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Résumé

One of the central targets of Systems Biology is to decipher the complex behavior of
a living cell in its environment. A gene regulatory network is a simplified representation
of the gene-level interactions. Network inference methods are powerful tools to understand
such complex biological processes [1]. However, it could be difficult to identify an algorithm
adapted to a specific experimental dataset. Artificial datasets could be used to test different
algorithms of inference and select the most accurate one. But, available artificial datasets
are more like ideal datasets and consequently quite different from measured datasets. In
our case, we didn’t know if classical network inference algorithms (like bayesian network,
mixed model, penalised regression, random forests, or a combination of them [2]) will work
correctly on our dataset. We also didn’t find an artificial dataset with the same properties
as our experimental data. This is why, we decided to create our own artificial dataset. We
present here the characteristics of our experimental dataset and the strategy we elaborate
to create an artificial dataset with the same properties as our experimental dataset.
We work on domesticated sunflower (Helianthus annuus), a highly resistant crop plant to
drought. The sequencing of the genome of the XRQ line of sunflower, had been published last
year [3]. In the context of climate changes it’s interesting to understand how sunflower resists
to drought at the molecular level and how this resistant interacts with the phenomenon of
heterosis when new varieties are created.

To answer this question, two transcriptomic experiments were performed. The goal of the
first experiment was to select genes involved in response to drought and in the heterosis phe-
nomenon. This experiment was performed on a hydric-control environment. Eight different
parental genotypes of sunflower (4 males and 4 females) and their 16 hybrids were cultivated.
The 8 parental genotypes are homozygous for all genes, their hybrids could be homozygous
or heterozygous depending on the locus. Sunflowers were cultivated in two hydric conditions:
(i) in drought condition and (ii) with sufficient water level. The expression levels of all genes
were measured in both conditions and for all genotypes via RNA-sequencing. From those
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transcriptomics measurements we selected 180 genes responding to drought, heterosis and in
interaction between drought and heterosis. Because we are focusing on gene regulation we
chose transcription factors (detected by iTAK [4] and plantTFCat [5]) to compose the main
chunk of our dataset.

The goal of the second experiment was to collect enough data, to performed a gene reg-
ulatory network inference, on the 180 selected genes. The experiment was conducted on
a field with 435 hybrids created from 72 homozygous parental genotypes (36 females and
36 males) including genotypes from the first experiment. The expressions of the 180 se-
lected genes were measured by qPCR (Fluidigm technology) for all the hybrids. For all
parental genotypes, single-nucleotide-polymorphisms (SNPs) were detected against the ref-
erence genome of sunflower (XRQ line).

The experimental dataset contains the expression of 180 genes on 435 hybrids. The col-
lected data are not independent as they come from different parental genotypes and their
hybrids. We don’t know the effect of this dependency between the genotypes on network in-
ference algorithms. To measure the impact of a non-independent dataset on existing network
inference methods, we have created artificial datasets to test the accuracy of the methods.

First step is to create an artificial network. We decided to collect informations about inter-
actions between our 180 genes of interest in different public databases. As the sequencing
of the sunflower genome is recent, really few informations are available on databases for this
plant. For this reason, we decided to collect interactions between the homologous genes of
our selected genes on the plant model Arabidopsis thaliana. For 7 sunflower genes, no ho-
mologous genes were found. The homologous genes are the nodes of our artificial network.
We collected interactions from 3 databases (i) AtPID, a database specific to A. thaliana
containing interactions between proteins [6], (ii) AtRegNet specific to A. thaliana contain-
ing regulations between transcription factors and target genes [7], and (iii) PlantRegMap a
plant database containing regulations between transcription factors and other genes [8]. The
three databases contain links found in the literature, or resulting from experiments (as Chip-
seq experiments). The third database also contains predicted regulations via detection of
binding motifs, on the promoter of target genes, recognized by specific transcription factors.
We selected in these databases only directed links, corresponding to expression regulations,
involving two genes from our selection. We collected 364 regulations (36 in AtPID, 16 in
AtRegNet, and 312 in PlantRegMap), 62% of these regulations were predicted regulations.
Those 364 regulations form the edges of our artificial network. The type of regulation (ac-
tivation or repression of the expression) is known for only two regulations. In the database
AtRegNet where the nature of regulations are described, 64% were activation of the expres-
sion and 36% were repression of the expression. We decided to randomly associate each
edge of our network to a particular type of regulation with a probability of 64% to be an
activation of the expression, the rest being a repression of the expression.

In our experimental dataset, each parental genotype has a list of SNPs, associated to a
score either 0 if it is like in XRQ-line or 1 if different. It is easy to deduce the SNPs of the
hybrids by combining locus-per-locus the SNPs of their parents. In order to study the effect
of genetic polymorphism on gene expressions, we created new virtual hybrid genotypes asso-
ciated to DNA variants on each measured gene. To simplify this analysis, we considered one
variant per gene. To be closer to our biological variety we created this DNA variants based
on SNPs of the experimental data. For each gene of interest, we collected the SNPs present
in their genomic sequence and their promoter region for each parental genotype. Using a
K-medoid clustering with a Manhattan distance on the SNP data, genotypes were classified
in two groups. The group of genotypes with SNPs close to the SNP values of XRQ-line
has a DNA variant score of 0, and the other group of genotypes has a score of 1, for this
gene. For hybrids, the score of DNA variant on each gene is equal to the mean score of their
parents. It can take 3 values: 0 or 1 if the hybrid is homozygous for this gene, or 0.5 if it is
heterozygous. We now had a collection of hybrids, with known DNA variations on our genes
of interest.



The third step is to produce artificial measures of expression for the selected genes. The
data simulator SysGenSIM simulates steady state gene expressions for different genotypes
using ordinary differential equations [9]. The simulation is based on a gene network topology
and DNA variant for each gene. In their model, each gene has only one DNA variant. The
DNA variant of a gene has either a cis-effect (meaning it influences the rate of transcription
of the gene) or a trans-effect (meaning it modifies the efficiency of the gene regulation ac-
tivity). The equation describing the accumulation of a gene transcript for a given genotype
is composed of two parts. The first part of the equation describes the rate of expression
of the gene, and the second part describes the rate of degradation of the transcript. The
expression rate is modulated by the effect of the DNA variant of the gene and the expression
of the regulators of this gene in the network. The DNA variant of the regulators have also
an impact on the efficiency of the regulation. For the moment, SysGenSIM only works on
recombinant inbred lines (RIL). We slightly modified the simulator to use our heterogenous
hybrids, and mimetized the allelic dominance caused by the heterosis phenomenon. In case
of genes with heterozygous DNA variant, the DNA variant effect is randomly chosen, with
a probability of 0.8 to be an additive effect of the DNA variant effect of both parents and
a probability of 0.2 to be a dominant effect of the DNA variant effect of one parent. With
the modified version of SysGenSIM we can produce artificial gene expression data for the
artificial gene network and hybrids we previously generated.

To adjust the different parameters of SysGenSIM, to produce a dataset as close as pos-
sible to our real data, we estimated the part of the variance explained by the genotypes
(also called heritability) in the produced dataset and in the real dataset. This heritability is
calculated via a mixed model [10].

By choosing at random the type of regulation (activation or repression), the DNA effect
(cis- or trans-effect), and the allelic dominance effect for heterosis we produced different
simulated gene expression datasets for our 180 genes and 435 genotypes. For each dataset,
a particular gene regulation network with the same topology is associated. As a conse-
quence, we can now test different methods of network inference and test the accuracy of
these methods by comparing networks produced by the algorithms to the true network. Net-
work inference methods with the best results will be used on the experimental dataset to
answer our biological question.

In conclusion, we have developed a strategy to create an artificial dataset of gene expres-
sion measurements. The aim of this dataset is to test and select network inference methods
adapted to a non-independent dataset for understanding the response to drought and het-
erosis phenomenon of sunflowers. The strategy is constituted of the following 4 steps, that
could be adapted for other biological experiments and other types of data :

(i) Construction of an artificial network based on real biological information available for
the same biological process on a close organism ;

(ii) Creation of artificial hybrid genotypes based on genomic information available for the
real hybrids used in the experiment ;

(iii) Selection and adaptation of a data simulator emulating the same type of experiment
that the one we performed, with steady state measurements on different genotypes ;

(iv) Comparison of the biological score obtained on real and simulated datasets (in our
case the heritability score) to adjust parameters of the simulator.

For each step it’s important to use real biological information to in the end obtain an artifi-
cial dataset with biological properties close to properties of the real one. Doing like this, we
hope the probability that networks inference methods perform the same in simulated as in
real data is really high.
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