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Abstract. Depth-First Branch and Bound is commonly used to solve constraint
optimization problems such as weighted constraint satisfaction problems. The
worst-case time complexity of this algorithm can be improved by exploiting
the constraint graph structure, identifying independent subproblems and caching
their optima. However, the exploitation of the structure is donea posteriori: each
time a new subproblem occurs, it has to be solved before its optimum can be used.
We propose to solve a relaxation of every subproblem before solving the whole
problem, in the spirit of the Russian Doll Search algorithm. This relaxation al-
lows to exploit subproblem lower bounds in a more proactive way. Experimental
results on three large structured benchmarks show the benefit of this approach.

1 Introduction

Graphical model processing is a central problem in AI. The optimization of the com-
bined cost of local cost functions, central in the valued CSP framework [23], captures
problems such as weighted MaxSAT, Weighted CSP or Maximum Probability Expla-
nation in probabilistic networks. It has applications in e.g.,resource allocation[25, 1]
andbioinformatics[19, 21].

In the last years, in order to solve satisfaction, optimization or counting problems,
several algorithms have been proposed that simultaneously exploit a decomposition of
the graph of the problem and the propagation of hard information using local con-
sistency enforcing. This includes algorithms such as Recursive Conditioning [8], Back-
track bounded by Tree Decomposition (BTD) [24], AND-OR tree and graph search [18,
19], all related to Pseudo-Tree Search [11].

In this paper, we further explore the approach developed in [9] based on an ex-
tension of BTD to optimization [13]. The main drawback of BTD is a restriction on
the dynamic variable ordering heuristic. In [12], the authors extend BTD by partially
removing the variable ordering restriction, while bounding the worst-case time com-
plexity by a user-controlled parameter. In [14], the restriction is completely removed
but at the possible cost of loosing the time complexity bound. We propose to keep the
variable ordering restriction but to take more advantage of the problem decomposition.
Such a decomposition defines a set of subproblems whose size is less than the number
of variables. By solving relaxations of these subproblems successively, it is possible to
exploit a better lower bound which is crucial in optimization. We present this extension
in the following sections. In the experiments, we show the benefit of this approach and
give some practical ways to overcome the variable ordering restriction by shifting from
a tree decomposition to a path decomposition or by merging clusters.



2 Weighted Constraint Satisfaction Problem

A Weighted CSP (WCSP) is a quadruplet(X,D,W,m). X andD are sets ofn variables
and finite domains, as in a standard CSP. The domain of variablei is denotedDi . The
maximum domain size isd. For a set of variablesS⊂ X, we notè (S) the set of tuples
over S. W is a set of cost functions. Each cost function (or soft constraint)wS in W
is defined on a set of variablesScalled its scope and assumed to be different for each
cost function. A cost functionwS assigns costs to assignments of the variables inS i.e.
wS : `(S) → [0,m]. The set of possible costs is[0,m] andm∈ {1, . . . ,+∞} represents
an intolerable cost. Costs are combined by the bounded addition⊕, such asa⊕ b =
min{m,a+b} and compared using≥. The operation	 subtracts a costb from a larger
costa wherea	b = (a−b) if a 6= m andmotherwise.

For unary/binary cost functions, we use simplified notations: a unary (resp. binary)
cost function on variable(s)i (resp.i and j) is denotedwi (resp.wi j ). If they do not exist,
we add toW a unary cost functionwi for every variablei, and a nullary cost function,
notedw∅ (a constant cost payed by any assignment). All these additional cost functions
have initial cost 0, leaving the semantics of the problem unchanged.

The cost of a complete assignmentt ∈ `(X) in a problemP=(X,D,W,m) isValP(t)=⊕
wS∈W wS(t[S]) wheret[S] denotes the usual projection of a tuple on the set of variables

S. The problem of minimizingValP(t) is an optimization problem with an associated
NP-complete decision problem.

Enforcing a given local consistency property on a problemP consists in trans-
forming P = (X,D,W,m) in a problemP′ = (X,D,W′,m) which is equivalent toP
(ValP = ValP′ ) and which satisfies the considered local consistency property. This en-
forcing may increasew∅ and provide an improved lower bound on the optimal cost.
Enforcing is achieved using Equivalence Preserving Transformations (EPTs) moving
costs between different scopes [22, 16, 7, 10, 4, 6, 5].

A classical complete solving method is Depth-First Branch and Bound (DFBB).
We give its pseudo-code in Algorithm 1. It enforces at each search node a given local
consistency propertyLc (line 1). The pruning condition is applied if the resultingw∅ ≥
m (line 2). m is updated to the cost of the last solution found (line 3). The initial call
is DFBB(P, X, /0). It assumes an already local consistent problemP and returns its
optimum.P/A denotes the subproblemP under assignmentA. The operator. is used to
get an element ofP. Functionpop(S) returns an element ofSand remove it fromS.

DFBB worst-case time complexity isO(dn) and it uses linear space. In the next
section, we briefly present how DFBB can be extended to exploit the problem structure.

3 Depth-First Branch and Bound with tree decomposition

Assuming connected problems, a tree decomposition of a WCSP is defined by a tree
(C,T). The set of nodes of the tree isC= {C1, . . . ,Ck}where eachCe is a set of variables
(Ce⊂ X) called a cluster.T is a set of edges connecting clusters and forming a tree (a
connected acyclic graph). The set of clustersC must cover all the variables (

⋃
Ce∈CCe =

X) and all the cost functions (∀wS∈W,∃Ce∈C s.t. S⊂Ce). Furthermore, if a variablei
appears in two clustersCe andCg, i must also appear in all the clustersCf on the unique
path fromCe to Cg in T.
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Fig. 1.The constraint graph of Example 1 and its associated tree decomposition.

For a given WCSP, we consider a rooted tree decomposition(C,T) with an arbitrary
rootC1. We denote byFather(Ce) (resp.Sons(Ce)) the parent (resp. set of sons) ofCe

in T. The separator ofCe is the setSe = Ce∩Father(Ce). The set of proper variables of
Ce is Ve = Ce\Se.

The essential property of tree decompositions is that assigningSe separates the ini-
tial problem in two subproblems which can then be solved independently. The first
subproblem, denotedPe, is defined by the variables ofCe and all its descendant clusters
in T and by all the cost functions involvingat leastone proper variable of these clus-
ters. The remaining cost functions, together with the variables they involve, define the
remaining subproblem.

Example 1.Consider the MaxCSP problem depicted in Figure 1. It has eleven variables
with two values (a,b) in their domains. Binary cost functions of difference (wi j (a,a) =
wi j (b,b) = 1,wi j (a,b) = wi j (b,a) = 0) are represented by edges connecting the corre-
sponding variables. In this problem, the optimal cost is 5 and it is attained with e.g. the
assignment(a,b,b,a,b,b,a,b,b,a,b) in lexicographic order. AC1-rooted tree decom-
position with clustersC1 = {1,2,3,4},C2 = {4,5,6},C3 = {5,6,7},C4 = {4,8,9,10},
andC5 = {4,9,10,11}, is given on the right hand-side in Figure 1. For instance,C1

has sons{C2,C4}, the separator ofC3 with its fatherC2 is S3 = {5,6}, and the set of
proper variables ofC3 is V3 = {7}. The subproblemP3 has variables{5,6,7} and cost
functions{w5,7,w6,7,w7} (w7 initially empty).P1 corresponds to the whole problem.



Depth-First Branch and Bound with Tree Decomposition (BTD) exploits this prop-
erty by restricting the variable ordering. Imagine all the variables of a clusterCe are
assigned before any of the remaining variables in its son clusters and consider a cur-
rent assignmentA. Then, for any clusterCf ∈ Sons(Ce), and for the current assignment
Af of the separatorSf , the subproblemPf under assignmentAf (denotedPf /Af ) can
be solved independently from the rest of the problem. If memory allows, theoptimal
costof Pf /Af may be recorded which means it will never be solved again for the same
assignment ofSf .

In [9], we show how to exploit a better initial upper bound for solvingPf . However
this has the side-effect that the optimum ofPf may be not computed but only a lower
bound. The lower bound and the fact it is optimal can be recorded inLBPf /Af

and
OptPf /Af

respectively, initially set to 0 andfalse.
As in DFBB, BTD enforces local consistency during search. However, local con-

sistency may move costs between clusters, thereby invalidating previously recorded
information. We store these cost moves in a specificbacktrackabledata structure∆W
as defined in [9]. During the search, we can obtain the total cost that has been moved
out of the subproblemPf /Af by summing up all the∆W f

i (a) for all values(i,a) in the
separator assignmentAf and correct any recorded information:LB′Pf /Af

= LBPf /Af
	⊕

i∈Sf
∆W f

i (Af [i]).
Moreover, we keep the nullary cost function local to each cluster:w∅ =

⊕
Ce∈C we

∅.
For pruning the search, BTD uses the maximum between local consistency and

recorded lower bounds as soon as their separator is completely assigned by the current
assignmentA. We denote bylb(Pe/A) this lower bound:

lb(Pe/A) = we
∅⊕

⊕
Cf∈Sons(Ce)

max(lb(Pf /A),LB′Pf /Af
) (1)

Example 2.In the problem of Example 1, variables{1,2,3,4} of C1 are assigned first,
e.g. using a dynamic variable orderingmin domain / max degreeinside each cluster.

Let assumeA = {(4,a),(1,a),(2,b),(3,b)} be the current assignment1. Enforcing
EDAC local consistency [10] onP1/A producesw1

∅ = 2,w2
∅ = w4

∅ = 1,w3
∅ = w5

∅ = 0,
resulting inlb(P1/A) =

⊕
Ce∈C we

∅ = 4 (no lower bound recorded yet).
Then, subproblemsP2/{(4,a)} andP4/{(4,a)} are solved independently, resulting

in LBP2/{(4,a)} = 1,LBP4/{(4,a)} = 2,OptP2/{(4,a)} = OptP4/{(4,a)} = true(no initial upper
bound) which are recorded. A first complete assignment of costw1

∅ ⊕ LBP2/{(4,a)}⊕
LBP4/{(4,a)} = 5 (all ∆W costs are zero in this case) is found.

In Algorithm 1, we present the pseudo-code of the BTD algorithm combining tree
decomposition and a given level of local consistencyLc. This algorithm uses our initial
enhanced upper bound (line 4), value removal based on local cuts [9] and lower bound
recording (lines 6 and 7). The initial call isBTD(P1, V1, /0, 0), with P1 = P, an already
local consistent problem, returning its optimum.

The lower boundlb(Pe/A) of Equation 1 does not take into account a possible
recorded lower boundLBPe/Ae, which may exist ifOptPe/Ae =falseand the same sub-
problem is solved again. We therefore ensure a monotonically increasing lower bound

1 Variable 4 has been selected first as it has the highest degree inC1.



during the search by passing the best lower bound found recursively (line 5 and 9),
resulting in a stronger pruning condition (line 8).

BTD worst-case time complexity isO(mdw+1) with w= maxCe∈C |Ce|−1, the max-
imum cluster size minus one, called the tree-width of the tree decomposition(C,T). Its
memory complexity is bounded byO(ds) with s= maxCe∈C |Se|, the maximum separa-
tor size [9].

4 Russian Doll Search with tree decomposition

The original Russian Doll Search (RDS) algorithm [25] consists in solvingn nested
subproblems of an initial problemP with n variables. Given a fixed variable order, it
starts by solving the subproblem with only the last variable. Next, it adds the preceding
variable in the order and solves this subproblem with two variables, and repeats this
process until the complete problem is solved. Each subproblem is solved by a DFBB
algorithm with a static variable ordering heuristic following the nested subproblem de-
composition order. The lower bound combines the optimum of the previously solved
subproblems with the lower bound produced by enforcing soft local consistency (only
a basic form of local consistency similar to Node Consistency [16] in the original RDS
algorithm).

We propose to apply the RDS principle to a tree decomposition (RDS-BTD). The
main difference with RDS is that the set of subproblems to solve is defined by a rooted
tree decomposition(C,T).

We definePRDS
e as the subproblem defined by the proper variables ofCe and all its

descendant clusters inT and by all the cost functions involvingonlyproper variables of
these clusters.PRDS

e has no cost function involving a variable inSe, the separator with
its father, and thus its optimum is a lower bound ofPe for any assignment ofSe.

RDS-BTD solves|C| subproblems ordered by a depth-first traversal ofT, starting
from the leaves to the rootPRDS

1 = P1.
Each subproblemPRDS

e is solved by BTD instead of DFBB. This allows to exploit
decomposition and caching done by BTD. Because caching is only performed on com-
pletely assigned separators, and considering all possible assignments ofSe would be
too costly in memory and time, we assignSe before solvingPRDS

e . This is needed since
otherwise, caching onPf , a descendant ofCe, with Sf ∩Se 6= /0, would use a partially as-
signedAf . To assignSe, we use the fully supported value of each domain2 (maintained
by EDAC [10]) as temporary values used for caching purposes only.

Another better alternative would be to cache lower bounds for partial assignments. It
should improve the pruning efficiency in subsequent searches, but this involves a more
complex cache management that we leave for future work.

The advantage of using BTD is that recorded lower bounds can be reused during
the next iterations of RDS-BTD. However, the optimum found by BTD for a given
subproblemPf when solvingPRDS

e is no more valid inPRDS
Father(e) due to possible cost

2 Fully supported valuea∈Di such thatwi(a) = 0 and∀wS∈W with i∈S,∃t ∈ `(S) with t[i] = a
such thatwS(t) = 0.



Algorithm 1: DFBB, BTD, and RDS-BTD algorithms.
Function DFBB(P, V, A) : [0,+∞]

if (V = /0) then
return P.w∅ /* A new solution is found for P */;

else
i :=pop(V) /* Choose an unassigned variable of P */;
d := P.Di ;
/* Enumerate every value in the domain of i */;
while (d 6= /0 andP.w∅ < P.m) do

a :=pop(d) /* Choose a value */;
1 P′ :=Lc(P/A∪{(i,a)}) /* Enforce local consistency on P/A∪{(i,a)} */ ;
2 if (P′.w∅ < P.m) then
3 P.m :=DFBB(P′, V, A∪{(i,a)}) ;

return P.m ;

Function BTD(Pe, V, A, blb) : [0,+∞]
if (V = /0) then

S:= Sons(Ce) ;
/* Solve all cluster sons whose optima are unknown */;
while (S 6= /0 andlb(Pe/A) < Pe.m) do

Cf :=pop(S) /* Choose a cluster son */;
if (not(OptPf /Af

)) then
4 Pf .m := Pe.m	 lb(Pe/A)⊕ lb(Pf /Af ) ;
5 res:=BTD(Pf , Vf , A, lb(Pf /Af )) ;

6 LBPf /Af
:= res⊕

⊕
i∈Sf

∆W f
i (A[i]) ;

7 OptPf /Af
:= (res< Pf .m) ;

return lb(Pe/A) /* A new solution is found for Pe */ ;

else
i :=pop(V) /* Choose an unassigned variable in Ce */ ;
d := Pe.Di ;
/* Enumerate every value in the domain of i */;
while (d 6= /0 and max(blb, lb(Pe/A)) < Pe.m) do

a :=pop(d) /* Choose a value */;
P′e :=Lc(Pe/A∪{(i,a)}) /* Enforce local consistency on Pe/A∪{(i,a)} */ ;

8 if (max(blb, lb(P′e/A∪{(i,a)})) < Pe.m) then
9 Pe.m :=BTD(P′e, V, A∪{(i,a)}, max(blb, lb(P′e/A∪{(i,a)}))) ;

return Pe.m ;

Function RDS-BTD(P, PRDS
e ) : [0,+∞]

foreachCf ∈ Sons(Ce) do
RDS-BTD(P, PRDS

f ) ;

10 PRDS
e .m := P.m	 lb(P/ /0)⊕ lb(PRDS

e / /0) ;
11 LBPRDS

e
:=BTD(PRDS

e , Ve, {(i,EAC(i))|i ∈ Se}, lb(PRDS
e / /0)) ;

12 Set tofalseall recordedOptPf /A such thatCf is a descendant ofCe, Sf ∩Se 6= /0, A∈ `(Sf ) ;
return LBPRDS

e
;



functions between variables inCFather(e) and inPf . At each iteration of RDS-BTD,

afterPRDS
e is solved, we reset allOptPf /Af

such thatSf ∩Se 6= /0 (line 12).
During search, RDS-BTD exploits the maximum between local consistency, recorded,

and RDS lower bounds. LetLBPRDS
e

denote the optimum ofPRDS
e found by one iteration

of RDS-BTD. Because costs can be moved between clusters, this information has to
be corrected in order to be valid in the next iterations of RDS-BTD. For that, we use
the maximum of∆W on each current domain of the (possibly unassigned) separator
variables. The lower bound corresponding to the current assignmentA is then:

lb(Pe/A) = we
∅⊕

⊕
Cf∈Sons(Ce)

max(lb(Pf /A),LB′Pf /Af
,LBPRDS

f
	

⊕
i∈Sf

max
a∈Di

∆W f
i (a)) (2)

Example 3.Applied on the problem of Example 1, RDS-BTD solves five subproblems
(PRDS

3 ,PRDS
2 ,PRDS

5 ,PRDS
4 ,P1) successively. For instance,PRDS

3 has variable{7} and cost
function{w7}. Before solvingPRDS

3 , RDS-BTD assigns variables{5,6} of the separator
S3 to their fully supported value ({(5,a),(6,a)} in this example). In solvingPRDS

2 , it
can record e.g. the optimum ofP3/{(5,a),(6,a)}, equal to zero (recall thatw5,6 does
not belong toP3), that can be reused when solvingP1. In solvingPRDS

4 , it can record
e.g. the optimum ofP5/{(4,a),(9,a),(10,a)}, also equal to zero. However, due to the
fact that variable 4 belongs toS5∩S4 andPRDS

4 does not containw4,11, this recorded
information is only a lower bound for subsequent iterations of RDS-BTD. So, we set
OptP5/{(4,a),(9,a),(10,a)}= false before solvingP1. The resulting optima are:LBPRDS

3
=

LBPRDS
5

= 0,LBPRDS
2

= LBPRDS
4

= 1 andLBPRDS
1

= 5, the optimum ofP1.

In this simple example, forA = {(4,a),(1,a),(2,b),(3,b)}, lb(P1/A) using Equa-
tion 1 or 2 is the same because EDAC propagation provides lower bounds equal to
RDS lower bounds. In the contrary, forA = /0, lb(P1/ /0) = LBPRDS

2
⊕LBPRDS

4
= 2 using

Equation 2 andlb(P1/ /0) = 0 using Equation 1 (assuming EDAC local consistency in
preprocessing and no initial upper bound).

We present the pseudo-code of the RDS-BTD algorithm in Algorithm 1. RDS-BTD
call BTD to solve each subproblemPRDS

e (line 11), using Equation 2 instead of Equation
1 to compute lower bounds. An initial upper bound forPRDS

e is deduced from the global
problem upper bound and the already computed RDS lower bounds (line 10). It initially
assigns variables inSe to their fully supported value (given byEAC function at line 11)
as discussed above. The initial call isRDS-BTD(P, PRDS

1 ). It assumes an already local
consistent problemPRDS

1 = P and returns its optimum.
Notice that as soon as a solution ofPRDS

e is found having the same optimal cost
aslb(PRDS

e / /0) =
⊕

Cf∈Sons(Ce) LBPRDS
f

, then the search ends thanks to the initial lower

lound given at line 11.
The time and space complexity of RDS-BTD is the same as BTD. Notice that RDS-

BTD without caching nor local consistency (except node consistency) and a pseudo-
tree based tree decomposition (i.e. a cluster for each variable, implying a static variable
ordering) is equivalent to Pseudo-Tree RDS [15]. If we further restrict the algorithm to
use a specific tree decomposition(C,T) such that|C| = n,∀e∈ [1,n],Ce = {1, . . . ,e},
and∀e∈ [2,n],Father(Ce) = Ce−1, then it becomes equivalent to RDS.



5 Experimental results

5.1 Implementation details

We implemented DFBB, BTD, RDS-BTD, and RDS in an open-source C++ solver
namedtoulbar2 3. Dynamic variable ordering (min domain / max degree, breaking
ties with maximum unary cost) is used inside clusters (BTD and RDS-BTD) and by
DFBB. EDAC local consistency is enforced on binary [10] and ternary [21] cost func-
tions during search, and for the CELAR and TagSNP benchmarks, VAC [5] is also en-
forced in preprocessing. RDS enforces Node Consistency [16] only. We use the Max-
imum Cardinality Search heuristic (except for the SPOT5 benchmark) to build a tree
decomposition and choose the largest cluster as the root. A variable ordering compati-
ble with this rooted tree decomposition is used for DAC local consistency [7] and RDS.

Recorded (and if available RDS) lower bounds are exploited by local consistency
enforcing as soon as their separator variables are fully assigned. If the recorded lower
bound is optimal (OptPe/Ae =true) or strictly greater than the one produced by lo-

cal consistency, i.e. max(LB′Pe/Ae
,LBPRDS

e
	

⊕
i∈Se

∆We
i (A[i]) >

⊕
Pf⊆Pe

wf
∅, then the

corresponding subproblem (Pe/Ae) is deconnected from local consistency enforcing
and the positive difference in lower bounds is added to its parent cluster lower bound

(wFather(Ce)
∅ ), allowing possible new value removals by node consistency enforcing on

the remaining problem.
All the solving methods exploit a binary branching scheme depending on the do-

main sized of the branching variable. Ifd > 10 then it splits theordereddomain into
two parts (by taking the middle value), else the variable is assigned to its EDAC fully
supported value or this value is removed from the domain. In both cases, it selects the
branch which contains the fully supported value first, except for RDS and BTD-like
methods where it selects the branch which contains the value corresponding to the last
solution(s) found first if available.

The dynamic variable ordering heuristic is modified by a conflict back-jumping
heuristic as suggested in [17]. It branches on the same variable again if the first branch
in the binary branching scheme was directly pruned by propagation.

No initial upper bound is provided. The next tables show CPU time in seconds on
a 3 GHz computer with 16GB (2.2GHZ and 4 GB for the TagSNP benchmark) for the
four methods to find the optimum and prove its optimality on three large structured
benchmarks, including a new proposed benchmark in the field of bioinformatics.

5.2 More freedom to the dynamic variable ordering

In order to relax the restriction imposed by BTD and RDS-BTD on the dynamic variable
ordering heuristic, we propose to merge clusters with their parent if their separator is
too large, as proposed in [12]. For that, we add a parameterr to limit the maximum
size of the separators. Starting from the leaves of a given tree decomposition, we merge
a cluster with its parent if the separator size is strictly greater thanr. If r = +∞, no
separator restriction applies.

3 Version 0.7 available athttp://mulcyber.toulouse.inra.fr/gf/project/toulbar2



By definition, BTD and RDS-BTD solve independent subproblems (i.e. the sons of
a father clusterPe) sequentially (at line 5 of Algorithm 1) although the overall cost of
these problems is bounded by a local upper bound (the upper boundPe.m associated
to the father cluster). If the known (local consistency, recorded, and RDS) lower bound
lb(Pe/A) including these son clusters is weak, then BTD, and even RDS-BTD, may
spend time by solving a son cluster to optimality whereas they could rapidly, e.g. with a
dynamic variable ordering on all the remaining variables, produce a local lower bound
greater than the father upper bound. This bad phenomenon has also been observed in
[15] and recently in [14]. In order to avoid this problem occuring with multiple sons,
we propose to exploit a path decomposition. A path decomposition of a WCSP is a tree
decomposition(C,T) whereT is a path. In the experiments, we use the same variable
elimination ordering to build a path decomposition as to build a tree decomposition.
The keywordpath in the following tables corresponds to the results obtained with a
path decomposition (and no cluster merging).

5.3 Radio Link Frequency Assignment

The problem consists in assigning frequencies to a set of radio links in such a way that
all the links may operate together without noticeable interference [1]. We select two
difficult instances provided by the French military institute CELAR. These instances
contain binary cost functions only. Instancescen07m is a relaxation of the original in-
stancescen07 where domain values have been merged into abstract values and costs
lower than 10000 have been discarded. A “-” means the instance was not solved in
less than ten hours. Among the different methods, only RDS-BTD can solve the two
instances. Keeping small separators only increases CPU times by a factor of two, while
using a path decomposition exceeds the time limit.

Instance n d tree-width (w) DFBB BTD RDS-BTD RDS
r = +∞ r = 4 path r = +∞ r = 4 path

scen06 10044 11 19 54 4768 665 795 1639 - -
scen07m19614 15 41 45 - - 3 5.5 - -

5.4 Earth Observation Satellite Scheduling

This benchmark deals with the daily management of SPOT5 earth observation satellite
[25]. The goal is to select a set of feasible photographs maximizing a weighted sum,
each photograph having a weight expressing its importance. Variables represent candi-
date photographs along the temporal axis. We keep this temporal order as our variable
elimination ordering to build a tree or a path decomposition. Each domain corresponds
to the possible instruments to take a photograph and a special value to reject this pho-
tograph. Maximum domain size is 4. Hard binary and ternary constraints express non
overlapping and minimal transition time between two successive photographs on the
same instrument. A unary cost function per variable express its importance.

For RDS-BTD, we tried two different local consistencies during search: EDAC,
and a weaker form, soft AC [22, 16]. We observed better results using AC for meth-
ods exploiting RDS lower bounds. This is due to the∆W correction applied on RDS



lower bounds. In the case of AC, this correction is always zero because there are only
hard constraints. AC moves infinite (m) costs between clusters, which does not change
subproblem optima, whereas EDAC can move finite (unary) costs.

RDS-BTD performed often better using a path decomposition rather than a tree
decomposition on this benchmark. A “-” means the instance was not solved in less
than thrity minutes. Merging clusters is not a good strategy here. The best results are
still obtained by the original RDS algorithm which uses a completely static variable
ordering.

RDS-BTD
Ins. n tree-width (w) DFBB BTD r = +∞ r = 4 path RDS

r = +∞ r = 4 path EDAC AC EDAC AC EDAC AC
29 82 17 31 18 1 0 0 0 0 0 0 0 0
42 190 36 66 56 - - 769 692 1057 - 1457 669 2
54 67 14 21 20 0 0 0 0 0 0 0 0 0
404100 22 39 30 168 0 0 0 0 0 1 0 1
408200 55 127 64 - - - - - - - 62 10
412300 55 228 79 - - - - - - - 94 22
414364 110 289 150 - - - - - - - 478 63
503143 19 43 30 - 29 3 18 1 6 1 0 1
505240 39 175 59 - - 16951473 - - 323 23 10
507311 76 236 103 - - - - - - 10981032 49
509348 97 273 134 - - - - - - - 619 85

These preliminary results show that BTD can take advantage of RDS and path de-
compositions, although some work is still needed to reach the efficiency of RDS.

5.5 Tag SNP selection

This problem occurs in genetics. SNP (Single Nucleotide Polymorphism) are typos
mismatch in DNA sequences between members of a species. There are important factors
responsible of polymorphism in species. They may explain, for instance, a portion of
the heritable risk of common diseases and can affect respond to pathogens, chemicals,
drugs, vaccines, and other agents. However, their greatest importance in biomedical
research is for comparing regions of the genome between cohorts (such as with matched
cohorts with and without a disease). The study of SNPs is also important in crop and
livestock breeding programs.

The TagSNP problem consists in selecting a subset of SNP markers along a chro-
mosome such as the selected markers, called tag SNPs, are mostly representative of the
genetic information of the whole set of markers. The goal is to capture a maximally
informative subset of SNPs for further screening of larger population.

For each pair of markers, linkage disequilibrium (LD) measures the pairwise corre-
lation between the two SNPs. LD is a distance measure obtain from statistical analysis
of occurrence of SNPs in an initial cohort.

A marker can represent another marker if and only if it is selected and the distance
between the two markers is lower than a user-defined maximum threshold. A given



threshold - usually 0.8 [3] - allows to define a graph where each node is a marker and
the edges are labelled by the LD distance linking pairs of nodes. Edges are filtered if
their label is lower than the threshold. Thus, the initial graph after filtering and decom-
position gives a set of connected components. See an example in Figure 2 of a con-
nected component. In the present benchmark, each connected component is processed
separately as an independent graphG corresponding to a WCSP instance.

Interestingly, the instance collection covers a large diversity of problem size and
structure, the size varies from few tens to several hundred of variables, and the graph
connectivity spans from 18% to 93%.

Fig. 2.The constraint graph of tag SNP selection instance 14481 covered by three clus-
ters (maximum separator sizer = 4). Root cluster isC1. The separatorS2 = C1∩C2 is
highlighted and contains two variablesS2 = {42,44}. An optimal solution is given in
red color.

For each connected component, we define a binary WCSP fromG. Each variable
represents a node/marker. Its domain represents the fact that the marker is selected or
that it is represented by another marker in the neighborhood of the node inG. So,
domain size is equal to the degree of the considered node inG plus one. There is a
unary cost function for each node ofG such that the problem is to minimize the number
of selected (tag SNP) markers. There is a binary cost function for each edge ofG. The



costs make sure that if a marker is represented by another marker then this marker must
be selected, and also take into account additional secondary coverage criteria based on
LD as defined in [20] (for the same minimum number of tag SNPs, maximize weighted
coverage sum of unselected markers and maximize dispersion between tag SNPs). Note
that this problem is similar to a set covering problem with additional binary costs.

The benchmark is composed of 80 instances coming from human chromosome 1 by
courtesy of Steve Qin.

The next table shows the number of instances solved by each method in less than
two hours. The second line gives the total amount of CPU time in seconds to solve the
47 instances solved by all the methods, except RDS. We observed that RDS-BTD with
cluster merging (r = 4) is the best option.

DFBB BTD RDS-BTD RDS
r = +∞ r = 4 path

Nb. solved 68 56 55 72 57 2
Total time 20074416 3460 17486882 N/A

Detail results (except RDS) of CPU time in seconds for all the instances sorted by
increasing number of variables are given in Figure 3 and 4. For each instance, the best
solving time is given in bold.

Future work remains to be done to understand when it is worthwhile to exploit the
problem structure on this benchmark.

6 Conclusion

The decomposability of problems offered by treewidth is not always easy to success-
fully exploit in the context of optimization problems. In strongly decomposable prob-
lems, with small separators, exploiting decomposition is always a win. For more com-
plex situations, the possible loss in lower bound quality for a given subproblem may
adversely affect the efficiency. By precomputing subproblem based lower bounds as
in the RDS algorithm, RDS-BTD can offer more overall robustness than other algo-
rithms such as RDS or DFBB. The influence of other parameters such as the maximum
separator size or the type of decomposition used (path or tree decomposition) requires
additional analysis.

Future work remains to be done to implement caching on partial assignments. It
will reduce redundant searches between successive RDS-BTD iterations. This is also
important if we further combine RDS-BTD with Iterative Deepening as done in [2].
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