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Abstract. This document presents the key techniques usealibar2  solver
submitted to the Max-CSP competition 20@8ulbar2  solves Weighted Con-
straint Satisfaction Problems (WCSPs), a generalisation of Max-CSP. Two com-
plete solving methods that have been used for the competition are presented in
this paper: Depth-First Branch and Bound (DFBB) and a new algorithm, Russian
Doll Search with tree decomposition (RDS-BTD), which exploits the problem
structure.

DFBB is commonly used to solve constraint optimization problems such as WC-
SPs. The worst-case time complexity of this algorithm can be improved by ex-
ploiting the constraint graph structure, identifying independent subproblems and
caching their optima. However, the exploitation of the structure is dopeste-

riori: each time a new subproblem occurs, it has to be solved before its optimum
can be used. RDS-BTD solves a relaxation of every subproblem before solving
the whole problem, in the spirit of the Russian Doll Search algorithm. This relax-
ation allows to exploit subproblem lower bounds in a more proactive way.

1 Weighted Constraint Satisfaction Problem

A Weighted CSP (WCSP) is a quadrup(&t, D,W, m). X andD are sets of variables
and finite domains, as in a standard CSP. The domain of vaiigbldenoted;. The
maximum domain size id. For a set of variableS C X, we note/(S) the set of tuples
over S. W is a set of cost functions. Each cost function (or soft constrawgtin W
is defined on a set of variabl&called its scope and assumed to be different for each
cost function. A cost functioms assigns costs to assignments of the variablésiia.
ws : £(S) — [0,m]. The set of possible costs [8,m andm e {1,...,+} represents
an intolerable cost. Costs are combined by the bounded additiauch asa® b =
min{m,a+ b} and compared using. The operatior subtracts a codtfrom a larger
costawhereac b = (a—b) if a# mandm otherwise.

For unary/binary cost functions, we use simplified notations: a unary (resp. binary)
cost function on variable(s)resp.i andj) is denotedv; (resp.wjj). If they do not exist,
we add tow a unary cost functiom; for every variablg, and a nullary cost function,
notedw, (a constant cost payed by any assignment). All these additional cost functions
have initial cost 0, leaving the semantics of the problem unchanged.



The cost of a complete assignmenrt/(X) in a problenP = (X,D,W,m) is Valp(t) =
Dwsew Ws(t[S) wheret[S denotes the usual projection of a tuple on the set of variables
S. The problem of minimizingv/alp(t) is an optimization problem with an associated
NP-complete decision problem.

Enforcing a given local consistency property on a probRronsists in trans-
forming P = (X,D,W, m) in a problemP’ = (X,D,W’,m) which is equivalent td®
(Valp = Valp) and which satisfies the considered local consistency property. This en-
forcing may increasev, and provide an improved lower bound on the optimal cost.
Enforcing is achieved using Equivalence Preserving Transformations (EPTs) moving
costs between different scopes [12, 8,4, 6,1, 3, 2].

A classical complete solving method is Depth-First Branch and Bound (DFBB).
We give its pseudo-code in Algorithm 1. It enforces at each search node a given local
consistency propertyc (line 1). The pruning condition is applied if the resultiwg >
m (line 2). mis updated to the cost of the last solution found (line 3). The initial call
is DFBB(P, X, 0). It assumes an already local consistent probRmnd returns its
optimum.P/A denotes the subproblefunder assignmemt. The operator is used to
get an element d?. Functionpop(S) returns an element &and remove it frons.

DFBB worst-case time complexity i©(d") and it uses linear space. In the next
section, we briefly present how DFBB can be extended to exploit the problem structure.

2 Depth-First Branch and Bound with tree decomposition

Assuming connected problems, a tree decomposition of a WCSP is defined by a tree
(C,T). The set of nodes of the tree@s= {C4, ...,C«} where eacll. is a set of variables
(Ce C X) called a clusterT is a set of edges connecting clusters and forming a tree (a
connected acyclic graph). The set of clustéraust cover all the variableg ¢, .c Ce =
X) and all the cost function&(vs € W, 3C¢ € C s.t. SC Cg). Furthermore, if a variablie
appears in two cluste; andCy, i must also appear in all the clust&son the unique
path fromCe toCyin T.

For a given WCSP, we consider a rooted tree decompogifioh) with an arbitrary
rootC;. We denote byFather(C.) (resp.SongCe)) the parent (resp. set of sons)@f
in T. The separator T is the setS; = C.N FathenCe). The set of proper variables of
CeisVe=Ce\ S

The essential property of tree decompositions is that assighisgparates the ini-
tial problem in two subproblems which can then be solved independently. The first
subproblem, denotdd, is defined by the variables 6% and all its descendant clusters
in T and by all the cost functions involvirgt leastone proper variable of these clus-
ters. The remaining cost functions, together with the variables they involve, define the
remaining subproblem.

Example 1.Consider the MaxCSP problem depicted in Figure 1. It has eleven variables
with two values &,b) in their domains. Binary cost functions of differenegj(a,a) =

wij (b, b) = 1,wij (a,b) = wij(b,a) = 0) are represented by edges connecting the corre-
sponding variables. In this problem, the optimal cost is 5 and it is attained with e.g. the
assignmenta,b,b,a,b,b,a,b,b,a,b) in lexicographic order. AC;-rooted tree decom-
position with cluster€; = {1,2,3,4},C, = {4,5,6},C3 = {5,6,7},C4 = {4,8,9,10},



Fig. 1. The constraint graph of Example 1 and its associated tree decomposition.

andCs = {4,9,10,11}, is given on the right hand-side in Figure 1. For instari@e,
has songC,,C4}, the separator of; with its fatherC; is S = {5,6}, and the set of
proper variables of3 is V3 = {7}. The subproblen; has variableg5,6,7} and cost
functions{ws 7,ws 7, W7} (W initially empty). P; corresponds to the whole problem.

Depth-First Branch and Bound with Tree Decomposition (BTD) [7, 5] exploits this
property by restricting the variable ordering. Imagine all the variables of a clDstee
assigned before any of the remaining variables in its son clusters and consider a current
assignmenA. Then, for any cluste€s € SongCe), and for the current assignmetf
of the separato$;, the subproblens under assignmer; (denotedP;/As) can be
solved independently from the rest of the problem. If memory allowspghienal cost
of P;/A; may be recorded which means it will never be solved again for the same
assignment o%;.

In [5], we show how to exploit a better initial upper bound for solvityg However
this has the side-effect that the optimumRyfmay be not computed but only a lower
bound. The lower bound and the fact it is optimal can be recordddj , and
Optp, /A, respectively, initially set to O anfdlse

As in DFBB, BTD enforces local consistency during search. However, local con-
sistency may move costs between clusters, thereby invalidating previously recorded
information. We store these cost moves in a spebificktrackabledata structuréw
as defined in [5]. During the search, we can obtain the total cost that has been moved



out of the subproblerR; /As by summing up all the\V\Iif(a) for all values(i,a) in the
separator assignmeAt and correct any recorded im‘ormatidrB’F,f A= LBp/a; ©

Dics, AW (Ar[]).

Moreover, we keep the nullary cost function local to each clusigr= @, cc W

For pruning the search, BTD uses the maximum between local consistency and
recorded lower bounds as soon as their separator is completely assigned by the current
assignmenA. We denote byb(P./A) this lower bound:

Ib(Pe/A) =wg & @  maxib(P/A),LBp a,) (1)
CieSongce)

Example 2.In the problem of Example 1, variablé¢s, 2,3 4} of C; are assigned first,
e.g. using a dynamic variable orderimin domain / max degrdaside each cluster.

Let assumeA = {(4,a),(1,a),(2,b),(3,b)} be the current assignménEnforcing
EDAC local consistency [6] o /A producesvy, = 2w =wh = 1,wd =w2, =0,
resulting inlb(Py/A) = @¢ c W = 4 (no lower bound recorded yet).

Then, subproblemB,/{(4,a)} andP;/{(4,a)} are solved independently, resulting
in LBPZ/{(4a)} = 1, LBP4/{(4,a)} = 2, Opth/{(4a)} = Optp4/{(4a)} =true (no initial upper
bound) which are recorded. A first complete assignment of wdst LBp,/((4,8)} @
LBp,/{(a.2)} = 5 (all AW costs are zero in this case) is found.

In Algorithm 1, we present the pseudo-code of the BTD algorithm combining tree
decomposition and a given level of local consistebeyThis algorithm uses our initial
enhanced upper bound (line 4), value removal based on local cuts [5] and lower bound
recording (lines 6 and 7). The initial call BTD(Py, V1, 0, 0), with P, = P, an already
local consistent problem, returning its optimum.

The lower boundb(Ps/A) of Equation 1 does not take into account a possible
recorded lower bountiBp, /., which may exist ifOptp,/, =falseand the same sub-
problem is solved again. We therefore ensure a monotonically increasing lower bound
during the search by passing the best lower bound found recursively (line 5 and 9),
resulting in a stronger pruning condition (line 8).

BTD time complexity isO(md"+1) with w = maxccc |Ce| — 1, the maximum clus-
ter size minus one, called the tree-width of the tree decomposition. Its memory com-
plexity is bounded byD(d®) with s = maxccc ||, the maximum separator size [5].

3 Russian Doll Search with tree decomposition

The original Russian Doll Search (RDS) algorithm [13] consists in solvimgsted
subproblems of an initial problef with n variables. Given a fixed variable order, it
starts by solving the subproblem with only the last variable. Next, it adds the preceding
variable in the order and solves this subproblem with two variables, and repeats this
process until the complete problem is solved. Each subproblem is solved by a DFBB

5 Variable 4 has been selected first as it has the highest deggge in
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Algorithm 1: DFBB, BTD, and RDS-BTD algorithms.

Function DFBB(P, V, A) : [0, 4]

if (V =0)then
‘ return Pwg /* A new solution is found for P */
else
i :=pop(V) /* Choose an unassigned variable of P;*/
d:=PDj;
[* Enumerate every value in the domain of i;*/
while (d # 0 andP.wg < Pm) do
a:=pop(d) /* Choose a value *|
P’ :=Lc(P/AU/{(i,a)}) /* Enforce local consistency on/RU {(i,a)} */ ;
if (P.wg < Pm) then
| Pm:=DFBB(P,V,Au{(i,a)});

|_return Pm;

Function BTD(P., V, A, blb) : [0, 4]

if (V =0)then
S:=SongCe) ;
/* Solve all cluster sons whose optima are unknown */
while (S# 0 andlb(Pe/A) < Pe.m) do
Ct :=pop(S) /* Choose a cluster son */
if (not(Optp, /a,)) then
P;.m:=Pe.moIb(Pe/A) @ 1b(Ps /Af) ;
res:=BTD(Ps, Vi, A, Ib(Ps /At)) ;
LBp, /a, = 1es® Pics, AW (All]) ;
Optp, /a; == (res< Pr.m) ;

return Ib(Pe/A) /* A new solution is found for &/ ;

else
i :=pop(V) /* Choose an unassigned variable iR @ ;
d:=P.Dj;
[* Enumerate every value in the domain of i;*/
while (d # 0 and maxblb,lb(Ps/A)) < P..m) do
a:=pop(d) /* Choose a value *|
P, :=Lc(Pe/AU{(i,a)}) /* Enforce local consistency onePAU{(i,a)} */ ;
if (max(blb,Ib(Ps/AU{(i,a)})) < Pe.m) then
| Pe.m:=BTD(P., V, Au{(i,a)}, maxblb,Ib(Ps/AU{(i,a)}))) ;

|_return Pe.m;

Function RDS-BTD(P, PRPS) : [0, +]

foreachC; € SongCe) do
| RDS-BTD(P, PRP9;

PRPSm:=PmaIb(P/0) © Ib(PRPS/0) ;

LBpros :=BTD(PEPS, Ve, {(1,EAC())|i € S}, Ib(PRPS/0)) ;
Set tofalseall recordedO ptp, /A such thaCs is a descendant @e, St NS # 0, A€ U(S) ;
return LBpé?DS;




algorithm with a static variable ordering heuristic following the nested subproblem de-
composition order. The lower bound combines the optimum of the previously solved
subproblems with the lower bound produced by enforcing soft local consistency.

RDS-BTD, recently proposed in [10], applies the RDS principle to a tree decompo-
sition. The main difference with RDS is that the set of subproblems to solve is defined
by a rooted tree decompositid@, T).

We definePRPS as the subproblem defined by the proper variableg.a@ind all its
descendant clusters hand by all the cost functions involvirenly proper variables of
these clusters?RPS has no cost function involving a variable , the separator with
its father, and thus its optimum is a lower bound®for any assignment c&.

RDS-BTD solvegC| subproblems ordered by a depth-first traversar pétarting
from the leaves to the ro®RPS=P.

Each subprobler®RPSis solved by BTD instead of DFBB. This allows to exploit
decomposition and caching done by BTD. Because caching is only performed on com-
pletely assigned separators, and considering all possible assignmehtsvofild be
too costly in memory and time, we assignbefore solving?RPS. This is needed since
otherwise, caching o, a descendant &, with S; NS, # 0, would use a partially as-
signedAs. To assigrS., we use the fully supported value of each dorfigimaintained
by EDAC [6]) as temporary values used for caching purposes only.

The advantage of using BTD is that recorded lower bounds can be reused during
the next iterations of RDS-BTD. However, the optimum found by BTD for a given

subproblenPs when solvingPXPSis no more valid irPngheKe) due to possible cost

functions between variables Gr4ihere and inPr. At each iteration of RDS-BTD,
afterPRPSis solved, we reset aptp, /4, Such thaS; NS # 0 (line 12).

During search, RDS-BTD exploits the maximum between local consistency, recorded,
and RDS lower bounds. LdaBpgeDs denote the optimum d?RPSfound by one iteration
of RDS-BTD. Because costs can be moved between clusters, this information has to
be corrected in order to be valid in the next iterations of RDS-BTD. For that, we use
the maximum ofAW on each current domain of the (possibly unassigned) separator
variables. The lower bound corresponding to the current assigrvisithen:

Ib(Pe/A) =wWg & €D max(b(Pr/A), LB, LBpros© (D maxaWy' (a)) (2)
CreSONCe) icSt

Example 3.Applied on the problem of Example 1, RDS-BTD solves five subproblems
(PRDS, PRDS pRDS pRDS b, ) successively. For instandefPShas variableg 7} and cost
function{wy}. Before solvingPRPS, RDS-BTD assigns variablg$, 6} of the separator

S to their fully supported value{(5,a), (6,a)} in this example). In solvindPRPS, it

can record e.g. the optimum 8%/{(5,a), (6,a)}, equal to zero (recall thats ¢ does

not belong toPs), that can be reused when solviRg In solving PRPS, it can record

e.g. the optimum oPs/{(4,a),(9,a),(10,a)}, also equal to zero. However, due to the
fact that variable 4 belongs ® NS and PRPS does not contaimvg 11, this recorded
information is only a lower bound for subsequent iterations of RDS-BTD. So, we set

6 Fully supported valua € Dj such thatvi (a) = 0 andvws € W with ic S 3t € £(S) with t[i] = a
such thatvs(t) = 0.



Opty,/{(4.2),(9,8),(10.0) = false before solvingPy. The resulting optima ard;BpsgeDs =
LBPSRDS =0, LBF,;DS = LBP‘?DS =1 andLBPiQDS =5, the optimum of;.

In this simple example, foA = {(4,a),(1,a),(2,b),(3,b)}, Ib(P1/A) using Equa-
tion 1 or 2 is the same because EDAC propagation provides lower bounds equal to
RDS lower bounds. In the contrary, f&r= 0, Ib(P;/0) = LBPZRDS@ LBPEQDS = 2 using

Equation 2 andb(P;/0) = 0 using Equation 1 (assuming EDAC local consistency in
preprocessing and no initial upper bound).

We present the pseudo-code of the RDS-BTD algorithm in Algorithm 1. RDS-BTD
call BTD to solve each subprobleRFPS (line 11), using Equation 2 instead of Equation
1 to compute lower bounds. An initial upper bound RPSis deduced from the global
problem upper bound and the already computed RDS lower bounds (line 10). It initially
assigns variables i& to their fully supported value (given lyAC function at line 11)
as discussed above. The initial calR®S-BTD(P, PRP9). It assumes an already local
consistent probler®RPS= P and returns its optimum.

Notice that as soon as a solution RfPS is found having the same optimal cost
asIb(PEP%/0) = B¢, csonsc,) LBpros: then the search ends thanks to the initial lower

lound given at line 11.
The time and space complexity of RDS-BTD is the same as BTD.

4 Implementation details

We implemented DFBB and RDS-BTD in an open-source C++ solver néonézhr2 .
DFBB uses default parameter valuedadlbar2

Dynamic variable orderingifin domain / max degrebreaking ties with maximum
unary cost) is used inside clusters (RDS-BTD) and by DFBB. EDAC local consistency
is enforced on binary [6] and ternary [11] cost functions during search. Larger arity cost
functions are delayed from propagation until they become ternary or less.

We use the Maximum Cardinality Search heuristic to build a tree decomposition
and choose the largest cluster as the root. In order to relax the restriction imposed by
RDS-BTD on the dynamic variable ordering heuristic, we propose to merge clusters
with their parent if their separator is too large. Starting from the leaves of a given tree
decomposition, we merge a cluster with its parent if the separator size is strictly greater
thanr = 4 (parameteB2r4in toulbar2 ).

Recorded (and if available RDS) lower bounds are exploited by local consistency
enforcing as soon as their separator variables are fully assigned. If the recorded lower
bound is optimal @pts, s, =true) or strictly greater than the one produced by lo-

cal consistency, i.e. mékBy, , , LBpros © Dics, AWC(Ai]) > EBP@PEW;, then the

corresponding subproblen{/As) is deconnected from local consistency enforcing

and the positive difference in lower bounds is added to its parent cluster lower bound

(WEather(ce)), allowing possible new value removals by node consistency enforcing on

the remaining problem.

7 Version 0.7 available atttp://mulcyber.toulouse.inra.fr/gf/project/toulbar2



All the solving methods exploit a binary branching scheme depending on the do-
main sized of the branching variable. d > 10 then it splits therdereddomain into
two parts (by taking the middle value), else the variable is assigned to its EDAC fully
supported value or this value is removed from the domain. In both cases, it selects the
branch which contains the fully supported value first, except for RDS-BTD where it
selects the branch which contains the value corresponding to the last solution(s) found
first if available.

At each search node, before branching, DFBB and RDS-BTD eliminate all variables
(except variables occuring in a separator for RDS-BTD) with a degree less than or equal
to two, possibly creating new binary cost functions on the fly. They apply successively
EDAC propagation (which may assign some variables and reduce current degrees) and
2-degree variable elimination until there is no more elimination nor propagation.

The dynamic variable ordering heuristic is modified by a conflict back-jumping
heuristic as suggested in [9]. It branches on the same variable again if the first branch
in the binary branching scheme was directly pruned by propagation.

No initial upper bound is provided.

Acknowledgmentgoulbar2  solver has been partly funded by the Freddence
Nationale de la Recherci& TALDECOPProject).
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