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Exact or approximate inference in graphical models: why the choice
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Summary

Probabilistic graphical models offer a powerful framework to account for the dependence
structure between variables, which is represented as a graph. However, the dependence
between variables may render inference tasks intractable. In this paper, we review techniques
exploiting the graph structure for exact inference, borrowed from optimisation and computer
science. They are built on the principle of variable elimination whose complexity is dictated
in an intricate way by the order in which variables are eliminated. The so-called treewidth of
the graph characterises this algorithmic complexity: low-treewidth graphs can be processed
efficiently. The first point that we illustrate is therefore the idea that for inference in graphical
models, the number of variables is not the limiting factor, and it is worth checking the width
of several tree decompositions of the graph before resorting to the approximate method. We
show how algorithms providing an upper bound of the treewidth can be exploited to derive
a ‘good’ elimination order enabling to realise exact inference. The second point is that when
the treewidth is too large, algorithms for approximate inference linked to the principle of
variable elimination, such as loopy belief propagation and variational approaches, can lead
to accurate results while being much less time consuming than Monte-Carlo approaches.
We illustrate the techniques reviewed in this article on benchmarks of inference problems
in genetic linkage analysis and computer vision, as well as on hidden variables restoration
in coupled Hidden Markov Models.

Key words: computational inference; marginalisation; message passing; mode evaluation; vari-
ational approximations

1. Introduction

Graphical models (Lauritzen 1996; Bishop 2006; Koller & Friedman 2009; Barber 2012;
Murphy 2012) are formed by variables linked to each other by stochastic relationships. They
enable the modelling of dependencies in possibly high-dimensional heterogeneous data and
the capture of uncertainty. Graphical models have been applied in a wide range of areas
when elementary units locally interact with each other, such as image analysis (Solomon
& Breckon 2011), speech recognition (Baker et al. 2009), bioinformatics (Liu et al. 2009;
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Maathuis et al. 2010; Höhna et al. 2014) and ecology (Illian et al. 2013; Bonneau et al.
2014; Carriger & Barron 2016) to name a few.

In real applications, a large number of random variables with a complex dependency
structure are involved. As a consequence, inference tasks such as the calculation of a nor-
malisation constant, of a marginal distribution or of the mode of the joint distribution can be
challenging. Three main approaches exist to evaluate such quantities for a given distribution
p defining a graphical model: (i) compute them in an exact manner; (ii) use a stochastic
algorithm to sample from the distribution p to get (unbiased) estimates; (iii) derive an approx-
imation of p for which the exact calculation is possible. Exact computation on p is appealing.
However, if a brute-force method is used, it can lead to very time and memory consuming
procedures for large problems. But for some graphical model structures, the exact inference
can be performed using efficient techniques, even for a large number of variables. This is
the topic of this article. Approach (b) is probably the most widely used by statisticians and
modellers. Stochastic algorithms such as Monte-Carlo Markov Chains, MCMC (Robert &
Casella 2004), Gibbs sampling (Geman & Geman 1984; Casella & George 1992) and particle
filtering (Gordon, Salmond & Smith 1993) have become standard tools in many fields of
application using statistical models. The last approach includes variational approximation
techniques (Wainwright & Jordan 2008), which are starting to become common practice
in computational statistics. In essence, approaches of type (b) provide an approximate an-
swer to the original problem whereas approaches of type (c) provide an exact answer to an
approximate problem, simpler to the original one but assumed to be a good representation.

In this paper, we focus on approaches of type (1) and (3), and we will review techniques
for exact or approximate inference in graphical models borrowed from both optimisation
and computer science. They are computationally efficient, yet not always standard in the
statistician’s toolkit. The characterisation of the structure of the graph G associated with a
graphical model (precise definitions are given in Section 2) enables both determination of
whether the exact calculation of the quantities of interest (marginal distribution, normalisation
constant, mode) can be implemented efficiently and the derivation of a class of operational
algorithms. When the exact calculation cannot be achieved efficiently, a similar analysis of
the problem enables the practitioner to design algorithms to compute an approximation of
the desired quantities with an associated acceptable complexity. Our aim is to provide the
reader with the key elements to understand the power of these tools for statistical inference
in graphical models.

The central algorithmic tool we focus on in this paper is the variable elimination con-
cept (Bertelé & Brioshi 1972). In Section 3, we adopt a unified algebraic presentation of
the different inference tasks (marginalisation, normalising constant or mode evaluation) to
emphasise that each of them can be solved using a particular case of a variable elimination
scheme. Consequently, the work done to demonstrate that variable elimination is efficient
for one task passes on to the other ones. The key ingredient in the design of efficient al-
gorithms based on variable elimination is the clever use of distributivity between algebraic
operators. For instance, distributivity of the product (×) over the sum (+) validates the
equation (a× b)+ (a× c)= a× (b+ c) and evaluating the left-hand side of this equality
requires two multiplications and one addition while evaluating the right-hand side requires
one multiplication and one addition. Similarly since max(a+b, a+ c)=a+max(b, c) it is
more efficient to compute the right-hand side from an algorithmic point of view. Distribu-
tivity enables minimisation of the number of operations. To perform variable elimination,
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associativity and commutativity properties are also required, and underlying algebra is a
semi-ring (from which some notations will be borrowed). Inference algorithms using the
distributivity property have been known and published in the Artificial Intelligence and Ma-
chine Learning literature under different names, such as sum-prod, or max-sum (Pearl 1988;
Bishop 2006). They are typical examples of variable elimination procedures.

Variable elimination relies on the choice of an order of elimination of the variables,
via successive marginalisation or maximisation operations. The calculations are performed
according to this ordering when applying distributivity. The topology of the graph G pro-
vides key information for optimal organisation of the calculations to minimise the number of
elementary operations to perform. For example, when the graph is a tree, the most efficient
elimination order corresponds to recursive elimination of the vertices of degree one. One
starts from the leaves towards the root, and inner nodes of higher degree successively become
leaves. The notion of an optimal elimination order for inference in an arbitrary graphical model
is closely linked to the notion of treewidth of the associated graph G. We will see in Section 3
the reason why inference algorithms based on variable elimination with the best elimination
order are of linear complexity in n, the number of variables/nodes in the graph, i.e. the size
of the graph, but exponential complexity in the treewidth. Therefore treewidth is the main
characterisation of G to determine if the exact inference is possible in practice or not. This
notion has lead to the development of several methods for solving apparently complex infer-
ence problems, which have then been applied in biology (e.g. Tamura & Akutsu 2014). More
details on these methodological and applied results are provided in the Conclusion Section.

The concept of treewidth has been proposed in computer science (Bodlaender 1993), in
discrete mathematics and graph minor theory (see Robertson & Seymour 1986; Lovász 2005).
Discrete mathematics existence theorems (Robertson & Seymour 1986) establish that there
exists an algorithm for computing the treewidth of any graph with complexity polynomial
in n (but exponential in the treewidth), and the degree of the polynomial is determined.
However, this result does not tell how to derive and implement the algorithm, apart from
some very specific cases such as trees, chordal graphs, and series-parallel graphs (Duffin
1965). Section 4 introduces the reader to several state-of-the-art algorithms that provide an
upper bound of the treewidth, together with an associated elimination order. These algorithms
are therefore useful tools to test if exact inference is achievable and, if applicable, to derive
an exact inference algorithm based on variable elimination. Their behaviour is illustrated
on benchmarks borrowed from combinatorial optimisation competitions.

Variable elimination also leads to message passing algorithms (Pearl 1988) which are
now common tools in Computer Science or Machine Learning for marginal or mode eval-
uation. More recently, these algorithms have been reinterpreted as a way to re-parameterise
the original graphical model into an updated one with different potential functions by still
representing the same joint distribution (Koller & Friedman 2009). We explain in Section 5
how re-parametrisation can be used as a pre-processing tool to obtain a new parameterisation
for which the inference becomes simpler. Message passing is not the only way to perform
re-parametrisation, and we discuss alternative efficient algorithms proposed in the context
of constraint satisfaction problems (CSP, see Rossi, van Beek & Walsh 2006). These latter
algorithms have, to the best of our knowledge, not yet been exploited in the context of
graphical models.

As emphasised above, algorithms in polynomial time can be designed in general for
graphical models with limited treewidth only, even if it may happen to be feasible for some
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specific cases with large tree-width as well (Tarlow, Givoni & Zemel 2010 and Serang
2014). Although this is not the case for many graphs, the principles of variable elimination
and message passing for a tree can be applied to any graph leading to heuristic inference
algorithms. The most famous heuristic is the Loopy Belief Propagation algorithm, LBP
(see Kschischang, Frey & Loeliger 2001). We recall in Section 6 the result that establishes
LBP as a variational approximation method. Variational methods rely on the choice of a
distribution which renders inference easier. They approximate the original complex graphical
model. The approximate distribution is chosen within a class of models for which efficient
inference algorithms exist, that is models with small treewidth (0, 1 or 2 in practice). We
review some standard choices of approximate distributions, each of them corresponds to a
different underlying treewidth.

Finally, Section 7 illustrates the techniques reviewed in the article, on the case of Coupled
Hidden Markov Model, CHMM (see Brand 1997). We first compare them to the problem of
mode inference in a CHMM devoted to the study of pest propagation. Then we exemplify the
use of different variational methods combined with the Expectation-Maximisation algorithm,
EM (Dempster, Laird & Rubin 1977) to perform parameter estimation in CHMM.

Because we wanted this article useful for readers not familiar with the notion of variable
elimination and treewidth, and also to provide some elements to further explore the topic,
the article is quite long. For the reader interested in understanding why the treewidth is
important for inference in graphical models and what algorithms can be used in practice that
exploit the treewidth for exact inference, we suggest reading until Section 5.1. Then, for
those who want to have a broader understanding of the topic, several directions are possible:
Sections 5.2 and 5.3 present a more advanced use of variable elimination; Sections 5.2
and Section 6 introduce approximate inference methods related to variable elimination and
they are illustrated in Section 7; in Sections 2, 3 and 5, the paragraphs on deterministic
graphical models present the analogies with the domain of cost functions, to encourage
cross-fertilisation.

2. Graphical models

2.1. Models definition

Consider a stochastic system defined by a set of random variables X� = (X1,…, Xn).
Each variable Xi takes values in �i. A realisation of X is denoted x�= (x1,…, xn), with xi∈�i.
The set of all possible realisations is called the state space, and is denoted �=∏n

i=1 �i. If A is
a subset of V ={1,…, n}, then XA, xA and �A are respectively the subset of random variables
{Xi, i∈A}, a possible realisation {xi, i∈A} of XA and the state space of XA respectively. If
p is the joint probability distribution of X on �, we denote for all x∈�

p(x)=Pr (X=x).

Note that we focus here on discrete variables (we will discuss inference in the case of
continuous variables on examples in Section 8). A joint distribution p on � is said to be
a probabilistic graphical model (Lauritzen 1996; Bishop 2006; Koller & Friedman 2009)
indexed on a set B of parts of V if there exists a set �={�B}B∈B of maps from �B to
R+, called potential functions, indexed by B such that p can be expressed in the following
factorised form:
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p(x)= 1

Z

∏
B∈B

�B(xB), (1)

where Z =∑x∈�
∏

B∈B �B(xB) is the normalising constant, also called partition function.
The elements B∈B are the scopes of the potential functions and |B| is the arity of the
potential function �B. The set of scopes of all the potential functions involving variable Xi

is denoted Bi={B∈B : i∈B}
One desirable property of graphical models is that of Markov local independence: if p(x)

can be expressed as in (1), then a variable Xi is (stochastically) independent of all others in X
conditionally to the set of variables X(∪B∈Bi

B)\i. The set X(∪B∈Bi
B)\i is called the Markov blanket

of Xi, or its neighbourhood (Koller & Friedman 2009, Chapter 4). It is denoted Ni. These
conditional independences can be represented, by a graph with one vertex per variable in X.
The question of encoding the independence properties associated with a given distribution
into a graph structure has been widely described (e.g. Koller & Friedman 2009, Chapters 3
and 4), and we will not discuss it here. We consider the classical graph G= (V , E) associated
with the decomposition dictated in (1), where an edge is drawn between two vertices i and j
if there exists B∈B such that i and j are in B. (Note that for sake of clarity, in some figures
we will denote a node by the random variable it corresponds to). Such a representation
of a graphical model is actually not as rich as the representation of (1). For instance, if
n=3, the two cases B={{1, 2, 3}} and B={{1, 2}, {2, 3}, {3, 1}} are represented by the same
graph G, namely a clique (i.e. a fully connected set of vertices) of size 3. Without loss of
generality, we could impose in the definition of a graphical model that scopes B correspond
to cliques of G. In the above example where B={{1, 2}, {2, 3}, {3, 1}}, this can be done by
defining �′1,2,3=�12�23�13. The original structure is then lost, and �′ is more costly to store

(a) (b) (c) (d)

Figure 1. From left to right: (a) Graphical representation of a directed graphical model, where
potential functions define the conditional probability of each variable given its parents values; (b)
The corresponding factor graph, where every potential function is represented as a factor (square
vertex) connected to the variables that are involved in it; (c) Graphical representation of an undirected
graphical model. It is impossible from this graph to distinguish between a graphical model defined by a
unique potential function on vertices 3, 4 and 5 from a model defined by 3 pairwise potential functions
over each pair (3, 4), (3, 5) and (4, 5); (d) The corresponding factor graph, which unambiguously
defines the potential functions, here three pairwise potential functions.
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than the original potential functions. The factor graph representation goes beyond the limit
of the representation G: this graphical representation is a bipartite graph with one vertex
per potential function and one vertex per variable. Edges are only between functions and
variables. An edge is present between a function vertex (also called factor vertex) and a
variable vertex, if and only if the variable is in the scope of the potential function. Figure 1
displays examples of the two graphical representations.

Several families of probabilistic graphical models exist (Koller & Friedman 2009;
Murphy 2012). They can be grouped into directed and undirected ones. The most classical
directed framework is that of Bayesian network (Pearl 1988; Jensen & Nielsen 2007). In
a Bayesian network, potential functions are conditional probabilities of a variable given its
parents. In such models, trivially Z=1. There is a representation by a directed graph where
an edge is directed from a parent vertex to a child vertex (see Fig. 1a). The undirected
graphical representation G is obtained by moralisation, i.e. by adding an edge between two
parents of a same variables. Undirected probabilistic graphical models (see Fig. 1c) are
equivalent to Markov Random Fields (MRF; Li 2001) as soon as the potential functions
take values in R+ \ {0}. In an MRF, a potential function is not necessarily a probability
distribution: �B is not required to be normalised (as opposed to a Bayesian network model).

2.1.1. Deterministic graphical models

Although the term ‘graphical models’ is often used to refer to probabilistic graphical
models, the idea of describing a joint interaction on a set of variables through local functions
has also been used in artificial intelligence to concisely describe Boolean functions or cost
functions, with no normalisation constraint. Throughout this article, we regularly refer to
these deterministic graphical models, and we explain how the algorithms devoted to their
optimisation can be directly applied to compute the mode in a probabilistic graphical model.

In a deterministic graphical model with only Boolean (0/1) potential functions, each
potential function describes a constraint between variables. If the potential function takes
value 1, the corresponding realisation is said to satisfy the constraint. If it takes value 0,
the realisation does not satisfy it. The graphical model is known as a constraint network.
It describes a joint Boolean function on all variables that takes value 1 if and only if all
constraints are satisfied. The problem of finding a realisation that satisfies all the constraints,
called a solution of the constraint network, is the CSP (Rossi, van Beek & Walsh 2006).
This framework is used to model and solve combinatorial optimisation problems. There is
a wide variety of software tools to solve it.

CSPs have been extended to describe joint cost functions, decomposed as a sum of
local cost functions, fB in the weighted constraint network or cost function network (Rossi,
van Beek & Walsh 2006).

f (x)=
∑
B∈B

fB(xB).

In this case, cost functions take finite or infinite integer or rational values: infinity enables to
express hard constraints while finite values encode costs for unsatisfied soft constraints. The
problem of finding a realisation of minimum cost is the Weighted Constraint Satisfaction
Problem (WCSP), which is NP-hard. It is easy to observe that any probabilistic graphical
model can be translated into a weighted constraint network, and vice versa using a simple
− ln(·) transformation.
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fB(xB)=− ln(�B), with fB(xB)=+∞⇔�B(xB)=0.

Therefore the WCSP is equivalent to finding a realisation with maximal probability in a
probabilistic graphical model. With this equivalence, it becomes possible to use exact WCSP
resolution algorithms that have been developed in this field for mode evaluation or for the
computation of Z , the normalising constant, in a probabilistic graphical model. See for
instance Viricel et al. (2016), for an application on a problem of protein design.

2.2. Inference tasks in probabilistic graphical models

Computations on probabilities and potentials rely on two fundamental types of opera-
tions. Firstly, multiplication (or addition in the log domain) is used to combine potentials to
define a joint potential distribution. Secondly, sum or max=min can be used to eliminate vari-
ables and compute marginals or modes of the joint distribution on subsets of variables. The
precise identity of these two basic operations is not important for the inference algorithms
based on variable elimination. We therefore adopt a presentation using generic operators to
emphasise this property of algorithms. We denote as � and as ⊕ the combination opera-
tor and the elimination operator, respectively. To be able to apply the variable elimination
algorithm, the only requirement is that (R+, ⊕ ,�) defines a commutative semi-ring. Specif-
ically, the semi-ring algebra offers distributivity: (a�b)⊕ (a�c)=a�(b⊕c). For instance,
this corresponds to the distributivity of the product operation over the sum operation, i.e.
(a× b)+ (a× c)= a× (b+ c), or to the distributivity of the max operation over the sum
operation, i.e. max(a+b, a+c)=a+max(b, c), or to the distributivity of the max operation
over the product operation, i.e. max(a×b, a×c)=a× (max(b, c)). We extend the definition
of the two abstract operators � and ⊕ to operators on potential functions, as follows:

Combine operator: the combination of two potential functions �A and �B is a new
function �A��B :�A∪B→R+ defined as �A��B(xA∪B)=�A(xA)��B(xB).
Elimination operator: the elimination of variable Xi, i∈B from a potential function �B

is a new function (⊕xi�B) :�B\{i}→R+ defined as (⊕xi�B)(xB\{i})=⊕xi (�B(xB\{i}, xi)).
For ⊕=+, (⊕xi�B)(xB\{i}) represents the marginal sum

∑
xi

�B(xB\{i}, xi).

Classical counting and optimisation tasks in graphical models can now be entirely
written with these two operators. For simplicity, we denote by ⊕xB , where B⊂V a sequence
of eliminations ⊕xi for all i∈B, the result being insensitive to the order in a commutative
semi-ring. Similarly, �B∈B represents the successive combination of all potential functions
�B, with B∈B.

Counting task. Under this name, we group all tasks that involve summing over the state
space of a subset of variables in X. This includes the computation of the partition function
Z or of any marginal distribution, as well as entropy evaluation. For A⊂V and Ā=V \A,
the marginal distribution pA of XA associated with the joint distribution p is defined as:

pA(xA)=
∑

xĀ∈�Ā

p(xA, xĀ)= 1

Z

∑
xĀ∈�Ā

∏
B∈B

�B(xB).

If we see Z as a constant function, this can be expressed as

pA�Z=
(
⊕xĀ

(�B∈B�B
))

,

where � combines functions using × and ⊕ eliminates variables using +.
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Marginal evaluation is also interesting in the case where some variables are observed.
If xO (O⊂V ) are the values of the observed values, the marginal conditional distribution
can be computed by restricting the domains of variables XO to the observed value. This
is typically the kind of computational task required in the E-step of an EM algorithm, for
parameter estimation of models with hidden data.

Optimisation task. The most common optimisation task in a graphical model corre-
sponds to the evaluation of the most probable state xÅ of the random vector X, defined as

xÅ= arg max
x∈�

p(x)= arg max
x∈�

∏
B∈B

�B(xB)= arg max
x∈�

∑
B∈B

ln �B(xB).

When p is an a posteriori distribution, xÅ is also called the Maximum A Posteriori (MAP).
The maximum itself is ⊕x(�B∈B ln �B(xB)) with ⊕ and � set to max and to +, respectively.
The computation of the mode xÅ does not require the computation of the normalising
constant Z , however evaluating the mode probability value p(xÅ) does. Another optimisation
task of interest is the computation of the max-marginals of each variable Xi defined as
pÅ(xi)=maxxV\i p(x).

Therefore, counting and optimisation tasks can be interpreted as two instantiations of the
same computational task expressed in terms of combination and elimination operators, namely
⊕xA�B∈B�B, where A⊆V . When the combination operator � and the elimination operator
⊕ are set to × and +, respectively, this computational problem is known as a sum-product
problem in the Artificial Intelligence literature (Pearl 1988). When ⊕ and � are set to the
maximum and sum operator, respectively, it is a max-sum problem (Bishop 2006, Chapter 8).
In practice, it means that tasks such as solving the E-step of the EM algorithm or computing
the mode in a graphical model, belongs to the same family of computational problems.

We will see in Section 3 that there exists an exact algorithm solving this general task
which exploits the distributivity of the combination and elimination operators to perform
operations in a smart order. From this generic algorithm, known as variable elimination
(Bertelé & Brioshi 1972) or bucket elimination (Dechter 1999), one can deduce exact
algorithms to solve counting and optimisation tasks in a graphical model, by instantiating
the operators ⊕ and �.

2.2.1. Deterministic Graphical models

CSP is a ∨-∧ problem as it can be defined using ∨ (logical ‘or’) as the elimination
operator and ∧ (logical ‘and’) as the combination operator over Booleans. The WCSP is a
min-+ as it uses min as the elimination operator and + (or bounded variants of +) as the
combination operator. Several other variants exist (Rossi, van Beek & Walsh 2006), including
generic algebraic variants (Schiex, Fargier & Verfaillie 1995; Bistarelli, Montanari & Rossi

Table 1. Definitions of the Combine (�) and the Elimination (⊕) operators for classical tasks on
probabilistic and deterministic graphical models.

Task ⊕ �
Marginal evaluation + ×
Mode evaluation max +
Existence of a solution in a CSP ∨ ∧
Evaluation of the minimum cost in WCSP min +
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1997; Kohlas 2003; Cooper 2004; Pralet, Verfaillie & Schiex 2007). The definitions of the
Combine and the Elimination operators for classical tasks on probabilistic and deterministic
graphical models are given in Table 1.

2.3. Example: CHMM

We now introduce the example of CHMMs, which can be seen as extensions of Hidden
Markov Chain (HMC) models to several chains in interactions. In section 7, we will use
this framework to illustrate the behaviour of exact and approximate algorithms based on
variable elimination.

An HMC (Figure 2) is defined by two sequences of random variablesO andH of the same
length, T .A realisationO�= (o1,…oT ) of the variablesO�= (O1,…OT ) is observed, while the
states of variablesH�= (H1,…HT ) are unknown (hidden). In the HMC model the assumption
is made that Oi is independent of HV\{i} and OV\{i} given the hidden variable Hi. These
independences are modelled by pairwise potential functions �Hi ,Oi ,∀1� i �T . Furthermore,
the hidden variable Hi is independent of H1,…, Hi−2 and O1,…, Oi−1 given the hidden variable
Hi−1. These independences are modelled by pairwise potential functions �Hi−1,Hi ,∀ 1<i �T .
Then the model is fully defined by specifying an additional potential function �H1 (h1)
to model the initial distribution. In the classical HMC formulation (Rabiner 1989), these
potential functions are normalised conditional probability distributions i.e., �Hi−1,Hi (hi−1, hi)=
Pr(Hi= hi|Hi−1= hi−1), �Oi ,Hi (oi, hi)=Pr(Oi= oi|Hi= hi) and �H1 (h1)=Pr(H1= h1). As a
consequence, the normalising constant Z is equal to 1, as it is in Bayesian networks.

Consider now that there is more than one hidden chain: I signals are observed at times
t∈{1,…T } and we denote Oi

t the variable corresponding to the observed signal i at time t.
Variable Oi

t depends on some hidden state H i
t . The CHMM framework assumes dependency

between two hidden chains at two consecutive time steps (see Brand 1997): H i
t depends not

only on H i
t−1, it may depend on some H j

t−1 for j �= i. The set of the indices of chains upon
which H i

t depends (except i) is denoted Li. This results in the graphical structure displayed
on Figure 3, where L2={1, 3} and L1=L3={2}. Such models have been considered in a
series of domains such as bioinformatics (Choi et al. 2013), electroencephalogram analysis
(Zhong & Ghosh 2002) or speech recognition (Nock & Ostendorf 2003). In a CHMM setting,
the joint distribution of the hidden variables H= (H i

t )i,t and observed variables O= (Oi
t)i,t

factorises as

p(h,o)∝
I∏

i=1

�init(hi
1)

(
I∏

i=1

T∏
t=2

�M (hi
t−1, hLi

t−1, hi
t)

)
×
(

I∏
i=1

T∏
t=1

�E(hi
t , oi

t)

)
, (2)

Figure 2. Graphical representation of an HMM. Hidden variables correspond to vertices 1, 3, 5, 7,
and observed variables to vertices 2, 4, 6, 8.
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Figure 3. Graphical representation of a coupled HMM with 3 hidden chains.

where �init is the initial distribution, �M encodes the local transition function of H i
t and �E

encodes the emission of the observed signal given the corresponding hidden state. A fairly
comprehensive exploration of these models can be found in Murphy (2002).

Potential functions �init , �M and �E can be parameterised by a set of parameters
denoted �. A classical problem for CHMMs is to have more than one iron in the fire:
(i) estimate �; and (ii) compute the mode of the conditional distribution of the hidden
variables given the observations. Estimation can be performed using an EM algorithm, and
as mentioned previously, the E-step of the algorithm and the mode computation task belong
to the same family of computational tasks in graphical models. Both can be solved using
variable elimination as discussed in the next section.

Beforehand, we present a reasonably simple example of a CHMM that will be used to
illustrate the different inference algorithms introduced in this work. It models the dynamics
of a pest that can spread on a landscape composed of I crop fields organised on a regular
grid. The spatial neighbourhood of field i, denoted Li, is the set of the four closest fields
(three on the borders, and two in corners of the grid). H i

t ∈ {0, 1} (1 � i � I , 1 � t � T ) is
the state of crop field i at time t. State 0 (respectively 1) represents the absence (presence)
of the pest in the field. Variable H i

t depends on H i
t−1 and on the H j

t−1, for j ∈ Li. The
conditional probabilities of survival and apparition of the pest in field i are parameterised by
3 parameters: �, the probability of contamination from outside the landscape (long-distance
dispersal); �, the probability that the pest spreads from an infected field j ∈ Li to field i
between two consecutive times; and �, the probability of field persistent infection between
two consecutive times. We assume that contamination events from all neighbouring fields
are independent. Then, if Ci

t is the number of contaminated neighbours of field i at time
t (i.e. Ci

t =
∑

j∈Li
H j

t ), the contamination potential of field i at time t is:

�M (0, hLi
t−1, 1)=Pr(H i

t =1|H i
t−1=0, hj

t−1, j∈Li)= �+ (1− �)(1− (1−�)Ci
t ),

and its persistence in a contaminated state is:

�M (1, hLi
t−1, 1)=Pr(H i

t =1|hi
t−1=1, hj

t , j∈Li)

= �+ (1− �)
(

�+ (1− �)(1− (1−�)Ci
t )
)
.
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The (H i
t )’s are hidden variables but monitoring observations are available. A binary vari-

able Oi
t is observed: it takes value 1 if the pest was declared as present in the field; and 0 other-

wise. Errors of detection are possible. False negative observations occur since even if the pest
is there, it can be difficult to notice, and missed. On the contrary, false positive observations
occur when the pest is mixed up with another one. We define the corresponding emission po-
tential as �E(0, 1)=Pr(Oi

t=0|H i
t =1)= fn and �E(1, 0)=Pr(Oi

t=1|H i
t =0)= fp, respectively.

3. Variable elimination for exact inference

We now describe the principle of variable elimination to solve the general inference
tasks presented in Section 2.2 We first recall the Viterbi algorithm for HMC (Rabiner 1989),
a classical example of variable elimination for optimisation (mode evaluation). Then, we for-
mally describe the variable elimination procedure in the general graphical model framework.
The key element is the choice of an ordering for the sequential elimination of the variables.
It is closely linked to the notion of the treewidth of the graphical representation of the model.
We explain how the complexity of a variable elimination algorithm is fully characterised
by this notion. We also describe the extension to the elimination of blocks of variables.

3.1. Viterbi algorithm for HMC models

As a didactic introduction to exact inference on graphical models by variable elimination,
we consider a well studied stochastic process: the discrete HMC.

A classical inference task for an HMC is to identify the most likely values of variables H
given a realisation o of the variables O. The problem is to compute arg maxh Pr(H=h|O=o),
or equivalently the argument of:

max
h1,…,hT

[
(�H1 (h1)�O1,H1 (o1, h1))

T∏
i=2

(�Hi−1,Hi (hi−1, hi)�Oi ,Hi (oi, hi))

]
. (3)

The number of possible realisations of H is exponential in T . Nevertheless, this opti-
misation problem can be solved in a number of operations linear in T using the well-known
Viterbi algorithm (Rabiner 1989). This algorithm, based on dynamic programming, performs
successive eliminations (by maximisation) of all hidden variables, starting with HT , and it-
eratively considering the Hi’s for i=T −1, T −2,…, 1. It successively computes the most
likely sequence of hidden variables. By using distributivity between the max and the product
operators, the elimination of variable HT can be done by rewriting (3) as:

max
h1,…,hT−1

[
�H1 (h1)�O1,H1 (o1, h1)

T−1∏
i=2

(
�Hi−1,Hi (hi−1, hi)�Oi ,Hi (oi, hi) max

hT

�HT−1,HT (hT−1, hT )�OT ,HT (oT , hT )︸ ︷︷ ︸
New potential function

)]
.

The new potential function created by maximising on HT depends only on variable HT−1.
The same principle can then be applied to HT−1 and so forth. This is a simple application
of the general variable elimination algorithm that we describe in the next section.
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3.2. General principle of variable elimination

In Section 2, we have seen that counting and optimisation tasks can be formalised by
the same generic algebraic formulation

⊕
xA

( �
B∈B

�B) (4)

where A⊆V .
The trick behind variable elimination (Bertelé & Brioshi 1972) relies on a clever use

of the distributivity property. Indeed, evaluating (a�b)⊕(a�c) as a�(b⊕c) requires fewer
operations. Hence eliminating a in the second expression leads to fewer algebraic operations.
Since distributivity applies both for counting and optimising tasks, variable elimination can
be applied to both tasks. It also means that if variable elimination is efficient for one task it
will also be efficient for the other one. As in the HMC example, the principle of the variable
elimination algorithm for counting or optimising consists of eliminating variables one by
one in an expression of the problem as in (4).

The elimination of the first variable, say Xi, i∈A, is performed by merging all poten-
tial functions involving Xi and applying operator ⊕xi to these potential functions. Using
commutativity and associativity of both operators, (4) can be rewritten as:

⊕
xA

( �
B∈B

�B)= ⊕
xA\{i}
⊕
xi

(
( �
B∈B\Bi

�B)�( �
B∈Bi

�B)

)
,

where Bi is the subset of V defined such as all its elements contain i. Then using distributivity
of � on ⊕, we obtain:

⊕
xA

( �
B∈B

�B)= ⊕
xA\{i}

[
( �
B∈B\Bi

�B)� (⊕
xi

�
B∈Bi

�B)︸ ︷︷ ︸
New potential function �Ni

]
. (5)

This shows that the elimination of Xi results in a new graphical model, where variable
Xi and the potential functions �B, B∈Bi ={B′, xi ∈B′} do not appear anymore. They are
replaced by a new potential �Ni which does not involve Xi, but depends on its neighbours in
G. The graph associated with the new graphical model is in a sense similar to the one of the
original model. It is updated as follows: vertex Xi is removed, and neighbours XNi of Xi are
now connected together in a clique because they are all in the scope of �Ni . The new edges
between the neighbours of Xi are called fill-in edges. For instance, when eliminating variable
X1 in the graph of Figure 4 (left), potential functions �1,2, �1,3, �1,4 and �1,5 are replaced
by �2,3,4,5=⊕x1 (�1,2��1,3��1,4��1,4). The new graph is shown in Figure 4 (right).

3.2.1. Interpretation for marginalisation, maximisation and finding the mode of a dis-
tribution

When the first elimination step is applied with ⊕=+ and �=×, the probability
distribution defined by this new graphical model is the marginal distribution pV\{i}(xV\{i})
of the original distribution p (up to a constant). The complete elimination can be obtained
by successively eliminating all variables in XA. The result is a graphical model over XV\A,
which specifies the marginal distribution pV\A(xV\A). When A=V , the result is a model with
a single constant potential function with value Z .
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Figure 4. Elimination of variable X1 replaces the four pairwise potential functions involving variable
X1 with a new potential �N1, involving the four neighbours of vertex 1 in the original graph. The
new edges created between these four vertices are called fill-in edges (dashed edges in the middle
figure).

If instead⊕ is max, and�=× (or+with a log transformation of the potential functions)
and A=V , the last potential function obtained after elimination of the last variable is equal to
the maximum of the non-normalised distribution. So evaluating Z or the maximal probability
of a graphical model can both be performed with the same variable elimination algorithm,
just changing the definition of the⊕ (and� if needed) operator(s). Lastly, if one is interested
in the mode itself, an additional computation is required. The mode is actually obtained by
induction: if xÅ

V\{i} is the mode of the graphical model obtained after the elimination of the
first variable, Xi, then the mode of p can be defined as (xÅ

V\{i}, xÅ
i ), where xÅ

i is a value in �i

that maximises �B∈B �B(xÅ
V\{i}, xi). This maximisation is straightforward to derive because

xi can take only |�i| values. xÅ
V\{i} itself is obtained by successively building the mode of

the graphical model obtained after elimination of the second variable, and so on. We stress
here that the procedure requires retention of the intermediary potential functions �Ni created
during the successive eliminations.

3.2.2. Complexity of the intermediary potential functions and variable elimination
ordering

When eliminating a variable Xi, the task which can be computationally expensive is the
computation of the intermediate �Ni . It requires computation of the product �B∈Bi

�B(xB) of
several potential functions for all elements of �Ni∪{i}, the state space of XNi∪{i}. The time and
space complexity of the operation are entirely determined by the cardinality |Ni| of the set of
indices in Ni. If K=maxj∈V |�j|, the time complexity (i.e. number of elementary operations
performed) is in O(K |Ni |+1) and space complexity (i.e. memory space needed) is in O(K |Ni |).
Complexity is therefore exponential in |Ni|, the number of neighbours of the eliminated
variable in the current graphical model. The total complexity of the variable elimination is
then exponential in the maximum cardinality |Ni| over all successive eliminations. However
note that it is linear in n, which means that a large n is not necessarily a problem for having
access to exact inference. Because the graphical model changes at each elimination step,
this number usually depends on the order in which variables are eliminated.
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Figure 5. A graph and two elimination orders. Left, the graph; middle, induced graph associated
with the elimination order (7, 6, 5, 4, 3, 2, 1). Vertices are eliminated from the first to the last
element of the list. The maximum size of Ni sets created during elimination is 2 (maximum number
of outgoing edges) and only one (dashed) fill-in edge is added when vertex 4 is eliminated; right,
induced graph associated with the elimination order (7, 5, 3, 1, 6, 4, 2). The maximum size of Ni

sets created during elimination is 3 and 5 (dashed) fill-in edges are used.

As a consequence, the prerequisite for application of variable elimination is to decide
for an ordering of the elimination of the variables. As illustrated in Figure 5 two different
orders can lead to two different Ni subsets. The key message is that the choice of the order
is crucial. It dictates the efficiency of the variable elimination procedure. We now illustrate
and formalise this intuition.

3.3. When is variable elimination efficient?

We can understand why theViterbi algorithm is an efficient algorithm for mode evaluation
in a HMC. The graph associated with an HMC is comb shaped: the hidden variables form a
line and each observed variable is a leaf in the comb (see Figure 2). So it is possible to design
an elimination order where the current variable to eliminate has a unique neighbour in the
graphical representation of the current model: for instance, the ordering HT , HT−1,…, H1.
By convention, the first eliminated variable is the first variable listed in this ordering (note
that variables Ot do not have to be eliminated since their value is known). Following this
elimination order, when eliminating a variable using⊕, the resulting graphical model has one
fewer vertex than the previous one and no fill-in edge. Indeed, the new potential function �Ni

is a function of a single variable since |Ni|=1. The Viterbi algorithm has a space complexity
of O(TK) and a time complexity of O(TK2).

More generally, variable elimination is very efficient, i.e. leads to transitional Ni sets of
small cardinality, on graphical models whose graph representation is a tree. More specifically,
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for such graph structure, it is always possible to design an elimination order where the current
variable to eliminate has only one neighbour in the graphical representation of the current
model.

Another situation where variable elimination can be efficient is when the graph associated
with the graphical model is chordal (any cycle of length four or more has a chord i.e., an edge
connecting two non-adjacent vertices in the cycle), and when the size of the largest clique
is low. The rationale for this interesting property is explained intuitively here. In Figure 4,
new edges are created between neighbours of the eliminated vertex. If this neighbourhood
is a clique, no new edge is added. A vertex whose neighbourhood is a clique is called a
simplicial vertex. Chordal graphs have the property that there exists an elimination order of
the vertices, such that every vertex during the elimination process is simplicial (Habib &
Limouzy 2009). Consequently, there exists an elimination order such that no fill-in edges
are created. Thus, the size of a transitional Ni’s is dictated by the size of the clique formed
by the neighbours of i Let us note that a tree is a chordal graph, in which all edges and
only edges are cliques. Hence, for a tree, simplicial vertices are vertices of degree one. The
elimination of degree one vertices on a tree is an example of simplicial elimination on a
chordal graph.

For arbitrary graphs, if the maximal scope size of the intermediate �Ni functions created
during variable elimination is too large, then memory and time required for the storage and
computation quickly exceed computer capacities. Depending on the chosen elimination order,
this maximal scope can be reasonable from a computational point of view, or too large. So
again, the choice of the elimination order is crucial. In the case of CHMMs, we can imagine
two different elimination orders: either time slice per time slice, or chain by chain. (We omit
the observed variables that are known and do not have to be eliminated.) For the first order,
starting from the oriented graph of Figure 3, we first moralise it. Then, elimination of the
variables H i

T of the last time step does not add any fill-in edges. However, when eliminating
variables H i

T−1 for 1� i � I −1, due to the temporal dependences between the chains, we
create an intermediate potential function depending on I +1 variables (H I

T−1 and the H i
T−2

for all chains). Then when successively eliminating temporal slices, the maximal size of
the intermediate potential functions created is I +1. For the second elimination order, still
starting from the moralised version of the oriented graph, after eliminating all variables H 1

t

for 1� t �T −1, we create an intermediate potential function depending on T +1 variables
(H 1

T and H 2
t for all t). Then when successively eliminating chains, the maximal size of the

intermediate potential functions created is T +1. So depending on the values of I and T ,
we will not select the same elimination order.

3.4. The treewidth to characterise variable elimination complexity

The lowest complexity achievable when performing variable elimination is characterised
by a parameter called the treewidth of the graph associated with the original graphical model.
This concept has been repeatedly discovered and redefined. The treewidth of a graph is
sometimes called its induced width (Dechter & Pearl 1988), its minimum front size (Liu
1992), its k-tree number (Arnborg 1985) its dimension (Bertelé & Brioshi 1972), and is also
equal to the min-max clique number of G minus one (Arnborg 1985) to name a few. The
treewidth is also a key notion in the theory of graph minors (Robertson & Seymour 1986;
Lovász 2005).
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We insist here on two definitions. The first one (Bodlaender 1993) relies on the notion
of the induced graph (see Definition 1 below). It highlights the close relationship between
fill-in edges and the intermediate Ni sets created during variable elimination. The second one
(Robertson & Seymour 1986; Bodlaender 1993) is the most commonly used characterisation
of the treewidth using the so-called tree decompositions, also known as junction trees, which
are key tools to derive variable elimination algorithms. It underlies the block-by-block
elimination procedure described in Section 3.5.

Definition 1. Let G= (V , E) be a graph defined by a set of vertices indexed on V and a set
E of edges. Given an ordering � of the vertices of G, the induced graph Gind

� is defined in
a constructive way as follows. First, G and Gind

� have same vertices. Then for each edge in
E an oriented edge is added in Gind

� going from the first of the two nodes according to �
toward the second. Then each vertex i of V is considered one after the other following the
order defined by �. When vertex i is treated, an oriented edge is created between all pairs
of neighbours of i in G that follow i in the ordering defined by �. Again the edge is going
from the first of the two nodes according to � toward the second.

The induced graph Gind
� is also called the fill graph of G, and the process of computing

it is sometimes referred to as ‘playing the elimination game’ on G, as it just simulates
elimination on G using the variable ordering � (see an example on Figure 5). This graph
is chordal (Vandenberghe & Andersen 2014). It is known that every chordal graph G has
at least one vertex ordering � such that Gind

� =G (omitting the fact that edges of Gind
� are

directed), called a perfect elimination ordering (Fulkerson & Gross 1965).
The second notion that enables us to define the treewidth is the notion of tree de-

composition. Intuitively, a tree decomposition of a graph G organises the vertices of G in
clusters of vertices which are linked by edges such that the graph obtained is a tree. Specific
constraints on the way vertices of G are associated with clusters in the decomposition tree
are required. These constraints ensure that the resulting tree decomposition has properties
useful for building variable elimination algorithms.

Definition 2. Given a graph G= (V , E), a tree decomposition of G, T , is a tree (C, ET ),
where C={C1,…, Cl} is a family of subsets of V (called clusters), and ET is a set of edges
between the subsets Ci, satisfying the following properties:

• The union of all clusters Ck equals V (each vertex of G is associated with at least one
vertex of T ).
• For every edge (i, j) in E, there is at least one cluster Ck that contains both i and j.
• If clusters Ck and Cl both contain a vertex i of G, then all clusters Cs of T in the

(unique) path between Ck and Cl contain i as well: clusters containing vertex i form
a connected subset of T . This is known as the running intersection property.

The concept of tree decomposition is illustrated in Figure 6.

Definition 3. The following two definitions of the treewidth Derived, respectively, from the
notion of induced graph, and from that of tree decomposition are equivalent:

• The treewidth TW �(G) of a graph G for the ordering � is the maximum number of
outgoing edges of a vertex in the induced graph Gind

� . The treewidth TW (G) of a graph
G is the minimum treewidth over all possible orderings �.
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Figure 6. Left: graphical representation of a graphical model. Right: tree decomposition over clusters
C1={1, 2, 4}, C2={1, 3, 4}, C3={3, 4, 5}, C4={5, 6} and C5={5, 7}. Each edge between two clusters
is labelled by their shared variables.

• The width of a tree decomposition (C, ET ) is the size of the largest Ci∈C minus 1, and the
treewidth TW (G) of a graph is the minimum width among all its tree decompositions.

It is not trivial to establish the equivalence (see Meseguer, Rossi & Schiex 2006,
Chapter 7, and Schiex 1999). The term TW �(G) is exactly the cardinality of the largest set
Ni created during variable elimination with elimination order �. For example, in Figure 5,
the middle and right graphs are the two induced graphs for two different orderings and
TW �(G) is equal to 2 with the first ordering and to 3 with the second. It is easy to see that
in this example TW (G)=2. The treewidth of the graph of the HMC model, and of any tree
is equal to 1.

It has been established that finding a minimum treewidth ordering � for a graph G,
finding a minimum treewidth tree decomposition, or computing the treewidth of a graph are
of equivalent complexity. For an arbitrary graph, computing the treewidth is not an easy
task. Section 4 is dedicated to this question, from both a theoretical and a practical point
of view.

The treewidth is therefore a key indicator to answer the driving subject of this review:
will variable elimination be efficient for a given graphical model? For instance, the principle
of variable elimination was applied to the exact computation of the normalising constant of
an MRF on a small r by c lattice in Reeves & Pettitt (2004). For this regular graph, it is known
that the treewidth is equal to min(r, c). So exact computation through variable elimination is
possible for lattices with a small value for min(r, c) (even if max(r, c) is large). It is however
well beyond computer capacities for real challenging problems in image analysis. In this
case variable elimination can still be used, to define heuristic computational solutions, as in
the following examples. In a Bayesian setting, in Friel & Rue (2007) the authors proposed
an estimation of the a posteriori distribution of the parameter of a binary Hidden Markov
Random Field (HMRF) without resorting to MCMC, by combining the work of Reeves
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& Pettitt (2004) and an approximation of the dependencies. Still for HMRF, Friel et al.
(2009) proposed an algorithm for computing the likelihood which relies on the merging of
exact computations on small sub-lattices of the original lattice. More recently, Austad &
Tjelmeland (2017) applied variable elimination on an approximation of the pseudo Boolean
expression of a MRF distribution.

3.5. Tree decomposition and block by block elimination

Given a graphical model and a tree decomposition of its graph, a possible alternative to
solve counting or optimisation tasks is to eliminate variables by successive blocks instead of
one after the other. To do so, the block by block elimination procedure (Bertelé & Brioshi
1972) relies on the tree decomposition characterisation of the treewidth. The underlying idea
is to apply the variable elimination procedure on the tree decomposition, eliminating one
cluster of the tree at each step. First a root cluster Cr ∈C is chosen and used to define an
order of elimination of the clusters, by progressing from the leaves toward the root. Every
eliminated cluster corresponds to a leaf of the current intermediate tree. Then each potential
function �B is assigned to the cluster Ci in C such that B⊂Ci, which is the closest to the
root. Such a cluster always exists otherwise either the running intersection property would
not be satisfied or the graph of the decomposition would not be a tree. More precisely, the
procedure starts with the elimination of any leaf cluster Ci of T , with parent Cj in T . Let
us denote B(Ci)={B∈B, �B assigned to Ci}. Here again, commutativity and distributivity
are used to rewrite expression (4) (with A=V ) as follows:

⊕
x
�

B∈B
�B= ⊕

xV\(Ci\Cj )

[
�

B∈B\B(Ci)
�B� ( ⊕

xCi\Cj

�
B∈B(Ci)

�B)︸ ︷︷ ︸
New potential function

]
.

Note that only variables with indices in Ci \Cj ≡Ci ∩ (V \Cj) are eliminated, even if
it is common to say that the cluster has been eliminated. For instance, in the example
depicted in Figure 6, if the first eliminated cluster is C1, the new potential function is
⊕x2�1,2(x1, x2)�2,4(x2, x4), which depends only on variables X1 and X4. Cluster elimination
continues until no cluster is left. The point of this procedure is that the intermediate poten-
tial function created after each cluster elimination may have a scope much smaller than the
treewidth, leading to better space complexity (Bertelé & Brioshi 1972, Chapter 4). However,
the time complexity is increased.

In summary, the lowest achievable complexity when performing variable elimination
is reached for elimination orders when the cardinalities of the intermediate sets Ni are
smaller or equal to the treewidth of G. This treewidth can be determined by considering
cluster sizes in tree decompositions of G. Furthermore, any tree decomposition T can be
used to build an elimination order and vice versa. Indeed, an elimination order can be
defined by using a cluster elimination order based on T , and by choosing an arbitrary
order to eliminate variables with indices in the subsets Ci \Cj. Conversely, it is easy to
build a tree decomposition from a given vertex ordering �. Since the induced graph Gind

�

is chordal, its maximum cliques can be identified in polynomial time. Each such clique
defines a cluster Ci of the tree decomposition. Edges of T can be identified as the edges of
any minimum spanning tree in the graph with vertices Ci and edges (Ci, Cj) weigthed by
|Ci ∩Cj|.
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3.5.1. Deterministic graphical models

To our knowledge, the notion of treewidth and its properties were first identified in
combinatorial optimisation in Bertelé & Brioshi (1972). It was then coined ‘dimension’, a
graph parameter which was later shown to be equivalent to the treewidth (Bodlaender 1998).
Variable elimination itself is related to the Fourier-Motzkin elimination (Fourier 1827), a
variable elimination algorithm which benefits from the linearity of the handled formulas.
Variable elimination has been repeatedly rediscovered, as non-serial dynamic programming
(Bertelé & Brioshi 1972), in the David-Putnam procedure for Boolean satisfiability problems,
SAT (Davis & Putnam 1960), as Bucket elimination for the CSP and WCSP (Dechter 1999),
in the Viterbi and Forward-Backward algorithms for HMM (Rabiner 1989) and many more.

There exists other situations where the choice of an elimination order has a deep impact
on the complexity of the computations as in the Gaussian elimination scheme for a system
of linear equations, or Choleski factorisation of very large sparse matrices, In these cases,
the equivalence between elimination and decomposition was also used (see Bodlaender
et al. 1995), and we recover the notion of undesirable fill-in in Cholesky factorisation,
corresponding to non-zero elements created during the decomposition.

4. Treewidth approximation for exact inference

As already mentioned, the complexity of the counting and the optimisation tasks on
graphical models is strongly linked to the treewidth TW (G) of the underlying graph G. If
one could guess (one of) the optimal vertex ordering(s), �Å, leading to TW �Å (G)=TW (G),
then, one would be able to achieve the ‘optimal complexity’ O(KTW (G)n) for obtaining exact
solutions for these tasks; we recall that K is the maximal domain size of a variable in the
graphical model. However, the first obstacle to overcome is that the treewidth of a given
graph cannot be evaluated easily: the treewidth computation problem is known to be NP-
hard (Arnborg, Corneil & Proskurowski 1987). If one has to spend more time on finding an
optimal vertex ordering than on computing probabilities in the underlying graphical model,
the utility of exact treewidth computation appears limited. Therefore, an alternative line of
search is to look for algorithms computing a vertex ordering � leading to a suboptimal width,
TW �(G)�TW (G), but more efficient in terms of computational time. In the following, we
describe and empirically compare heuristics which simultaneously provide a vertex ordering
and an upper bound of the treewidth. Performing inference relying on this ordering is still
exact. It is not optimal in terms of time complexity, but, on some problems, the inference
can still be performed in reasonable time.

A broad class of heuristic approaches is that of greedy algorithms (Bodlaender & Koster
2010). They use the same iterative approach as the variable elimination algorithm (Section 3)
except that they only manipulate the graph structure. They do not perform any actual combi-
nation/elimination computation. Starting from an empty vertex ordering and an initial graph
G, they repeatedly select the next vertex to add in the ordering by locally optimising one
of the following criteria:

• select a vertex with minimum degree in the current graph; or
• select a vertex with minimum number of fill-in edges in the current graph.

After each vertex selection, the current graph is modified by removing the selected
vertex and making a clique on its neighbours. The new edges added by this clique creation
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are fill-in edges. A vertex with no fill-in edges is a simplicial vertex (see Section 3.3).
Fast implementations of minimum degree algorithms have been developed, see e.g., AMD
(Amestoy, Davis & Duff 1996) with time complexity in O(nm) (Heggernes et al. 2001) for
an input graph G with n vertices and m edges. The minimum fill-in heuristics tend to be
slower to compute but yield slightly better treewidth approximations in practice. Moreover,
if a perfect elimination ordering (i.e., adding no fill-in edges) exists, this heuristic will find
it. Thus, it recognises chordal graphs, and it returns the optimal treewidth in this particular
case. This can be easily established from results in Bodlaender, Koster & Eijkhof 2005.

Notice that there exists linear time O(n+m) algorithms to detect chordal graphs as the
maximum cardinality search (MCS) greedy algorithm (Tarjan & Yannakakis 1984). MCS
builds an elimination order based on the cardinality of the already processed neighbours.
However, the treewidth approximation they return is often worse in practice than the previous
heuristic approaches.

A simple way to improve the treewidth bound found by these greedy algorithms is to
choose between candidate vertices with the same value for the selected criterion by using a
second criterion, such as minimum fill-in first and then maximum degree, or to choose at
random and to iterate on the resulting randomised algorithms as done in Kask et al. (2011).

We compared the mean treewidth upper bound found by these four approaches (mini-
mum degree, minimum fill-in, MCS and randomised iterative minimum fill-in) on a set of five
WCSP and MRF benchmarks used as combinatorial optimisation problems in various solver
competitions. ParityLearning is an optimisation variant of the minimal disagreement parity
CSP problem originally contributed to the DIMACS benchmark and used in the MiniZinc
challenge (Optimization Research Group 2012). Linkage is a genetic linkage analysis bench-
mark (Elidan & Globerson 2010). GeomSurf and SceneDecomp are, respectively, geometric
surface labelling and scene decomposition problems in computer vision (Andres, Beier &
Kappes 2013). For each problem, it is possible to vary the number of vertices and potential
functions. The number of instances per problem as well as their mean characteristics are
given in Table 2. Results are reported in Figure 7 (Top). Note that here the box plots do not
have the usual interpretation since different instances of the same problem do not have the
same characteristics. They show the potential range of variation of the treewidth within a type
of problem. The randomised iterative minimum fill-in algorithm used a maximum of 30,000
iterations or 180 seconds (respectively, 10,000 iterations and 60 seconds for ParityLearning
and Linkage), compared to a maximum of 0.37 seconds used by the non-iterative approaches.
The minimum fill-in algorithm (using maximum degree for breaking ties) performed better

Table 2. Characteristics of the five optimisation problems used as benchmark. For a given problem,
several instances are available, corresponding to different numbers of variables (equal to the number
of vertices in the underlying graph) and different numbers of potential functions.

Problem Number Mean no. Mean no.
Type/Name of instances of vertices of potential

functions

CSP/ParityLearning 7 659 1246
MRF/Linkage 22 917 1560
MRF/GeomSurf-3 300 505 2140
MRF/GeomSurf-7 300 505 2140
MRF/SceneDecomp 715 183 672
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Figure 7. Top: Comparison of treewidth upper bounds provided by MCS, minimum degree, minimum
fill-in and randomised iterative minimum fill-in (from dark grey to white) for the 5 categories of
problems. Bottom: Mode evaluation by three exact methods exploiting minimum fill-in ordering or
its randomised iterative version. Number of instances solved (x-axis) within a given CPU time in
seconds (log10 scale y -axis) of ELIM (black), BTD (dark grey), and AND/OR SEARCH (gray).

than the other greedy approaches. Its randomised iterative version offers slightly improved
performance, at the price of some computation time.

On the same benchmark, we then compared three exact methods for the task of mode
evaluation that exploit either minimum fill-in ordering or its randomised iterative version:
variable elimination (ELIM); BTD (de Givry, Schiex & Verfaillie 2006); and AND/OR Search
(Marinescu & Dechter 2006). Elim and BTD exploit the minimum fill-in ordering while
AND/OR Search uses its randomised iterative version. In addition, BTD and AND/OR Search
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exploit a tree decomposition during a Depth First Branch and Bound method in order to get
a good trade-off between memory space and search effort. Just like variable elimination,
they have a worst-case time complexity exponential in the treewidth. All methods were
allocated a maximum of 1 hour and 4 GB of RAM on an AMD Operon 6176 at 2.3 GHz.
The results are reported in Figure 7 (Bottom), and show that BTD was able to solve more
problems than the two other methods for fixed CPU time. However, the best performing
method heavily depends on the problem category. For ParityLearning, ELIM was the fastest
method, but it ran out of memory on 83% of the total set of instances, while BTD (resp.
AND/OR Search) used less than 1.7 GB (resp. 4GB). The randomised iterative minimum
fill-in heuristic used by AND/OR Search in preprocessing consumed a fixed amount of time
(≈180 seconds, included in the CPU time measurements) larger than the cost of a simple
minimum fill-in heuristics run. BTD was faster than AND/OR Search to solve most of the
instances except on two problem categories (ParityLearning and Linkage).

To perform this comparison, we ran the following implementation of each method. The
version of ELIM was the one implemented in the combinatorial optimisation solver toolbar
2.3 (options -i -T3, available at mulcyber.toulouse.inra.fr/projects/toolbar).
The version of BTD was the one implemented in the combinatorial optimisation solver toul-
bar2 0.9.7 (options -B=1 -O=-3 -nopre). toulbar2 is available at www7.inra.fr/mia/T/

toulbar2. This software won the UAI 2010 (Elidan & Globerson 2010) and 2014 (Gogate
2014) Inference Competitions on the MAP task. AND/OR Search was the version imple-
mented in the open-source version 1.1.2 of daoopt (Otten et al. 2012) (options -y -i 35

--slsX=20 --slsT=10 --lds 1 -m 4000 -t 30000 --orderTime=180 for bench-
marks from computer vision, and -y -i 25 --slsX=10 --slsT=6 --lds 1 -m 4000 -t

10000 --orderTime=60 for the other benchmarks) which won the Probabilistic Inference
Challenge 2011 (Elidan & Globerson 2011), albeit with a different closed-source version
(Otten et al. 2012).

5. From variable elimination to message passing

On tree-structured graphical models, message passing algorithms extend the variable
elimination algorithm by efficiently computing every marginal (or max-marginal) simultane-
ously, when variable elimination only computes one. On general graphical models, message
passing algorithms can still be applied. They either provide approximate results efficiently,
or have an exponential running cost.

We also present a less classical interpretation of message passing algorithms: it may
be conceptually interesting to view these algorithms as performing a re-parametrisation of
the original graphical model, i.e. a rewriting of the potentials without modifying the joint
distribution. Instead of producing external messages, the re-parametrisation produces an
equivalent MRF, where marginals can be easily accessed, and which can be better adapted
than the original one for initialising further processing.

5.1. Message passing and belief propagation

5.1.1. Message passing when the graph is a tree

Message passing algorithms over trees (Pearl 1988) can be described as an extension
of variable elimination, where the marginals or max-marginals of all variables are computed
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in a double pass of the algorithm. We depict the principle here when G is a tree first
and for marginal computation. At the beginning of the first pass (the forward pass), each
leaf i is marked as ‘processed’ and all other variables are ‘unprocessed’. Then each leaf is
successively visited. The new potential �Ni is considered as a ‘message’ sent from i to its
unique neighbour in the tree, say j. The message, denoted as �i→j is a potential function over
Xj only (scope of size 1). When vertex j has received the messages from all leaf vertices
neighbour with it, it is marked as processed. It can then send its own messages upward
(combining messages received and remaining potential functions involving Xj), to its unique
unmarked neighbour.

When only one vertex remains unmarked (r, the root of the tree), the product of all
the messages received by r and possibly an original potential function involving only Xr

will be equal to the unnormalised marginal distribution of Xr . This results directly from the
fact that the operations performed in this forward pass of message passing are equivalent
to variable elimination.

To compute the marginal of another variable Xk , one can redirect the tree using k as a
new root and apply the same procedure from the start. However, k splits the tree into two
subtrees, one containing r, Tr , and one not, Tr̄ . The messages sent from leaves to k in Tr̄ are
the same as those sent when computing the marginal of Xr . The message sent from leaves
to r in Tr likewise. The second pass (backward or downward pass) of the message passing
algorithm exploits the fact that messages are shared between several marginal computations,
to organise all these computations in a clever way, so that in order to compute marginals
of all variables, it is enough in the second pass to send messages from the root towards
the leaf. Then the unnormalised marginal at a particular vertex is computed by multiplying
downward messages with upward messages arriving at that vertex. One application is the
well-known forward–backward algorithm (Rabiner 1989).

Formally, in the message passing algorithm for marginals evaluation over a tree (V , E),
messages �i→j are defined for each edge (i, j)∈E in a leaves-to-root-to-leaves order; there
are 2|E| such messages, one for each edge direction. Messages �i→j are functions of xj,
which are computed iteratively, by the following algorithm:

1. Messages leaving the leaves of the tree are computed: for each i∈V , where i is a leaf
of the tree, and for j the unique parent of i, for all xi, ∈�i:

�i→j(xj)←
∑

xi

�ij(xi, xj)�i(xi).

This corresponds to computing �Ni in (5) with � being the sum, ⊕ being the product,
and Bi={i}∪ {i, j}.
All leaves are marked as as processed.

2. Messages are sent upward through all edges. Message updates are performed iteratively,
from marked nodes i to their only unmarked neighbour j through edge (i, j)∈E. Message
updates take the following form for all xj ∈�j:

�i→j(xj)← 1

K

∑
xi

�ij(xi, xj)�i(xi)
∏

k �=j,(k,i)∈E

�k→i(xi), (6)

where K =∑xj

∑
xi

�ij(xi, xj)�i(xi)
∏

k �=j,(k,i)∈E �k→i(xi). In theory it is not necessary
to normalise the messages, but this can be useful to avoid numerical problems. In
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Figure 8. Example of message update on a tree. In this example, nodes t, v and w are marked,
while node s is still unmarked. �t→s is a function of all the incoming messages to node t, except
�s→t .

message �i→j, the product over messages received by i corresponds to the result of
the elimination of all variables associated with a vertex below i in the tree. Then with
the sum over xi, variable Xi is eliminated.
Then vertex j is marked as processed. See Figure 8 for an illustration.

3. Messages are sent downward (from root to leaves). This second phase of message
updates takes the following form:

• Unmark root node.
•While there remains a marked node, send a message of same expression as (6) from
an unmarked vertex i to j, one of its marked neighbours, and unmark the corresponding
neighbour.

4. After the three steps above, messages have been transmitted through all edges in both
directions. Vertex i has received upward messages eliminating variables below it in
the tree and downward messages eliminating all the other variables. So the product of
the messages received by i is a function only of xi. Finally, the marginal distribution
of Xi is computed as follows:

pi(xi)← 1

Ki
�i(xi)

∏
j,(j,i)∈E

�j→i(xi).

An advantage of this algorithm is that it also enables the computation of pair marginals
for two vertices i and j linked by an edge, as follows:

pij(xi, xj)← 1

Kij
�ij(xi, xj)

∏
k �=j,(k,i)∈E

�k→i(xi)
∏

l �=i,(l,j)∈E

�l→j(xj),

where Ki and Kij are suitable normalising constants.

Max-product and max–sum algorithms can be equivalently defined on a tree, for
exact computation of the max-marginal of a joint distribution or its logarithm (see
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Chapter 8 of Bishop 2006). In algebraic language, updates as defined by (6) take the general
form:

∀xj ∈�j, �i→j(xj)=⊕
x′i

�ij(x
′
i, xj)�i(x

′
i) �

k �=j,(k,i)∈E
�k→i(x

′
i).

5.1.2 Message passing when the factor graph is a tree

In some cases, the graph underlying the model may not be a tree, but the corresponding
factor graph can be a tree, with factors potentially involving more than two variables (see
Figure 9 for an example). In these cases, message passing algorithms can still be defined,
and they lead to exact marginal value computations (or of max-marginals). However, their
complexity becomes exponential in the size of the largest factor minus 1.

The message passing algorithm on a tree structured factor graph exploits the same
idea of shared messages as in the case of tree structured graphical models, except that two
different kinds of messages are computed:

• Factor-to-variable messages: messages from a factor B (we identify the factor with the
subset B of the potential function �B it represents) towards a variable i, �B→i(xi).
• Variable-to-factor messages: message from a variable i towards a factor B, �i→B(xi).

These are updated in a leaf-to-root direction and then backward, as above, but two
different updating rules are used instead of (6): for all xi ∈�i

Figure 9. Left: Graphical representation of a graphical model with a potentiel function involving
variables X1, X2 and X3. This is not a tree. Right: Corresponding factor graph, which is a tree. For
applying message passing, the root is variable 1, while variables 4 and 5 are leaves. For the left
branch, the first messages sent is �4→{2,4}(x4) followed by �{2,4}→4(x2).
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�B→i(xi)←
∑
xB\i

⎛
⎝�B(xB)

∏
j∈B\i

�j→B(xj)

⎞
⎠,

�i→B(xi)←
∏

B′ �=B,i∈B′
�B′→i(xi).

Then, the marginal probabilities are obtained by local marginalisation, as in Step 4 of the
algorithm of Subsection 5.1.1 above.

pi(xi)← 1

Ki
�i(xi)

∏
B,i∈B

�B→i(xi),∀xi ∈�i, (7)

where Ki is again a normalising constant.

5.2. When the factor graph is not a tree

When the factor graph of the graphical model is not a tree, the two-pass message
passing algorithm can no longer be applied directly as is because of the loops. Yet, for
general graphical models, this message passing approach can be generalised in two different
ways.

• A tree decomposition can be computed, as previously discussed in Section 3.5. Message
passing can then be applied on the resulting cluster tree, handling each cluster as a
cross-product of variables following a block-by-block approach. This yields an exact
algorithm, for which computations can be expensive (exponential in the treewidth)
and space intensive (exponential in the separator size). A typical example of such
algorithms is the algebraic exact message passing algorithm (Shafer & Shenoy 1988;
Shenoy & Shafer 1990).
• Alternatively, the Loopy Belief Propagation algorithm, LBP (Frey & MacKay 1998)

is another extension of message passing in which messages updates are repeated, in
arbitrary order through all edges (possibly many times through each edge), until a
termination condition is met. The algorithm returns approximation of the marginal
probabilities (over variables and pairs of variables). The quality of the approximation
and the convergence to steady-state messages is not guaranteed, hence the importance
of the termination condition. However, it has been observed that LBP often provides
good estimates of the marginals in practice. Still, implementing LBP must be made
with care, since the scheduling of messages plays an important role with regard to
speed (see Koller & Friedman 2009, p. 408). A deeper analysis of the LBP algorithm
is postponed to Section 6.

5.3. Message passing and re-parametrisation

It is possible to use message passing as a re-parametrisation technique. In this case,
the computed messages are directly used to reformulate the original graphical model in a
new equivalent graphical model with the same graphical structure. By ‘equivalent’ we mean
that the potential functions are not the same but they define the same joint distribution as
the original graphical model.

Several methods for re-parametrisation have been proposed both in the field of prob-
abilistic graphical models (Koller & Friedman 2009, Chapters 10 and 13) or in the field
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of deterministic graphical models (Cooper et al. 2010). They all share the same advantage:
the re-parameterised formulation can be computed to satisfy precise requirements. It can
be designed so that the re-parameterised potential functions contains some information of
interest (marginal distributions on singletons, on pairs pi(xi), max-marginals pÅ(xi), or their
approximation). It can also be optimised in order to tighten a bound on the probability of
a mode (or MAP) assignment (Schiex 2000; Kolmogorov 2006; Cooper et al. 2010; Huang
& Koller 2013) or on the partition function (Wainwright, Jaakkola & Willsky 2005; Liu &
Ihler 2011; Viricel et al. 2016). Originally naive bounds can be tightened into non-naive ones
by re-parametrisation. An additional advantage of the re-parametrised distribution is in the
context of incremental updates, where we have to perform inference based on the observation
of some of the variables, and new observations (new evidence) are introduced incrementally.
Since the re-parameterised model already includes the result of previous inferences, it is
more interesting (in terms of number of messages to send) to perform the updated inference
when starting with this expression of the joint distribution that with the original one (Koller
& Friedman 2009, Chapter 10).

The idea behind re-parametrisation is conceptually very simple: when a message �i→j

is computed, instead of keeping it as a message, it is possible to combine any potential
function involving Xj with �i→j, using �. To preserve the joint distribution defined by the
original graphical model, we need to divide another potential function involving Xj by the
same message �i→j using the inverse of �.

5.3.1. Example of computation of the max-marginals.

We illustrate here how re-parametrisation can be exploited to directly extract all (un-
normalised) max-marginals pÅ(xi) from the order 1 potentials of the new model. In this
case �ij is divided by �i→j, while �j is multiplied by �i→j. The same procedure can be
run by replacing max by + in the message definition to obtain all singleton marginals p(xi)
instead.

Let us consider a graphical model with 3 binary variables. The potential functions
defining the graphical model are:

�1(x1)= (3, 1), �2(x2)= (2, 6), �3(x3)= (3, 4)

�12(x1, x2)=
(

3 2
5 4

)
, �23(x2, x3)=

(
4 8
4 1

)
.

Since the graph of the model is a single path and is thus tree-structured, we just need
two passes of messages. We use vertex 2 as the root. The first messages, from the leaves to
the root, are:

�1→2(x2)=max
x1

�1(x1)�12(x1, x2),

�3→2(x2)=max
x3

�3(x3)�23(x2, x3).

We obtain

�1→2(0)=max(3×3, 1×2)=9, �1→2(1)=max(3×2, 1×4)=6,

�3→2(0)=max(3×4, 4×8)=32, �3→2(1)=max(3×4, 4×1)=12.
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Potentials �12 and �23 are divided respectively by �1→2 and �3→2, while �2 is multiplied
by these two same messages. For instance

�′2(0)=�2(0)�1→2(0)�3→2(0)=2×9×32=576,

�′2(1)=�2(1)�1→2(1)�3→2(1)=6×6×12=532,

�′12(x1, 0)= �12(x1, 0)

�1→2(0)
, �′12(x1, 1)= �12(x1, 1)

�1→2(1)
.

All the updated potentials are:

�′1(x1)=�1(x1)= (3, 1), �′2(x2)= (576, 432), �′3(x3)=�3(x3)= (3, 4),

�′12(x1, x2)=
(

3=9 2=6
5=9 4=6

)
=
(

1=3 1=3
5=9 2=3

)
,

�′23(x2, x3)=
(

4=32 8=32
4=12 1=12

)
=
(

1=8 1=4
1=4 1=12

)
.

Note that here and below we identify each pairwise potential function with its representation
by a 2×2 matrix since all variables are binary. Then messages from the root towards the
leaves are computed using these updated potentials:

�2→1(x1)=max
x2

�′2(x2)�′12(x1, x2)= (192, 320),

�2→3(x3)=max
x2

�′2(x2)�′23(x2, x3)= (144, 144).

Finally, potentials �′12 and �′23 are divided respectively by �2→1 and �2→3, while �′1 and
�′3 are multiplied by �2→1 and �2→3 respectively, leading to the re-parameterised potentials

�′′1(x1)= (3×192, 1×320)= (576, 320), �′′2(x2)= (576, 432),

�′′3(x3)= (3×144, 4×144)= (432, 576),

�′′12(x1, x2)=
⎛
⎝ 1

3×192

1

3×192
5

9×320

2

3×320

⎞
⎠=

⎛
⎝ 1

576

1

576
1

576

1

480

⎞
⎠,

�′′23(x2, x3)=
⎛
⎝ 1

8×144

1

4×144
1

3×144

1

12×144

⎞
⎠=

⎛
⎝ 1

1152

1

576
1

432

1

1728

⎞
⎠.

Then we can directly read the (unnormalised) max-marginal from the singleton potentials.
For instance maxx2,x3 �1(0)�2(x2)�3(x3)�12(0, x2)�23(x2, x3)=576=�′′(0).

We can check that the original graphical model and the re-parameterised one define the
same joint distribution by comparing to the (unnormalised) probabilities of each possible
state (see Table 3).
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Table 3. The unnormalised probabilities of the eight possible states in the original and re-parameterised
models. One can check that the re-parameterised version describes the same joint distribution than
the original one.

x1 x2 x3 Original Reparameterised

�1 �2 �3 �12 �23 �′′1 �′′2 �′′3 �′′12 �′′23

0 0 0 3×2×3×3×4 =216= 576×576×432×1=576×1=1152
0 0 1 3×2×4×3×8 =576= 576×576×576×1=576×1=576
0 1 0 3×6×3×2×4 =432= 576×432×432×1=576×1=432
0 1 1 3×6×4×2×1 =144= 576×432×576×1=576×1=1728
1 0 0 1×2×3×5×4 =120= 320×576×432×1=576×1=1152
1 0 1 1×2×4×5×8 =320= 320×576×576×1=576×1=576
1 1 0 1×6×3×4×4 =288= 320×432×432×1=480×1=432
1 1 1 1×6×4×4×1 =96 = 320×432×576×1=480×1=1728

5.3.2. Re-parametrisation to compute pairwise or cluster joint distributions

One possibility is to incorporate the messages in the binary potentials, in order to
directly extract the pairwise joint distributions as described in Koller & Friedman (2009,
Chapter 10): �ij is replaced by �ij��i→j��j→i while �i is divided by �j→i and �j by
�i→j. If, for example, sum-product messages are computed, each re-parameterised pairwise
potential �ij can be shown to be equal to the (unnormalised) marginal distribution of (Xi, Xj)
(or an approximation of it if the graph is loopy).

In tree-structured problems, the resulting graphical model is said to be calibrated to
emphasise the fact that all pairs of binary potentials sharing a common variable agree on
the marginal distribution of this common variable (here xi):

⊕
xj

�ij=⊕
xk

�ik .

In the loopy case, if an exact approach using tree decomposition is followed, the domains of
the messages have a size exponential in the size of the intersection of pairs of clusters, and
the re-parametrisation will create new potentials of this size. These messages are included
inside the clusters. Each resulting cluster potential will be the (unnormalised) marginal of
the joint distribution on the cluster variables. Again, a re-parameterised graphical model on a
tree-decomposition is calibrated, and any two intersecting clusters agree on their marginals.
This is exploited in the Lauritzen-Spiegelhalter and Jensen sum-product-divide algorithms
(Lauritzen & Spiegelhalter 1988; Jensen, Olesen & Andersen 1990). Besides its interest
for incremental updates in this context, the re-parameterised graphical model using tree
decomposition allows us to locally compute exact marginals for any set of variables in the
same cluster.

If a local ‘loopy’ approach is used instead, re-parameterisations do not change scopes,
but provide a re-parameterised model. Estimates of the marginals of the original model can
be read directly. For mode (or MAP), such re-parameterisations can follow clever update
rules to provide convergent re-parameterisations maximising a well defined criterion. Typical
examples of this process are the sequential version of the tree re-weighted algorithm, TRWS
(Kolmogorov 2006), or the Max-Product Linear Programming algorithm, MPLP (Globerson
& Jaakkola 2008) which aims to optimise a bound on the non-normalised probability of the
mode. These algorithms can be exact on graphical models with loops, provided the potential
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functions are all submodular (often described as the discrete version of convexity, see for
instance Topkis 1978; Cohen et al. 2004).

5.3.3. Re-parametrisation in deterministic graphical models

Re-parameterising message passing algorithms have also been used in deterministic
graphical models. They are then known as ‘local consistency’ enforcing or constraint propa-
gation algorithms. On one side, a local consistency property defines the targeted calibration
property. On the other side, the enforcing algorithm uses so-called Equivalence Preserving
Transformations to transform the original network into an equivalent network, i.e. defining
the same joint function, which satisfies the desired calibration/local consistency property.
Similar to LBP, Arc Consistency (Waltz 1972; Rossi, van Beek & Walsh 2006) is the most
usual form of local consistency, and is related to Unit Propagation in SAT (Biere et al. 2009).
Arc consistency is exact on trees, while it is usually incrementally maintained during an exact
tree search, using re-parametrisation. Because of the idempotency of logical operators (they
can be applied several time without changing the result obtained after the first application),
local consistencies always converge to a unique fixed point.

Local consistency properties and algorithms for WCSPs are closely related to mes-
sage passing for MAP. They are however always convergent, thanks to suitable calibration
properties (Schiex 2000; Cooper & Schiex 2004; Cooper et al. 2010), and also solve tree
structured problems or problems where all potential functions are submodular.

These algorithms can be directly used to tackle the max-product and sum-product
problems in a MRF. The re-parametrised MRF is then often more informative that the
original one. For instance, under the simple conditions that all potential functions with
scope larger than 1 are bounded by 1, a trivial upper bound of the normalising constant Z is∏

i

∑
xi

�i(xi). This naive upper bound can be considerably tightened by re-parameterising
the MRF using a soft-arc consistency algorithm (Viricel et al. 2016).

6. Heuristics and approximations for inference

We have mainly discussed methods for exact inference in graphical models. They are
useful if an order for variable elimination with small treewidth is available. In many real life
applications, interaction network are seldom tree-shaped, and their treewidth can be large
(e.g. a grid of pixel in image analysis). Consequently, exact methods cannot be applied
anymore. However, they provide the inspiration to derive heuristic methods for inference
that can be applied to any graphical model. What is meant by a heuristic method is an
algorithm that is (a priori) not derived from the optimisation of a particular criterion, as
opposed to what we would call an approximation method. Nevertheless, we shall soften this
distinction, and show that well performing message passing-based heuristics can sometimes
be interpreted as approximate methods. For the marginalisation task, the most widespread
heuristic derived from variable elimination and message passing principles is LBP. In the last
decade, a better understanding of this heuristic was reached, and it can now be re-interpreted
as a particular instance of variational approximation methods (Wainwright & Jordan 2008).
A variational approximation of a distribution p is defined as the best approximation of p
in a class Q of tractable distributions (for inference), according to the Kullback–Leibler
divergence. Depending on the application (e.g. discrete or continuous variables), several
choices for Q can be considered. The connection with variable elimination principles and
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treewidth is not obvious at first sight. However, as we just emphasised, LBP can be cast in
the variational framework. The treewidth of the chosen variational distribution depends on
the nature of the variables: (i) in the case of discrete variables the treewidth need be low: in
most cases, the class Q is formed by independent variables (mean field approximation), with
associated treewidth equal to 0, and some works consider a class Q with associated treewidth
equal to 1 (see Section 6.1); (ii) in the case of continuous variables, the treewidth of the
variational distribution is the same as in the original model: Q is in general chosen to be the
class of multivariate Gaussian distributions, for which numerous inference tools are available.

We recall here the two key components for a variational approximation method: the
Kullback–Leibler divergence and the choice of a class of tractable distributions. We then
explain how LBP can be interpreted as a variational approximation method. Finally we recall
the rare examples where some statistical properties of an estimator obtained using a variational
approximation have been established. In Section 7 we will illustrate how variational methods
can be used to derive approximate EM algorithms for estimation in CHMM.

6.1. Variational approximations

The Kullback–Leibler divergence, KL(q‖p), is equal to
∑
x q(x) log q(x)=p(x) and mea-

sures the dissimilarity between two probability distributions p and q. KL is not symmetric,
hence not a distance. It is positive, and it is null if and only if p and q are equal. Let us
consider now that q is constrained to belong to a family Q, which does not include p. The
solution qÅ of arg minq∈Q KL(q‖p) is then the best approximation of p in Q according to
the Kullback–Leibler divergence. It is called the variational distribution. If Q is a set of
tractable distributions for inference, then marginals, mode or normalising constant of qÅ can
be used as approximations for the same quantities on p.

Variational approximations were originally defined in the field of statistical mechanics,
as approximations of the minimum of the free energy F(q),

F(q)=−
∑
x

q(x) log
∏
B∈B

�B(xB)+
∑
x

q(x) log q(x).

They are also known as Kikuchi approximations or Cluster Variational Methods, CVM
(Kikuchi 1951). Minimising F(q) is equivalent to minimising KL(q‖p), since

F(q)=−
∑
x

q(x) log p(x)− log(Z)+
∑
x

q(x) log q(x)=KL(q‖p)− log(Z).

The mean field approximation is the most naive approximation among the family of
Kikuchi approximations. Let us consider a binary Markov random field on n vertices whose
joint distribution is

p(x)= 1

Z

∏
i

exp (aixi+
∑

(i,j)∈E

bijxixj), ∀xi ∈{0, 1}

We can derive its mean field approximation, corresponding to the class QMF of fully factorised
distributions (i.e. an associated graph of treewidth equal to 0): QMF ={q, such that q(x)=∏

i∈V qi(xi)}.
Since variables are binary QMF corresponds to joint distributions of independent Bernoulli

variables with respective parameters qi = qi(1). Namely for all q in QMF , we can write
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q(x)=∏i qxi
i (1− qi)1−xi . The optimal approximation (in terms of Kullback–Leibler diver-

gence) within this class of distributions is characterised by the set of qi’s which minimise
KL(q‖p). Denoting Eq the expectation with respect to q, KL(q‖p)− log Z is

Eq

⎛
⎝∑

i

[
Xi log qi+ (1−Xi) log(1−qi)

]−∑
i

aiXi−
∑

(i,j)∈E

bijXiXj

⎞
⎠

=
∑

i

[
qi log qi+ (1−qi) log(1−qi)

]−∑
i

aiqi−
∑

(i,j)∈E

bijqiqj.

This expectation has a simple form because of the specific structure of q. Minimising it with
respect to qi gives the fixed-point relation that each optimal qMF

i ’s must satisfy:

log
[
qMF

i =(1−qMF
i )
]=ai+

∑
j:(i,j)∈E

bijq
MF
j .

leading to

qMF
i =

exp(ai+
∑

j:(i,j)∈E bijqMF
j )

1+ exp(ai+
∑

j:(i,j)∈E bijqMF
j )

.

It is interesting to note that this expression is very close to the expression of the conditional
probability that Xi=1 given that all other variables in the neighbourhood of i:

Pr(Xi=1|xNi )=
exp(ai+

∑
j:(i,j)∈E bijxj)

1+ exp(ai+
∑

j:(i,j)∈E bijxj)
.

The variational distribution qMF
i can be interpreted as equal to this conditional distribu-

tion, with neighbouring variables fixed to their expected values under the distribution qMF .
This explains the mean field approximation name. Note that in general qi is not equal to
the marginal pi(1).

The choice of the class Q is indeed a critical trade-off between opposing desirable
properties: it must be large enough to guarantee a good approximation, and small enough
to contain only distributions for which inference in manageable. In the next section, a
particular choice for Q, the Bethe class, is emphasised. In particular, this enables us to link
the LBP heuristic to variational methods. Other choices are possible, and have been used.
For instance, in the structured mean field setting (Ghahramani & Jordan 1997; Wainwright
& Jordan 2008), the distribution of a factorial HMM is approximated using a variational
approach; the multivariate hidden state is decoupled, and the variational distribution q of the
conditional distribution of hidden states is that of independent Markov chains (here again,
the treewidth is equal to 1). The Chow-Liu algorithm (Chow & Liu 1968) computes the
minimum of KL(p‖q) for a distribution q whose associated graph is a spanning tree of the
graph of p. This amounts to computing the best approximation of p among graphical models
with treewidth equal to 1. Finally, an alternative to treewidth reduction is to choose the
variational approximation in the class of exponential distributions. This has been applied to
Gaussian process classification (Kim & Ghahramani 2006) using a multivariate Gaussian
approximation of the posterior distribution of the hidden field. This method relies on the
use of the EP algorithm (Minka 2001). In this algorithm, KL(p‖q) is minimised instead of
KL(q‖p). The choice of minimising one or the other depends on computational tractability.
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6.2. LBP heuristics as a variational method

If p and q are pairwise MRF whose associated graph G= (V , E) is the same and is
a tree, then q(x)=∏(i,j)∈E q(xi, xj)=

∏
i∈V q(xi)di−1, where {q(xi, xj)} and {q(xi)} are coherent

sets of order 2 and order 1 marginals of q, respectively, and di is the degree of vertex i
in the tree. In this particular case, the free energy is expressed as (see Heskes, Zoeter &
Wiegerinck 2004; Yedidia, Freeman & Weiss 2005)

F(q)=−
∑

(i,j)∈E

∑
xi ,xj

q(xi, xj) log�(xi, xj)−
∑
i∈V

∑
xi

q(xi) log�(xi)

+
∑

(i,j)∈E

∑
xi ,xj

q(xi, xj) log q(xi, xj)+
∑
i∈V

(di−1)
∑

xi

q(xi) log q(xi)

The Bethe approximation consists in applying to an arbitrary graphical model the same
formula of the free energy as the one used for a tree, then minimising it over the variables
{q(xi, xj)} and {q(xi)} under the constraint that they are probability distributions and that q(xi)
is the marginal of q(xi, xj). By extension, the Bethe approximation can be interpreted as a
variational method associated with the family QBethe of unnormalised distributions that can
be expressed as q(x)=∏(i,j)∈E q(xi, xj)=

∏
i∈V q(xi)di−1 with {q(xi, xj)} and {q(xi)} coherent

sets of order 2 and order 1 marginals.
Yedidia, Freeman & Weiss (2005) established that the fixed points of LBP (when they

exist, convergence is still not well understood, see Weiss 2000 and Mooij & Kappen 2007) are
stationary points of the problem of minimising the Bethe free energy, or equivalently KL(q‖p)
with q in the class QBethe of distributions. Furthermore, Yedidia, Freeman & Weiss (2005)
showed that for any class of distributions Q corresponding to a particular CVM method, it
is possible to define a generalised LBP algorithm whose fixed points are stationary points
of the problem of minimising KL(q‖p) in Q.

The drawback of the LBP algorithm and its extensions (Yedidia, Freeman & Weiss
2005) is that they are not associated with any theoretical bound on the error made on the
marginals approximations. Nevertheless, LBP is increasingly used for inference in graphical
models for its good behaviour in practice (Murphy, Weiss & Jordan 1999). It is implemented
in software packages for inference in graphical models such as libDAI (Mooij 2010) or
OpenGM2 (Andres, Beier & Kappes 2012).

6.3. Statistical properties of variational estimates

Maximum-likelihood parameter estimation in graphical models is often intractable be-
cause it could require to compute marginals or normalising constants. A computationally
efficient alternative to Monte-Carlo estimates are variational estimates, obtained using a
variational approximation of the model. From a statistical point-of-view, because variational
estimation is only an approximation of maximum-likelihood estimation, the resulting pa-
rameter estimates do not benefit of the typical properties of Maximum Likelihood Estimates
(MLE), such as consistency or asymptotic normality. Unfortunately, no general theory exists
for variational estimates, and results are available only for some specific models (see e.g.
Hall, Ormerod & Wand 2011 for the consistency in the Poisson log-normal model and Blei,
Kucukelbir & McAuliffe 2017 for some other examples). From a more general point of
view, in a Bayesian context, Wang & Titterington (2005) and Wang & Titterington (2006)
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studied the properties of variational estimates. They proved that the approximate conditional
distribution are centred on the true posterior mean, but with a too small variance. Celisse,
Daudin & Pierre (2012) proved the consistency of the (frequentist) variational estimates
of the Stochastic Block Model (SBM), while Gazal, Daudin & Robin (2012) empirically
established the accuracy of their Bayesian counterpart. Variational Bayes estimates are also
proposed by Jaakkola & Jordan (2000) for logistic regression, and the approximate posterior
also turns out to be very accurate. A heuristic explanation for these two positive examples
(SBM and logistic regression) is that, in both cases, the class Q used for the approximate
conditional (or posterior) distribution q is sought so as to asymptotically contain the true
conditional distribution.

7. Illustration on CHMM

In this last section, we illustrate how the different algorithms discussed, in the CHMM
framework, perform in practice for marginal inference when the model parameters are
known, and how concretely they can be exploited in the EM algorithm to perform parameter
estimation.

7.1. Comparison of exact variable elimination, variational inference and Gibbs
sampling in practice

We compared the following inference algorithms on the problem of computing the
marginals of all the hidden variables of the CHMM model of pest propagation described
in Section 2.3, conditional on the observed variables. We simulated 10 datasets with the
following parameters values: �=0.2, �=0.5, �=0.15, fn=0.3 and fp=0.1. For each data set,
we ran the following algorithms, using libDAI software (Mooij 2010): Junction Tree (JT, exact
method using the principles of tree decomposition and block by block elimination); LBP;
Mean Field approximation (MF); and Gibbs Sampling (GS, Geman & Geman 1984),with
10,000 runs, each with a burn-in of 100 iterations and then 10,000 iterations. We compared
the algorithms on three criteria: running time (time variable), mean absolute difference
between the true marginal probability of state 0 and the estimated one, over all hidden
variables (diff-marg variable), and percentage of hidden variables which are not restored to
their true value with the mode of the estimated marginal (error-resto variable). The results
(see Table 4) are presented for increasing values of n, the number of rows (and also of
columns) of the square grid of fields (i.e. I =n2). Beyond n= 3, JT fails due to time and
space complexity, so for computing diff-marg we used the GS marginals instead of the true
marginals. These results illustrate well the fact that approximate inference methods based
on the principle of variable elimination are very time efficient compared to Monte-Carlo
methods (less than 4 minutes for a problem with I =10, 000 hidden variables), while being
still very accurate. Furthermore, even a naive variational method like the mean field one can
be interesting if accurate marginal estimates are not required but we are only interested in
preserving their mode.

7.2. Variational approximation for estimation in CHMM

We now illustrate how variational approximations have been used for parameter esti-
mation using an EM algorithm in the case of CHMM.
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Table 4. Comparison of Junction Tree (JT), Loopy Belief Propagation (LBP), Mean Field (MF) and
Gibbs Sampling (GS) inference algorithms on the CHMM model of pest propagation: (a) running
time, in seconds; (b) mean difference between the true and the estimated marginal of state 0 (when
JT fails due to time and space complexity, we use GS marginals as true ones); (c) percentage of
hidden variables not restored to their true value when using the mode of the marginals.

(a)

time JT LBP MF GS

n=3 0.04 0.04 0.03 1.05
n=5 − 0.19 0.14 3.30
n=10 − 1.07 0.65 13.99
n=100 − 219.31 134.31 3, 499.6
n=200 − 1, 026.2 746.68 29, 341.0

(b)

diff-marg LBP MF GS

n=3 0.001 0.032 0.032
n=5 0.003 0.037 −
n=10 0.003 0.032 −
n=100 0.003 0.032 −
n=200 0.003 0.032 −

(c)

error-resto JT LBP MF GS

n=3 20.00 19.80 19.26 20.19
n=5 − 18.60 19.27 18.93
n=10 − 17.87 17.70 17.83
n=100 − 18.19 18.39 18.20
n=200 − 18.18 18.40 18.18

Exact EM algorithm CHMMs are examples of incomplete data models, as they involve
variables (O,H), and only variables O are observed. Maximum likelihood inference for such
models aims at finding the values of the parameters � which maximise the (log-)likelihood
of the observed data o, i.e. solve max� log p�(o). The most popular algorithm to achieve
this task is the EM algorithm. One of its formulations reads as an iterative maximisation
procedure of the following functional:

F(�, q)=Eq(log p�(o,H))−Eq(log q(H))= log p�(o)−KL(q(H)‖p�(H|o)),

where q stands for any distribution on the hidden variables HY , and Eq stands for the
expectation under the arbitrary distribution q. The EM algorithm consists in alternatively
maximising F(�, q) with respect to q (E-step) and to � (M-step). The solution of the E-step
is q(h)=p�(h|o), since the Kullback–Leibler divergence is then minimal, and even null in
this case. When replacing q(h) by q(h)=p�(h|o) in F , we find that the M-step amounts to
maximising E[log p�(o,H)|o].

Exact computation of p�(h|o) can be performed by observing that (2) can be rewritten
as
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Figure 10. Graphical representation of p(h, o) for a coupled HMM when merging hidden variables
at each time step.

p�(h, o)∝�init′ (h1)

(
T∏

t=2

�M ′ (ht−1, ht)

)
×
(

I∏
i=1

T∏
t=1

�E(hi
t , oi

t)

)
,

where �init′ is the global initial distribution, equal to
∏I

i=1 �init(hi
1), and �M ′ is the global

transition probability, equal to
∏I

i=1 �M (hi
t−1, hL−i

t−1, hi
t). This expression is equivalent to merg-

ing all hidden variables of a given time step. It corresponds to the graphical model given
in Figure 10. Denoting by K the number of possible values for each hidden variable, we
end up with a regular hidden Markov model with KI possible hidden states. Both p�(h|o)
and its mode can then be computed in an exact manner with either the forward–backward
recursion or the Viterbi algorithm for mode evaluation. Both procedures have the same
complexity: O(TK2I ). The exact calculation can therefore be achieved provided that KI

remains small enough, but becomes intractable when the number of signals I exceeds a few
tens.

7.2.1. Several variational approximations for the EM algorithm

For more complex graphical structures, explicitly determining p�(h|o) can be too ex-
pensive to perform exactly. A first approach to derive an approximate E-step is to seek
a variational approximation of p�(h|o) assuming that q(h) is restricted to a family Q of
tractable distributions, as described in Section 6.1. The choice of Q is critical, and requires
achievement of an acceptable balance between approximation accuracy and computation ef-
ficiency. Choosing Q typically amounts to breaking down some dependencies in the original
distribution to end up with some tractable distribution. In the case of CHMM, the simplest
distribution is the class of fully factorised distributions (i.e. mean field approximation):

Q0={q : q(h)=
I∏

i=1

T∏
t=1

qit(h
i
t)}.

Such an approximation of p�(h|o) corresponds to the graphical model of Figure 11. Intuitively,
this approximation replaces the stochastic influence between the hidden variables by its mean
value.
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Figure 11. Graphical representation for the mean-field approximation of p(h, o) in a coupled HMM.
Observed variables are indicated in light grey since they are not part of the variational distribution
which is a distribution only on the hidden variables.

Figure 12. Graphical representation for the approximation of p(h, o) in a coupled HMM by independent
heterogeneous Markov chain. Observed variables are indicated in light grey since they are not part
of the variational distribution which is a distribution only on the hidden variables.
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As suggested in Wainwright & Jordan (2008), a less drastic approximation of p�(h|o)
can be obtained using the distribution family of independent heterogeneous Markov chains:

QM ={q : q(h)=
∏

i

∏
t

qit(h
i
t|hi

t−1)}.

which is consistent with the graphical representation of an independent HMM, as depicted
in Figure 12.

An alternative is to use the Bethe approximation of F(�, q). Then the LBP algorithm can
be used to provide an approximation of the conditional marginal distributions on singletons
and pairs of variables (no other marginals are involved in the E step of EM). This approach
has been proposed in Heskes, Zoeter & Wiegerinck (2004). The advantage of this approach
compared to the variational approximations based on families Q0 or QM , is that it provides
an approximation of the joint conditional distribution of pairs of hidden variables within the
same time step, instead of assuming that they are independent.

8. Conclusion and discussion

This tutorial on variable elimination for exact and approximate inference is an intro-
duction to the basic concepts of variable elimination, message passing and their links with
variational methods. It introduces these fields to statisticians confronted with inference in
graphical models. The main message is that the exact inference should not be systemati-
cally ruled out. Before looking for an efficient approximate method, wise advice is to try
to evaluate the treewidth of the graphical model. In practice, this question is not easy to
answer. Nevertheless several algorithms exist that provide an upper bound of the treewidth
together with the associated variable elimination order (minimum degree, minimum fill-in,
maximum cardinality search, etc). Even if it is not optimal, this ordering can be used to
perform exact inference if the bound is small enough.

Examples where the low treewidth of the graphical model has been successfully exploited
to perform exact inference in problems apparently too complex are numerous. Korhonen &
Parviainen (2013) simplified the NP-hard problem of learning the structure of a Bayesian
network from data when the underlying network has ‘low’ treewidth. They proposed an
exact score-based algorithm to learn graph structure using dynamic programming. Berg,
Järvisalo & Malone (2014) compared their approach with an encoding of the algorithm in
the framework of Maximum Satisfiability and obtained improved performance on classical
Machine Learning datasets with networks up to 29 nodes. Akutsu, Tamura & Horimoto (2009)
tackled the problem of Boolean acyclic network completion. More specifically, their aim
was to achieve the smallest number of modifications in the network, so that the distribution
is consistent with the binary observations at the nodes. The authors established the general
NP-completeness of the problem even for tree-structured networks. They however reported
that these problems can be solved in polynomial time for networks with bounded treewidth
and in-degree, and with enough samples (in the order of at least log of the number of nodes).
Their findings were applied (Tamura & Akutsu 2014) to obtain the sparsest possible set of
modifications in the activation and inhibition functions of a signalling network (comprising
57 nodes and 154 edges) after a hypothesised cell-state alteration in colorectal cancer patients.
Xing (2004) introduced two Bayesian probabilistic graphical models of genomic data analysis
devoted to (i) the identification of motifs and cis-regulatory modules from transcriptional
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regulatory sequences, and (ii) the haplotype inference from genotypes of SNPs (single-
nucleotide polymorphisms). The inference for these two high-dimensional models on hybrid
distributions is computationally very complex. The author noted that the exact computation
(e.g. of MAP or marginal distributions) might be feasible for models of bounded tree-width,
if a good variable ordering is available. However, the question on how to find this latter one is
not addressed, and an approximate generalised mean field inference algorithm is developed.
Finally, the reader can find in Berger, Singht & Xu 2008 more illustration of how the notion
of treewidth can help simplifying the parametrisation of many algorithms in bioinformatics.

For the reader interested in testing the inference algorithms presented in this article,
the list provided by Kevin Murphy (https://www.cs.ubc.ca/∼murphyk/Software/

bnsoft.html), even though slightly out-dated, gives a good idea of the variety of existing
software packages, most of them being dedicated to a particular family of graphical models
(directed, or undirected). One of the reasons why variable elimination-based techniques for
inference in graphical models is not well widespread outside the communities of researchers
in Computer Science and Machine Learning is probably that no software exists which it is
both generic and with an easy interface from R, Python or Matlab.

Obviously this tutorial is not exhaustive, since we chose to focus on fundamental
concepts. While many important results on treewidth and graphical models are several
decades old, the area is still lively, and we now broaden our discussion to a few recent
works which tackle some challenges related to the computation of the treewidth.

Because they offer efficient algorithms, graphical models with a bounded treewidth
offer an attractive target when the aim is to learn a model that best represents some given
sample. In Kumar & Bach (2013), the problem of learning the structure of an undirected
graphical model with bounded treewidth is approximated by a convex optimisation prob-
lem. The resulting algorithm has polynomial time complexity. As discussed in Kumar &
Bach (2013), this algorithm is useful in deriving tractable candidate distributions in a vari-
ational approach, which go beyond the usual variational distributions with treewidth zero
or one.

For optimisation (mode evaluation), other exact techniques are offered by tree search
algorithms such as Branch and Bound (Lawler & Wood 1966), that recursively consider
possible conditioning of variables. These techniques often exploit limited variable elimination
processing to prevent exhaustive search, either using message-passing like algorithms (Cooper
et al. 2010) to compute bounds that can be used for pruning, or by performing ‘on-the-fly’
elimination of variables with small degree (Larrosa 2000).

Beyond pairwise potential functions, the time needed for simple update rules of message
passing becomes exponential in the size of the scope of the potential functions. However, for
specific potential functions involving many (or all) variables, exact messages can be computed
in reasonable time, even in the context of convergent message passing for optimisation.
This can be done using polytime graph optimisation algorithms such as shortest path or
mincost flow algorithms. Such functions are known as global potential functions (Vicente,
Kolmogorov & Rother 2008; Werner 2008) in probabilistic graphical models, and as global
cost functions (Lee & Leung 2009; Allouche et al. 2012; Lee & Leung 2012) in deterministic
Cost Function Networks.

Different problems appear with continuous variables, where counting requires integra-
tion of functions. Here again, for specific families of distributions, exact (analytic) computa-
tions are possible for distributions with conjugate distributions. For message passing, several
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solutions have been proposed. For instance, a recent message passing scheme proposed by
Noorshams & Wainwright (2013) relies on the combination of orthogonal series approxima-
tion of the messages, and the use of stochastic updates. We refer the reader to references in
Noorshams & Wainwright (2013) for alternative methods dealing with continuous variables
message passing. Variational methods are also largely exploited for continuous variables, in
particular in Signal Processing (Smidi & Quinn 2006).

Finally, we have excluded Monte-Carlo methods from the scope of our review. However,
the combination of the inference methods presented in this article and stochastic methods for
inference is a new area that researchers have begun exploring. Recent sampling algorithms
have been proposed that use exact optimisation algorithms to sample points with high
probability in the context of estimating the partition function. Additional control in the
sampling method is needed to avoid biased estimations: this may be hashing functions
enforcing a fair sampling (Ermon et al. 2014) or randomly perturbed potential functions
using a suitable noise distribution (Hazan, Maji & Jaakkola 2013). More recently, Monte-
Carlo and variational approaches have been combined to propose Discrete Particle Variational
Inference (Saeedi et al. 2017), an algorithm that benefits from the accuracy of the former
and the rapidity of the latter.

We hope this review will enable more cross-fertilisations of this sort, combining statistics
and computer science, stochastic and deterministic algorithms for inference in graphical
models.
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