
Mendelian error detection in complex pedigrees
using weighted constraint satisfaction techniques

Marti Sanchez
msanchez@toulouse.inra.fr

Simon de Givry
degivry@toulouse.inra.fr

Thomas Schiex
tschiex@toulouse.inra.fr

INRA - UBIA
Toulouse, France

October 12, 2007

Abstract

With the arrival of high throughput genotyping techniques, the detection of likely
genotyping errors is becoming an increasingly important problem. In this paper we
are interested in errors that violate Mendelian laws. The problem of deciding if a
Mendelian error exists in a pedigree isNP-complete [1]. Existing tools dedicated to this
problem may offer different level of services: detect simple inconsistencies using local
reasoning, prove inconsistency, detect the source of error, propose an optimal correc-
tion for the error. All assume that there is at most one error. In this paper we show that
the problem of error detection, of determining the minimum number of errors needed
to explain the data (with a possible error detection) and error correction can all be
modeled using soft constraint networks. Therefore, these problems provide attractive
benchmarks for weighted constraint network (WCN) solvers. Because of their sheer
size, these problems drove us into the development of a new WCN solvertoulbar2
which solves very large pedigree problems with thousands of animals, including many
loops and several errors.

Biological background and motivations

Chromosomes carry the genetic information of an individual. A position that carries some
specific information on a chromosome is called alocus(which typically identifies the po-
sition of a gene). The specific information contained at a locus is called theallele carried
at the locus. Except for the sex chromosomes, diploid individuals carry chromosomes in
pair and therefore a single locus carries a pair of alleles. Each allele originates from one
of the parents of the individual considered. This pair of alleles at this locus define the
genotypeof the individual at this locus. It is said to behomozygousif both alleles are the
same. Genotypes are not always completely observable and the indirect observation of a
genotype (its expression) is termed thephenotype. A phenotype can be considered as a set
of possible genotypes for the individual. These genotypes are said to be compatible with
the phenotype.

A pedigree is defined by a set of related individuals together with associated phenotypes
for some locus. Every individual is either a founder (no parents in the pedigree) or not. In
this latter case, the parents of the individual are identified inside the pedigree. Because
a pedigree is built from a combination of complex experimental processes it may involve
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experimental and human errors. The errors can be classified as parental errors or typing
errors. A parental error means that the very structure of the pedigree is incorrect: one
parent of one individual is not actually the parent indicated in the pedigree. We assume
that parental information is correct. A phenotype error means simply that the phenotype
in the pedigree is incompatible with the true (unknown) genotype. Phenotype errors are
called Mendelian errors when they make a pedigree inconsistent with Mendelian law of
inheritance which states that the pair of alleles of every individual is composed of one
paternal and one maternal allele. The fact that at least one Mendelian error exists can be
effectively proved by showing that every possible combination of compatible genotypes for
all the individual violates this law at least once. Since the number of these combinations
grows exponentially with the number of individuals, only tiny pedigrees can be checked
by enumeration. The problem of checking pedigree consistency is actually shown to be
NP-complete in [1]. Other errors are called non Mendelian errors1.

The detection and correction of errors is crucial before the data can be exploited for
the construction of the genetic map of a new organism (genetic mapping), the localiza-
tion of genes (loci) related to diseases, or other quantitative traits. Because of itsNP-
completeness, most existing tools only offer a limited polynomial time checking procedure.
The different tools we are aware of that try to tackle this problem are either incomplete, re-
stricted by strong assumptions (such as unique error), or incapable of dealing with large
problems. This is specifically important for animal pedigrees which may contain thou-
sands of animals, many errors and many loops (a marriage between two individuals which
have a parental relation) and thus with a large tree-width.

In this paper, we introduce soft constraint network models for the problem of checking
consistency, the problem of determining the minimum number of errors needed to explain
the data and the problem of proposing an optimal correction to an error. These problems
offer attractive benchmarks for (weighted) constraint satisfaction. In Section 3, we describe
the algorithms used to solve these problems. We report extensive results using the weighted
constraint network solvertoulbar2 and other solvers in Section 4.

1 Modeling the problems

A constraint network(X ,D,C ) [7] is defined by a set ofn variablesX = {x1, . . . ,xn},
a set of matching domainsD = {D1, . . . ,Dn} with maximum size equal tod and a set
of e constraintsC . Every variablexi ∈ X takes its value in the associated domainDi .
A constraintcS ∈ C is defined as a relation on a set of variablesS⊂ X which defines
authorized combination of values for variables inS. Alternatively, a constraint may be seen
as the characteristic function of this set of authorized tuples. It maps authorized tuples
to the booleantrue (or 1) and other tuples tofalse (or 0). The setS is called the scope
of the constraint and|S| is the arity of the constraint. For arities of one, two or three,
the constraint is respectively said to be unary, binary, or ternary. A constraint may be
defined by a predicate that decides if a combination is authorized or not, or simply as a
set of combination of values which are authorized. For example, ifD1 = {1,2,3} and
D2 = {2,3}, two possible equivalent definitions for a constraint onx1 andx2 would be
x1 +1 > x2 or {(2,2),(3,2),(3,3)}.

The central problem of constraint networks is to give a value to each variable in such a
way that no constraint is violated (only authorized combinations are used). Such a variable
assignment is called a solution of the network. The problem of finding such a solution
is called the CONSTRAINT SATISFACTION PROBLEM (CSP). Proving the existence of a
solution for an arbitrary network is anNP-complete problem.

Often, tuples are not just completely authorized or forbidden but may be associated
with a cost. Several ways to model such problems have been proposed among which the

1Non Mendelian errors may be identified only in a probabilistic way using several locus simultaneously and a
probabilistic model of recombination and errors [9].



most famous are the semi-ring and the valued constraint networks frameworks [3]. In
this paper we consider weighted constraint networks (WCN) where constraints map tuples
to non negative integers. For every constraintcS ∈ C , and every variable assignmentA,
cS(A[S]) ∈ N represents the cost of the constraint for the given assignment whereA[S] is
the projection ofA on the constraint scopeS. The aim is then to find an assignmentA
of all variables such that the sum of all tuple costs∑cS∈C cS(A[S]) is minimum. This is
called the Weighted Constraint Satisfaction Problem (WCSP), obviouslyNP-hard. Several
algorithms for tackling this problem, all based on the maintenance of local consistency
properties [26] have been recently proposed [13, 5, 17, 4, 15, 12, 6]. They are presented in
Section 3.

1.1 Genotyped pedigree and constraint networks

Consider a pedigree defined by a setI of individuals. For a given individuali ∈ I , we note
pa(i) the set of parents ofi. Either pa(i) 6= ∅ (non founder) orpa(i) = ∅ (founder). At
the locus considered, the set of possible alleles is{1, ...,m}. Therefore, each individual
carries a genotype defined as an unordered pair of alleles (one allele from each parent,
both alleles can be identical). The set of all possible genotypes is denoted byG and has
cardinality m(m+1)

2 . For a given genotypeg∈G, the two corresponding alleles are denoted
by gl andgr and the genotype is also denoted asgl |gr . By convention,gl ≤ gr in order to
break symmetries between equivalent genotypes (e.g. 1|2 and 2|1). The experimental data
is made of phenotypes. For each individual in the set of observed individualsI ′ ⊂ I , its
observed phenotype restricts the set of possible genotypes to those which are compatible
with the observed phenotype. This set is denoted byG(i) (very oftenG(i) is a singleton,
observation is complete).

A corresponding constraint network encoding this information uses one variable per
individual i.e. X = I . The domain of every variablei ∈ X is simply defined as the set of all
possible genotypesG. If an individuali has an observed phenotype, a unary constraint that
involves the variablei and authorizes just the genotypes inG(i) is added to the network. Fi-
nally, to encode Mendelian law, and for every non founder individuali ∈X , a single ternary
constraint involvingi and the two parents ofi, pa(i) = { j,k} is added. This constraint only
authorizes triples(gi ,g j ,gk) of genotypes that verify Mendelian inheritancei.e. such that
one allele ofgi appears ing j and the other appears ingk. Equivalently:

(gl
i ∈ g j ∧gr

i ∈ gk)∨ (gl
i ∈ gk∧gr

i ∈ g j)

For a pedigree withn individuals among which there aref founders, withm possible
alleles, we obtain a final CN withn variables, a maximum domain size ofm(m+1)

2 andn− f
ternary constraints. Existing problems may have more than 10,000 individuals with several
alleles (the typical number of alleles varies from two to a dozen).

A solution to such a constraint network defines a genotype for each individual that
respects Mendelian law (ternary constraints) and experimental data (domains) and the con-
sistency of this constraint network is therefore obviously equivalent to the consistency of
the original pedigree. As such, pedigree consistency checking offers a direct problem for
constraint networks. In practice, solving this problem is not enough (i) if the problem is
consistent, one should simplify the problem for further probabilistic processing by remov-
ing all values (genotypes) which do not participate in any solution, this specific problem
is known as “genotype elimination”, (ii) if the problem is inconsistent, errors have to be
located and corrected.

Example 1 A small example is given in Fig. 1. There are n= 12 individuals and m= 3
distinct alleles. Each box corresponds to a male individual, and each oval to a female.
The arcs describe parental relations. For instance, individuals 1 and 2 have three children
3,4, and 5. The founders are individuals 1,2,6, and 7 ( f= 4). The possible genotypes
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Figure 1: Left: A pedigree taken from [23]. Right: its corresponding CSP.

are G= {1|1,1|2,1|3,2|2,2|3,3|3}. There are 7 individuals (1,3,6,7,10,11, and 12) with
an observed phenotype (a single genotype). The corresponding CSP has 12 variables,
with maximum domain size of 6, and 8 ternary constraints. This problem can be proven
inconsistent, that is, there is no combination of pair of alleles that we can assign to the
individuals of unobserved phenotype that respects all mendelian laws.

2 Error detection

From an inconsistent pedigree, the first problem is to identify errors. In our knowledge,
this problem is not perfectly addressed by any existing program which either identifies a
not necessarily minimum cardinality set of individuals that only restore a form of local
consistency or makes the assumption that a single error occurs. The first approach may
detect too many errors that moreover may not suffice to remove global inconsistency and
the second approach is limited to small data-sets (even high quality automated genotyping
may generate several errors on large data-sets).

A typing error for an individuali ∈ X means that the domain of variablei has been
wrongly reduced: the true (unknown) value ofi has been removed. To model the possibility
of such errors, genotypes inG which are incompatible with the observed phenotypeG(i)
should not be completely forbidden. Instead, a soft constraint forbids them with a cost of
1 (since using such a value represents one typing error). We thereby obtain a weighted
constraint network with the same variables as before, the same hard ternary constraints for
Mendelian laws and soft unary constraints for modeling genotyping information. Domains
are all equal toG.

If we consider an assignment of all variables as indicating the real genotype of all in-
dividuals, it is clear that the sum of all the costs induced by all unary constraints on this
assignment precisely gives the number of errors made during typing. Finding an assign-
ment with a minimum number of errors follows the traditional parsimony principle or and is
consistent with a low probability of independent errors (quite reasonable here) or Occam’s
razor principle. This defines theParsimony problem. One solution of the corresponding
WCSP with a minimum cost therefore defines a possible diagnostic (variables assigned
with a value forbidden byG(i) represent errors). These networks have the same size as the
previous networks with the difference that all variables now have the maximum domain
size|G|. The fundamental difference lies in the shift from satisfaction to optimization. The
fact that onlyunarysoft constraints arise here is not a simplification in itself w.r.t. the gen-
eral WCSP since every n-ary weighted constraint network can be simply translated in an
equivalent dual network with only unary soft constraints and hard binary constraints [14].

Example 2 Fig. 2 shows the WCSP associated to the previous pedigree example of Fig. 1.
The problem still has 12 variables, with domain size of 6. It has 8 hard ternary constraints
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Figure 2: The corresponding WCSP of Fig. 1.

and 7 soft non-null unary constraints, one for every observed individual. The minimum
number of typing errors is one. There are 66 optimal solutions of cost one, which can occur
in any of the typed individuals except individual 10. One optimal solution is{(1,2|2),
(2,1|2), (3,2|2), (4,1|2), (5,2|2), (6,2|2), (7,2|2), (8,1|2), (9,2|2), (10,2|2), (11,1|2),
(12,2|2)} such that theerroneoustyping2|3 of individual 12 has been changed to2|2.

2.1 Error correction

When errors are detected, one would like to optimally correct them. The simple parsimony
criterion is usually not sufficient to distinguish alternative values. More information needs
to be taken into account. Since errors and Mendelian inheritance are typical stochastic
processes, a probabilistic model is attractive. A Bayesian network is a network of variables
related by conditional probability tables (CPT) forming a directed acyclic graph. It allows
to concisely describe a probability distribution on stochastic variables. To model errors, a
usual approach is to distinguish the observationO and the truthT. A CPTP(O|T) relates
the two variables and models the probability of error.

Following this, we consider the following model for error correction: we first have a
set ofn variablesTi each representing the true (unknown) genotype of individuali. The
domain isG. For every observed phenotype, an extra observed variableOi is introduced.
It is related to the corresponding true genotype by the CPTPerror

i (Oi |Ti). In our case, we
assume that there is a constantα probability of error: the probability of observing the
true genotype is 1−α and the remaining probability mass is equally distributed among
remaining values.

For the individuali and its parentspa(i), a CPTPmendel
i (Ti |pa(i)) representing Mendelian

inheritance connectsTi and its corresponding parent variables. Given that each parent has
two alleles, there are four possible combinations for the children and all combinations are
equiprobable (probability14). However, since all parental alleles are not always different,
the genotype of a child has probability1

4 times the number of combinations of the parental
alleles that produce this genotype.

Finally, prior probabilitiesPf ounder(i) for each genotype must be given for every founder
i. These probabilities are obtained by directly estimating the frequency of every allele in the
genotyped population. For a genotype, its probability is obtained by multiplying each allele
frequency by the number of its possible combinations (a genotypea|b can be obtained in
two ways by selecting ana from a father and ab from the mother or the converse). If both
alleles are equal there is only one way to achieve the genotype. The probability of a com-
plete assignmentP(O,T) (all true and observed values) is then defined as the product of
the three collections of probabilities (Perror,PmendelandPf ounder). Note that equivalently,
its log-probability is equal to the sum of the logarithms of all these probabilities.



The evidence given by the observed phenotypesG(i) is taken into account by reducing
the domains of theOi variables toG(i). One should then look for an assignment of the vari-
ablesTi , i ∈ I ′ which has a maximum a posteriori probability (MAP). TheMAP probability
of such an assignment is defined as the sum of the probabilities of all complete assignments

extending it and maximizing it defines anNPPP-complete problem [24], for which there
exists no exact method that can tackle large problems. The PEDCHECK solver [22, 23] tries
to solve this problem using the extra assumption of a unique already identified error. This
is not applicable in large data-sets. Another very strong assumption (known as the Viterbi
assumption) considers that the distribution is entirely concentrated in its maximum and
reducesMAP to the so-called Maximum Probability Explanation problem (MPE) which
simply aims at finding a complete assignment of maximum probability. Using logarithms
as mentioned above, this problem directly reduces to a WCSP problem where each CPT is
transformed in an additive cost function. This allows to solveMPE using WCN dedicated
tools. introduced intoulbar2 .

3 Soft constraint processing

In this section, we describe the algorithms we used to solve general weighted constraint
networks. For simplicity reasons and adequacy to the pedigree problem, in the next section
we restrict our presentation to the case of ternary or smaller arity constraints. In particular,
we show how to extend existing soft binary constraint processing techniques to the case
of ternary constraints. The technical difficulty resides in the simultaneous enforcement of
two important soft local consistency properties (AC and DAC which are defined below)
in polynomial time. In the following, we show how to enforce DAC in one direction of a
ternary constraint without breaking AC in the two other directions. This allows to close
an open question from [4] (Section 4) “whether a form of directionalk-consistency can be
established in polynomial time fork > 2”. The answer is yes for ternary constraints and we
believe it can be generalized to any bounded constraint arity.

3.1 Notations

Following [17], the valuation structure of Weighted CSP (WCSP) is,S(k) = ([0..k],⊕,≥)
wherek > 0 is a natural number;⊕ is defined asa⊕b = min{k,a+b}; ≥ is the standard
order among naturals. Observe that inS(k), we have minimum cost⊥ = 0 and maximum
cost> = k. It is useful to define thesubtraction	 of costs. Leta,b∈ [0..k] be two costs
such thata≥ b,

a	b =
{

a−b : a 6= k
k : a = k

A ternaryweighted constraint satisfaction problem(WCSP) is a tupleP=(S(k),X ,D,C ).
S(k) is the valuation structure.X = {x1, . . . ,xn} is a set of variables to which we will
often refer to just by their index. Each variablexi ∈ X has a finite domainDi ∈ D of
values that can be assigned to it.(i,a) denotes the assignment of valuea ∈ Di to vari-
ablexi . C is a set of unary, binary, and ternary weighted constraints (namely, cost func-
tions) over the valuation structureS(k). A unary weighted constraintCi is a cost function
Ci(a∈ Di)→ [0..k]. A binary constraintCi j is a cost functionCi j (a∈ Di ,b∈ D j)→ [0..k].
A ternary constraintCi jl is a cost functionCi jl (a∈Di ,b∈D j ,c∈Dl )→ [0..k]. We assume
the existence of a unary constraintCi for every variable, binary constraints (Ci j ,Cil , and
Cjl ) for every ternary constraintCi jl , and azero-arity constraint (i.e. a constant), notedC∅
(if no such constraint is defined, we can always definedummyones:∀a∈ Di ,Ci(a) = ⊥,
∀a∈ Di ,b∈ D j ,Ci j (a,b) =⊥, ∀a∈ Di ,b∈ D j ,c∈ Dl ,Ci jl (a,b,c) =⊥, C∅ =⊥).

When a constraintC assigns cost>, it means thatC forbids the corresponding assign-
ment, otherwise it is permitted byC with the corresponding cost. Thecostof an assignment



X = (x1, . . . ,xn), notedV (X), is the sum over all the problem cost functions (herexi refers
to the valuea∈ Di assigned to variablei),

V (X) = ∑
Ci j∈C

Ci j (xi ,x j)⊕ ∑
Ci jl ∈C

Ci jl (xi ,x j ,xl )⊕ ∑
Ci∈C

Ci(xi)⊕C∅

An assignmentX is consistentif V (X) < >. The usual task of interest is tofind a
consistent assignment with minimum cost, which is NP-hard. Observe that WCSP with
k = 1 reduces to classical CSP.

3.2 Soft local consistency extended to ternary constraints

In this section, we present several local consistency properties, previously defined for bi-
nary constraints [26, 13, 5, 15] and extended to the case of ternary constraints in order to
deal with our pedigree problem.

Two WCSPs defined over the same variables are said to beequivalentif they define the
same cost distribution on complete assignments. Local consistency properties are widely
used to transform problems into equivalent simpler ones. When enforcing a local consis-
tency property at every node of the search, implicit costs can be deduced and so the search
space can be hopefully reduced and variable values pruned earlier (a non trivial lower bound
is given byC∅). The deduced unary costs and the current variable domains can also guide
the search, as they can be used by the variable and value ordering heuristics (explained in
Section 3.3).

The simplest form of local consistency we used is node consistency (NC):∀xi ∈X ,(∃a∈
Di/Ci(a) =⊥)∧ (∀a∈ Di/C∅⊕Ci(a) <>) [13]. NC is enforced by proceduresProjec-
tUnary andPruneVar (Algorithm1) which perform the projection of a unary constraint
towardsC∅ and prune unfeasible values, respectively. Note that the propagation queuesQ,
SandRare explained in algorithm 3 description.

To extend the notion of soft (directional) arc consistency to ternary cost functions, we
extend the classic notion of support in the WCSP framework. Given a binary constraint
Ci j , b ∈ D j is a simple supportfor a ∈ Di if Ci j (a,b) = ⊥. Similarly, for directional arc
consistency,b∈ D j is afull supportfor a∈ Di if Ci j (a,b)⊕Cj(b) =⊥.

For a ternary cost functionCi jk , we say that the pair of values(b ∈ D j ,c ∈ Dk) is
a simple support fora ∈ Di if Ci jk(a,b,c) = ⊥. Similarly, we say that the pair of values
(b∈D j ,c∈Dk) is a full support fora∈Di if Ci jk(a,b,c)⊕Ci j (a,b)⊕Cik(a,c)⊕Cjk(b,c)⊕
Cj(b)⊕Ck(c) =⊥.

A WCSP is arc consistent (AC) if every variable is NC and every value of its domain
has a simple support in every constraint [26, 13]. Given a static variable ordering, a WCSP
is directional arc consistent (DAC) if every value of every variablexi has a full support in
every constraintCi j such thatj > i and in every constraintCi jk such thatj > i ∧k > i [5].
A WCSP is full directional arc consistent (FDAC) if it is both AC and DAC [5, 17].

ProceduresProject2To1 (Algorithm 1) andFindSupports2 (Algorithm 2) enforce
simple supports inD j for every value inDi . The same process can be done for ternary
constraints, by usingProject3To1 (Algorithm 1) andFindSupports3 (Algorithm 2).

In order to enforce full supports inD j for Di values (procedureFindFullSupports2
in Algorithm 2) we need to extend unary costs fromCj(·) towardsCi j (·, ·) (procedureEx-
tend1To2 in Algorithm 1). Then, binary costs are projected towardsCi(·) by Project2To1.

The previous reasoning has to be carefully adapted to ternary constraints. The idea is
to extend unary and binary costs involved in the scope of ternary constraintCi jk in such
a way that a maximum projection is achievable on variablei without losing simple sup-
ports for variablesj andk. ProcedureFindFullSupports3(i, j,k) (Algorithm 2) enforces
full supports for each value of variablei by computing the maximum possible projection
(Pi [a]) for everya ∈ Di w.r.t. available unary, binary, and ternary costs. Accordingly to



eachPi [a],a∈Di , it also computes the maximum cost extensions for unary and binary con-
straints such that each extension has to be done in order to be able to projectPi [a] without
introducing negative costs in the constraint network. Moreover, each extension is mini-
mum in the sense that a weaker extension would result in negative costs. Assuming the
constraint network is already AC, this condition guarantees that for each unary cost ex-
tension (E j [b] or Ek[c]), there is at least a valuea∈ Di such that the resulting binary cost
(Ci j (a,b)⊕E j [b]	Ei j [a,b] or Cik(a,c)⊕Ek[c]	Eik[a,c]) is equal to zero at the end of the
procedure, preserving simple supports at the binary level. The proof is similar to the proof
of Theorem 2 in [17]. The same is true for each binary cost extension (Ei j [a,b], Eik[a,c] or
E jk[b,c]): there exists a value in the third variable (c∈ Dk, b∈ D j or a∈ Di respectively)
such thatCi jk(a,b,c)⊕Ei j [a,b]⊕Eik[a,c]⊕E jk[b,c] = 0, thus preserving simple supports
for variablesj andk at the ternary level. The order of cost extension operations (which are
performed by proceduresExtend1To2 andExtend2To3 in Algorithm 1) is built according
to the DAC variable ordering in order to move costs from the highest variables to the lowest
first. The resulting ordered cost flow is summarized in Figure 3. An example of enforcing
full supports is given below.

Figure 3: Order of cost operations forFindFullSupports3(i, j,k) with i < j < k: cost
extensions (E·) from unary to binary, binary to ternary constraintCi jk , and cost projection
(Pi) from ternary to unary constraintCi .

Example 3 Consider the problem depicted in Figure4.a. It has four variables i, j,k, l with
two values (a,b) in their domain. Unary costs are depicted within small circles. Binary
(red continuous line) or ternary (green broken line for Ci jl and blue dotted line for Cikl )
costs are represented by edges or hyper-edges connecting the corresponding values. The
label of each edge (hyper-edge) is the corresponding cost. If two or three values are not
connected, the cost between them is0. In this problem the optimal cost is1 and it is
reached by the assignment(a,a,a,a). The next figures (4.b,.c,.d) show the effect ofFind-
FullSupports3 which enforces full supports for each value in the domain of variable i
w.r.t. ternary constraints Ci jl and Cikl . FindFullSupports3(i, j, l ) computes the following
projection/extension costs:

Pi [a] = El [b] = Ei j [a,a] = Eil [a,b] = 1

all other projection/extension costs being null. The result is shown in Figure 4.d.
FindFullSupports3(i,k, l ) computes the following costs:

Pi [b] = Eil [b,b] = Eik[b,a] = 1

all other costs being null. The result is shown in Figure 4. f .

In the case of two ternary constraints sharing two variables as shown in Figure 4, a unary
cost (Cl (b) in the example) can be used by both ternary constraints due to the extension of
unary costs to binary constraints when enforcing full supports for ternary constraints. This
is not the case for complete 3-consistency as defined in [4] where unary costs are directly
extended to ternary constraints. Moreoverk-consistency [4] does not move unary costs
from one variable to another as it is done by directional arc consistencies.



Figure 4: Six equivalent WCSP problems (> = 4): (a) original problem with two ternary
costsCi jl (a,b,a) = Cikl (b,b,a) = 1, two binary costsCi j (a,a) = Cik(b,a) = 1, and a unary
costCl (b) = 1 ; it is AC but not DAC (i < j < k) (b) extending a cost of one from unary
constraintCl to binary constraintCil (El [b] = 1) (c) extending a cost of one from binary
constraintsCi j andCil to ternary constraintCi jl (Ei j [a,a] = Eil [a,b] = 1) (d) projecting a
cost of one fromCi jl toCi(a) (Pi [a] = 1) (e) extending a cost of one from binary constraints
Cil andCik to ternary constraintCikl (Eil [b,b] = Eik[b,a] = 1) (f) finally, made FDAC after
projecting a cost of one fromCikl to Ci(b) (Pi [b] = 1) then projecting a cost of 1 toC/0.

The strongest form of local consistency we use is existential directional arc consistency
(EDAC) [15]. A WCSP is existential arc consistent (EAC) if every variablexi has at least
one valuea∈Di such thatCi(a) =⊥ anda has a full support in every constraint. A WCSP
is EDAC if it is both FDAC and EAC.

EAC enforcement is done by finding at least onefully supportedvalue per variable i.e.
which is fully supported in all directions2. If there is no such value for a given variable,

2Distinctly from EAC for binary constraints, EAC for ternary constraints does not guarantee that there exists
an assignment of all the neighborhood variables of a given variablei such that the constraints involvingi are all
satisfied due to possible ternary constraintsCi jl andCikl sharing a second variable in common.



Algorithm 1: Algorithms to propagate costs.
ProcedurePruneVar(i)

foreacha∈ Di do
if (C∅⊕Ci(a)≥>) then

Di := Di −{a} ;
1 Q := Q∪{i} ;

ProcedureProjectUnary(i)
α := mina∈Di{Ci(a)} ;
C∅ := C∅⊕α ;
foreacha∈ Di do Ci(a) := Ci(a)	α ;

ProcedureProject2To1(i,a, j,α)
if (α >⊥∧Ci(a) =⊥) then

2 R := R∪{i} ;
3 S:= S∪{i} ;

Ci(a) := Ci(a)⊕α ;
foreachb∈ D j do Ci j (a,b) := Ci j (a,b)	α ;

ProcedureExtend1To2(i,a, j,α)
foreachb∈ D j do Ci j (a,b) := Ci j (a,b)⊕α ;
Ci(a) := Ci(a)	α ;

ProcedureProject3To1(i,a, j,k,α)
if (α >⊥∧Ci(a) =⊥) then

4 R := R∪{i} ;
5 S:= S∪{i} ;

Ci(a) := Ci(a)⊕α ;
foreachb∈ D j ,c∈ Dk do Ci jk(a,b,c) := Ci jk(a,b,c)	α ;

ProcedureExtend2To3(i,a, j,b,k,α)
foreachc∈ Dk do Ci jk(a,b,c) := Ci jk(a,b,c)⊕α ;
Ci j (a,b) := Ci j (a,b)	α ;

then projecting all the constraints towards this variable will increase the lower bound, re-
sulting in at least onefully supportedvalue. Notice that EDAC, even for binary constraints
only, is incomparable withk-consistency [4] because EDAC can consider all the neighbor-
hood (which can contain more thank variables) of a variable in order to increaseC/0. By
definition, for each triplet of variables involved in a ternary constraint, EDAC is locally op-
timal in the sense that it finds the best lower bound. However, EDAC is weaker than OSAC
[6], a recently defined optimal arc consistency property based on a linear programming
formulation with rational costs.

Observe that in the CSP case AC, FDAC, and EDAC instantiate to classical arc consis-
tency generalized to binary and ternary constraints where the scope of any binary constraint
is not included in the scope of a ternary constraint (if it is not the case, then the binary con-
straint can be merged in the ternary constraint).

In our pedigree problem, EDAC is able to deduce a non trivial lower bound (C/0 = 1) for
any inconsistent nuclear family satisfying one of the following condition, as expressed in
[22]: the alleles of a child and a parent are incompatible; the child is compatible with each
parent separately but not when both parents are consider simultaneously; there are more
than four alleles in a sibship; there are more than three alleles in a sibship with a homozy-
gous child; there are more than two alleles in a sibship with two different homozygotes
among the sibs.



Algorithm 2: Algorithms to enforce supports.
ProcedureFindSupports2(i, j)

foreacha∈ Di do
α := minb∈D j {Ci j (a,b)} ;
Project2To1(i,a, j,α) ;

ProjectUnary(i) ;

ProcedureFindSupports3(i, j,k)
foreacha∈ Di do

α := minb∈D j ,c∈Dk{Ci jk(a,b,c)} ;
Project3To1(i,a, j,k,α) ;

ProjectUnary(i) ;

ProcedureFindFullSupports2(i, j)
foreacha∈ Di do

Pi [a] := minb∈D j {Ci j (a,b)⊕Cj (b)} ;

foreachb∈ D j do
E j [b] := maxa∈Di{Pi [a]	Ci j (a,b)} ;

foreachb∈ D j do Extend1To2( j,b, i,E j [b]) ;
foreacha∈ Di do Project2To1(i,a, j,Pi [a]) ;
ProjectUnary(i) ;

ProcedureFindFullSupports3(i, j,k)
foreacha∈ Di do

Pi [a] := minb∈D j ,c∈Dk{Ci jk(a,b,c)⊕Ci j (a,b)⊕Cik(a,c)⊕Cjk(b,c)⊕Cj (b)⊕Ck(c)} ;

foreachb∈ D j do
E j [b] := maxa∈Di ,c∈Dk{Pi [a]	Ci jk(a,b,c)	Ci j (a,b)	Cik(a,c)	Cjk(b,c)	Ck(c)} ;

foreachc∈ Dk do
Ek[c] := maxa∈Di ,b∈D j {Pi [a]	Ci jk(a,b,c)	Ci j (a,b)	Cik(a,c)	Cjk(b,c)	E j [b]} ;

foreacha∈ Di ,b∈ D j do
Ei j [a,b] := maxc∈Dk{Pi [a]	Ci jk(a,b,c)	Cik(a,c)	Cjk(b,c)	Ek[c]} ;

foreacha∈ Di ,c∈ Dk do
Eik[a,c] := maxb∈D j {Pi [a]	Ci jk(a,b,c)	Cjk(b,c)	Ei j [a,b]} ;

foreachb∈ D j ,c∈ Dk do
E jk[b,c] := maxa∈Di{Pi [a]	Ci jk(a,b,c)	Ei j [a,b]	Eik[a,c]}} ;

foreachb∈ D j do Extend1To2( j,b, i,E j [b]) ;
foreachc∈ Dk do Extend1To2(k,c, i,Ek[c]) ;
foreacha∈ Di ,b∈ D j do Extend2To3(i,a, j,b,k,Ei j [a,b]) ;
foreacha∈ Di ,c∈ Dk do Extend2To3(i,a,k,c, j,Eik[a,c]) ;
foreachb∈ D j ,c∈ Dk do Extend2To3( j,b,k,c, i,E jk[b,c]) ;
foreacha∈ Di do Project3To1(i,a, j,k,Pi [a]) ;
ProjectUnary(i) ;

Algorithm 3 description We present an algorithm for the enforcement of EDAC in the
case of binary and ternary WCSPs, based on previous work in [17, 15].EDAC (Algorithm
3) transforms an arbitrary problem into anequivalentone verifying the EDAC local prop-
erty. It uses three propagation queues,Q, R andP. If l ∈ Q, it means that some value in
Dl has been pruned (line 1), neighbors ofl may have lost their simple support and must
be revised. Ifl ∈ R, it means that some value inDl has increased its unary cost from⊥
(lines 2 and 4), neighbors ofl may have lost their full support and must be revised. Ifi ∈ P,
it means that some value inD j ( j neighbor ofi, includingi itself at line 7) has increased its
unary cost from⊥ (lines 3, 5 and 12),i may have lost the full support of its fully supported



Algorithm 3: Enforcing EDAC, initially,Q = R= S= X .
ProcedureEDAC

6 while (Q 6= ∅∨R 6= ∅∨S 6= ∅) do
7 P := S∪{ j | i ∈ S,Ci j ∈ C}∪{ j,k | i ∈ S,Ci jk ∈ C} ;
8 while (P 6= ∅) do

i := pop(P) ;
9 α := mina∈Di{Ci(a)

⊕
Ci j∈C s.t.Ci jk 6∈C minb∈D j {Ci j (a,b)⊕Cj (b)}⊕

Ci jk∈C minb∈D j ,c∈Dk{Ci jk(a,b,c)⊕Ci j (a,b)⊕Cik(a,c)⊕Cjk(b,c)⊕Cj (b)⊕Ck(c)}}
if (α >⊥) then

10 foreachCi j ∈ C do FindFullSupports2(i, j) ;
11 foreachCi jk ∈ C do FindFullSupports3(i, j,k) ;
12 P := P∪{ j |Ci j ∈ C}∪{ j,k |Ci jk ∈ C} ;

S:= ∅ ;
13 while (R 6= ∅) do

l := popMax(R) ;
14 foreachCil ∈ C s.t. i < l do FindFullSupports2(i, l ) ;
15 foreachCi jl ∈ C s.t. i < j ∧ i < l do FindFullSupports3(i, j, l ) ;

16 while (Q 6= ∅) do
l := pop(Q) ;

17 foreachCil ∈ C do FindSupports2(i, l ) ;
18 foreachCi jl ∈ C do

FindSupports3(i, j, l ) ;
FindSupports3( j, i, l ) ;

19 foreach i ∈ X do PruneVar(i) ;

value and must be revised. Besides, there is an auxiliary queueS that is used to efficiently
build P.

The algorithm is formed by a main loop, with four inner loops. Thewhile loops at
lines 8, 13 and 16 respectively enforce EAC, DAC, and AC; the line 19 enforces NC. Each
time some costs are projected by the enforcement of a local property, another property may
be broken. The variables for which the local property may be broken are stored in a queue
for revision.

The EAC property is checked at line 9. Ifα = ⊥ then variablei has already a fully
supported value inDi , otherwise this value is obtained by enforcing a full support for every
value inDi in all the binary and ternary constraints the scope of which containsi. After
these projections (whenα > ⊥), the neighbors ofi may have lost their full support due to
new non-zero unary costs ini, they are stored inP (line 12) for EAC revision andi is also
stored inR (lines 2 and 4) for DAC revision. DAC is enforced by finding a full support in
one direction to ensure termination: each constraint projects its costs only on the smallest
variable in its scope w.r.t. the DAC variable ordering. AC is enforced by finding a simple
support in all directions. DAC and AC may insert variables inS (lines 3 and 5) for future
EAC revision. Only NC can break AC and insert a variable inQ (line 1).

For simplicity reasons, the case of inconsistent problems whereC∅ reaches> is not
described.

Theorem 1 The complexity of ternaryEDAC is time O(ed3max{nd,>}) and space O(ed2),
where n is the number of variables, d is the maximum domain size, e is the number of con-
straints and> is the maximum cost.

Proof 1 Regarding space, we use the data-structure suggested in [13] to bring the space
complexity of Algorithms 1 to O(ed). For Extend2To3, this implies to explicitly memorize
binary information, resulting in an overall space complexity of O(ed2).



The time complexity of algorithmsFindSupports2 andFindFullSupports2 is O(d2),
while the complexity ofFindSupports3 andFindFullSupports3 is O(d3).

Let us now focus on thewhile loop complexities inEDAC. Before computing their
complexities, we will show that each loop terminates and then we will compute thecumu-
lated time complexity of their content by accumulating the time spent in each inner loop
(lines 8, 13, 16 and 19) with the main loop (line 6).

The loop at line 8 enforces EAC. It always terminates, although it may reinsert in P
a variable several times at line 12, because a variable is reinserted in P only ifEAC is
violated which can occur at most O(>) times (each timeEAC is violated, C∅ increases).
The cumulated time complexity of lines 10, 11 and 12 is O(ed3>) because every binary
and ternary constraint is observed at most O(>) times.

The main loop at line 6 is repeated if and only if a value has been removed by the
for loop at line 19, breaking AC and possibly DAC and EAC at the next iteration (due to
AC enforcement at line 16), or some unary costs have been moved by EAC enforcement at
line 8, conducting to DAC revision at line 13 also moving unary costs and breaking EAC
again. So, the main loop always terminates and iterates at most O(max{nd,>}) times. It
follows that the cumulated time complexity of line 9 is O(ed3max{nd,>}).

The loop at line 13 enforces DAC. Notice thatFindFullSupports3 at line 15 cannot
reinsert in R a previously popped variable, due to the way we select the highest variable
w.r.t. DAC variable ordering in the priority queue R (popMax), resulting in a finite loop
at line 13. The cumulated time complexity of lines 14 and 15 is O(ed2max{nd,>}) and
O(ed3max{nd,>}) respectively.

The loop at line 16 which enforces AC terminates because each variable is examined
only once. The cumulated time complexity of lines 17 and 18 is O(ed3) and O(ed4) re-
spectively because each variable can be reinserted in Q by node consistency at most d
times.

Thefor at line 19 is time O(nd) (which is less than O(ed), as the graph is supposed to be
connected). Compiling the different results, the overall complexity is O(ed3max{nd,>}).

3.3 Depth-first branch and bound

In order to find an optimal solution and prove its optimality, a classical depth-first branch
and bound algorithm is applied. An initial upper bound (>) is given by the number of
genotyping data plus one for the parsimony pedigree problem. ForMPE, we multiply
for each individual the minimum probabilities different from zero ofPerror, Pmendel and
Pf ounder (see Section 2.1) and take the negated logarithm (to get additive positive costs):
> = − log( 1

4n−n f dn f

( α
d−1

)no), with d = m(m+1)
2 , the number of possible genotypes,n, the

number of individuals,n f , the number of founders,no, the number of genotyping data and
α, the probability of error. Each time a better solution is found, its cost becomes the new
upper bound.

We maintain EDAC during search, producing a lower bound inC∅. The DAC variable
ordering corresponds to the pedigree file order, which is usually a temporal order. IfC∅ ≥
> then, the algorithm backtracks. We use dynamic variable and value ordering heuristics.
By default, we choose the first unassigned variable having the minimum ratio of current
domain size divided by future degree in the remaining constraint network. Ties are broken
by choosing the variable with the highest unary cost in its domain, and if all equal, DAC
variable ordering is taken. This heuristic is nameddom/degin the rest of the paper.

Following [18], we add a basic form of conflict back-jumping by always choosing the
last variable in conflict (i.e. its assignment leads to an empty domain orC∅ ≥ >). If a
variable is in conflict with a set of variables previously assigned in the current assignment,
then by repeatedly choosing the same conflicting variable instead of the variable preferred
by dom/deg, will have the effect to backtrack up to the point where the last variable in the
set has been assigned. This combined heuristic is namedcon f lict in the experiments.



The value ordering heuristic chooses first the fully supported value found by EAC. We
use a binary branching scheme: the chosen variable is assigned to its fully supported value
or this value is removed from its domain.

Finally, we apply a limited form of variable elimination during the search as proposed
in [16]. If a variable is connected to at most two other unassigned variables, then we elim-
inate the variable by projecting its constraints to the two variables, possibly creating a new
binary constraint between them. This elimination process is iterated until all variables are
connected to three or more variables. Like in variable elimination algorithms, when a solu-
tion is found, the correct values of the eliminated variables can be retrieved by following the
variable elimination ordering in the reverse order and choosing at each step a value which
minimizes the cost of the projected constraints. In pedigrees without loops (i.e. marriage
of two individuals having a common ancestor), this limited form of variable elimination,
namedvarelim in the experiments, completely solves the problem.

Moreover, we apply in preprocessing, before the construction of the constraint network,
a second kind of variable elimination based on the semantic of the pedigree problem. As a
matter of fact, any individual which is not genotyped and has no genotyped descendant in
the pedigree will have no effect on the genotyped individuals and can be discarded.

4 Experimental evaluation

The experimental section has two different aims. First, we want to compare the accuracy
of error detection for the different models introduced:Parsimony, MPE, andMAP.

Then, we want to compare the efficiency of different solvers and evaluate the contribu-
tion of different technical points in this efficiency. We will therefore compare the efficiency
of resolution of the different problems introduced using complete algorithms.

4.1 Solvers considered

Each problem can be solved by different solvers. The most complexMAP problem is a
mixed optimization/integration problem that can be only solved by dedicated Bayes net
solvers. We have chosen Samiam (seehttp://reasoning.cs.ucla.edu/samiam) because it
is one of the most efficient and robust solver available according to the last BN solving
competition. In the version 2.2.1 used (last stable version available on the web),MAP is
solved by theShenoy-Shaferinference algorithm whose computational cost is related to the
tree-width of the instance tackled. Thus, it can only be applied to relatively small instances.

TheMPE problem is a pure optimization problem which requires however to be able
to deal with very large costs such as those produced by logarithms of probabilities (see
Section 3.3). These problems can be addressed again by Samiam but also bytoulbar2
which has been extended to use very large integer costs. The problem can only be solved
on small or mid-size instances.

Finally, the simplestParsimony problem can be directly tackled bytoulbar2 but
also by the previous version toolbar and by pseudo-boolean solvers (WCSP being easily
cast into pseudo boolean SAT [11]). The version of toolbar used, calledtoolbar/BTD ,
integrates a specific tree-decomposition based branch and bound (version 2.2, see [12]) that
should perform well on pedigree problems which have usually a tree-width much smaller
than the number of variables. It also uses only binary EDAC and thus will show the interest
of higher order consistencies. The pseudo-boolean solvers considered are MiniSat+ (ver-
sion 1.0 based onMiniSat version 1.13, [8]) and Pueblo(version 1.5, [27]), among the
most efficient solvers3. TheParsimony problem can be solved on very large instances.

Because the pedigree analysis problem is not a new problem, one must also acknowl-
edge the existence of different solvers for the real problem. However, none of these tools

3See the Pseudo Boolean Evaluation 2006 results athttp://www.cril.univ-artois.fr/PB06/.



will be considered in the analysis because they either make very strong assumptions in-
compatible with the pedigree size considered (PedCheck [22] assumes that there is only
one error), may be incomplete solvers (CheckFam [25] can prove inconsistency but pro-
duces only local corrections on nuclear families that may not always restore consistency
while GenCheck [2] provides corrections that optimizeneither parsimony nor likelihood)
or have very limited efficiency compared to the solvers considered here (GMCheck [28]
tackles theMPE problem but is totally dominated by SamIam).

4.2 Pedigree considered

Two types of pedigree have been used to perform the evaluation: random pedigree and real
pedigree.

4.2.1 Random pedigree

The random pedigree have been generated using a pedigree generator designed by geneti-
cists at INRA [30]. It is controlled by three main parameters:n f the number of founder
individuals,nmalethe number of males amongn f andngenthe number of simulated gen-
erations. We used the generator essentially as a black box, but noticed that thenmaleand
ngenparameters together influence the connectivity of the individuals and thus the tree-
width of the final generated pedigree instance4. The total number of individuals is equal to
ngen× (n f −nmale)+ n f . Once the pedigree is generated, we randomly erase the geno-
types of some individuals with a given probability and introduce errors in some individuals
with a given probability. The original correct genotypes are recorded in order to be able to
evaluate the accuracy of error correction. We used a genotyping error probabilityα = 5%
(see Section 2.1). Equifrequent allele frequenciesPf ounder(i) are used for founders.

We have generated four different collections of instances of increasing size and tree-
width using parameters as described in Table 1. Each collection contains 50 instances.
pedclassA,B, andC are generated with increasing number of individuals.pedclassD further
increases the number of males in the number of founders. All instances and the genera-
tor are available for download athttp://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
(Benchmarkssection) insimplifiedLINKAGE(’.pre’) andtoolbar/toulbar2 (’.wcsp’)
formats.

n f ngen nmale individuals treewidth errors

pedclassA 4. . .44 3 2 [10,170] [2.73,4.82] [0.97,3.3]
pedclassB 8. . .68 5 4 [28,388] [4.54,14.92] [0.68,19.6]
pedclassC 40. . .200 5 20 [140,1100] [16.84,59.38] [5.96,44.22]
pedclassD 200 6 4. . .100 [1000,1376] [19.64,128.16] [51.54,81.94]

Table 1: Four different classes of sets of pedigree instances generated by different parame-
terizations of the simulator.

For random pedigree, all experiments have been performed on a 3 GHz Intel Xeon with
2 GB of RAM.

4[21] showed that increasing the ratio between the number of non root nodes (C) and the number of root nodes
(V) causes an approximately linear increase in the upper bound on the tree-width of randomly-generated Bayesian
networks. The simulated pedigree instances are parent-regular (2 parents) and child irregular multipartite Bayesian
networks corresponding to class B in [21]. But the parent selection process differs from [21]: for each generation,
the parents are randomly selected in the previous generations and each time a male is selected, it is mated with
approximatelyn f−nmale

nmale females. In our case, we found that thenmaleparameter was a better indicator than the
C/V ratio for controlling tree-width and hardness for inference and optimization tasks.



4.2.2 Real pedigree instances

Table 2 shows the different characteristics of the real pedigree instances used in our exper-
iments.

ind vars genotyped alleles n f ngen treewidth ub

eye 36 36 28 6 11 4 2
cancer 49 48 37 8 18 5 2
parkinson 37 34 13 4 7 7 5
berrichon1nc 129516 9947 2448 4 8821 17 262
berrichon1 129516 10017 2483 4 8786 17 330
berrichon2nc 27255 19337 10215 4 4719 19 -
berrichon2 27255 19562 10215 4 2381 19 -
langlade1 1355 1209 711 9 298 13 84
langlade2 1355 1223 715 7 298 13 82
langlade3 1355 1258 787 5 298 13 85
langlade4 1355 1186 672 8 298 13 83
moissac1 283 260 183 2 81 5 6
moissac2 283 244 167 7 81 5 6
moissac3 283 225 151 3 81 5 6
moissac4 283 256 179 2 81 5 6
moissac5 283 237 161 8 81 5 6
moissac6 283 201 131 11 81 5 5

Table 2: Real pedigree instances. Columns: name of the instance, number of individu-
als, number of variables, number of genotyped individuals, number of alleles, number of
founders, number of generations, and treewidth upper bound of the instance.

The first three instances are human genotyped pedigrees (genetic studies of eye, cancer,
and Parkinson diseases) as reported in [22, 23].

The following two groups (berrichon and langlade) are pedigree instances coming
from sheep animals provided by the CTIG (Centre de Traitement de l’Information Géńetique)
in France, which gathers and treats all the genetic information coming from animals in
farms. The files correspond to all genotypings done for the enhancement program of ge-
netic resistance to thescrapiedisease [29]. Scrapie is a fatal, degenerative disease affecting
the central nervous system of sheep and goats. The program is founded by the French Min-
istry of Agriculture. The instances are named by the specific sheep species (Langladeand
Berrichon du Cher) which are actually spread between 29 sheep flocks in France where
genetic selection programs are performed since the 60’s.

The final group ofmoissacinstances are goat pedigrees collected at theMoissac Goat
Experimental Station(Lozère, France) with genotyping data of micro-satellite markers to
analyze genetic variability in milking speed of dairy goats.

For real pedigrees, all experiments have been performed on a 3 GHz Intel Xeon 64-bit
with 16 GB of RAM.

4.3 Evaluation of the error prediction accuracy

To compare the error prediction accuracy provided by theMAP, MPE, andParsimony,
we had to limit ourselves to relatively small instances (pedclassA) that could be solved
to optimality by Samiam. TheMPE problem has been solved by usingtoulbar2 and
Samiam. Finally,Parsimony was solved by usingtoulbar2 only.

A usual approach to evaluate the accuracy of prediction programs is to compute the
so-called sensitivity and specificity of the predicted features. Two features were evaluated:
the prediction of the individuals (denotedind) containing an error in the pedigree and, more
fine grained, the prediction of the correct genotype (denoted bygeno).



For a given feature (ind or geno), the sensitivity of the prediction is the percentage
of features that should be detected and which are actually correctly predicted. Similarly,
specificity is percentage of predicted features which are correct. For a perfect prediction,
both equal 100%.

Fig. 5 reports sensitivities and specificities for the three problems. The individual speci-
ficity is not shown because it is close to 100% for all methods: when an individual is
detected as erroneous, it is actually erroneous.

MAP gives results which are very similar toMPE. The main advantage ofMAP is its
10% higher genotype specificity, meaning that is more robust in predicting the corrections
of genotypes, as expected. However, the CPU time used for the different problems are very
different, as shown on the right of Fig. 5 using a log-scale:MAP is typically 3 orders of
magnitude more costly (despite small instances with limited treewidth). The main con-
clusion of this analysis is that despite its superiority,MAP is too expensive and cannot be
solved at this time on not too small instances.MPE gives very similar results whileParsi-
mony is interesting for just restoring consistency. Note also thattoulbar2 outperforms
Samiam on theMPE problem.
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Figure 5: Left: Histograms of the sensitivities and specificities forMAP, MPE, andPar-
simony. For each problem, we report the individual sensibility, the genotype sensibility
and the genotype specificity. Right: CPU time is compared for the same problems with
Samiam andtoulbar2 (tb2).

We further comparedParsimony andMPE on larger data sets usingtoulbar2 . This
is reported in Fig. 6 using thepedclassD dataset and a CPU-time limit of 300 seconds.MPE
has nearly a 10% better individual sensitivity and a 15% better genotype sensitivity and
specificity on the larger problems.pedclassD was chosen to because it contains instances
of variable treewidth. Indeed, we observe that the CPU-time needed to solve the instances
is highly sensitive to the treewidth for bothMPE andParsimony. For tree-widths above
50, toulbar2 encountered some hardMPE instances it could not solve in the time limit.
Note that the increase in treewidth is obtained by increasing the number of males in the
founders in the generator5. However, the generator behavior tends to simultaneously lower
the overall number of total generated individuals which explains why individuals eventually
decrease along the x-axis.

4.4 Efficiency and features evaluation

Since our aim is to solve very large real size instances, we conclude the evaluation by
comparing time efficiency of different solvers on the simplestParsimony problem. Indeed,
on the largest real instances defined by the sheep pedigree,MPE remained unsolvable

5Notice that the treewidth is anti-monotone in the number of individuals. This is because the increase in the
treewidth is achieved (paramterizing the simulator) by increasing the number of males in a population. Increasing
the number of males has the side effect of decreasing the number of individuals.
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Figure 6: Left: Histograms compare the sensitivities and specificities ofMPE andParsi-
mony. Right: toulbar2 CPU-time for both problems.

in less than 10 hours. Despite its lower accuracy,Parsimony still provides the essential
service of consistency restoration and this with minimum loss of data, a criterion that may
look very attractive in practice to biologists.

4.4.1 Random pedigree

Fig. 7 shows a CPU time comparison for the selected solvers:toulbar2 , toolbar/BTD ,
and the pseudo-boolean solversMiniSAT+ andPueblo . As the problem size increases,
toulbar2 has the best performance.

Pseudo-boolean and SAT solvers have the extra ability of learning. In theParsimony
problems, all Mendelian constraints are hard and this may be exploited directly by clause
learning. However, this does not apparently compensates for the probably much weaker
lower bound produced by pseudo-boolean/SAT propagation.

The fact thattoulbar2 outperformstoolbar/BTD , which explicitly exploits tree-
decompositions may be explained by the fact thattoolbar/BTD only exploits binary
EDAC (waiting until all but 2 variables are assigned before propagating), thus showing the
interest of generalized FDAC and EDAC.
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Figure 7: Solving time comparison of methodstoulbar2 , toolbar/BTD , MiniSat+ ,
andPueblo .



4.4.2 Results on real pedigree instances

In Table 3 we present the results of solving real pedigree instances withtoulbar2 . All
pedigrees can be solved in reasonable time, despite the very large size of the underlying
problems and the important number of errors detected in some sheep pedigrees.

toulbar2
errors time nodes

eye 1 0.02 0
cancer 1 0.21 0

Parkinson 0 0 6
berrichon1nc 2 4.73 8805
berrichon1 23 5.81 8384

berrichon2nc 41 5.89 6170
berrichon2 106 17.23 15445
langlade1 38 12.28 391
langlade2 89 60.56 17857
langlade3 39 14.19 6731
langlade4 43 59.7 3520
moissac1 0 0 5
moissac2 0 0.51 6
moissac3 0 0 4
moissac4 0 0 5
moissac5 0 1.02 5
moissac6 0 5.64 6

Table 3: Solving real pedigree instances. Columns: name of the instance, optimal number
of errors found, CPU time in seconds, and number of visited nodes.

4.4.3 toulbar2 features evaluation

Becausetoulbar2 contains a variety of technical ingredients, we wanted to know the
importance of the different mechanisms that have been activated in the previous evaluations
such as variable elimination during search (VarElim), dynamic variable ordering based on
conflicts (conflict), EDAC based lower bound vs FDAC based lower bound (EDAC vs
FDAC), and binary branching vs. n-ary branching.

For binary branching, which is known to be theoretically better than n-ary branching in
terms of associated proof systems, we always observed a better behavior for binary branch-
ing in practice too. For a finer analysis, Fig. 8 reports the CPU-time oftoulbar2 on the
pedclassC with different combinations of the above options. The use of EDAC propaga-
tion shows to be very effective in comparison to FDAC. As the size of instances increase
EDAC is an order of magnitude better. The combination of the conflict heuristic and vari-
able elimination has the best performance and corresponds to the combination used in all
the previous experiments. So, no single feature explains the good results oftoulbar2 .

5 Conclusion

In this paper, we have presented a direct application of the Weighted CSP framework to
a difficult problem which occurs very frequently in genetics. Cleaning genotyping data is
a prerequisite before doing any further genetic analysis. In particular, we are interested
in detecting Mendelian errors and providing an optimal correction. Compared to existing
tools dedicated to this problem [22, 25, 2, 28], the novelty of our approach is to provide
an optimal correction based on parsimony or maximum likelihood criterion for large loopy
pedigree data as they are common in animal breeding.
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For the parsimony problem, we were able to solve real pedigrees with up to 120,000
individuals in a few seconds. These problems were modeled as soft constraint networks
with up to 9,500 variables and 17,000 constraints (berrichon2 instance, aftertoulbar2
preprocessing andvarelim). Solving such a large network is possible thanks to the powerful
lower bounds provided by soft local consistencies, in particular EDAC extended to ternary
constraints.

This application lead us to the development of new algorithms, described in Section 3,
for non-binary constraints. Although our presentation was restricted to ternary constraints,
we believe it can be directly generalized ton-ary constraints, by considering all the inter-
mediate arity levels (from 1 ton) and extending costs, in a minimal way, from one level to
the next one by following a cost operation order similar to the order shown in Figure 3.

ForMAP andMPE, we have shown on simulated data thatMPE is a good approxima-
tion of MAP and is orders of magnitude faster to solve thanMAP. However, on large real
pedigrees,MPE could not be solved bytoulbar2 . Other techniques, such as structural
learning [12] or using a specific dominance rule described in [10] (Allele Recoding), may
be useful to break this barrier.

In the future, we will explore more complex probabilistic models in order to detect non
Mendelian errors [9]. It implies working on multi-locus models, where other interesting
biological questions have been recently investigated by the AI community [19, 20].
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