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Abstract. With the arrival of high throughput genotyping techniques,
the detection of likely genotyping errors is becoming an increasingly im-
portant problem. In this paper we are interested in errors that violate
Mendelian laws. The problem of deciding if Mendelian error exists in
a pedigree is NP-complete [1]. Existing tools dedicated to this problem
may offer different level of services: detect simple inconsistencies using
local reasoning, prove inconsistency, detect the source of error, propose
an optimal correction for the error. All assume that there is at most
one error. In this paper we show that the problem of error detection, of
determining the minimum number of error needed to explain the data
(with a possible error detection) and error correction can all be modeled
using soft constraint networks. Therefore, these problems provides at-
tractive benchmarks for weighted constraint network solvers such as the
dedicated WCSP solver toolbar.

1 Background

Chromosomes carry the genetic information of an individual. A position that
carries some specific information on a chromosome is called a locus (which typ-
ically identifies the position of a gene). The specific information contained at a
locus is the allele carried at the locus. Except for the sex chromosomes, diploid
individuals carry chromosomes in pair and therefore a single locus carries a pair
of allele. Each allele originates from one of the parents of the individual con-
sidered. This pair of alleles at this locus define the genotype of the individual
at this locus. Genotypes are not always completely observable and the indirect
observation of a genotype (its expression) is termed the phenotype. A pheno-
type can be considered as a set of possible genotypes for the individual. These
genotypes are said to be compatible with the phenotype.

A pedigree is defined by a set of related individuals together with associated
phenotypes for some locus. Every individual is either a founder (no parents in the
pedigree) or not. In this latter case, the parents of the individual are identified
inside the pedigree. Because a pedigree is built from a combination of complex
experimental processes it may involve experimental and human errors. The errors
can be classified as parental errors or typing errors. A parental error means that
the very structure of the pedigree is incorrect: one parent of one individual
is not actually the parent indicated in the pedigree. We assume that parental
information is correct. A phenotype error means simply that the phenotype in the



pedigree is incompatible with the true (unknown) genotype. Phenotype errors are
called Mendelian errors when they make a pedigree inconsistent with Mendelian
law of inheritance which states that the pair of alleles of every individual is
composed of one paternal and one maternal allele. The fact that at least one
Mendelian error exists can be effectively proven by showing that every possible
combination of compatible genotypes for all the individual violates this law at
least once. Since the number of these combinations grows exponentially with the
number of individuals, only tiny pedigree can be checked by enumeration. The
problem of checking pedigree consistency is actually shown to be NP-complete
in [1]. Other errors are called non Mendelian errors1.

The detection and correction of errors is crucial before the data can be ex-
ploited for the construction of the genetic map of a new organism (genetic map-
ping) or the localization of genes (loci) related to diseases or other quantitative
traits. Because of its NP-completeness, most existing tools only offer a limited
polynomial time checking procedure. The only tool we know that really tackles
this problem is PedCheck [10, 11], although the program is restricted by a
single error assumption. Evaluation of animal pedigrees with thousand of an-
imals, including many loops (a marriage between two individuals which have
a parental relation) (resulting in large tree-width) and without assuming the
unlikely uniqueness of errors requires further improvements.

In this paper, we introduce soft constraint network models for the problem of
checking consistency, the problem of determining the minimum number of errors
needed to explain the data and the problem of proposing an optimal correction to
an error. These problems offer attractive benchmarks for (weighted) constraint
satisfaction. We report preliminary results using the weighted constraint network
solver toolbar.

2 Modeling the problems

A constraint satisfaction network (X, D, C) [3] is defined by a set of variables
X = {x1, . . . , xn}, a set of matching domains D = {d1, . . . , dn} and a set of
constraints C. Every variable xi ∈ X takes its value in the associated domain
di. A constraint cS ∈ C is defined as a relation on a set of variables S ⊂ X

which defines authorized combination of values for variables in S. Alternatively,
a constraint may be seen as the characteristic function of this set of authorized
tuples. It maps authorized tuples to the boolean true (or 1) and other tuples to
false (or 0). The set S is called the scope of the constraint and |S| is the arity of
the constraint. For arities of one, two or three, the constraint is respectively said
to be unary, binary or ternary. A constraint may be defined by a predicate that
decides if a combination is authorized or not, or simply as a set of combination of
values which are authorized. For example, if d1 = {1, 2, 3} and d2 = {2, 3}, two
possible equivalent definitions for a constraint on x1 and x2 would be x1+1 > x2

or {(2, 2), (3, 2), (3, 3)}.

1 Non Mendelian errors may be identified only in a probabilistic way using several
locus simultaneously and a probabilistic model of recombination and errors [4].



The central problem of constraint networks is to give a value to each variable
in such a way that no constraint is violated (only authorized combinations are
used). Such a variable assignment is called a solution of the network. The problem
of finding such a solution is called the Constraint Satisfaction Problem

(CSP). Proving the existence of a solution for an arbitrary network is an NP-
complete problem.

Often, tuples are not just completely authorized or forbidden but autho-
rized and forbidden to some extent or at some cost. Several ways to model such
problems have been proposed among which the most famous are the semi-ring
and the valued constraint networks frameworks [2]. In this paper we consider
weighted constraint networks (WCN) where constraints map tuples to non neg-
ative integers. For every constraint cS ∈ C, and every variable assignment A,
cS(A[S]) ∈ N represents the cost of the constraint for the given assignment
where A[S] is the projection of A on the constraint scope S. The aim is then
to find an assignment A of all variables such that the sum of all tuple costs∑

cS∈C cS(A[S]) is minimum. This is called the Weighted Constraint Satisfac-
tion Problem (WCSP), obviously NP-hard. Several recent algorithms for tackling
this problem, all based on the maintenance of local consistency properties [13]
have been recently proposed [9, 7].

2.1 Genotyped pedigree and constraint networks

Consider a pedigree defined by a set I of individuals. For a given individual
i ∈ I , we note pa(i) the set of parents of i. Either pa(i) 6= ∅ (non founder)
or pa(i) = ∅ (founder). At the locus considered, the set of possible alleles is
denoted by A = 1, ..., m. Therefore, each individual carries a genotype defined
as an unordered pair of alleles (one allele from each parent, both alleles can be
identical). The set of all possible genotypes is denoted by G and has cardinality
m(m+1)

2 . For a given genotype g ∈ G, the two corresponding alleles are denoted
by gl and gr and the genotype is also denoted as gl|gr. By convention, gl ≤ gr

in order to break symmetries between equivalent genotypes (e.g. 1|2 and 2|1).
The experimental data is made of phenotypes. For each individual in the set of
observed individuals I ′ ⊂ I , its observed phenotype restricts the set of possible
genotypes to those which are compatible with the observed phenotype. This set
is denoted by G(i) (very often G(i) is a singleton, observation is complete).

A corresponding constraint network encoding this information uses one vari-
able per individual i.e. X = I . The domain of every variable i ∈ X is simply
defined as the set of all possible genotypes G. If an individual i has an observed
phenotype, a unary constraint that involves the variable i and authorizes the
genotypes in G(i) is added to the network. Finally, to encode Mendelian law,
and for every non founder individual i ∈ X , a single ternary constraint involving
i and the two parents of i, pa(i) = {j, k} is added. This constraint only autho-
rizes triples (gi, gj , gk) of genotypes that verify Mendelian inheritance i.e. such
that one allele of gi appears in gj and the other appears in gk. Equivalently:

(gl
i ∈ gj ∧ gr

i ∈ gk) ∨ (gl
i ∈ gk ∧ gr

i ∈ gj)



For a pedigree with n individuals among which there are f founders, with
m possible alleles, we obtain a final CN with n variables, a maximum domain

size of m(m+1)
2 and n− f ternary constraints. Existing problems may have more

than 10,000 individuals with several alleles (the typical number of alleles varies
from two to a dozen).

A small example is given in Fig. 1. There are n = 12 individuals and m = 3
distinct alleles. Each box corresponds to a male individual, and each ellipse
to a female. The arcs describe parental relations. For instance, individuals 1
and 2 have three children 3,4, and 5. The founders are individuals 1,2,6, and
7 (f = 4). The possible genotypes are G = {1|1, 1|2, 1|3, 2|2, 2|3, 3|3}. There
are 7 individuals (1,3,6,7,10,11, and 12) with an observed phenotype (a single
genotype). The corresponding CSP has 12 variables, with maximum domain size
of 6, and 8 ternary constraints. This problem is inconsistent.

A solution of this constraint network defines a genotype for each individ-
ual that respects Mendelian law (ternary constraints) and experimental data
(domains) and the consistency of this constraint network is therefore obviously
equivalent to the consistency of the original pedigree. As such, pedigree con-
sistency checking offers a direct problem for constraint networks. In practice,
solving this problem is not enough (i) if the problem is consistent, one should
simplify the problem for further probabilistic processing by removing all values
(genotypes) which do not participate in any solution, this specific problem is
known as “genotype elimination”, (ii) if the problem is inconsistent, errors have
to be located and corrected.
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Fig. 1. Pedigree example taken from [11] with 12 individuals.



3 Error detection

From an inconsistent pedigree, the first problem is to identify errors. In our
knowledge, this problem is not perfectly addressed by any existing programs
which either identify a not necessarily minimum cardinality set of individuals
that only restore a form of local consistency or make the assumption that a single
error occurs. The first approach may detect too many errors that moreover may
not suffice to remove global inconsistency and the second approach is limited to
small datasets (even high quality automated genotyping may generate several
errors on large datasets).

A typing error for individual i ∈ X means that the domain of variable i

has been wrongly reduced: the true (unknown) value of i has been removed. To
model the possibility of such errors, genotypes in G which are incompatible with
the observed phenotype G(i) should not be completely forbidden. Instead, a soft
constraint forbids them with a cost of 1 (since using such a value represents
one typing error). We thereby obtain a weighted constraint network with the
same variables as before, the same hard ternary constraints for Mendelian laws
and soft unary constraints for modeling genotyping information. Domains are
all equal to G.

If we consider an assignment of all variables as indicating the real genotype
of all individuals, it is clear that the sum of all the costs induced by all unary
constraints on this assignment precisely gives the number of errors made during
typing. Finding an assignment with a minimum number of errors follows the
traditional parsimony principle (or Ockham’s razor) and is consistent with a low
probability of independent errors (quite reasonable here). One solution of the
corresponding WCSP with a minimum cost therefore defines a possible diagnos-
tic (variable assigned with a value forbidden by G(i) represent one error).These
networks have the same size as the previous networks with the difference that all
variables now have the maximum domain size |G|. The fundamental difference
lies in the shift from satisfaction to optimization. The fact that only unary soft
constraints arise here is not a simplification in itself w.r.t. the general WCSP
since every n-ary weighted constraint network can be simply translated in an
equivalent dual network with only unary soft constraints and hard binary con-
straints [8].

In the previous example of Fig. 1, the problem still has 12 variables, with
domain size of 6. It has 8 hard ternary constraints and 7 soft unary constraints.
The minimum number of typing errors is one. There are 66 optimal solutions
of cost one, which can occur in any of the typed individuals except individual
10. One optimal solution is {(1, 2|2), (2, 1|2), (3, 2|2), (4, 1|2), (5, 2|2), (6, 2|2),
(7, 2|2), (8, 1|2), (9, 2|2), (10, 2|2), (11, 1|2), (12, 2|2)} such that the erroneous

typing 2|3 of individual 12 has been changed to 2|2.

3.1 Error correction

When errors are detected, one would like to optimally correct them. The sim-
ple parsimony criterion is usually not sufficient to distinguish alternative values.



More information needs to be taken into account. Errors and Mendelian inher-
itance being typically stochastic processes, a probabilistic model is attractive.
A Bayesian network is a network of variables related by conditional probability
tables (CPT) forming a directed acyclic graph. It allows to concisely describe
a probability distribution on stochastic variables. To model errors, a usual ap-
proach is to distinguish the observation O and the truth T . A CPT P (O|T )
relates the two variables and models the probability of error.

Following this, we consider the following model for error correction: we first
have a set of n variables Ti each representing the true (unknown) genotype of
individual i. The domain is G. For every observed phenotype, an extra observed
variable Oi is introduced. It is related to the corresponding true genotype by the
CPT P e

i (Oi|Ti). In our case, we assume that there is a constant α probability of
error: the probability of observing the true genotype is 1− α and the remaining
probability mass is equally distributed among remaining values.

For the individual i and its parents pa(i), a CPT P m
i (Ti|pa(i)) represent-

ing Mendelian inheritance connects Ti and its corresponding parents variables.
Each parent having two alleles, there are four possible combinations for the chil-
dren and all combinations are equiprobable (probability 1

4 ). However, since all
parental alleles are not always different, a single children genotype will have a
probability of 1

4 times the number of combination of the parental alleles that
produce this genotype.

Finally, prior probabilities P f (i) for each genotype must be given for every
founder i. These probabilities are obtained by directly estimating the frequency
of every allele in the genotyped population. For a genotype, its probability is
obtained by multiplying each allele frequency by the number of way this genotype
can be built (a genotype a|b can be obtained in two ways by selecting a a from
a father and a b from the mother or the converse. If both alleles are equal
there is only one way to achieve the genotype). The probability of a complete
assignment P (O, T ) (all true and observed values) is then defined as the product
of the three collections of probabilities (P e, P m and P f ). Note that equivalently,
its log-probability is equal to the sum of the logarithms of all these probabilities.

The evidence given by the observed phenotypes G(i) is taken into account by
reducing the domains of the Oi variables to G(i). One should then look for an
assignment of the variables Ti, i ∈ I ′ which has a maximum a posteriori proba-
bility (MAP). The MAP probability of such an assignment is defined as the sum
of the probabilities of all complete assignments extending it and maximizing it
defines an NP PP -complete problem [12], for which no exact methods exist that
can tackle large problems. PedCheck tries to solve this problem using the extra
assumption of a unique already identified error. This is not applicable in large
datasets either. Another very strong assumption (known as the Viterbi assump-
tion) considers that the distribution is entirely concentrated in its maximum
and reduces MAP to the so-called Maximum Probability Explanation problem
(MPE) which simply aims at finding a complete assignment of maximum prob-
ability. Using logarithms as mentioned above, this problem directly reduces to



a WCSP problem where each CPT is transformed in an additive cost function.
This allows to solve MPE using the dedicated algorithms introduced in toolbar.

Taken the pedigree example given in Fig. 1, we computed the maximum
likelihood P (O, T |e) for all possible minimal error corrections using toolbar

with the MPE formulation. Note that only one correction is needed here to
suppress all Mendelian errors. For a given error correction Tj = g, the given
evidence e corresponds to reducing the domains of all the Oi and Ti variables to
G(i), except for Tj which is assigned to g. We used equifrequent allele frequencies
P f (i) for the founders and a typing error probability α = 5%. The results are

given in Table 1. The ratio P (O,T |e)best

P (O,T |e) is the ratio between the best found

maximum likelihood for any correction and the maximum likelihood for a given
correction. The results shown that either individual 11 or 12 is the most likely
source of the error. Optimal corrections with respect to the Viterbi assumption
are either T11 = 2|2, or T11 = 2|3, or T12 = 1|2, or T12 = 2|2.

Individual Correction P (O, T |e) P (O,T |e)best

P (O,T |e)

1 1|2 3.462e − 10 128.0
1 2|3 3.462e − 10 128.0
3 1|2 2.77e − 09 16.0
3 2|3 2.77e − 09 16.0
6 1|1 5.539e − 09 8.0
6 1|2 2.77e − 09 16.0
6 1|3 2.77e − 09 16.0
6 2|3 2.77e − 09 16.0
6 3|3 5.539e − 09 8.0
7 1|1 5.539e − 09 8.0
7 1|2 2.77e − 09 16.0
7 1|3 2.77e − 09 16.0
7 2|3 2.77e − 09 16.0
7 3|3 5.539e − 09 8.0
11 2|2 4.431e − 08 1.0
11 2|3 4.431e − 08 1.0
11 3|3 5.539e − 09 8.0
12 1|1 5.539e − 09 8.0
12 1|2 4.431e − 08 1.0
12 2|2 4.431e − 08 1.0

Table 1. Likelihood ratios for possible error corrections for the problem given in Fig.1.

4 Conclusion

Preliminary experiments on the applicability of WCSP techniques to these prob-
lems have been made. The first real data sets are human pedigree data presented



in [10, 11]. For all these problems, toolbar solves the consistency, error mini-
mization and correction (MPE) problems very rapidly.

The real challenge lies in a real 129,516 individual pedigree of sheeps (sheep4n),
among which 2,483 are typed with 4 alleles and 20,266 are founders. By removing
uninformative individuals, it can be reduced to a still challenging 8,990 individ-
ual pedigree (sheep4nr) among which 2,481 are typed and 1,185 are founders.
As an animal pedigree, it contains many loops and the min-fill heuristics gives
a 226 tree-width bound. From the reduced pedigree sheep4nr, we removed some
simple nuclear-family typing errors by removing parental and typing data of
the corresponding erroneous children, resulting in a 8,920 individual pedigree
(sheep4r) among which 2,446 are typed and 1,186 are founders. We solved the
error detection problem (Section 3) using a decomposition approach. We used
the hypergraph partitioning software shmetis2 [6] using multilevel recursive bi-
section with imbalance factor equal to 5% to partition the sheep4r hypergraph
into four parts. Among the 8,662 hyperedges (each hyperedge connects one child
to its parents), 1,676 have been cut, resulting into four independent subproblems
described in Table 2. This table gives the minimum number of typing errors (Op-

timum), and if non zero and equal to one, the list of individual identifiers such
that removing one typing will suppress all Mendelian errors. The experiments
were performed on a 2.4 GHz Xeon computer with 8 GB. The Table reports
CPU time needed by toolbar and PedCheck [10, 11] (level 3) to find the list
of erroneous individuals. We used default parameters for toolbar except a pre-
projection of ternary constraints into binary constraints, a singleton consistency
preprocessing [5], and an initial upper bound equal to two. Recall that PedCheck
is restricted by a single error assumption.

Instance N. of individuals Optimum Errors toolbar PedCheck

CPU time CPU time

sheep4r 4 0 1,944 0 ∅ 33.3 sec 27.1 sec
sheep4r 4 1 2,037 0 ∅ 35.7 sec 28.2 sec
sheep4r 4 2 2,254 1 {126033} 124.2 sec 3 hours 51 min
sheep4r 4 3 2,685 1 {119506, 128090, 295.0 sec 7 hours 25 min

128091, 128092}

Table 2. Error detection for a large pedigree sheep4r decomposed into four independent
weighted CSPs.

By removing two typings in sheep4r (individuals 126033 for sheep4r 4 2 and
119506 for sheep4r 4 3), we found that the modified pedigree has no Mendelian
errors.

These problems have been made available as benchmarks on the toolbar

web site (carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP) for classical, weighted
CSP and Bayesian net algorithmicists.

2 http://www-users.cs.umn.edu/~karypis/metis/hmetis/index.html.
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J. The complexity of checking consistency of pedigree information and related
problems. Journal of Computer Science Technology 19, 1 (2004), 42–59.

[2] Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., and

Verfaillie, G. Semiring-based CSPs and valued CSPs: Frameworks, properties
and comparison. Constraints 4 (1999), 199–240.

[3] Dechter, R. Constraint Processing. Morgan Kaufmann Publishers, 2003.
[4] Ehm, M. G., Cottingham Jr., R. W., and Kimmel, M. Error Detection in

Genetic Linkage Data Using Likelihood Based Methods. American Journal of

Human Genetics 58, 1 (1996), 225-234.
[5] S. de Givry. Singleton consistency and dominance for weighted csp. In Proc. of

6th International CP-2004 Workshop on Preferences and Soft Constraints, page
15p., Toronto, Canada, 2004.

[6] Karypis, G., Aggarwal, R., Kumar, V., and Shekhar S. Multilevel Hyper-
graph Partitioning: Applications in VLSI Domain. In Proc. of the Design and

Automation Conference (1997).
[7] Larrosa, J., de Givry, S., Heras, F., and Zytnicki, M. Existential arc

consistency: getting closer to full arc consistency in weighted CSPs. In Proc. of

the 19th IJCAI (Aug. 2005).
[8] Larrosa, J., and Dechter, R. On the dual representation of non-binary

semiring-based CSPs. CP’2000 Workshop on Soft Constraints, Oct. 2000.
[9] Larrosa, J., and Schiex, T. In the quest of the best form of local consistency

for weighted CSP. In Proc. of the 18th IJCAI (Aug. 2003), pp. 239–244.
[10] O’Connell, J. R., and Weeks, D. E. PedCheck: a program for identification

of genotype incompatibilities in linkage analysis. American Journal of Human

Genetics 63, 1 (1998), 259–66.
[11] O’Connell, J. R., and Weeks, D. E. An optimal algorithm for automatic

genotype elimination. American Journal of Human Genetics 65, 6 (1999), 1733–
40.

[12] Park, J. D., and Darwiche, A. Complexity results and approximation strate-
gies for map explanations. Journal of Artificial Intelligence Research 21 (2004),
101–133.

[13] Schiex, T. Arc consistency for soft constraints. In Principles and Practice of

Constraint Programming - CP 2000 , vol. 1894 of LNCS, pp. 411–424.


