect more unsatisfiable cores.
Since this operation is at the heart of the lower bounding procedures of such solvers, it
should allow the derivation of a stronger lower bound. Additionally, unit propagation
on the hardened version of the tuple encoding is equivalent to enforcing arc consistency
on the hardened CFN. In CFN, VAC precisely identifies subproblems whose hardened
version is arc inconsistent (and therefore define inconsistent cores) to increase the lower
bound. VAC is known to be capable of producing stronger lower bounds than the de-
fault local consistency EDAC [55] used in toulbar2. Hence, the tuple encoding provides
enough information to give better lower bounds than what EDAC computes. The empir-
ical results verify that the lower bound computed at the root is much stronger with the
tuple encoding than with the direct encoding. For several instances akmaxsat computes
a lower bound that is 92% of the optimum. However, this is still far from the lower
bound computed by toulbar2. But the more important problem with this encoding is
that with a quadratic number of extra variables, both minimaxsat and akmaxsat were
extremely slow, exploring at most 2 nodes before the 9,000 second time-out and in several
instances timed out before even finishing the lower bound computation at the root node.
They never produced a single incumbent assignment.

22



On the other hand, the maxhs core-based solver is able to exploit the stronger tuple
encoding, being able to solve 4 problems to optimality. Analyzing the behaviour of maxhs
on these instances reveals that the solver spends almost all of its time trying to reduce the
size of the cores it finds, using a greedy minimization algorithm. This is because these
protein design instances contain some very large cores (tens of thousands of clauses)
which can not be significantly reduced in size. Such cores arise, for example, from the
binary cost functions in the CFN model. In this case, the core expresses the condition
that the cost of at least one tuple in the cost function will be incurred, and the core
therefore contains as many clauses as there are tuples in the originating cost function.
We observed that as a result, maxhs is usually unable to complete its initial disjoint core
phase within the timeout. Given this observation, we also experimented with running
maxhs with the core minimization option turned off, on the set of 12 instances which
update those in [2], using the tuple encoding. With core minimization turned off, maxhs
was able to complete the disjoint core phase on all 12 instances. This allowed us to
compare the lower bound produced by the disjoint core phase of maxhs with the lower
bound produced at the root node by toulbar2. Over the 12 instances, the lower bound
produced by maxhs was between 84% and 98% of the lower bound produced by toulbar2,
and it was calculated within only 35 seconds except for two cases. Note that this bound
calculated by maxhs differs from that of toulbar2 in that maxhs uses a complete SAT
solver to find the cores, and the cores are strictly disjoint. Based on these observations,
we believe the potential to improve the performance of the maxhs approach on these
instances is very promising.

For other core-based solvers, either because of the quadratic number of variables or
because of a different exploitation of non-AC/UP cores, these CPD instances remain very
hard. Whether it is a fundamental, technical, or implementation difference, identifying
the cause of this difference should allow to improve the existing WPMS technology.

Constraint programming. The generic translation of WCSPs into crisp CSPs suffers from
the large magnitude of costs, resulting in large domains for the extra cost variables
with very slow arc consistency propagation of table constraints for mistral, developing
approx. 215 nodes per minute. In comparison, Opturion/CPX develops 721 nd/min. It
also requires huge memory space for expressing the table constraints. Only 22 instances
among the 42 could fit into 128 GB during minizinc to flatzinc translation. By
dividing all costs by 100 (i.e., M = 1), mistral was able to solve 4 instances: 1CSK in 964
seconds and 90,562 nodes, 1HZ5 (d = 45) in (759 s& 179,319 nd), 1PGB (d = 45) in (76
s& 29,939 nd), and 2TRX (n = 11) in (47.3 s& 28,057 nd). gecode (resp. Opturion/CPX)
solved only one: 2TRX in (2,234 s& 213,423 nd) (resp. 1PGB in (6,916 s& 204,597
nd)). For the unsolved instances, Opturion/CPX found better solutions than mistral

on average. The difference in performances between the three solvers might come from
the different search strategies, mistral used geometric restarts, whereas Opturion/CPX

used Luby restarts, and gecode no restarts.

DEE/A*. The DEE/A* combination uses strong polynomial time dominance analysis
using several variants of dead-end elimination. This pre-processing is followed by best-
first search relying on an obsolete lower bound instead of the stronger lower bounds
offered by soft local consistencies such as EDAC [55], or the LP relaxation bound. To
confirm this, we computed the number of nodes explored by osprey during A∗ search.

23



Except for simple problems where DEE alone could solve the problem, osprey explored
trees larger than those explored by ILP or CFN by several orders of magnitude. On
problem 1DKT, it explored more than 107 nodes while ILP/cplex solved the problem
without search and toulbar2 explored 134 nodes. This confirms the weakness of current
bounds in exact CPD algorithms. Otherwise, osprey is quite fast and can develop more
than 110,000 nodes per minute. Despite the exploration of huge trees, no DEE/A*
execution led to memory exhaustion before time-out. With an extended time-out of 100
hours [83], only 2 instances ultimately led to memory exhaustion. The replacement of
A* by iterative alternatives to A∗ such as IDA∗ [50] would therefore probably have little
influence on the results of DEE/A*.

7. Conclusions

The simplest formal optimization problem underlying CPD looks for a Global Mini-
mum Energy Conformation (GMEC) over a rigid backbone and altered side-chains (iden-
tity and conformation). In computational biology, exact methods for solving the CPD
problem combine dominance analysis (DEE) and an A∗ search.

The CPD problem can also be directly formulated as a Cost Function Network, with
a very dense graph and relatively large domains. We have shown how DEE can be
integrated with local consistency with a reasonable time complexity.

The CPD can also be easily reduced to optimization in MRF, 01LP, 01QP, weighted
partial MaxSAT, and Boolean quadratic optimization, offering an ideal benchmark for a
large cross-technology comparison.

On a variety of real instances, we have shown that state-of-the-art optimization algo-
rithms on graphical models exploiting bounds based on the reformulation (or reparametriza-
tion) of the graphical model, but also 01LP algorithms, give important speedups com-
pared to usual CPD algorithms combining dead-end elimination with A∗. Among all
the tested solvers, toulbar2 was the most efficient solver and its efficiency was further
improved by the use of DEE during search.

We also showed that these CPD problems define challenging benchmarks for a va-
riety of solvers, including weighted partial MaxSAT solvers, either branch-and-bound
or core-based, and quadratic programming or quadratic optimization solvers, including
semidefinite programming based solvers.

In practice, it must be stressed that just finding the GMEC is not a final answer to real
CPD problems. CPD energies functions represent an approximation of the real physics
of proteins and optimizing a target score based on them (such as stability, affinity,. . . )
is not a guarantee of finding a successful design. Indeed, some designs may be so stable
that they are unable to accomplish the intended biological function. The usual approach
is therefore to design a large library of proteins whose sequences are extracted from all
solutions within a small threshold of energy of the GMEC. This problem is also efficiently
solved by toulbar2 [83].

Although it is easy to formulate as a discrete optimization problem, another important
limitation of the rigid backbone/rotamer CPD problem lies in the restrictions generated
by these two assumptions. In practice, rotamers offer a continuous range of rotations
along dihedral angles and backbones also have degrees of flexibility. Several approaches
have been proposed and introduced in osprey in the last few years that relax either

24



or both of these two assumptions while still offering a guarantee of optimality [40, 29,
31]. When flexibility counts, osprey is therefore a reference tool. All these approaches
ultimately require to solve the very same type of optimization problems involving a sum
of precomputed pairwise lower bounds on energy terms. In this context, it becomes
crucial to be able to enumerate all the solutions within a threshold of the optimum.
These approaches should therefore ultimately also benefit from algorithmic improvements
in GMEC optimization, as far as exhaustively enumerating all the solutions within a
threshold of the optimum is feasible.

Acknowledgements

This work has been partly funded by the “Agence nationale de la Recherche” (ANR-
10-BLA-0214 and ANR-12-MONU-0015-03), the INRA and the Region Midi-Pyrénées.
We would like to thank Damien Leroux for his help in the generation of encodings using
Python. We thank the Computing Center of Region Midi-Pyrénées (CALMIP, Toulouse,
France) and the GenoToul Bioinformatics Platform of INRA-Toulouse for providing com-
puting resources and support.

The Insight Centre for Data Analytics is supported by a research grant from Science
Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.

References

[1] Achterberg, T., Koch, T., Martin, A., 2005. Branching rules revisited. Operations Research Letters
33, 42–54.

[2] Allouche, D., Traoré, S., André, I., de Givry, S., Katsirelos, G., Barbe, S., Schiex, T., 2012. Compu-
tational protein design as a cost function network optimization problem, in: Principles and Practice
of Constraint Programming, Springer. pp. 840–849.

[3] Anfinsen, C., 1973. Principles that govern the folding of protein chains. Science 181, 223–253.
[4] Ansótegui, C., Bonet, M.L., Levy, J., 2009. Solving (weighted) partial maxsat through satisfiability

testing, in: Theory and Applications of Satisfiability Testing-SAT 2009, Springer. pp. 427–440.
[5] Argelich, J., Cabiscol, A., Lynce, I., Manyà, F., 2008. Encoding Max-CSP into partial Max-SAT, in:

Multiple Valued Logic, 2008. ISMVL 2008. 38th International Symposium on, IEEE. pp. 106–111.
[6] Bacchus, F., 2007. GAC via unit propagation, in: Principles and Practice of Constraint

Programming–CP 2007, Springer. pp. 133–147.
[7] Boas, F.E., Harbury, P.B., 2007. Potential energy functions for protein design. Current opinion

in structural biology 17, 199–204. URL: http://www.ncbi.nlm.nih.gov/pubmed/17387014, doi:10.
1016/j.sbi.2007.03.006.

[8] Boussemart, F., Hemery, F., Lecoutre, C., Sais, L., 2004. Boosting systematic search by weighting
constraints, in: ECAI, p. 146.

[9] Bowie, J.U., Luthy, R., Eisenberg, D., 1991. A method to identify protein sequences that fold into
a known three-dimensional structure. Science 253, 164–170.

[10] Campeotto, F., Dal Pal, A., Dovier, A., Fioretto, F., Pontelli, E., 1991. A constraint solver for
flexible protein models. Science 253, 164–170.

[11] Carothers, J.M., Goler, J.A., Keasling, J.D., 2009. Chemical synthesis using synthetic biology.
Current opinion in biotechnology 20, 498–503.

[12] Case, D., Darden, T., Cheatham III, T., Simmerling, C., Wang, J., Duke, R., Luo, R., Merz, K.,
Pearlman, D., Crowley, M., Walker, R., Zhang, W., Wang, B., Hayik, S., Roitberg, A., Seabra,
G., Wong, K., Paesani, F., Wu, X., Brozell, S., Tsui, V., Gohlke, H., Yang, L., Tan, C., Mongan,
J., Hornak, V., Cui, G., Beroza, P., Mathews, D., Schafmeister, C., Ross, W., Kollman, P., 2006.
Amber 9. Technical Report. University of California. San Francisco.

[13] Champion, E., André, I., Moulis, C., Boutet, J., Descroix, K., Morel, S., Monsan, P., Mulard, L.A.,
Remaud-Siméon, M., 2009. Design of α-transglucosidases of controlled specificity for programmed
chemoenzymatic synthesis of antigenic oligosaccharides. Journal of the American Chemical Society
131, 7379–7389.

25



[14] Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T., 2010. Soft arc
consistency revisited. Artificial Intelligence 174, 449–478.

[15] Cooper, M.C., 2005. High-order consistency in Valued Constraint Satisfaction. Constraints 10,
283–305.

[16] Cooper, M.C., de Givry, S., Sánchez, M., Schiex, T., Zytnicki, M., 2008. Virtual arc consistency
for weighted CSP., in: Proc. of AAAI’08, pp. 253–258.

[17] Cooper, M.C., de Givry, S., Schiex, T., 2007. Optimal soft arc consistency, in: Proc. of IJCAI’2007,
Hyderabad, India. pp. 68–73.

[18] Cooper, M.C., Schiex, T., 2004. Arc consistency for soft constraints. Artificial Intelligence 154,
199–227.

[19] Dahiyat, B.I., Mayo, S.L., 1996. Protein design automation. Protein science : a publication of
the Protein Society 5, 895–903. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2143401\&tool=pmcentrez\&rendertype=abstract, doi:10.1002/pro.5560050511.

[20] Davies, J., Bacchus, F., 2011. Solving MAXSAT by solving a sequence of simpler SAT instances,
in: Principles and Practice of Constraint Programming–CP 2011. Springer, pp. 225–239.

[21] Davies, J., Bacchus, F., 2013. Exploiting the power of MIP solvers in MaxSAT, in: Theory and
Applications of Satisfiability Testing–SAT 2013, Springer. pp. 166–181.

[22] Dechter, R., Mateescu, R., 2007. AND/OR search spaces for graphical models. Artificial intelligence
171, 73–106.

[23] Dechter, R., Rish, I., 2003. Mini-buckets: A general scheme for bounded inference. Journal of the
ACM (JACM) 50, 107–153.

[24] Desmet, J., De Maeyer, M., Hazes, B., Lasters, I., 1992. The dead-end elimination theorem and its
use in protein side-chain positioning. Nature 356, 539–42. URL: http://www.ncbi.nlm.nih.gov/
pubmed/21488406.

[25] Desmet, J., Spriet, J., Lasters, I., 2002. Fast and accurate side-chain topology and energy refinement
(FASTER) as a new method for protein structure optimization. Proteins 48, 31–43. URL: http:
//www.ncbi.nlm.nih.gov/pubmed/12012335, doi:10.1002/prot.10131.

[26] Fersht, A., 1999. Structure and mechanism in protein science: a guide to enzyme catalysis and
protein folding. WH. Freemean and Co., New York.

[27] Freuder, E.C., 1991. Eliminating interchangeable values in constraint satisfaction problems, in:
Proc. of AAAI’91, Anaheim, CA. pp. 227–233.

[28] Fritz, B.R., Timmerman, L.E., Daringer, N.M., Leonard, J.N., Jewett, M.C., 2010. Biology by
design: from top to bottom and back. BioMed Research International 2010.

[29] Gainza, P., Roberts, K.E., Donald, B.R., 2012a. Protein design using continuous rotamers. PLoS
computational biology 8, e1002335.

[30] Gainza, P., Roberts, K.E., Georgiev, I., Lilien, R.H., Keedy, D.A., Chen, C.Y., Reza, F., Anderson,
A.C., Richardson, D.C., Richardson, J.S., et al., 2012b. Osprey: Protein design with ensembles,
flexibility, and provable algorithms. Methods Enzymol .

[31] Georgiev, I., Keedy, D., Richardson, J.S., Richardson, D.C., Donald, B.R., 2008a. Algorithm for
backrub motions in protein design. Bioinformatics 24, i196–i204.

[32] Georgiev, I., Lilien, R.H., Donald, B.R., 2006. Improved Pruning algorithms and Divide-and-
Conquer strategies for Dead-End Elimination, with application to protein design. Bioinformatics
(Oxford, England) 22, e174–83. URL: http://www.ncbi.nlm.nih.gov/pubmed/16873469, doi:10.
1093/bioinformatics/btl220.

[33] Georgiev, I., Lilien, R.H., Donald, B.R., 2008b. The minimized dead-end elimination crite-
rion and its application to protein redesign in a hybrid scoring and search algorithm for com-
puting partition functions over molecular ensembles. Journal of computational chemistry 29,
1527–42. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263346\&tool=
pmcentrez\&rendertype=abstract, doi:10.1002/jcc.20909.

[34] de Givry, S., Prestwich, S., O’Sullivan, B., 2013. Dead-end elimination for weighted CSP, in:
Springer (Ed.), Principles and Practice of Constraint Programming–CP 2013.

[35] Globerson, A., Jaakkola, T.S., 2007. Fixing max-product: Convergent message passing algorithms
for map lp-relaxations, in: Advances in neural information processing systems, pp. 553–560.

[36] Goemans, M.X., Williamson, D.P., 1995. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM (JACM) 42, 1115–1145.

[37] Goldstein, R.F., 1994. Efficient rotamer elimination applied to protein side-chains and re-
lated spin glasses. Biophysical journal 66, 1335–40. URL: http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=1275854\&tool=pmcentrez\&rendertype=abstract, doi:10.1016/
S0006-3495(94)80923-3.

26



[38] Gront, D., Kulp, D.W., Vernon, R.M., Strauss, C.E., Baker, D., 2011. Generalized fragment picking
in rosetta: design, protocols and applications. PloS one 6, e23294.

[39] Grunwald, I., Rischka, K., Kast, S.M., Scheibel, T., Bargel, H., 2009. Mimicking biopolymers on
a molecular scale: nano(bio)technology based on engineered proteins. Philosophical transactions.
Series A, Mathematical, physical, and engineering sciences 367, 1727–47. URL: http://www.ncbi.
nlm.nih.gov/pubmed/19376768, doi:10.1098/rsta.2009.0012.

[40] Hallen, M.A., Keedy, D.A., Donald, B.R., 2013. Dead-end elimination with perturbations (deeper):
A provable protein design algorithm with continuous sidechain and backbone flexibility. Proteins:
Structure, Function, and Bioinformatics 81, 18–39.

[41] Harvey, W.D., Ginsberg, M.L., 1995. Limited discrepancy search, in: Proc. of the 14th IJCAI,
Montréal, Canada.

[42] Hawkins, G., Cramer, C., Truhlar, D., 1996. Parametrized models of aqueous free energies of
solvation based on pairwise descreening of solute atomic charges from a dielectric medium. The
Journal of Physical Chemistry 100, 19824–19839.

[43] Heras, F., Larrosa, J., Oliveras, A., 2008. Minimaxsat: An efficient weighted Max-SAT solver. J.
Artif. Intell. Res.(JAIR) 31, 1–32.

[44] Janin, J., Wodak, S., Levitt, M., Maigret, B., 1978. Conformation of amino acid side-chains in
proteins. Journal of molecular biology 125, 357–386.

[45] Khalil, A.S., Collins, J.J., 2010. Synthetic biology: applications come of age. Nature Reviews
Genetics 11, 367–379.

[46] Khare, S.D., Kipnis, Y., Greisen, P., Takeuchi, R., Ashani, Y., Goldsmith, M., Song, Y., Gal-
laher, J.L., Silman, I., Leader, H., Sussman, J.L., Stoddard, B.L., Tawfik, D.S., Baker, D.,
2012. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrol-
ysis. Nature chemical biology 8, 294–300. URL: http://www.ncbi.nlm.nih.gov/pubmed/22306579,
doi:10.1038/nchembio.777.

[47] Khoury, G.A., Smadbeck, J., Kieslich, C.A., Floudas, C.A., 2014. Protein folding and de novo
protein design for biotechnological applications. Trends in biotechnology 32, 99–109.

[48] Kingsford, C.L., Chazelle, B., Singh, M., 2005. Solving and analyzing side-chain positioning prob-
lems using linear and integer programming. Bioinformatics (Oxford, England) 21, 1028–36. URL:
http://www.ncbi.nlm.nih.gov/pubmed/15546935, doi:10.1093/bioinformatics/bti144.

[49] Koller, D., Friedman, N., 2009. Probabilistic graphical models: principles and techniques. The MIT
Press.

[50] Korf, R.E., 1985. Depth first iterative deepening : An optimal admissible tree search. Artificial
Intelligence 27, 97–109.

[51] Koster, A., van Hoesel, S., Kolen, A., 1999. Solving Frequency Assignment Problems via Tree-
Decomposition. Technical Report RM/99/011. Universiteit Maastricht. Maastricht, The Nether-
lands.

[52] Kuegel, A., 2010. Improved exact solver for the weighted Max-SAT problem, in: Workshop Prag-
matics of SAT.

[53] Kuhlman, B., Baker, D., 2000. Native protein sequences are close to optimal for their struc-
tures. Proceedings of the National Academy of Sciences of the United States of America 97,
10383–8. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=27033\&tool=

pmcentrez\&rendertype=abstract.
[54] Larrosa, J., 2002. On arc and node consistency in weighted CSP, in: Proc. AAAI’02, Edmondton,

(CA). pp. 48–53.
[55] Larrosa, J., de Givry, S., Heras, F., Zytnicki, M., 2005. Existential arc consistency: getting closer

to full arc consistency in weighted CSPs, in: Proc. of the 19th IJCAI, Edinburgh, Scotland. pp.
84–89.

[56] Larrosa, J., Meseguer, P., Schiex, T., Verfaillie, G., 1998. Reversible DAC and other improvements
for solving max-CSP, in: Proc. of AAAI’98, Madison, WI.

[57] Larrosa, J., Schiex, T., 2004. Solving weighted CSP by maintaining arc consistency. Artif. Intell.
159, 1–26.

[58] Leach, A.R., Lemon, A.P., 1998. Exploring the conformational space of protein side chains using
dead-end elimination and the A* algorithm. Proteins 33, 227–39. URL: http://www.ncbi.nlm.nih.
gov/pubmed/9779790.

[59] Lecoutre, C., Roussel, O., Dehani, D.E., 2012. WCSP integration of soft neighborhood substi-
tutability, in: Principles and Practice of Constraint Programming, Springer. pp. 406–421.

[60] Lecoutre, C., Säıs, L., Tabary, S., Vidal, V., 2009. Reasoning from last conflict(s) in constraint
programming. Artificial Intelligence 173, 1592,1614.

27



[61] Lewis, J.C., Bastian, S., Bennett, C.S., Fu, Y., Mitsuda, Y., Chen, M.M., Greenberg, W.A., Wong,
C.H., Arnold, F.H., 2009. Chemoenzymatic elaboration of monosaccharides using engineered cy-
tochrome p450bm3 demethylases. Proceedings of the National Academy of Sciences 106, 16550–
16555.

[62] Linderoth, J., Savelsbergh, M., 1999. A computational study of search strategies for mixed integer
programming. INFORMS Journal on Computing 11, 173–187.

[63] Looger, L.L., Hellinga, H.W., 2001. Generalized dead-end elimination algorithms make large-scale
protein side-chain structure prediction tractable: implications for protein design and structural
genomics. Journal of molecular biology 307, 429–45. URL: http://www.ncbi.nlm.nih.gov/pubmed/
11243829, doi:10.1006/jmbi.2000.4424.

[64] Lovell, S.C., Word, J.M., Richardson, J.S., Richardson, D.C., 2000. The penultimate rotamer
library. Proteins 40, 389–408. URL: http://www.ncbi.nlm.nih.gov/pubmed/10861930.

[65] Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., de la Banda, M.G., Wallace, M., 2008. The
design of the zinc modelling language. Constraints 13, 229–267.

[66] Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D., Keasling, J.D., 2003. Engineering a
mevalonate pathway in escherichia coli for production of terpenoids. Nature biotechnology 21,
796–802.

[67] Nestl, B.M., Nebel, B.A., Hauer, B., 2011. Recent progress in industrial biocatalysis. Current
Opinion in Chemical Biology 15, 187–193. URL: http://www.ncbi.nlm.nih.gov/pubmed/21195018,
doi:10.1016/j.cbpa.2010.11.019.

[68] Niedermeier, R., Rossmanith, P., 2000. New upper bounds for maximum satisfiability. J. Algorithms
36, 63–88.

[69] Otten, L., Ihler, A., Kask, K., Dechter, R., 2012. Winning the pascal 2011 map challenge with
enhanced AND/OR branch-and-bound, in: DISCML’12 Workshop, at NIPS’12, Lake Tahoe, NV,
USA.

[70] Pabo, C., 1983. Molecular technology. Designing proteins and peptides. Nature 301, 200. URL:
http://www.ncbi.nlm.nih.gov/pubmed/6823300.

[71] Peisajovich, S.G., Tawfik, D.S., 2007. Protein engineers turned evolutionists. Nature methods 4,
991–4. URL: http://www.ncbi.nlm.nih.gov/pubmed/18049465, doi:10.1038/nmeth1207-991.

[72] Petit, T., Régin, J., Bessière, C., 2000. Meta constraints on violations for over constrained problems,
in: Proceedings of IEEE ICTAI’2000, Vancouver, BC, Canada. pp. 358–365.

[73] Pierce, N., Spriet, J., Desmet, J., Mayo, S., 2000. Conformational splitting: A more powerful
criterion for dead-end elimination. Journal of computational chemistry 21, 999–1009.

[74] Pierce, N.A., Winfree, E., 2002. Protein design is NP-hard. Protein engineering 15, 779–82. URL:
http://www.ncbi.nlm.nih.gov/pubmed/12468711.

[75] Pleiss, J., 2011. Protein design in metabolic engineering and synthetic biology. Current opinion in
biotechnology 22, 611–7. URL: http://www.ncbi.nlm.nih.gov/pubmed/21514140, doi:10.1016/j.
copbio.2011.03.004.

[76] Raghavendra, P., 2008. Optimal algorithms and inapproximability results for every CSP?, in:
Proceedings of the 40th annual ACM symposium on Theory of computing, ACM. pp. 245–254.

[77] Raha, K., Wollacott, A.M., Italia, M.J., Desjarlais, J.R., 2000. Prediction of amino
acid sequence from structure. Protein science : a publication of the Protein Society 9,
1106–19. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2144664\&tool=
pmcentrez\&rendertype=abstract, doi:10.1110/ps.9.6.1106.

[78] Rendl, F., Rinaldi, G., Wiegele, A., 2010. Solving Max-Cut to optimality by intersecting semidefinite
and polyhedral relaxations. Math. Programming 121, 307.

[79] Schiex, T., 2000. Arc consistency for soft constraints, in: Principles and Practice of Constraint
Programming - CP 2000, Singapore. pp. 411–424.

[80] Sontag, D., Choe, D.K., Li, Y., 2012. Efficiently searching for frustrated cycles in MAP inference,
in: Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI-12),
AUAI Press, Corvallis, Oregon. pp. 795–804.

[81] Sontag, D., Meltzer, T., Globerson, A., Weiss, Y., Jaakkola, T., 2008. Tightening LP relaxations
for MAP using message-passing, in: 24th Conference in Uncertainty in Artificial Intelligence, AUAI
Press. pp. 503–510.

[82] Swain, M., Kemp, G., 2001. A CLP approach to the protein side-chain placement problem, in:
Principles and Practice of Constraint Programming–CP 2001, Springer. pp. 479–493.

[83] Traoré, S., Allouche, D., André, I., de Givry, S., Katsirelos, G., Schiex, T., Barbe, S., 2013. A new
framework for computational protein design through cost function network optimization. Bioinfor-
matics 29, 2129–2136.

28



[84] Voigt, C.A., Gordon, D.B., Mayo, S.L., 2000. Trading accuracy for speed: A quantitative compar-
ison of search algorithms in protein sequence design. Journal of molecular biology 299, 789–803.
URL: http://www.ncbi.nlm.nih.gov/pubmed/10835284, doi:10.1006/jmbi.2000.3758.

[85] Wallace, R., 1995. Directed arc consistency preprocessing, in: Meyer, M. (Ed.), Selected papers
from the ECAI-94 Workshop on Constraint Processing. Springer, Berlin. number 923 in LNCS, pp.
121–137.

[86] Yanover, C., Meltzer, T., Weiss, Y., 2006. Linear programming relaxations and belief propagation–
an empirical study. The Journal of Machine Learning Research 7, 1887–1907.

[87] Zhang, P.Y., Romero, D.A., Beck, J.C., Amon, C.H., 2013. Solving wind farm layout optimiza-
tion with mixed integer programming and constraint programming, in: Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR),
Springer. pp. 284–299.

29



Algorithm 1: Enforce DEE [59]

Procedure DEE((X,W ): AC∗ consistent WCSP)
∆ := ∅ ;
foreach i ∈ X do1

foreach (u, r) ∈ Di ×Di such that u < r do2

R := DominanceCheck(i, u, r) ;
if R = ∅ then R := DominanceCheck(i, r, u) ;3

∆ := ∆ ∪R ;

foreach ir ∈ ∆ do4

remove r from Di ;
Q := Q ∪ {i} ;

/* Check if value u dominates value r */
Function DominanceCheck(i, u, r): set of dominated values
δur := E(ir)− E(iu) ;
if δur < 0 then return ∅ ;5

foreach j ∈ X \ {i} do
δ := getDifference(j, i, u, r) ;
δur := δur + δ ;
if δur < 0 then return ∅ ;6

return {ir} /* δur ≥ 0 */ ;

/* Compute smallest difference in costs when using a instead of b */
Function getDifference(j, i, u, r): cost
δur := 0 ;7

foreach s ∈ Dj do
if E(ir, js) + E(ir) + E(js) + E∅ < k then8

δur := min(δur, E(ir, js)− E(iu, js)) ;

return δur ;

/* Enforce AC∗ and DEE */
Procedure AC∗-DEE()
Q := X ;
while Q 6= ∅ do

W-AC∗2001(Q) ;
DEE(Q) ;

30



Algorithm 2: Enforce DEE1

Procedure DEE1((X,W ): AC∗ consistent WCSP)
∆ := ∅ ;
foreach i ∈ X do
u := arg minv∈Di

E(iv) ;9

r := arg maxv∈Di
E(iv) ;10

if u = r /* ∀v ∈ Di, E(iv) = 0 */ then11

if u = max(Di) then
r := min(Di) ;

else
r := max(Di) ;

R := MultipleDominanceCheck(i, u, r) ;
if R = ∅ then R := MultipleDominanceCheck(i, r, u) ;
∆ := ∆ ∪R ;

foreach ir ∈ ∆ do
remove r from Di ;
Q := Q ∪ {i} ;

/* Check if value u dominates value r and possibly other values */
Function MultipleDominanceCheck(i, u, r): set of dominated values
δur := E(ir)− E(iu) ;
if δur < 0 then return ∅ ;
ubu := E(iu) ;12

foreach j ∈ X \ {i} do
(δ, ub) := getDifference-Maximum(j, i, u, r) ;
δur := δur + δ ;
ubu := ubu + ub ;13

if δur < 0 then return ∅ ;

if ubu = 0 then return {iv|v ∈ Di \ {u}} ;14

R := {ir} /* δur ≥ 0 */ ;
foreach v ∈ Di \ {u} do15

if (E(iv) ≥ ubu) then R := R ∪ {iv} ;16

return R ;

/* Compute smallest cost difference and maximum cost for value u */
Function getDifference-Maximum(j, i, u, r): pair of costs
δur := 0 ;
ubu := 0 ;
foreach s ∈ Dj do

if E(ir, js) + E(ir) + E(js) + E∅ < k then
δur := min(δur, E(ir, js)− E(iu, js)) ;

ubu := max(ubu, E(iu, js)) ;

return (δur, ubu) ;

/* Enforce AC∗ and DEE1 */
Procedure AC∗-DEE1()
Q := X ;
while Q 6= ∅ do

W-AC∗2001(Q) ;
DEE1(Q) ;

31



Table 1: For each instance: protein (PDB id.), number of mutable residues, maximum domain size
(maximum number of rotamers), and CPU-time for solving using maxhs, daoopt, DEE/A*, cplex, mplp,
and toulbar2. A ‘-’ indicates that the corresponding solver did not prove optimality within the 9,000-
second time-out. A ’ !’ indicates the solver stops with a SEGV signal.

PDB
id.

n d maxhs daoopt DEE/A* cplex mplp toulbar2

2TRX 11 44 4,086 268.6 31.5 2.6 2.8 0.1
1PGB 11 45 5,209 300.4 135.3 3.6 0.5 0.1
1HZ5 12 45 5,695 350.2 75.0 7.6 16.7 0.1
1UBI 13 45 - 826.9 2,812.6 139.2 37.3 0.2
1PGB 11 148 - - 8,695.2 - 1,291 4.3
1HZ5 12 148 - - 2,398.3 1,555 1,217 2.4
1UBI 13 148 - - - - - 1,557
2PCY 18 44 - - 1,281.1 26.9 14.5 0.2
2DHC 14 148 - - - - 5,388 14.1
1CM1 17 148 - - 138.4 473.1 87.5 3.3

1MJC 28 182 3,698 631.7 4.6 4.1 0.8 0.1
1CSP 30 182 - - 200.0 1,380 1,264 0.8
1BK2 24 182 - - 93.2 125.0 114.9 0.6
1SHG 28 182 - - 138.0 39.4 ! 0.2
1CSK 30 49 - - 41.7 12.5 9.6 0.1
1SHF 30 56 - - 44.3 8.6 3.1 0.1
1FYN 23 186 - - 622.0 2,548 3,136 2.8
1PIN 28 194 - - - - - 3.7
1NXB 34 56 - - 11.1 17.0 4.5 0.2
1TEN 39 66 - - 113.0 45.4 17.1 0.2
1POH 46 182 - - 77.9 29.0 13.1 0.3
2DRI 37 186 - - - - 4,458 42.8
1FNA 38 48 - - 3,310 124.9 121.2 0.5
1UBI 40 182 - - - 2,572 979.4 2.4
1C9O 43 182 - - 2,310 1,635 155.7 1.8
1CTF 39 56 - - - 263.2 549.2 0.7
2PCY 46 56 - - 2,080 54.0 20.3 0.4
1DKT 46 190 - - 5,420 1,254 3,103 2.5
2TRX 61 186 - - 487.0 765.0 344.1 0.9
1CM1 42 186 - - - - - 17.4
1BRS 44 194 - - - - - 346.5
1CDL 40 186 - - - - - 341.8
1LZ1 59 57 - - - 601.6 1,084 1.5
1GVP 52 182 - - - - - 361.8
1RIS 56 182 - - - - 8,483 288.4
2RN2 69 66 - - - 480.8 565.2 1.2
1CSE 97 183 - - 367.0 172.9 60.9 0.7
1HNG 85 182 - - 5,590 2,360 5,934 2.8
3CHY 74 66 - - - - 8,691 59.6
1L63 83 182 - - - 1,480 1,779 2.9

4 5 25 29 33 40

32



Table 2: For each instance: CPU-time for solving using toulbar2 and different combinations of options
for DVO and DEE. A ‘-’ indicates that the corresponding solver did not prove optimality with the 9,000-
second time-out. The tb2 column gives the results obtained using the vanilla toulbar2 for reference.
The DVO corresponds to the activation of the new variable ordering heuristics described in Section 4.1.
This option is kept activated in all the remaining columns. These columns correspond respectively to
additionally maintaining DEE1 during search, pre-processing using DEE, doing both, and maintaining
DEE during search. The last line reports the number of times a method was faster than the others.

PDB n d tb2 DVO DEE1 DEEpre DEEpre DEE
+DEE1

2TRX 11 44 0.1 0.1 0.1 0.1 0.1 0.1
1PGB 11 45 0.1 0.1 0.1 0.1 0.1 0.1
1HZ5 12 45 0.1 0.1 0.1 0.1 0.1 0.1
1UBI 13 45 0.2 0.2 0.2 0.2 0.3 0.5
1PGB 11 148 4.3 3.8 3.4 3.1 8.6 15.1
1HZ5 12 148 2.4 2.4 2.3 2.2 3.1 3.5
1UBI 13 148 1,557 1,068 1,736 1,133 1,162 -
2PCY 18 44 0.2 0.2 0.2 0.2 0.2 0.2
2DHC 14 148 14.1 8.0 7.0 7.0 14.5 52.0
1CM1 17 148 3.3 3.1 3.2 3.1 3.1 3.1

1MJC 28 182 0.1 0.1 0.1 0.1 0.1 0.1
1CSP 30 182 0.8 0.6 0.5 0.7 0.7 0.8
1BK2 24 182 0.6 0.6 0.6 0.5 0.7 0.5
1SHG 28 182 0.2 0.2 0.2 0.2 0.2 0.2
1CSK 30 49 0.1 0.1 0.1 0.1 0.1 0.1
1SHF 30 56 0.1 0.1 0.1 0.1 0.1 0.1
1FYN 23 186 2.8 2.9 2.6 3.0 3.2 3.8
1PIN 28 194 3.7 3.0 3.0 4.8 6.2 12.0
1NXB 34 56 0.2 0.2 0.2 0.2 0.2 0.2
1TEN 39 66 0.2 0.2 0.2 0.2 0.2 0.2
1POH 46 182 0.3 0.3 0.3 0.4 0.4 0.4
2DRI 37 186 42.8 16.4 37.7 9.6 15.5 51.2
1FNA 38 48 0.5 0.4 0.3 0.4 0.4 0.5
1UBI 40 182 2.4 1.0 0.7 0.9 0.9 1.3
1C9O 43 182 1.8 1.5 1.7 2.3 2.4 3.6
1CTF 39 56 0.7 0.9 0.6 0.6 0.7 0.8
2PCY 46 56 0.4 0.4 0.4 0.4 0.4 0.4
1DKT 46 190 2.5 2.8 2.4 2.6 2.7 3.9
2TRX 61 186 0.9 0.9 0.9 1.8 1.7 1.9
1CM1 42 186 17.4 11.8 13.2 8.6 11.6 20.0
1BRS 44 194 346.5 241.4 135.4 70.4 60.1 129.0
1CDL 40 186 341.8 198.1 159.0 79.6 128.8 286.4
1LZ1 59 57 1.5 1.1 1.0 0.9 1.0 1.1
1GVP 52 182 361.8 248.5 408.2 38.3 66.8 163.5
1RIS 56 182 288.4 147.4 77.9 37.8 28.8 122.8
2RN2 69 66 1.2 1.1 1.1 1.2 1.1 1.2
1CSE 97 183 0.7 0.8 0.6 0.6 0.6 0.6
1HNG 85 182 2.8 2.4 2.3 3.1 2.8 3.6
3CHY 74 66 59.6 27.9 10.7 10.6 14.9 20.3
1L63 83 182 2.9 2.8 2.3 2.4 2.5 2.7

14 19 26 25 16 14

33



Table 3: For each instance solved by both cplex and toulbar2, we report the number of nodes explored
by each solver (with the number of backtracks in parentheses when available) and the number of nodes per
minute developed. toulbar2 is the vanilla version, toulbar2+ uses the new variable ordering heuristics
and DEE as pre-processing.

PDB
id.

n d cplex toulbar2 toulbar2+

nodes nd/min nodes (bt) nd/min nodes (bt) nd/min

2TRX 11 44 0 - 8 (0) 6857 10 (1) 7500
1PGB 11 45 0 - 17 (1) 11333 16 (1) 10667
1HZ5 12 45 0 - 25 (5) 15000 29 (7) 17400
1UBI 13 45 51 22.0 143 (61) 39000 82 (31) 24600
1HZ5 12 148 0 - 89 (34) 2225 54 (16) 1453
2PCY 18 44 0 - 53 (6) 13826 40 (9) 10909
1CM1 17 148 0 - 14 (0) 258 0 (0) 0

1MJC 28 182 0 - 22 (0) 14667 2 (0) 1714
1CSP 30 182 547 23.8 540 (245) 42078 42 (16) 3877
1BK2 24 182 3 1.4 28 (3) 2800 19 (3) 2375
1SHG 28 182 214 326 268 (101) 69913 51 (16) 19125
1CSK 30 49 0 - 38 (5) 20727 14 (3) 7636
1SHF 30 56 0 - 35 (4) 17500 12 (0) 6000
1FYN 23 186 0 - 84 (20) 1819 43 (8) 863
1NXB 34 56 0 - 30 (0) 9474 14 (0) 4667
1TEN 39 66 0 - 75 (6) 20455 22 (5) 6600
1POH 46 182 0 - 111 (5) 21484 15 (0) 2195
1FNA 38 48 0 - 189 (47) 25200 84 (28) 12600
1UBI 40 182 287 6.7 1,669 (766) 41900 539 (228) 36337
1C9O 43 182 49 1.8 222 (57) 7525 82 (16) 2112
1CTF 39 56 94 21.4 294 (95) 24845 110 (33) 10820
2PCY 46 56 0 - 62 (5) 10629 20 (0) 3158
1DKT 46 190 0 - 210 (36) 5122 134 (24) 3045
2TRX 61 186 6 0.5 111 (14) 7239 85 (16) 2818
1LZ1 59 57 735 73.5 807 (308) 31855 178 (53) 11609
2RN2 69 66 0 - 105 (17) 5385 110 (17) 5500
1CSE 97 183 0 - 94 (0) 8418 9 (0) 915
1HNG 85 182 48 1.2 411 (110) 8745 96 (21) 1870
1L63 83 182 0 - 196 (17) 4055 58 (3) 1468

34


