
3 missings
2 falses

1 false 2 missings
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Best Results

Method 1 Method 2 Method 3

Test of different inference methods
on artificial expression datasets

The method with the best result
on the artificial data set
will be used in the real data set
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We study the transcriptomic response of 

sunflower to drought combined to the heterosis 

phenomenom, across 180 gene expressions on 

400 hybrids genotypes, coming from a pool of 72 

parents. SNP present on the parental genomes were 

measured.

Our goal is to infer the gene regulatory network 

among those genes. However, because of the non-

independency of the data, accuracy of inference 

results is unpredictibl. Therefore, we need to test 

different methods, to select the best inference 

method for our biological question.

How to build an artificial dataset with the same biological properties as our real one?

Building artificial genetical genomic 
datasets to optimize the choice of gene 
regulatory inference methods

Test different methods on an artificial dataset  with known network, expression 
levels and genotypes (DNA variant). Biological properties of this artificial dataset 
must be closed to the properties of the real dataset.

1. Build artificial network
based on real biological information available for the same biological 
process, on a close organism

3. Select and adapt an existing gene expression simulator
emulating the same type of experiment that the one we performed, with steady state 
measurements on different genotypes
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For the homologues on A. thaliana 
of our 180 genes of interest, we 
selected regulations described 
between them in 3 databases.

      AtRegNet [1]
      AtPID [2]
      PlantRegMap [3]

Regulations can be supported by  
experiments or predicted (----)

Our artifical network based on 
biological information is composed 
of 137 genes linked by 364 edges

SNP for each parental genotype are associated to a score 0 if it is like in XRQ-line or 1 if different. The 
hybrids SNP are obtained by combining locus-per-locus SNP of their parents.
We created artificial hybrids associated to DNA variant on each measured gene. We considered one variant 
per gene, those DNA variants are based on SNP of the real data.

A. Selection of SNP on each 
parental genotype

Ex : gene HanXRQChr001g0030841

B. K-medoid clustering
Manhattan distance on the SNP data

Genotypes are classified in 2 groups
Cluster with XRQ - DNA variant score = 0

Other Cluster - DNA variant score = 1

XRQ

C. Artifcial hybrids
1 DNA variant per gene

DNA variant of hybrid
= mean score of it parents

3 possible value per gene    

Collection of hybrid genotypes, 
with known DNA variations on 
our genes of interest.

0 homozygous = XRQ variant

1 homozygous ≠ XRQ variant

0.5 heterozygous

2. Create artificial hybrid genotypes
based on genomic information available for the real hybrids used in the experiment

[mRNA] of gene g

basal transcription 
rate of gene g

degradation rate 
constant of gene g

effect of gene g SNP(c) 
on gene g expression

SNP(c) noise

for each
gene k

degradation noise

role of gene k 
on gene g [mRNA] of 

gene  k

min [mRNA] of gene k 
for k to have an effect 

on gene g

effect of SNP(t) of k on 
it activity (more or less 

efficient regulator)

SysGenSIM simulates steady 
state gene expressions using 
ordinary differential equations. 
Simulation is based on a gene 
network topology and DNA 
variant for each gene.
Work only on RIL (both allele of 
a gene are identical) [4]

We modified the simulator to use our heterogenous hybrids, and 
mimetized the allelic dominance caused by the heterosis phenomenon.

wt - wt 1

m - m 0.75

wt - m
0.75 mutated dominance (10%)
0.87 additif effect (80%)
1 wt dominance (10%)

wt-wt 1

m-m 0.75

SysGenSIM
Z parameter  2 possible values

Modified SysGenSIM
Z parameter  3 possible values

heritabilityexpression
variance

hybrid

ex
pr
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si

on
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ve
l

We use a mixed
model to estimate the
heritability [5]

Artificial dataset

Real dataset

4. Comparison of biological score
obtained on real and simulated datasets (in our case the heritability score) 
to adjust parameters of the simulator
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The artificial dataset produced have the same biological properties as our real dataset. We can now test 
different methods of network inference and test the accuracy of these methods by comparing networks inferred by the 
algorithms to the artificial network. Network inference methods with the best results will be used on the experimental 
dataset to answer our biological question.

Select inference methods based on artificial datasets

% of expression variance 
of a gene explained by its 
parent genotypes

Funded by the SunRise project (2011-2019) : http://www.sunrise-project.fr

SysGenSIM parameters adjusted
to obtain the same heritability distribution

SNP cis effect
25%

SNP cis effect
75%

SNP cis effect
50%


