
Max-CSP competition 2008:
toulbar2 solver description

M. Sanchez1, S. Bouveret3, S. de Givry1, F. Heras2, P. J́egou4, J. Larrosa2, S. Ndiaye4,
E. Rollon2, T. Schiex1, C. Terrioux4, G. Verfaillie3, and M. Zytnicki1

1 INRA, Toulouse, France
2 Dep. LSI, UPC, Barcelona, Spain

3 ONERA, Toulouse, France
4 LSIS, Marseilles, France

Abstract. This document presents the key techniques used intoulbar2 solver
submitted to the Max-CSP competition 2008.toulbar2 solves Weighted Con-
straint Satisfaction Problems (WCSPs), a generalisation of Max-CSP. Two com-
plete solving methods that have been used for the competition are presented in
this paper: Depth-First Branch and Bound (DFBB) and a new algorithm, Russian
Doll Search with tree decomposition (RDS-BTD), which exploits the problem
structure.
DFBB is commonly used to solve constraint optimization problems such as WC-
SPs. The worst-case time complexity of this algorithm can be improved by ex-
ploiting the constraint graph structure, identifying independent subproblems and
caching their optima. However, the exploitation of the structure is donea poste-
riori : each time a new subproblem occurs, it has to be solved before its optimum
can be used. RDS-BTD solves a relaxation of every subproblem before solving
the whole problem, in the spirit of the Russian Doll Search algorithm. This relax-
ation allows to exploit subproblem lower bounds in a more proactive way.

1 Weighted Constraint Satisfaction Problem

A Weighted CSP (WCSP) is a quadruplet(X,D,W,m). X andD are sets ofn variables
and finite domains, as in a standard CSP. The domain of variablei is denotedDi . The
maximum domain size isd. For a set of variablesS⊂ X, we notè (S) the set of tuples
over S. W is a set of cost functions. Each cost function (or soft constraint)wS in W
is defined on a set of variablesScalled its scope and assumed to be different for each
cost function. A cost functionwS assigns costs to assignments of the variables inS i.e.
wS : `(S) → [0,m]. The set of possible costs is[0,m] andm∈ {1, . . . ,+∞} represents
an intolerable cost. Costs are combined by the bounded addition⊕, such asa⊕ b =
min{m,a+b} and compared using≥. The operation	 subtracts a costb from a larger
costa wherea	b = (a−b) if a 6= m andmotherwise.

For unary/binary cost functions, we use simplified notations: a unary (resp. binary)
cost function on variable(s)i (resp.i and j) is denotedwi (resp.wi j). If they do not exist,
we add toW a unary cost functionwi for every variablei, and a nullary cost function,
notedw∅ (a constant cost payed by any assignment). All these additional cost functions
have initial cost 0, leaving the semantics of the problem unchanged.

The cost of a complete assignmentt ∈ `(X) in a problemP=(X,D,W,m) isValP(t)=⊕
wS∈W wS(t[S]) wheret[S] denotes the usual projection of a tuple on the set of variables

S. The problem of minimizingValP(t) is an optimization problem with an associated
NP-complete decision problem.

Enforcing a given local consistency property on a problemP consists in trans-
forming P = (X,D,W,m) in a problemP′ = (X,D,W′,m) which is equivalent toP
(ValP = ValP′) and which satisfies the considered local consistency property. This en-
forcing may increasew∅ and provide an improved lower bound on the optimal cost.
Enforcing is achieved using Equivalence Preserving Transformations (EPTs) moving
costs between different scopes [12, 8, 4, 6, 1, 3, 2].

A classical complete solving method is Depth-First Branch and Bound (DFBB).
We give its pseudo-code in Algorithm 1. It enforces at each search node a given local
consistency propertyLc (line 1). The pruning condition is applied if the resultingw∅ ≥
m (line 2). m is updated to the cost of the last solution found (line 3). The initial call
is DFBB(P, X, /0). It assumes an already local consistent problemP and returns its
optimum.P/A denotes the subproblemP under assignmentA. The operator. is used to
get an element ofP. Functionpop(S) returns an element ofSand remove it fromS.

DFBB worst-case time complexity isO(dn) and it uses linear space. In the next
section, we briefly present how DFBB can be extended to exploit the problem structure.

2 Depth-First Branch and Bound with tree decomposition

Assuming connected problems, a tree decomposition of a WCSP is defined by a tree
(C,T). The set of nodes of the tree isC= {C1, . . . ,Ck}where eachCe is a set of variables
(Ce⊂ X) called a cluster.T is a set of edges connecting clusters and forming a tree (a
connected acyclic graph). The set of clustersC must cover all the variables (

⋃
Ce∈CCe =

X) and all the cost functions (∀wS∈W,∃Ce∈C s.t. S⊂Ce). Furthermore, if a variablei
appears in two clustersCe andCg, i must also appear in all the clustersCf on the unique
path fromCe to Cg in T.

For a given WCSP, we consider a rooted tree decomposition(C,T) with an arbitrary
rootC1. We denote byFather(Ce) (resp.Sons(Ce)) the parent (resp. set of sons) ofCe

in T. The separator ofCe is the setSe = Ce∩Father(Ce). The set of proper variables of
Ce is Ve = Ce\Se.

The essential property of tree decompositions is that assigningSe separates the ini-
tial problem in two subproblems which can then be solved independently. The first
subproblem, denotedPe, is defined by the variables ofCe and all its descendant clusters
in T and by all the cost functions involvingat leastone proper variable of these clus-
ters. The remaining cost functions, together with the variables they involve, define the
remaining subproblem.

Example 1.Consider the MaxCSP problem depicted in Figure 1. It has eleven variables
with two values (a,b) in their domains. Binary cost functions of difference (wi j (a,a) =
wi j (b,b) = 1,wi j (a,b) = wi j (b,a) = 0) are represented by edges connecting the corre-
sponding variables. In this problem, the optimal cost is 5 and it is attained with e.g. the
assignment(a,b,b,a,b,b,a,b,b,a,b) in lexicographic order. AC1-rooted tree decom-
position with clustersC1 = {1,2,3,4},C2 = {4,5,6},C3 = {5,6,7},C4 = {4,8,9,10},

C1

4

5

67

8

9 10

11

C4C2

C5C3

C1

C2

C3

C4

C5

1

32

Fig. 1.The constraint graph of Example 1 and its associated tree decomposition.

andC5 = {4,9,10,11}, is given on the right hand-side in Figure 1. For instance,C1

has sons{C2,C4}, the separator ofC3 with its fatherC2 is S3 = {5,6}, and the set of
proper variables ofC3 is V3 = {7}. The subproblemP3 has variables{5,6,7} and cost
functions{w5,7,w6,7,w7} (w7 initially empty).P1 corresponds to the whole problem.

Depth-First Branch and Bound with Tree Decomposition (BTD) [7, 5] exploits this
property by restricting the variable ordering. Imagine all the variables of a clusterCe are
assigned before any of the remaining variables in its son clusters and consider a current
assignmentA. Then, for any clusterCf ∈ Sons(Ce), and for the current assignmentAf

of the separatorSf , the subproblemPf under assignmentAf (denotedPf /Af) can be
solved independently from the rest of the problem. If memory allows, theoptimal cost
of Pf /Af may be recorded which means it will never be solved again for the same
assignment ofSf .

In [5], we show how to exploit a better initial upper bound for solvingPf . However
this has the side-effect that the optimum ofPf may be not computed but only a lower
bound. The lower bound and the fact it is optimal can be recorded inLBPf /Af

and
OptPf /Af

respectively, initially set to 0 andfalse.
As in DFBB, BTD enforces local consistency during search. However, local con-

sistency may move costs between clusters, thereby invalidating previously recorded
information. We store these cost moves in a specificbacktrackabledata structure∆W
as defined in [5]. During the search, we can obtain the total cost that has been moved

out of the subproblemPf /Af by summing up all the∆W f
i (a) for all values(i,a) in the

separator assignmentAf and correct any recorded information:LB′Pf /Af
= LBPf /Af

	⊕
i∈Sf

∆W f
i (Af [i]).

Moreover, we keep the nullary cost function local to each cluster:w∅ =
⊕

Ce∈C we
∅.

For pruning the search, BTD uses the maximum between local consistency and
recorded lower bounds as soon as their separator is completely assigned by the current
assignmentA. We denote bylb(Pe/A) this lower bound:

lb(Pe/A) = we
∅⊕

⊕
Cf∈Sons(Ce)

max(lb(Pf /A),LB′Pf /Af
) (1)

Example 2.In the problem of Example 1, variables{1,2,3,4} of C1 are assigned first,
e.g. using a dynamic variable orderingmin domain / max degreeinside each cluster.

Let assumeA = {(4,a),(1,a),(2,b),(3,b)} be the current assignment5. Enforcing
EDAC local consistency [6] onP1/A producesw1

∅ = 2,w2
∅ = w4

∅ = 1,w3
∅ = w5

∅ = 0,
resulting inlb(P1/A) =

⊕
Ce∈C we

∅ = 4 (no lower bound recorded yet).
Then, subproblemsP2/{(4,a)} andP4/{(4,a)} are solved independently, resulting

in LBP2/{(4,a)} = 1,LBP4/{(4,a)} = 2,OptP2/{(4,a)} = OptP4/{(4,a)} = true(no initial upper
bound) which are recorded. A first complete assignment of costw1

∅ ⊕ LBP2/{(4,a)}⊕
LBP4/{(4,a)} = 5 (all ∆W costs are zero in this case) is found.

In Algorithm 1, we present the pseudo-code of the BTD algorithm combining tree
decomposition and a given level of local consistencyLc. This algorithm uses our initial
enhanced upper bound (line 4), value removal based on local cuts [5] and lower bound
recording (lines 6 and 7). The initial call isBTD(P1, V1, /0, 0), with P1 = P, an already
local consistent problem, returning its optimum.

The lower boundlb(Pe/A) of Equation 1 does not take into account a possible
recorded lower boundLBPe/Ae, which may exist ifOptPe/Ae =falseand the same sub-
problem is solved again. We therefore ensure a monotonically increasing lower bound
during the search by passing the best lower bound found recursively (line 5 and 9),
resulting in a stronger pruning condition (line 8).

BTD time complexity isO(mdw+1) with w = maxCe∈C |Ce|−1, the maximum clus-
ter size minus one, called the tree-width of the tree decomposition. Its memory com-
plexity is bounded byO(ds) with s= maxCe∈C |Se|, the maximum separator size [5].

3 Russian Doll Search with tree decomposition

The original Russian Doll Search (RDS) algorithm [13] consists in solvingn nested
subproblems of an initial problemP with n variables. Given a fixed variable order, it
starts by solving the subproblem with only the last variable. Next, it adds the preceding
variable in the order and solves this subproblem with two variables, and repeats this
process until the complete problem is solved. Each subproblem is solved by a DFBB

5 Variable 4 has been selected first as it has the highest degree inC1.

Algorithm 1: DFBB, BTD, and RDS-BTD algorithms.
Function DFBB(P, V, A) : [0,+∞]

if (V = /0) then
return P.w∅ /* A new solution is found for P */;

else
i :=pop(V) /* Choose an unassigned variable of P */;
d := P.Di ;
/* Enumerate every value in the domain of i */;
while (d 6= /0 andP.w∅ < P.m) do

a :=pop(d) /* Choose a value */;
1 P′ :=Lc(P/A∪{(i,a)}) /* Enforce local consistency on P/A∪{(i,a)} */ ;
2 if (P′.w∅ < P.m) then
3 P.m :=DFBB(P′, V, A∪{(i,a)}) ;

return P.m ;

Function BTD(Pe, V, A, blb) : [0,+∞]
if (V = /0) then

S:= Sons(Ce) ;
/* Solve all cluster sons whose optima are unknown */;
while (S 6= /0 andlb(Pe/A) < Pe.m) do

Cf :=pop(S) /* Choose a cluster son */;
if (not(OptPf /Af

)) then
4 Pf .m := Pe.m	 lb(Pe/A)⊕ lb(Pf /Af) ;
5 res:=BTD(Pf , Vf , A, lb(Pf /Af)) ;

6 LBPf /Af
:= res⊕

⊕
i∈Sf

∆W f
i (A[i]) ;

7 OptPf /Af
:= (res< Pf .m) ;

return lb(Pe/A) /* A new solution is found for Pe */ ;

else
i :=pop(V) /* Choose an unassigned variable in Ce */ ;
d := Pe.Di ;
/* Enumerate every value in the domain of i */;
while (d 6= /0 and max(blb, lb(Pe/A)) < Pe.m) do

a :=pop(d) /* Choose a value */;
P′e :=Lc(Pe/A∪{(i,a)}) /* Enforce local consistency on Pe/A∪{(i,a)} */ ;

8 if (max(blb, lb(P′e/A∪{(i,a)})) < Pe.m) then
9 Pe.m :=BTD(P′e, V, A∪{(i,a)}, max(blb, lb(P′e/A∪{(i,a)}))) ;

return Pe.m ;

Function RDS-BTD(P, PRDS
e) : [0,+∞]

foreachCf ∈ Sons(Ce) do
RDS-BTD(P, PRDS

f) ;

10 PRDS
e .m := P.m	 lb(P/ /0)⊕ lb(PRDS

e / /0) ;
11 LBPRDS

e
:=BTD(PRDS

e , Ve, {(i,EAC(i))|i ∈ Se}, lb(PRDS
e / /0)) ;

12 Set tofalseall recordedOptPf /A such thatCf is a descendant ofCe, Sf ∩Se 6= /0, A∈ `(Sf) ;
return LBPRDS

e
;

algorithm with a static variable ordering heuristic following the nested subproblem de-
composition order. The lower bound combines the optimum of the previously solved
subproblems with the lower bound produced by enforcing soft local consistency.

RDS-BTD, recently proposed in [10], applies the RDS principle to a tree decompo-
sition. The main difference with RDS is that the set of subproblems to solve is defined
by a rooted tree decomposition(C,T).

We definePRDS
e as the subproblem defined by the proper variables ofCe and all its

descendant clusters inT and by all the cost functions involvingonlyproper variables of
these clusters.PRDS

e has no cost function involving a variable inSe, the separator with
its father, and thus its optimum is a lower bound ofPe for any assignment ofSe.

RDS-BTD solves|C| subproblems ordered by a depth-first traversal ofT, starting
from the leaves to the rootPRDS

1 = P1.
Each subproblemPRDS

e is solved by BTD instead of DFBB. This allows to exploit
decomposition and caching done by BTD. Because caching is only performed on com-
pletely assigned separators, and considering all possible assignments ofSe would be
too costly in memory and time, we assignSe before solvingPRDS

e . This is needed since
otherwise, caching onPf , a descendant ofCe, with Sf ∩Se 6= /0, would use a partially as-
signedAf . To assignSe, we use the fully supported value of each domain6 (maintained
by EDAC [6]) as temporary values used for caching purposes only.

The advantage of using BTD is that recorded lower bounds can be reused during
the next iterations of RDS-BTD. However, the optimum found by BTD for a given
subproblemPf when solvingPRDS

e is no more valid inPRDS
Father(e) due to possible cost

functions between variables inCFather(e) and inPf . At each iteration of RDS-BTD,

afterPRDS
e is solved, we reset allOptPf /Af

such thatSf ∩Se 6= /0 (line 12).
During search, RDS-BTD exploits the maximum between local consistency, recorded,

and RDS lower bounds. LetLBPRDS
e

denote the optimum ofPRDS
e found by one iteration

of RDS-BTD. Because costs can be moved between clusters, this information has to
be corrected in order to be valid in the next iterations of RDS-BTD. For that, we use
the maximum of∆W on each current domain of the (possibly unassigned) separator
variables. The lower bound corresponding to the current assignmentA is then:

lb(Pe/A) = we
∅⊕

⊕
Cf∈Sons(Ce)

max(lb(Pf /A),LB′Pf /Af
,LBPRDS

f
	

⊕
i∈Sf

max
a∈Di

∆W f
i (a)) (2)

Example 3.Applied on the problem of Example 1, RDS-BTD solves five subproblems
(PRDS

3 ,PRDS
2 ,PRDS

5 ,PRDS
4 ,P1) successively. For instance,PRDS

3 has variable{7} and cost
function{w7}. Before solvingPRDS

3 , RDS-BTD assigns variables{5,6} of the separator
S3 to their fully supported value ({(5,a),(6,a)} in this example). In solvingPRDS

2 , it
can record e.g. the optimum ofP3/{(5,a),(6,a)}, equal to zero (recall thatw5,6 does
not belong toP3), that can be reused when solvingP1. In solvingPRDS

4 , it can record
e.g. the optimum ofP5/{(4,a),(9,a),(10,a)}, also equal to zero. However, due to the
fact that variable 4 belongs toS5∩S4 andPRDS

4 does not containw4,11, this recorded
information is only a lower bound for subsequent iterations of RDS-BTD. So, we set

6 Fully supported valuea∈Di such thatwi(a) = 0 and∀wS∈W with i∈S,∃t ∈ `(S) with t[i] = a
such thatwS(t) = 0.

OptP5/{(4,a),(9,a),(10,a)}= false before solvingP1. The resulting optima are:LBPRDS
3

=
LBPRDS

5
= 0,LBPRDS

2
= LBPRDS

4
= 1 andLBPRDS

1
= 5, the optimum ofP1.

In this simple example, forA = {(4,a),(1,a),(2,b),(3,b)}, lb(P1/A) using Equa-
tion 1 or 2 is the same because EDAC propagation provides lower bounds equal to
RDS lower bounds. In the contrary, forA = /0, lb(P1/ /0) = LBPRDS

2
⊕LBPRDS

4
= 2 using

Equation 2 andlb(P1/ /0) = 0 using Equation 1 (assuming EDAC local consistency in
preprocessing and no initial upper bound).

We present the pseudo-code of the RDS-BTD algorithm in Algorithm 1. RDS-BTD
call BTD to solve each subproblemPRDS

e (line 11), using Equation 2 instead of Equation
1 to compute lower bounds. An initial upper bound forPRDS

e is deduced from the global
problem upper bound and the already computed RDS lower bounds (line 10). It initially
assigns variables inSe to their fully supported value (given byEAC function at line 11)
as discussed above. The initial call isRDS-BTD(P, PRDS

1). It assumes an already local
consistent problemPRDS

1 = P and returns its optimum.
Notice that as soon as a solution ofPRDS

e is found having the same optimal cost
aslb(PRDS

e / /0) =
⊕

Cf∈Sons(Ce) LBPRDS
f

, then the search ends thanks to the initial lower

lound given at line 11.
The time and space complexity of RDS-BTD is the same as BTD.

4 Implementation details

We implemented DFBB and RDS-BTD in an open-source C++ solver namedtoulbar2 7.
DFBB uses default parameter values oftoulbar2 .

Dynamic variable ordering (min domain / max degree, breaking ties with maximum
unary cost) is used inside clusters (RDS-BTD) and by DFBB. EDAC local consistency
is enforced on binary [6] and ternary [11] cost functions during search. Larger arity cost
functions are delayed from propagation until they become ternary or less.

We use the Maximum Cardinality Search heuristic to build a tree decomposition
and choose the largest cluster as the root. In order to relax the restriction imposed by
RDS-BTD on the dynamic variable ordering heuristic, we propose to merge clusters
with their parent if their separator is too large. Starting from the leaves of a given tree
decomposition, we merge a cluster with its parent if the separator size is strictly greater
thanr = 4 (parameterB2r4 in toulbar2).

Recorded (and if available RDS) lower bounds are exploited by local consistency
enforcing as soon as their separator variables are fully assigned. If the recorded lower
bound is optimal (OptPe/Ae =true) or strictly greater than the one produced by lo-

cal consistency, i.e. max(LB′Pe/Ae
,LBPRDS

e
	

⊕
i∈Se

∆We
i (A[i]) >

⊕
Pf⊆Pe

wf
∅, then the

corresponding subproblem (Pe/Ae) is deconnected from local consistency enforcing
and the positive difference in lower bounds is added to its parent cluster lower bound

(wFather(Ce)
∅), allowing possible new value removals by node consistency enforcing on

the remaining problem.

7 Version 0.7 available athttp://mulcyber.toulouse.inra.fr/gf/project/toulbar2

All the solving methods exploit a binary branching scheme depending on the do-
main sized of the branching variable. Ifd > 10 then it splits theordereddomain into
two parts (by taking the middle value), else the variable is assigned to its EDAC fully
supported value or this value is removed from the domain. In both cases, it selects the
branch which contains the fully supported value first, except for RDS-BTD where it
selects the branch which contains the value corresponding to the last solution(s) found
first if available.

At each search node, before branching, DFBB and RDS-BTD eliminate all variables
(except variables occuring in a separator for RDS-BTD) with a degree less than or equal
to two, possibly creating new binary cost functions on the fly. They apply successively
EDAC propagation (which may assign some variables and reduce current degrees) and
2-degree variable elimination until there is no more elimination nor propagation.

The dynamic variable ordering heuristic is modified by a conflict back-jumping
heuristic as suggested in [9]. It branches on the same variable again if the first branch
in the binary branching scheme was directly pruned by propagation.

No initial upper bound is provided.

Acknowledgmentstoulbar2 solver has been partly funded by the FrenchAgence
Nationale de la Recherche(STALDECOPTproject).

References

1. M. Cooper. High-order consistency in valued constraint satisfaction.Constraints, 10(3):283–
305, 2005.

2. M. Cooper, S. de Givry, M. Sanchez, T. Schiex, and M. Zytnicki. Virtual arc consistency for
weighted csp. InProc. of AAAI-08, Chicago, IL, 2008.

3. M. Cooper, S. de Givry, and T. Schiex. Optimal soft arc consistency. InProc. of IJCAI-07,
pages 68–73, Hyderabad, India, 2007.

4. M. Cooper and T. Schiex. Arc consistency for soft constraints.Artificial Intelligence,
154:199–227, 2004.

5. S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree Decomposition and Soft Local
Consistency in Weighted CSP. InProc. of AAAI-06, Boston, MA, 2006.

6. S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency: Getting closer
to full arc consistency in weighted CSPs. InProc. of IJCAI-05, pages 84–89, Edinburgh,
Scotland, 2005.

7. P. J́egou and C. Terrioux. Decomposition and good recording. InProc. of ECAI-2004, pages
196–200, Valencia, Spain, 2004.

8. J. Larrosa and T. Schiex. Solving Weighted CSP by Maintaining Arc-consistency.Artificial
Intelligence, 159(1-2):1–26, 2004.

9. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Last conflict based reasoning. InProc. of
ECAI-2006, pages 133–137, Trento, Italy, 2006.

10. M. Sanchez, D. Allouche, S. de Givry, and T. Schiex. Russian doll search with tree decom-
position. InWorkshop on Preferences and Soft Constraints, Sydney,Australia, 2008.

11. M. Sanchez, S. de Givry, and T. Schiex. Mendelian error detection in complex pedigrees
using weighted constraint satisfaction techniques.Constraints, 13(1):130–154, 2008.

12. T. Schiex. Arc consistency for soft constraints. InProc. of CP-2000, pages 411–424, Singa-
pore, 2000.

13. G. Verfaillie, M. Lemâıtre, and T. Schiex. Russian Doll Search for Solving Constraint Opti-
mization Problems. InProc. of AAAI-96, pages 181–187, Portland, OR, 1996.

