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Abstract

Several recent approaches for processing graphical
models (constraint and Bayesian networks) simultane-
ously exploit graph decomposition and local consis-
tency enforcing. Graph decomposition exploits the
problem structure and offers space and time complex-
ity bounds while hard information propagation provides
practical improvements of space and time behavior in-
side these theoretical bounds.

Concurrently, the extension of local consistency to
weighted constraint networks has led to important im-
provements in branch and bound based solvers. In-
deed, soft local consistencies give incrementally com-
puted strong lower bounds providing inexpensive yet
powerful pruning and better informed heuristics.

In this paper, we consider combinations of tree decom-
position based approaches and soft local consistency en-
forcing for solving weighted constraint problems. The
intricacy of weighted information processing leads to
different approaches, with different theoretical proper-
ties. It appears that the most promising combination
sacrifices a bit of theory for improved practical effi-
ciency.
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proved practical time and space complexity inside the origi-
nal bounds. Note however that in the context of tree-search,
these bounds are obtained at the cost of restricted freedom
in variable assignment ordering (see (Bacchus, Dalmao, &
Pitassi 2003) on this topic).

In this paper, we are specifically interested in optimiza-
tion problems in the framework of valued and weighted
constraint networks (Schiex, Fargier, & Verfaillie 1995).
Weighted constraint networks (WCN) provide a very general
model with several applications in domains suchegsurce
allocation, combinatorial auctiongndbioinformatics

In a first part, we show that, with a limited weakening of
existing theoretical complexity bounds, an alternative com-
bination of tree decomposition and branch and bound can be
defined. In a second part, we exploit the extension of local
consistency to WCN.This extension has lead to increasingly
efficient branch and bound algorithms using increasingly
strong local consistency properties (Cooper & Schiex 2004;
Larrosa & Schiex 2004; 2003).They offer incrementally
maintained strong bounds and also contribute to better in-
formed variable and value ordering. Introduced in tree de-
composition based approaches, they should enhance their
practical time and space complexities and also provide better
guidance.

Taken together, these two parts show the increased intri-

Graphical model processing is a central problem in Al In cacy of weighted information processing, leading to differ-
the last years, in order to solve satisfaction, optimization or ent possible combinations, each having different theoretical
counting problems, several algorithms have been proposed properties and practical efficiencies.

that simultaneously exploit a decomposition of the graph of
the problem and the propagation of hard information using
local consistency enforcing. This includes algorithms such
as Recursive Conditioning (RC) (Darwiche 2001), Back-
track bounded by Tree Decomposition (BTD) (Terrioux
& Jegou 2003), AND-OR tree and graph search (Mari-
nescu & Dechter 2005b; 2005a), all related to Pseudo-tree
search (Freuder & Quinn 1985).

Implicitly or not, all these algorithms exploit the proper-
ties of Tree Decompositions (Bodlaender 2005) which cap-
ture structural independence information, in order to ob-
tain theoretical bounds on the time and space complexity
of the algorithms. The combination with hard informa-
tion propagation provides additional pruning leading to im-

Preliminaries

A weighted binary CSP (WCSP) is a tripleX, D, W).
X = {1,...,n} is a set ofn variables. Each variable
1 € X has a finite domaiD; € D of values than can be
assigned to it. The maximum domain sizeidV is a set of
soft constraints (or cost functions). A binary soft constraint
W;; € Wis afunctionW;; : D; x D; — [0, k] wherek is a
given maximum integer cost corresponding to a completely
forbidden assignment (expressing hard constraints). If they
do not exist, we add tl” one unary cost function for every
variable such thatV; : D; — [0, %] and a zero arity con-
straintTV; (a constant cost payed by any assignment). All
these additional cost functions have initial valydeaving
the semantics of the problem unchanged.

The problem is then to find a complete assignment
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with a minimum cost: min,, 4, .._,a7l)€HiDi{Wg +
Yici Wilai) + Xw,,ew Wijlai,a;)}, an optimization
problem with an associated NP-complete decision problem.

The constraint graph of a WCSP is a gragh= (X, E)
with one vertex for each variable and one edgej) for
every binary constraintV;; € W. A tree decomposi-
tion of this graph is defined by a tré€,T). The set of
nodes of the tree i€ = {C,...,Cy} whereC, is a
set of variables @, c X) called a cluster. T' is a set
of edges connecting clusters and forming a tree (a con-
nected acyclic graph). The set of clust€r'smust cover
all the variables|(J., .~ C. = X) and all the constraints
V(i,j) € E,4C. € Cs.t.i,j € C.). Furthermore, if a
variablei appears in two clustels, andC;, i must also ap-
pear in all the cluster§’s on the unique path fror@'. to C,,
in(C,T).

The rationale behind this definition is that acyclic prob-
lems can be solved with a good theoretical complexity.
Thus, a tree decomposition decomposes a problem in sub-
problems (clusters) organized in an acyclic graph and in
such a way that the variables that relate two adjacent clusters
(variables whose removal disconnects the subproblems) are
obtained by intersecting the two clusters.

This is illustrated on Figure 1 where the graph of a fre- )
quency assignment problem is covered by clusters defining Figure 1: The constraint graph of preprocessed RLFAP
a tree decomposition. Because of the usual emphasis on SCEN-06 problem covered by clusters and the associated

purely random problems, one may think that such nice de-

tree decomposition usingl as root. Problen®s is outlined

compositions are exceptional but the emphasis on modular- With separatorS; = {57, 72}. The constraint¥s7 7, inside

ity in design problems and the (spatial or temporal) locality
of many problems easily induce such structures.

The tree-width of a tree decompositiofi, T') is equal to
maxc,ec{|Ce|} — 1, denotedw in the sequel. The tree-
width w* of G is the minimum tree-width over all tree de-
compositions of= (also called the induced-width @f). If
arootC,. € C is chosen, the maximum number of variables
appearing in a path starting froff}. is called the tree-height
of the decomposition. Finding a minimum tree-width or a
minimum tree-height decomposition is NP-hard.

Exploiting tree decompositions

For a given WCSP, we consider a rooted tree decomposition
(C,T) with an arbitrary root’;. We denote byrather(C.)
(resp. SongC.)) the parent (resp. set of sons)@f in 7.

The separator of. is the setS. = C.NFather(C.). The set

of proper variables of’. is V., = C, \ S.. Note that thd/,
family defines a partition of. For a given variablé € X,

we denote by:] the index of the cluster such that ;.

The essential property of tree decomposition is that as-
signing S, separates the initial problem in two subproblems
which can then be solved independently. The first subprob-
lem, denotedP,, is defined by the variables @f, and all
its descendant clustersinand by all the cost functions in-
volving at least one proper variable of these clusters. The
remaining constraints, together with the variables they in-
volve, define the remaining subproblem.

This property has been exploited by many related algo-
rithms. In a branch and bound framework, this property may
be exploited by restricting the variable ordering. Imagine all

Ss is not part ofPs. Ps has a separatdis = {69}.

the variables of a cluster, are assigned before any of the
remaining variables in its son clusters and consider a cur-
rent assignmentl. Then, for any cluste€; € SongC.),

and for the current assignment; of the separatof, the
subproblemP; under assignmem y (denotedP; /Ay) can

be solved independently from the rest of the problem. If
memory allows, theptimal cosof P;/A; may be recorded
which means it will never be solved again for the same as-
signment ofS;.

If d is the maximum domain sizé, the decomposition
tree-height andv the tree-width, this idea applied recur-
sively with no recording guarantees that a clusterwill
never be visited more thas to the power of the number
of variables in the path from the root 1@, (proper vari-
ables excluded). This gives a guaranteed bound on the
number of visited nodes which is dominated Byd").

This covers Pseudo-Tree or AND-OR tree search, also ap-
plied to WCSP in (Larrosa, Meseguer, & Sanchez 2002;
Marinescu & Dechter 2005b).

With recording, a cluste€, will never be visited more
than the number of assignmentsSf Given the number of
variables inV, this means that the number of nodes is dom-
inated byO(d“*1), w + 1 being the size of the largest clus-
ter. This gives algorithms such as RC with full recording,
BTD and AND-OR graph search, which can be considered
as structural learning algorithms. The side effect is that the
memory required may be exponential in the separator size.



Exploiting better upper bounds sistency (Larrosa & Schiex 2004), full directional arc con-
Traditional depth-first branch and bound algorithms are tree- Sistency (DAC/FDAC) (Larrosa & Schiex 2003; Cooper &
search algorithms exploiting two bounds. Inthe WCSP case, S¢hiex 2004)), leading to increasingly efficient branch and
where a minimum cost solution is sought, the best known so- Pound algorithms. . .
lution so far provides an upper bound on the optimum. Dur- _ Asinthe classical case, enforcing local consistency on the
ing search, at a given node, an extra dedicated lower bound- initial problem provides in polynomial time aequivalent
ing mechanism provides a lower bound on the cost of any Problem — defining the same cost distribution on complete
complete assignment below the current node. If the lower @ssignments —with possible smaller domains. It may also in-
bound exceeds the upper bound, one can backtrack. Typ-crease the value d¥’; and the cost$l;(a) associated with
ically, when search starts, the upper bound is either set to domain valuesiV,, defines a strong lower bound which can
maximum cost: or to the cost of a solution found e.g. by P€ exploited by branch and bound algorithms while the up-
local search. datediW;(a) can inform variable and value orderings.

With the basic combination of tree decomposition with ~ For our purpose, we point out that enforcing such local
branch and bound, as in BTD applied to optimization prob- Cconsistencies is done by the repeated application of atomic

lems (Jegou & Terrioux 2004), once a separaoris as- operations calledarc equivalence preserving transforma-
signed, the corresponding probldfy/ A, is solved as an in- tions(Cooper & Schiex 2004). If we consider two cost func-
dependent problem. This means that its initial upper bound tionsW;; andW;, avaluen € D; and a costy, we can add
is set tok. to W;(a) and subtract: from everyW;;(a, b) forall b € D;.

So, existing algorithms such as BTD or AND-OR search Simple arithme_tics shows that the global cost distribl_Jtion is
do not impose any initial upper bound when solving a sub- Unchanged while costs may have moved from the binary to
problem. Although this effectively guarantees that the opti- the unary level (itx > 0, this is called a Projection) or from
mum of P, /A. will be computed, it provides limited prun- ~ the unary to the binary level (i < 0, this is called an
ing. Furthermore, this optimal cost, once combined with EXtension). In these operations, any cost abavie max-
the cost of already totally assigned clusters and with exist- imum allowed cost, can be considered as infinite and is thus
ing lower bounds on the remaining unexplored clusters may Unaffected by subtraction. If no negative cost appears and
well exceed the cost of the best solution found so far: useless if all costs above: are set tok, the remaining problem is
optimization has been performed. always a valid and equivalent WCSP.

It may therefore be better to start SOlVi@/Ae with a The same mechanism, at the _Unary level, can be used to
non trivial upper bound obtained by taking the difference Move costs from théV; to W,. Finally, any valuex such
between the upper bound associated with the parent prob-thatWi(a) + Wy is equal tok can be deleted. _
lem Prather,, and & lower bound oFpathen . ) but Pe. ~ From this description, one may already see that, even if
However, this has a bad side-effect: after solving a subprob- It Preserves the cost of complete assignments, local consis-
lem, if a solution with a cost strictly lower than the initial ~ {€NCY may move costs between clusters, thereby invalidating
upper bound is found, this solution is optimal and can be Previously recorded information.
recorded as such. But if no solution is found, we just have

a new lower bound on the optimum &% /A.. The lower Binary projection and extension Moving costs between

bound and the fact it is optimal can be recorded.Bp, /4, cost functionsiV;; and W;(a) may modify the cost distri-

andOptp, /4, respectively, initially set to andfalse butions (and therefore the recorded optima) of subproblems.
If the search comes back later to the problEpiA., and This happens only wheW; andW;; are associated to dif-

even if this lower bound has been recorded, the subprob- ferent subproblems, such &, € C; andWia g9 € Cs

lem may need to be solved again. However, since the lower iy Fig. 1, and thus when the first cluster from the root con-

bound recorded will necessarily be improved at each search, tajnings, Cp, is an ascendant @ff;;. In this case, the cost

the number of successive resolutions is bounded bgnd distribution of P;; and of all ascendant subproblems up to

more tightly by the optimum of%. /A.). _ (but not including)P;; is decreased or increased (according
The resulting algorithm has the same space complexity to o's sign).

as BTw[ila”d the number of visited nodes is bounded by  \ye store these cost modifications in a spedificktrack-

O(k.d"™") wherew is the tree-width of the decomposition  ape data structure\IW¢ (). There is one count for every

used. Note that because it still exploits problem decom- ya|ye of every variable in every separator, resulting in a rea-
position, the number of nodes is also dominated’tiyl") sonableD(mnd) space complexity.

whereh is the decomposition tree-height (thus still better Initially, AW is set to zero. When an arc equivalence

than branch and bound @(d")). preserving operation is performed as above, alAfE&¢ (a)

. . counters for all separatofs, from Sj;; up to.Sy; (excluded)

Local consistency and tree decomposition are updatedAW? (a) := AWE(a) + .

Independently of tree decomposition approaches, the algo- During the search, when a separatty is assigned
rithmics of WCSP has been widely improved in the last by assignmentd., we can obtain the total cost that has
years by exploiting the extension of local consistency to been moved out of the subproblem by summing up all the
cost functions.Several increasingly stronger local consisten- AW¢(a) for all values(i,a) in the separator assignment
cies have been defined since then (soft node and arc con-A. and correct any recorded information. This summa-



tion is denotedAW p_,4_ in the following. For instance, if Ib(Ps/A) 4+ W;(u) > cub and any valuer € D; with
inFig. 1, AW p, /4, = AWE (a) + AWE,(b) with A5 = variablej € Vg U V4 is removed ifi,, + W, (v) > cub.
{(57,a),(72,b)}.

Value removal based on local and global cuts Inside a
Unary projection Local consistency enforcing uses asim-  subproblem, a value can be removed for local reasons if
ilar mechanism to move costs from unary cost functions W', + W;(a) > cub but also, as in traditional branch and
W; to the problem lower boundV,. In order to avoid bound, for global reasons, W, + W;(a) > gub. Be-
corresponding subproblem cost modification, we Spli cause neither of these conditions includes the other, they can
into local W§ cost functions, each associated to one cluster. both be useful. However, the global condition may prune
When cost from a unary constraifif; is moved to the zero the exploration of cluste€’, to the point that we first lose

arity level, it is moved td/[/g]. For a given subprobler®,, the guarantee that if a solgtion is found, it is optimal, but
its associated lower bound is obtained by summing up all also the guarantee that an improved lower bound can be de-
local Wé for all the clusters”; in P, defining a local lower duced_from_the absence of sqlutlon. Even if a lower bound
e X . can still be inferred by collecting leaf costs, the number of
bound denotedV,. For the complete problem, this local g, essive resolutions is not bounded anymorek tand
Ioleéer boundt|§ tequr;l to g;en%lobal Iow2er boutd. q the only bound on the total number of nodes is always in
ass%rn;ngn;:cwzumg; thire%feeha{vé -t;/\./(;%%/v‘z? b(?l:]r)llds, O(dh-)' When recording is used, this approach is therefore
one provided by the lower bound recording mechanism dominated in theory (either in time or space) by previous ap-

7 . proaches. Since experimental results (not reported) did not
(LBp,ja. — AWp,/4,) and the other one provided by lo- gy init interesting performances, this double-cut approach

cal consistencylf’,). In the following, we use the maxi- s only considered without recording (Pseudo-tree search).
mum of these two bounds, denotedld&’. /A.). We gen- Below, we present the pseudo-code of teBTD™ al-

eralize the previous definition for any subprobléi e € gorithm combining tree decomposition and a given level of
{1,...,m} and any partial assignment: [b(P./A) = local consistency (Lc). This algorithm uses our initial en-

W5 + >_c,cSonsc.) [b(Pr/Af), taking into account local - hanced upper bound (line 1), value removal based on local
consistency and recorded lower bounds as soon as their sep-cuts and optional recording (lines 2 and 3). The initial call is

arator is completely assigned by Lc-BTD*(0,C1,V1,k). It assumes an already Lc-consistent

For instance, in Fig. 1, let = {(57,a), (72,b), (69,¢)}, problem and returns its optimum. Functipap(S) returns
then 1b(Ps/A) = W35 + Ib(Ps/As) = W5 + an element ofS and remove it fromsS. Lc-BTD* has
max{Wy,, LBp,ja, — AW p,ja,} = W5 + max{W§ + Function Lc-BTD ™ (A,C.,V cub) : integer
W5, LBp,/a, — AWgy(c)} with Ag = {(69,¢)}. if (V = 0)then

S :=SongC.) ;

Value removal based on local cuts The last mechanism \//vrﬁloeh@ﬂ %Igitg{b?opn?f\{\ghgs;au%g)térga are unknown */
used in local consistency enforcing is value removal. Here, C :=pop(S) I* Choose a cluster son »
any valuea € D; such thatVy, + W;(a) is larger than the if (not(Optp,/a,)) then
global upper boungub (the best known solution cost) can cub' = cub — Ib(P./A) + Ib(Py/Ay) ;
be removed. For a subproblef, we replace this global clb’ :=Lc-BTDH (A, Cf, Vy, cub') ;
condition by a local on&/;, + W;(a) > cubwhereW and  » LBp,ja, = clbl + AWp, )4, i
cub are the lower and upper bounds of the currently solved; Optp,/a, = (clb/ < cub');
problemP,. A better pruning rule can be deduced by taking
into account local consistency and recorded information as return [b(P./A);
inlb(P./A) butwithoutusing.Bp, /4, if Py includes value else
a (not counting twice the same cdsf;(a)). We apply this i :=pop(V) I* Choose an unassigned variable . */ ;
pruning rule only to variables in the current subproblBm d:=D;;

By doing so, we ensure that any value removed in a given /* Enumerate every value in the domainidf ;
subproblemP. is also forbidden in every subproblefy while (d # 0 arldlb(Pe/A) < cub)*do
included inP.. Thus the set of removed values for one sub- Z::.pgp(td)_/ ggo?l?era V‘L"“enl boroble, /A
problem P., is still valid in all the subproblem#; such if??lla%Pa/Zzua{(i ea)f)cfcszc)) thseun problef. /A.;
that Cy € SongC;), and all the propagations made dur- | cub 2 min(cu}y,Lc-BTDﬂAu{(z‘,a)},Oe, V, cub));
ing the exploration ofC, are still valid when exploring
Cy € songC,). The proof follows from the fact that the |_return cub;

difference between the current upper and lower bounds is —
monotonically decreasing along a path from the root to a
leaf of the cluster tree. the usual worst case space complexity of tree decomposition
For instance, in Fig. 1, leP; be the current subproblem  based algorithms, exponential in the size of the largest sep-
andA = {(57,a), (72,b), (69, c)} be the current partial as-  aratorS.. Because it uses the enhanced local upper bound
signment, any value € D; with variable; € V; is removed presented before, the number of nodes explored is bounded



by O(k.d**1). Because of branch and bound pruning, it is
possible that only a small fraction of the theoretical space
will be used. Our implementation uses therefore sparse data
structures (hash tables) for recording information.

Experimental results

In this section, we perform an empirical comparison of the
algorithmLc-BTD™ with classical BTD exploiting Forward
Checking (FC-BTD) (Jegou & Terrioux 2004), traditional
depth-first branch and bound (MFDAC) (Larrosa & Schiex
2003), and Variable Elimination (VE) (Dechter 1999), a dy-
namic programming algorithm with time and space com-
plexity in O(d*+!), on random and real-world binary in-
stances.

Several versions of our algorithm can be considered:
without recording (lines 2 and 3 removed), we get a vari-
ant of pseudo-tree search enhanced with local consistency
enforcing denoted FDAC-PTS. This algorithm is similar to
the AOMFDAC algorithm of (Marinescu & Dechter 2005b).
In this case, local and global cuts are used for value removal.
For local consistency Lc, we tested Node Consistency (NC-
BTD+) and the more powerful FDAC (FDAC-BTD+).

All implementations are in C code (open source solver
TOOLBAR http://carlit.toulouse.inra.fr/
cgi-bin/awki.cgi/SoftCSP ). Experiments were per-
formed on &.4 GHz Xeon with4 GB.

Randomly generated instances Tree decomposition ap-
proaches are useless for pure unstructured random problems
We designed a structured Max-CSP (violation has unit cost)
random problem generator using a binary clique tree. The
model parameters afe, s, h', d, t) wherew+1 is the clique
size, s the separator sizéy,/’ the height of the clique tred,

the domain size, antithe constraint tightness (percentage
of forbidden tuples). The total number of variables is equal

lems. With a stronger local consistency, FDAC-BTD+ is
always among the best algorithms and may outperform FC-
BTD by two orders of magnitude for large separator size
and high constraint tightness. For small/medium separa-
tors, recording seems to be a crucial ingredient for efficiency
and FDAC-PTS is even dominated by NC/FC recording ap-
proaches in this case. MFDAC was unable to solve the in-
stances with small separator size and large number of vari-
ables. Finally, variable elimination took constant time and
space (bounded by**+! = 519 = 9.8 105). Over all in-
stances, the number of successive resolutions of any sub-
problemP, /A, never exceedetll for FDAC-BTD+ and17

for NC-BTD+, far from the theoretical bound defined by the
largest optimal cost, here equal22.

Real-world instances The Radio Link Frequency As-
signment Problem (RLFAP) (Cabat al. 1999) consists in
assigning frequencies to a set of radio links in such a way
that all the links may operate together without noticeable
interference. Some RLFAP instances can be naturally cast
as weighted binary CSPs. We focused on instance SCEN-06
and its sub-instances SYBand SUB. Compared to the
previous settings, we used the best known solution cost
(optimal) as the initial global upper bound, preprocessed
the MCS tree decomposition by merging clusters with a
separator size strictly greater thaiMCS time always less
than 10 ms) and used th&sided Jeroslow-likéneuristic

for variable selection. The root cluster chosen maximizes
the product of domain sizes. By doing so, the root clusters
of SCEN-06 and SUBare the same (20 variables). Time
limitis 10 hours. The same statistics on time and number of
recorded lower bounds (#LB) are reported.

ton = s+ (w+1—s)(2" —1). Our tree decomposition

method produces a tree-width equaktcand a tree-height
equal toh = h'(w + 1 — s) + s. We have generated and
solved(w = 9,h' = 3,d = 5) clique trees with varying
separator sizes€ {2, 5, 7} and varying constraint tightness

t € [30,90]% (over-constrained instances only). Average
over50 instances are reported. All algorithms (except VE)
use thedom/deglynamic variable ordering heuristic (locally
inside clusters for tree decomposition based methods). For
value selection we consider values in increasing order of
unary costV;. The DAC variable ordering is lexicographic.
The tree decomposition and the variable elimination order
are computed using the maximum cardinality search (MCS)
heuristic (Tarjan & Yannakakis 1984) with linear time com-
plexity in O(n + | E|). A root minimizing the tree-height is
used. The cpu-time reported excludes the time to compute a
tree-decomposition (always less than 10 ms) and is limited

RLFAP SUB; SUB, SCEN-06
optimum 2669 3230 3389

n,d,w,h | 14,44,13,14 | 22,44,19,21 | 100,44, 19,67
Method | time | #LB | time | #LB time | #LB

FC-BTD | 1197 0 - 0 - -

NC-BTD+ | 490 0 - 0 - -
FDAC-BTD+ 14 0 929 0 10,309 | 326
FDAC-PTS | 14 nj/a | 851 | n/a - n/a
MFDAC | 14 nfa | 984 | n/a - n/a

Again, FDAC-BTD+ shows its robustness. Slightly dom-
inated by FDAC-PTS on the SUBproblem, it is the only
algorithm that is able to prove optimality of the full SCEN-
06 instance. The recording, even if quite limite8Rg
over a possible maximum of roughly one million(M), used
5.5M times during the exploration of 16M search nodes), is
the only difference (except the value removal policy) with
FDAC-PTS algorithm that didn't solve the problem in the
10 hours limit (“-” symbol) but finished in 2 days. Variable
elimination didn’t solve any instance due to th&B limit.

Compared with related work, in (Jegou & Terrioux 2004),

to 5 minutes per instance (unsolved instances are assigned a&=C-BTD without initial global upper bound solved S

5 minute solving time). Fig. 2 reports times in seconds and
memory usage in number of recorded lower bounds.

For weak local consistencies such as FC and NC (which
provide the same lower bound), our enhanced initial up-
per bound saves space at the cost of time on these prob-

122,933 seconds. AOMFDAC using a static variable order-
ing solved the same sub-instance in 47,115 seconds (Mari-
nescu & Dechter 2005b). Both experiments were performed
on a2.4 GHz Pentium IV computer but used different tree
decomposition from us. First solved by a partitioning ap-
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Figure 2: Time in seconds (y-axis in log-scale) and number of recorded lower bounds (y-axis in linear-scale, its maximum
corresponds to the theoretical maximum) to find the optimum and prove optimality of random binary clique trees with various
separator sizes equal to 2, 5, and 7 (from left to right). Algorithms are sorted from the worst (top) to the best (bottom) at

t = 90%. n, d, ¢, w andh are the variable number, domain size, graph connectivity, tree-width, and tree-height respectively.

proach (SUB being the largest component), the full SCEN-
06 instance was also solved by a specific dynamic program-
ming algorithm in 27,102 seconds on a DEC 2100 A5S00MP
workstation (Koster 1999). However, our approach is more
generic, we do not use any specific preprocessing dedicated
to frequency assignment problems, and uses less memory
(326 compared to roughly one million (Koster 1999)).

Conclusion

In this paper, we have proposed a branch and bound algo-
rithm exploiting tree decomposition and local consistency.
Among the possible tree decomposition based approaches,
we found that the most promising and robust approach com-
bines initial enhanced upper bounds, strong local consis-
tency,correctedrecorded lower bounds, and value removal
based on local cuts. The resulting algorithm sacrifices a bit
of theory for improved practical (time and space) overall ef-
ficiency as shown on random and real-world instances.

We have presented our algorithm in the framework of
weighted binary CSP. Our approach is also applicable to
non-binary soft constraints, opening the door to other do-
mains such as Max-SAT and MPE in Bayesian Networks.
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