
Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP

Simon de Givry and Thomas Schiex
INRA, Toulouse, France

{degivry,tschiex}@toulouse.inra.fr

Gerard Verfaillie
ONERA - DCSD, Toulouse, France

verfaillie@cert.fr

Abstract

Several recent approaches for processing graphical
models (constraint and Bayesian networks) simultane-
ously exploit graph decomposition and local consis-
tency enforcing. Graph decomposition exploits the
problem structure and offers space and time complex-
ity bounds while hard information propagation provides
practical improvements of space and time behavior in-
side these theoretical bounds.
Concurrently, the extension of local consistency to
weighted constraint networks has led to important im-
provements in branch and bound based solvers. In-
deed, soft local consistencies give incrementally com-
puted strong lower bounds providing inexpensive yet
powerful pruning and better informed heuristics.
In this paper, we consider combinations of tree decom-
position based approaches and soft local consistency en-
forcing for solving weighted constraint problems. The
intricacy of weighted information processing leads to
different approaches, with different theoretical proper-
ties. It appears that the most promising combination
sacrifices a bit of theory for improved practical effi-
ciency.

Introduction
Graphical model processing is a central problem in AI. In
the last years, in order to solve satisfaction, optimization or
counting problems, several algorithms have been proposed
that simultaneously exploit a decomposition of the graph of
the problem and the propagation of hard information using
local consistency enforcing. This includes algorithms such
as Recursive Conditioning (RC) (Darwiche 2001), Back-
track bounded by Tree Decomposition (BTD) (Terrioux
& Jegou 2003), AND-OR tree and graph search (Mari-
nescu & Dechter 2005b; 2005a), all related to Pseudo-tree
search (Freuder & Quinn 1985).

Implicitly or not, all these algorithms exploit the proper-
ties of Tree Decompositions (Bodlaender 2005) which cap-
ture structural independence information, in order to ob-
tain theoretical bounds on the time and space complexity
of the algorithms. The combination with hard informa-
tion propagation provides additional pruning leading to im-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

proved practical time and space complexity inside the origi-
nal bounds. Note however that in the context of tree-search,
these bounds are obtained at the cost of restricted freedom
in variable assignment ordering (see (Bacchus, Dalmao, &
Pitassi 2003) on this topic).

In this paper, we are specifically interested in optimiza-
tion problems in the framework of valued and weighted
constraint networks (Schiex, Fargier, & Verfaillie 1995).
Weighted constraint networks (WCN) provide a very general
model with several applications in domains such asresource
allocation, combinatorial auctionsandbioinformatics.

In a first part, we show that, with a limited weakening of
existing theoretical complexity bounds, an alternative com-
bination of tree decomposition and branch and bound can be
defined. In a second part, we exploit the extension of local
consistency to WCN.This extension has lead to increasingly
efficient branch and bound algorithms using increasingly
strong local consistency properties (Cooper & Schiex 2004;
Larrosa & Schiex 2004; 2003).They offer incrementally
maintained strong bounds and also contribute to better in-
formed variable and value ordering. Introduced in tree de-
composition based approaches, they should enhance their
practical time and space complexities and also provide better
guidance.

Taken together, these two parts show the increased intri-
cacy of weighted information processing, leading to differ-
ent possible combinations, each having different theoretical
properties and practical efficiencies.

Preliminaries
A weighted binary CSP (WCSP) is a triplet(X, D, W).
X = {1, . . . , n} is a set ofn variables. Each variable
i ∈ X has a finite domainDi ∈ D of values than can be
assigned to it. The maximum domain size isd. W is a set of
soft constraints (or cost functions). A binary soft constraint
Wij ∈ W is a functionWij : Di×Dj 7→ [0, k] wherek is a
given maximum integer cost corresponding to a completely
forbidden assignment (expressing hard constraints). If they
do not exist, we add toW one unary cost function for every
variable such thatWi : Di 7→ [0, k] and a zero arity con-
straintW∅ (a constant cost payed by any assignment). All
these additional cost functions have initial value0, leaving
the semantics of the problem unchanged.

The problem is then to find a complete assignment

with a minimum cost: min(a1,a2,...,an)∈
∏

i Di
{W∅ +∑n

i=1 Wi(ai) +
∑

Wij∈W Wij(ai, aj)}, an optimization
problem with an associated NP-complete decision problem.

The constraint graph of a WCSP is a graphG = (X, E)
with one vertex for each variable and one edge(i, j) for
every binary constraintWij ∈ W . A tree decomposi-
tion of this graph is defined by a tree(C, T). The set of
nodes of the tree isC = {C1, . . . , Cm} where Ce is a
set of variables (Ce ⊂ X) called a cluster. T is a set
of edges connecting clusters and forming a tree (a con-
nected acyclic graph). The set of clustersC must cover
all the variables (

⋃
Ce∈C Ce = X) and all the constraints

(∀(i, j) ∈ E,∃Ce ∈ C s.t. i, j ∈ Ce). Furthermore, if a
variablei appears in two clustersCe andCg, i must also ap-
pear in all the clustersCf on the unique path fromCe to Cg

in (C, T).
The rationale behind this definition is that acyclic prob-

lems can be solved with a good theoretical complexity.
Thus, a tree decomposition decomposes a problem in sub-
problems (clusters) organized in an acyclic graph and in
such a way that the variables that relate two adjacent clusters
(variables whose removal disconnects the subproblems) are
obtained by intersecting the two clusters.

This is illustrated on Figure 1 where the graph of a fre-
quency assignment problem is covered by clusters defining
a tree decomposition. Because of the usual emphasis on
purely random problems, one may think that such nice de-
compositions are exceptional but the emphasis on modular-
ity in design problems and the (spatial or temporal) locality
of many problems easily induce such structures.

The tree-width of a tree decomposition(C, T) is equal to
maxCe∈C{|Ce|} − 1, denotedw in the sequel. The tree-
width w∗ of G is the minimum tree-width over all tree de-
compositions ofG (also called the induced-width ofG). If
a rootCr ∈ C is chosen, the maximum number of variables
appearing in a path starting fromCr is called the tree-height
of the decomposition. Finding a minimum tree-width or a
minimum tree-height decomposition is NP-hard.

Exploiting tree decompositions
For a given WCSP, we consider a rooted tree decomposition
(C, T) with an arbitrary rootC1. We denote byFather(Ce)
(resp. Sons(Ce)) the parent (resp. set of sons) ofCe in T .
The separator ofCe is the setSe = Ce∩Father(Ce). The set
of proper variables ofCe is Ve = Ce \ Se. Note that theVe

family defines a partition ofX. For a given variablei ∈ X,
we denote by[i] the index of the cluster such thati ∈ V[i].

The essential property of tree decomposition is that as-
signingSe separates the initial problem in two subproblems
which can then be solved independently. The first subprob-
lem, denotedPe, is defined by the variables ofCe and all
its descendant clusters inT and by all the cost functions in-
volving at least one proper variable of these clusters. The
remaining constraints, together with the variables they in-
volve, define the remaining subproblem.

This property has been exploited by many related algo-
rithms. In a branch and bound framework, this property may
be exploited by restricting the variable ordering. Imagine all

Figure 1: The constraint graph of preprocessed RLFAP
SCEN-06 problem covered by clusters and the associated
tree decomposition usingC1 as root. ProblemP5 is outlined
with separatorS5 = {57, 72}. The constraintW57,72 inside
S5 is not part ofP5. P6 has a separatorS6 = {69}.

the variables of a clusterCe are assigned before any of the
remaining variables in its son clusters and consider a cur-
rent assignmentA. Then, for any clusterCf ∈ Sons(Ce),
and for the current assignmentAf of the separatorSf , the
subproblemPf under assignmentAf (denotedPf/Af) can
be solved independently from the rest of the problem. If
memory allows, theoptimal costof Pf/Af may be recorded
which means it will never be solved again for the same as-
signment ofSf .

If d is the maximum domain size,h the decomposition
tree-height andw the tree-width, this idea applied recur-
sively with no recording guarantees that a clusterCe will
never be visited more thand to the power of the number
of variables in the path from the root toCe (proper vari-
ables excluded). This gives a guaranteed bound on the
number of visited nodes which is dominated byO(dh).
This covers Pseudo-Tree or AND-OR tree search, also ap-
plied to WCSP in (Larrosa, Meseguer, & Sanchez 2002;
Marinescu & Dechter 2005b).

With recording, a clusterCe will never be visited more
than the number of assignments ofSe. Given the number of
variables inVe, this means that the number of nodes is dom-
inated byO(dw+1), w + 1 being the size of the largest clus-
ter. This gives algorithms such as RC with full recording,
BTD and AND-OR graph search, which can be considered
as structural learning algorithms. The side effect is that the
memory required may be exponential in the separator size.

Exploiting better upper bounds
Traditional depth-first branch and bound algorithms are tree-
search algorithms exploiting two bounds. In the WCSP case,
where a minimum cost solution is sought, the best known so-
lution so far provides an upper bound on the optimum. Dur-
ing search, at a given node, an extra dedicated lower bound-
ing mechanism provides a lower bound on the cost of any
complete assignment below the current node. If the lower
bound exceeds the upper bound, one can backtrack. Typ-
ically, when search starts, the upper bound is either set to
maximum costk or to the cost of a solution found e.g. by
local search.

With the basic combination of tree decomposition with
branch and bound, as in BTD applied to optimization prob-
lems (Jegou & Terrioux 2004), once a separatorSe is as-
signed, the corresponding problemPe/Ae is solved as an in-
dependent problem. This means that its initial upper bound
is set tok.

So, existing algorithms such as BTD or AND-OR search
do not impose any initial upper bound when solving a sub-
problem. Although this effectively guarantees that the opti-
mum ofPe/Ae will be computed, it provides limited prun-
ing. Furthermore, this optimal cost, once combined with
the cost of already totally assigned clusters and with exist-
ing lower bounds on the remaining unexplored clusters may
well exceed the cost of the best solution found so far: useless
optimization has been performed.

It may therefore be better to start solvingPe/Ae with a
non trivial upper bound obtained by taking the difference
between the upper bound associated with the parent prob-
lemPFather(Ce) and a lower bound onPFather(Ce) butPe.
However, this has a bad side-effect: after solving a subprob-
lem, if a solution with a cost strictly lower than the initial
upper bound is found, this solution is optimal and can be
recorded as such. But if no solution is found, we just have
a new lower bound on the optimum ofPe/Ae. The lower
bound and the fact it is optimal can be recorded inLBPe/Ae

andOptPe/Ae
respectively, initially set to0 andfalse.

If the search comes back later to the problemPe/Ae, and
even if this lower bound has been recorded, the subprob-
lem may need to be solved again. However, since the lower
bound recorded will necessarily be improved at each search,
the number of successive resolutions is bounded byk (and
more tightly by the optimum ofPe/Ae).

The resulting algorithm has the same space complexity
as BTD and the number of visited nodes is bounded by
O(k.dw+1) wherew is the tree-width of the decomposition
used. Note that because it still exploits problem decom-
position, the number of nodes is also dominated byO(dh)
whereh is the decomposition tree-height (thus still better
than branch and bound inO(dn)).

Local consistency and tree decomposition
Independently of tree decomposition approaches, the algo-
rithmics of WCSP has been widely improved in the last
years by exploiting the extension of local consistency to
cost functions.Several increasingly stronger local consisten-
cies have been defined since then (soft node and arc con-

sistency (Larrosa & Schiex 2004), full directional arc con-
sistency (DAC/FDAC) (Larrosa & Schiex 2003; Cooper &
Schiex 2004)), leading to increasingly efficient branch and
bound algorithms.

As in the classical case, enforcing local consistency on the
initial problem provides in polynomial time anequivalent
problem – defining the same cost distribution on complete
assignments – with possible smaller domains. It may also in-
crease the value ofW∅ and the costsWi(a) associated with
domain values.W∅ defines a strong lower bound which can
be exploited by branch and bound algorithms while the up-
datedWi(a) can inform variable and value orderings.

For our purpose, we point out that enforcing such local
consistencies is done by the repeated application of atomic
operations calledarc equivalence preserving transforma-
tions(Cooper & Schiex 2004). If we consider two cost func-
tionsWij andWi, a valuea ∈ Di and a costα, we can addα
toWi(a) and subtractα from everyWij(a, b) for all b ∈ Dj .
Simple arithmetics shows that the global cost distribution is
unchanged while costs may have moved from the binary to
the unary level (ifα > 0, this is called a Projection) or from
the unary to the binary level (ifα < 0, this is called an
Extension). In these operations, any cost abovek, the max-
imum allowed cost, can be considered as infinite and is thus
unaffected by subtraction. If no negative cost appears and
if all costs abovek are set tok, the remaining problem is
always a valid and equivalent WCSP.

The same mechanism, at the unary level, can be used to
move costs from theWi to W∅. Finally, any valuea such
thatWi(a) + W∅ is equal tok can be deleted.

From this description, one may already see that, even if
it preserves the cost of complete assignments, local consis-
tency may move costs between clusters, thereby invalidating
previously recorded information.

Binary projection and extension Moving costs between
cost functionsWij andWi(a) may modify the cost distri-
butions (and therefore the recorded optima) of subproblems.
This happens only whenWi andWij are associated to dif-
ferent subproblems, such asW72 ∈ C1 andW72,69 ∈ C5

in Fig. 1, and thus when the first cluster from the root con-
taining i, C[i], is an ascendant ofC[j]. In this case, the cost
distribution ofP[j] and of all ascendant subproblems up to
(but not including)P[i] is decreased or increased (according
to α’s sign).

We store these cost modifications in a specificbacktrack-
able data structure∆W e

i (a). There is one count for every
value of every variable in every separator, resulting in a rea-
sonableO(mnd) space complexity.

Initially, ∆W is set to zero. When an arc equivalence
preserving operation is performed as above, all the∆W e

i (a)
counters for all separatorsSe, fromS[j] up toS[i] (excluded)
are updated:∆W e

i (a) := ∆W e
i (a) + α.

During the search, when a separatorSe is assigned
by assignmentAe, we can obtain the total cost that has
been moved out of the subproblem by summing up all the
∆W e

i (a) for all values(i, a) in the separator assignment
Ae and correct any recorded information. This summa-

tion is denoted∆WPe/Ae
in the following. For instance,

in Fig. 1, ∆WP5/A5 = ∆W 5
57(a) + ∆W 5

72(b) with A5 =
{(57, a), (72, b)}.

Unary projection Local consistency enforcing uses a sim-
ilar mechanism to move costs from unary cost functions
Wi to the problem lower boundW∅. In order to avoid
corresponding subproblem cost modification, we splitW∅
into localW e

∅ cost functions, each associated to one cluster.
When cost from a unary constraintWi is moved to the zero
arity level, it is moved toW [i]

∅ . For a given subproblemPe,
its associated lower bound is obtained by summing up all
localW f

∅ for all the clustersCf in Pe defining a local lower
bound denotedW

e

∅. For the complete problem, this local
lower bound is equal to the global lower boundW∅.

For any strict subproblemPe, e ∈ {2, . . . ,m} and any
assignmentAe, we may therefore have two lower bounds,
one provided by the lower bound recording mechanism
(LBPe/Ae

− ∆WPe/Ae
) and the other one provided by lo-

cal consistency (W
e

∅). In the following, we use the maxi-
mum of these two bounds, denoted aslb(Pe/Ae). We gen-
eralize the previous definition for any subproblemPe, e ∈
{1, . . . ,m} and any partial assignmentA: lb(Pe/A) =
W e

∅ +
∑

Cf∈Sons(Ce) lb(Pf/Af), taking into account local
consistency and recorded lower bounds as soon as their sep-
arator is completely assigned byA.

For instance, in Fig. 1, letA = {(57, a), (72, b), (69, c)},
then lb(P5/A) = W 5

∅ + lb(P6/A6) = W 5
∅ +

max{W 6

∅, LBP6/A6 − ∆WP6/A6} = W 5
∅ + max{W 6

∅ +
W 7

∅, LBP6/A6 −∆W 6
69(c)} with A6 = {(69, c)}.

Value removal based on local cuts The last mechanism
used in local consistency enforcing is value removal. Here,
any valuea ∈ Di such thatW∅ + Wi(a) is larger than the
global upper boundgub (the best known solution cost) can
be removed. For a subproblemPe, we replace this global
condition by a local oneW

e

∅+Wi(a) ≥ cub whereW
e

∅ and
cub are the lower and upper bounds of the currently solved
problemPe. A better pruning rule can be deduced by taking
into account local consistency and recorded information as
in lb(Pe/A) but without usingLBPf /Af

if Pf includes value
a (not counting twice the same costWi(a)). We apply this
pruning rule only to variables in the current subproblemPe.

By doing so, we ensure that any value removed in a given
subproblemPe is also forbidden in every subproblemPf

included inPe. Thus the set of removed values for one sub-
problemPe, is still valid in all the subproblemsPf such
that Cf ∈ Sons(Ce), and all the propagations made dur-
ing the exploration ofCe are still valid when exploring
Cf ∈ Sons(Ce). The proof follows from the fact that the
difference between the current upper and lower bounds is
monotonically decreasing along a path from the root to a
leaf of the cluster tree.

For instance, in Fig. 1, letP5 be the current subproblem
andA = {(57, a), (72, b), (69, c)} be the current partial as-
signment, any valueu ∈ Di with variablei ∈ V5 is removed

if lb(P5/A) + Wi(u) ≥ cub and any valuev ∈ Dj with

variablej ∈ V6 ∪ V7 is removed ifW
5

∅ + Wj(v) ≥ cub.

Value removal based on local and global cuts Inside a
subproblem, a value can be removed for local reasons if
W

e

∅ + Wi(a) ≥ cub but also, as in traditional branch and
bound, for global reasons, ifW∅ + Wi(a) ≥ gub. Be-
cause neither of these conditions includes the other, they can
both be useful. However, the global condition may prune
the exploration of clusterCe to the point that we first lose
the guarantee that if a solution is found, it is optimal, but
also the guarantee that an improved lower bound can be de-
duced from the absence of solution. Even if a lower bound
can still be inferred by collecting leaf costs, the number of
successive resolutions is not bounded anymore byk and
the only bound on the total number of nodes is always in
O(dh). When recording is used, this approach is therefore
dominated in theory (either in time or space) by previous ap-
proaches. Since experimental results (not reported) did not
exhibit interesting performances, this double-cut approach
is only considered without recording (Pseudo-tree search).

Below, we present the pseudo-code of theLc-BTD+ al-
gorithm combining tree decomposition and a given level of
local consistency (Lc). This algorithm uses our initial en-
hanced upper bound (line 1), value removal based on local
cuts and optional recording (lines 2 and 3). The initial call is
Lc-BTD+(∅,C1,V1,k). It assumes an already Lc-consistent
problem and returns its optimum. Functionpop(S) returns
an element ofS and remove it fromS. Lc-BTD+ has

Function Lc-BTD+(A,Ce,V ,cub) : integer
if (V = ∅) then

S := Sons(Ce) ;
/* Solve all cluster sons whose optima are unknown */;
while (S 6= ∅ andlb(Pe/A) < cub) do

Cf :=pop(S) /* Choose a cluster son */;
if (not(OptPf /Af

)) then
1 cub′ := cub− lb(Pe/A) + lb(Pf/Af) ;

clb′ :=Lc-BTD+(A, Cf , Vf , cub′) ;
2 LBPf /Af

:= clb′ + ∆W Pf /Af
;

3 OptPf /Af
:= (clb′ < cub′) ;

return lb(Pe/A) ;

else
i :=pop(V) /* Choose an unassigned variable inCe */ ;
d := Di ;
/* Enumerate every value in the domain ofi */ ;
while (d 6= ∅ andlb(Pe/A) < cub) do

a :=pop(d) /* Choose a value */;
Assigna to i and enforce Lc on subproblemPe/Ae;
if (lb(Pe/A ∪ {(i, a)}) < cub) then

cub := min(cub,Lc-BTD+(A∪{(i, a)}, Ce, V , cub));

return cub ;

the usual worst case space complexity of tree decomposition
based algorithms, exponential in the size of the largest sep-
aratorSe. Because it uses the enhanced local upper bound
presented before, the number of nodes explored is bounded

by O(k.dw+1). Because of branch and bound pruning, it is
possible that only a small fraction of the theoretical space
will be used. Our implementation uses therefore sparse data
structures (hash tables) for recording information.

Experimental results
In this section, we perform an empirical comparison of the
algorithmLc-BTD+ with classical BTD exploiting Forward
Checking (FC-BTD) (Jegou & Terrioux 2004), traditional
depth-first branch and bound (MFDAC) (Larrosa & Schiex
2003), and Variable Elimination (VE) (Dechter 1999), a dy-
namic programming algorithm with time and space com-
plexity in O(dw+1), on random and real-world binary in-
stances.

Several versions of our algorithm can be considered:
without recording (lines 2 and 3 removed), we get a vari-
ant of pseudo-tree search enhanced with local consistency
enforcing denoted FDAC-PTS. This algorithm is similar to
the AOMFDAC algorithm of (Marinescu & Dechter 2005b).
In this case, local and global cuts are used for value removal.
For local consistency Lc, we tested Node Consistency (NC-
BTD+) and the more powerful FDAC (FDAC-BTD+).

All implementations are in C code (open source solver
TOOLBAR http://carlit.toulouse.inra.fr/
cgi-bin/awki.cgi/SoftCSP). Experiments were per-
formed on a2.4 GHz Xeon with4 GB.

Randomly generated instances Tree decomposition ap-
proaches are useless for pure unstructured random problems.
We designed a structured Max-CSP (violation has unit cost)
random problem generator using a binary clique tree. The
model parameters are(w, s, h′, d, t) wherew+1 is the clique
size,s the separator size,h′ the height of the clique tree,d
the domain size, andt the constraint tightness (percentage
of forbidden tuples). The total number of variables is equal
to n = s + (w + 1 − s)(2h′ − 1). Our tree decomposition
method produces a tree-width equal tow and a tree-height
equal toh = h′(w + 1 − s) + s. We have generated and
solved(w = 9, h′ = 3, d = 5) clique trees with varying
separator sizess ∈ {2, 5, 7} and varying constraint tightness
t ∈ [30, 90]% (over-constrained instances only). Average
over50 instances are reported. All algorithms (except VE)
use thedom/degdynamic variable ordering heuristic (locally
inside clusters for tree decomposition based methods). For
value selection we consider values in increasing order of
unary costWi. The DAC variable ordering is lexicographic.
The tree decomposition and the variable elimination order
are computed using the maximum cardinality search (MCS)
heuristic (Tarjan & Yannakakis 1984) with linear time com-
plexity in O(n + |E|). A root minimizing the tree-height is
used. The cpu-time reported excludes the time to compute a
tree-decomposition (always less than 10 ms) and is limited
to 5 minutes per instance (unsolved instances are assigned a
5 minute solving time). Fig. 2 reports times in seconds and
memory usage in number of recorded lower bounds.

For weak local consistencies such as FC and NC (which
provide the same lower bound), our enhanced initial up-
per bound saves space at the cost of time on these prob-

lems. With a stronger local consistency, FDAC-BTD+ is
always among the best algorithms and may outperform FC-
BTD by two orders of magnitude for large separator size
and high constraint tightness. For small/medium separa-
tors, recording seems to be a crucial ingredient for efficiency
and FDAC-PTS is even dominated by NC/FC recording ap-
proaches in this case. MFDAC was unable to solve the in-
stances with small separator size and large number of vari-
ables. Finally, variable elimination took constant time and
space (bounded bydw+1 = 510 = 9.8 106). Over all in-
stances, the number of successive resolutions of any sub-
problemPe/Ae never exceeded11 for FDAC-BTD+ and17
for NC-BTD+, far from the theoretical bound defined by the
largest optimal cost, here equal to202.

Real-world instances The Radio Link Frequency As-
signment Problem (RLFAP) (Cabonet al. 1999) consists in
assigning frequencies to a set of radio links in such a way
that all the links may operate together without noticeable
interference. Some RLFAP instances can be naturally cast
as weighted binary CSPs. We focused on instance SCEN-06
and its sub-instances SUB1 and SUB4. Compared to the
previous settings, we used the best known solution cost
(optimal) as the initial global upper bound, preprocessed
the MCS tree decomposition by merging clusters with a
separator size strictly greater than3 (MCS time always less
than 10 ms) and used the2-sided Jeroslow-likeheuristic
for variable selection. The root cluster chosen maximizes
the product of domain sizes. By doing so, the root clusters
of SCEN-06 and SUB4 are the same (20 variables). Time
limit is 10 hours. The same statistics on time and number of
recorded lower bounds (#LB) are reported.

RLFAP SUB1 SUB4 SCEN-06
optimum 2669 3230 3389
n, d, w, h 14, 44, 13, 14 22, 44, 19, 21 100, 44, 19, 67

Method time #LB time #LB time #LB
FC-BTD 1197 0 - 0 - -

NC-BTD+ 490 0 - 0 - -
FDAC-BTD+ 14 0 929 0 10,309 326

FDAC-PTS 14 n/a 851 n/a - n/a
MFDAC 14 n/a 984 n/a - n/a

Again, FDAC-BTD+ shows its robustness. Slightly dom-
inated by FDAC-PTS on the SUB4 problem, it is the only
algorithm that is able to prove optimality of the full SCEN-
06 instance. The recording, even if quite limited (326
over a possible maximum of roughly one million(M), used
5.5M times during the exploration of 16M search nodes), is
the only difference (except the value removal policy) with
FDAC-PTS algorithm that didn’t solve the problem in the
10 hours limit (“-” symbol) but finished in 2 days. Variable
elimination didn’t solve any instance due to the4 GB limit.

Compared with related work, in (Jegou & Terrioux 2004),
FC-BTD without initial global upper bound solved SUB4 in
122,933 seconds. AOMFDAC using a static variable order-
ing solved the same sub-instance in 47,115 seconds (Mari-
nescu & Dechter 2005b). Both experiments were performed
on a2.4 GHz Pentium IV computer but used different tree
decomposition from us. First solved by a partitioning ap-

Figure 2: Time in seconds (y-axis in log-scale) and number of recorded lower bounds (y-axis in linear-scale, its maximum
corresponds to the theoretical maximum) to find the optimum and prove optimality of random binary clique trees with various
separator sizess equal to 2, 5, and 7 (from left to right). Algorithms are sorted from the worst (top) to the best (bottom) at
t = 90%. n, d, c, w andh are the variable number, domain size, graph connectivity, tree-width, and tree-height respectively.

proach (SUB4 being the largest component), the full SCEN-
06 instance was also solved by a specific dynamic program-
ming algorithm in 27,102 seconds on a DEC 2100 A500MP
workstation (Koster 1999). However, our approach is more
generic, we do not use any specific preprocessing dedicated
to frequency assignment problems, and uses less memory
(326 compared to roughly one million (Koster 1999)).

Conclusion
In this paper, we have proposed a branch and bound algo-
rithm exploiting tree decomposition and local consistency.
Among the possible tree decomposition based approaches,
we found that the most promising and robust approach com-
bines initial enhanced upper bounds, strong local consis-
tency,correctedrecorded lower bounds, and value removal
based on local cuts. The resulting algorithm sacrifices a bit
of theory for improved practical (time and space) overall ef-
ficiency as shown on random and real-world instances.

We have presented our algorithm in the framework of
weighted binary CSP. Our approach is also applicable to
non-binary soft constraints, opening the door to other do-
mains such as Max-SAT and MPE in Bayesian Networks.

References
Bacchus, F.; Dalmao, S.; and Pitassi, T. 2003. Value elimination:
Bayesian inference via backtracking search. InUAI-03, 20–28.

Bodlaender, H. 2005. Discovering treewidth. InTheory and
Practive of Computer Science - SOFSEM’2005, 1–16.

Cabon, B.; de Givry, S.; Lobjois, L.; Schiex, T.; and Warners, J.
1999. Radio link frequency assignment.Constraints4:79–89.

Cooper, M., and Schiex, T. 2004. Arc consistency for soft con-
straints.Artificial Intelligence154:199–227.

Darwiche, A. 2001. Recursive Conditioning.Artificial Intelli-
gence126(1-2):5–41.
Dechter, R. 1999. Bucket elimination: A unifying framework for
reasoning.Artificial Intelligence113(1–2):41–85.
Freuder, E. C., and Quinn, M. J. 1985. Taking advantage of stable
sets of variables in constraint satisfaction problems. InProc. of
IJCAI-85, 1076–1078.
Jegou, P., and Terrioux, C. 2004. Decomposition and good
recording. InProc. of ECAI-04, 196–200.
Koster, A. 1999.Frequency assignment: Models and Algorithms.
Ph.D. Dissertation, Maastricht, The Netherlands.
Larrosa, J., and Schiex, T. 2003. In the quest of the best form of
local consistency for weighted CSP. InProc. of IJCAI-03, 239–
244.
Larrosa, J., and Schiex, T. 2004. Solving Weighted CSP by Main-
taining Arc-consistency.Artificial Intelligence159(1-2):1–26.
Larrosa, J.; Meseguer, P.; and Sanchez, M. 2002. Pseudo-tree
search with soft constraints. InProc. of ECAI-02, 131–135.
Marinescu, R., and Dechter, R. 2005a. Advances in and/or
branch-and-bound search for constraint optimization. InCP-2005
workshop on Preferences and Soft Constraints.
Marinescu, R., and Dechter, R. 2005b. And/or branch-and-bound
for graphical models. InProc. of IJCAI-05, 224–229.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued constraint
satisfaction problems: hard and easy problems. InProc. of IJCAI-
95, 631–637.
Tarjan, R., and Yannakakis, M. 1984. Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs
and selectively reduce acyclic hypergraphs.SIAM J. Comput.
13(3):566–579.
Terrioux, C., and Jegou, P. 2003. Hybrid backtracking bounded
by tree-decomposition of constraint networks.Artificial Intelli-
gence146(1):43–75.

