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Chapter 1

Introduction

Optimization plays a fundamental role in our everyday experience. We consistently
face new challenges, going from vehicle routing, scheduling, recommender systems,
or protein design to only cite them. Tackling those problems is difficult because they
can involve a large number of variables with complex interactions. Most of them
are out of reach of the human cognitive capacity, therefore, we rely on endlessly
improving algorithms to find the best, or at least a good solution.
There exist different modeling and solving approaches, each of them shaped to solve
a different range of problems. Among the two most common paradigms, we find on
one hand Contraint Programming(CP), a framework based on logic and inference.
On the other hand, Integer Linear Programming (ILP), specialized in linear interac-
tion and employing advanced mathematics. Both ILP and CP offer complementary
approaches to tackle complex optimization challenges. However, it is frequent that
when a technique shows its efficiency in one paradigm, then researchers try to adapt
it to the other paradigm. A notable example is Conflict Driven Clause Learning
(CDCL). It was initially defined for Boolean satisfiability problem (SAT), for which
it became a cornerstone of modern SAT solvers. Since then, derived approaches
have been developed for MaxSAT, Pseudo Boolean optimization, Constraint Satis-
faction Problem, or ILP. This strategy aims to learn constraints from the failure of
the solver. The learned constraints will enhance the rest of the search by preventing
the solver from making the same mistake again.
Graphical Models (GM) use graphs to encode complex relationships between decision
variables, where nodes represent variables and (hyper)edges represent dependencies
or correlations between them. GM provides a flexible framework to model different
systems. For example, Cost Function Networks are undirected graphical models
involving local cost functions. The task of finding the assignment minimizing the
sum of all the local cost functions is known as the Weighted Constraint Satisfac-
tion Problem (WCSP). This problem arises in various areas such as image analy-
sis [Savchynskyy 2019] or bioinformatics [Allouche et al. 2014a]. The resolution of
WCSP relies on backtracking search and constraint propagation. The solver searches
an optimal solution by dividing the search space into smaller sub-problems. Con-
straint propagation techniques are used to provide a lower bound of the encountered
sub-problems. Deriving strong lower bounds is crucial to avoid exploring unpromis-
ing regions.
In this thesis, we are interested in diversifying the range of instances modelable and
solvable by a WCSP solver. We first show how to integrate linear constraints in a



2 Chapter 1. Introduction

Cost Function Network (CFN). They are expressive and compact constraints and
are at the center of very efficient ILP solvers. Thus, handling linear constraints in
WCSP solvers can significantly broaden their practical use. Secondly, we define Vir-
tual Pair-Wise Consistency, a new soft local consistency enforcing strong bounds.
Finally, guided by the success of conflict-based learning methods in multiple domains
(such as SAT, Pseudo Boolean Optimization, or ILP), we design a new conflict-free
learning mechanism. It aims to memorize through a linear constraint the lower
bounds of the encountered sub-problems. If this sub-problem appears a second time
in the search then propagating the previously learned constraint will help to obtain
a strong lower bound. We show how such mechanism can be embedded in classic
MILP solvers, before extending this to WCSP solvers.

This manuscript is organized as follows:

- Chapter 2 introduces the general concept behind several paradigms used for
solving combinatorial problems. This includes Integer Linear Programming,
Constraint Programming, Cost Function Networks, SAT, and Pseudo Boolean
Optimization.

- Chapter 3 shows how linear constraints can be encoded and propagated in a
CFN. We also provide an algorithm extending the soft local consistency Vir-
tual Arc Consistency [Cooper et al. 2010](VAC) to handle linear constraints.
Finally, we give the experimental results obtained on instances involving linear
constraints. Most of the contribution of this chapter has been published in
CPAIOR 2022 [Montalbano et al. 2022].

- Chapter 4 exploits the dual encoding of a CFN and VAC to enforce a newly
defined soft local consistency: Virtual Pair-Wise Consistency. Experimental
results show the benefit of such a strategy on several benchmarks. This contri-
bution is a collaborative work with Tomas Werner from the Czech Technical
University of Prague and has been published in CPAIOR 2023 [Montalbano
et al. 2023].

- Chapter 5 introduces a conflict-free learning mechanism for memorizing bounds.
We show how to embed this approach in classic MILP solvers, before extend-
ing this to WCSP solvers. We give some preliminary results obtained with
this approach. We are currently preparing a submission presenting this con-
tribution.



Chapter 2

Optimization in Graphical Models

Contents
2.1 Graphical models . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Integer Linear Programming . . . . . . . . . . . . . . . . . . . 4
2.3 Constraint Programming . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Constraint Satisfaction Problem . . . . . . . . . . . . . . . . 10
2.3.2 Weighted Constraint Satisfaction Problem . . . . . . . . . . . 13

2.4 Soft Local Consistency Algorithms . . . . . . . . . . . . . . . 18
2.4.1 Virtual Arc Consistency . . . . . . . . . . . . . . . . . . . . . 24

2.5 SAT, Pseudo-Boolean Optimization, and Conflict-Based
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 Pseudo-Boolean Optimization . . . . . . . . . . . . . . . . . . 32
2.5.3 Other Conflict Driven Learning . . . . . . . . . . . . . . . . . 35

2.1 Graphical models

Graphical models (GMs) define a family of mathematical models providing a succinct
representation for problems with complex relationships between variables. They
have a wide range of applications such as bio-informatics, communication theory,
statistical physics, computer vision, signal processing, information retrieval, and
machine learning [Maathuis et al. 2018, Savchynskyy 2019]. A discrete GM is de-
fined by a set of variables and a finite set of ‘small’ functions involving only a
restricted number of variables. Those functions model interaction between vari-
ables. A binary associative and commutative operator is defined to combine the
functions together and obtain joint multivariate functions. With this flexible defini-
tion, GMs can be used to model a large variety of well-known frameworks answering
different tasks, going from satisfaction problems to probabilistic models [Cooper
et al. 2020]. Some examples are: constraint networks [Rossi et al. 2006], proposi-
tional logic[Biere et al. 2021], generalized additive independence models [Bacchus
& Grove 2013], Markov Random Fields [Kindermann & Snell 1980, Koller & Fried-
man 2009], Bayesian networks [Koller & Friedman 2009], Possibilistic and Fuzzy
Constraint Networks [Dubois et al. 1993]. A GM can be depicted as a hypergraph
where the vertices correspond to values/labels of the variables and the hyperedges
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Figure 2.1: Example of a graphical model with a grid structure. The rectangle
corresponds to variables and the nodes inside to labels. An edge depicts a relation
between 2 labels.

to functions. Frequently, variables are represented as a square/bubble circling the
values. When all the functions are pairwise (applies to 2 variables maximum),
this hypergraph defines a simple graph (this explains the name graphical model)
(see figure 2.1). In this thesis, we are mainly interested in graphical models like
Cost Function Networks. This is an additive model where the local functions are
cost functions. The task of finding the minimum cost assignment is known as the
Weighted Constraint Satisfaction Problem (WCSP). We begin by introducing the
various components related to WCSP solving.

2.2 Integer Linear Programming

Integer Linear Programming (ILP) is a powerful mathematical optimization tech-
nique used to solve a wide range of decision-making problems. The objective is to
find optimal integer values for a set of decision variables while satisfying a system
of linear constraints. An objective function embodies the goal to be maximized or
minimized. ILP focuses specifically on linear relationships among discrete decision
variables. In this thesis, we won’t give an exhaustive tour of all theories and strate-
gies developed over the years around the ILP paradigm. However, we recall some
basic knowledge that finds a strong connection with different contributions of this
thesis. We consider ILP problems in their canonical minimization form defined by
equations (2.1)-(2.3). Where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, and x ∈ Z. Equation
(2.1) defines the objective function we aim to minimize. Equations (2.2) define the
linear constraints restricting the decision variables. Finally, (2.3) enforces that all
the variables take an integer value.

min cTx (2.1)

Ax ≥ b (2.2)

x ∈ Z (2.3)
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Every ILP can be written in this canonical form. For example, we can transform
a maximization problem into a minimization problem by multiplying the objective
function by -1. Similarly, equality and ≤ constraints can always be transformed to
≥ constraints.

Example 2.1. We use the Knapsack Problem with Conflict Graph (KPCG) as a
running example. First introduced by Yamada et al. [Yamada et al. 2002], this prob-
lem is a variation of the well-known Knapsack Problem (KP) [Pisinger & Toth 1998],
where some items are incompatible with some others. More formally, we describe
the problem as a knapsack of capacity C and a collection of n items written X =

{x1, . . . , xn}. Each item is described by a positive profit pi and a positive weight
wi. The profits define the objective function to maximize while a linear capacity ≤
constraint restricts the possible combination of weights. Additionally, there is an
undirected conflict graph G = (V,E). In this graph, each vertex i ∈ V represents an
item, and an edge (i, j) ∈ E indicates that items i and j cannot be packed together.
In the interest of having a consistent notation throughout the paper, we write the
KPCG as a minimization problem with ≥ constraints. We transform the maximiza-
tion problem to a minimization problem by multiplying the objective function by -1.
Similarly, the ≤ constraints are multiplied by -1 to obtain ≥ constraints. Finally,
for every Boolean variable x, we introduce a Boolean variable x̄ taking the opposite
value of x, this corresponds to the constraint x+ x̄ = 1. We can use this constraint
to transform any negative coefficient −αx to αx̄−α. This transformation preserves
the equivalence of the problem.
Here is an example of a KPCG with 7 items, with profits {4, 9, 4, 3, 5, 7, 7} and
weights {3, 5, 3, 3, 5, 5, 5}, the capacity is 10. The pairs of conflicts are:
{x1, x2},{x1, x3},{x2, x3},{x4, x5}.
We also allow constraints enforcing that 2 items must have the same behavior (here,
x6 = x7).

min 4x1 + 9x2 + 4x3 + 3x4 + 5x5 + 7x6 + 7x7 (2.4a)

s.t

3x1 + 5x2 + 3x3 + 3x4 + 5x5 + 5x6 + 5x7 ≥ 10 (2.4b)

−x1 − x2 ≥ −1 (2.4c)

−x1 − x3 ≥ −1 (2.4d)

−x2 − x3 ≥ −1 (2.4e)

−x4 − x5 ≥ −1 (2.4f)

x6 − x7 ≥ 0 (2.4g)

x7 − x6 ≥ 0 (2.4h)

xi ∈ {0, 1}, i = 1, . . . , 7 (2.4i)

The optimal solution is x6 = 1, x7 = 1 (or x2 = x5 = 1), and all other variables are
0, with objective value 14. ■

Solving an ILP is an NP-Hard task [Schrijver 1998]. A classic approach is to
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use a branch and bound (B&B) strategy [Little et al. 1963]. It enumerates all the
possible solutions by using a rooted tree to represent the search space. Each node
corresponds to a different sub-problem. A branching variable is chosen, and the
children of a node are defined by restricting the domain of the branching variable.
Thus, leading to a smaller sub-problem. We associate to each node an upper and
a lower bound (UB and LB). The upper bound represents an upper limit on the
objective value, it typically corresponds to the best-known solution. While the
lower bound is an estimation of the best possible solution that we could discover by
visiting the subtree. Most methods to compute lower bounds rely on relaxation of
constraints. The idea is to remove or weaken some constraints to make the solving
easier. The optimal objective value of the relaxed problem is necessarily lower or
equal to the optimal objective value of the ILP. The most used relaxation is the
linear relaxation and consists of relaxing all the integrality constraints. This new
problem is a Linear Program (LP).

min{cTx|Ax ≥ b, x ∈ R+} (2.5)

The optimal solution of an LP can be found using the simplex algorithm [Murty 1983].
While the Simplex algorithm exhibits exponential theoretical complexity, it can in
practice demonstrate polynomial average case complexity [Schrijver 1998, Spielman
& Teng 2004].

Example 2.2. The LP of example (2.4a)-(2.4i) is:

min 4x1 + 9x2 + 4x3 + 3x4 + 5x5 + 7x6 + 7x7 (2.6a)

s.t

3x1 + 5x2 + 3x3 + 3x4 + 5x5 + 5x6 + 5x7 ≥ 10 (2.6b)

−x1 − x2 ≥ −1 (2.6c)

−x1 − x3 ≥ −1 (2.6d)

−x2 − x3 ≥ −1 (2.6e)

−x4 − x5 ≥ −1 (2.6f)

x6 − x7 ≥ 0 (2.6g)

x7 − x6 ≥ 0 (2.6h)

xi ∈ [0, 1], i = 1, . . . , 7 (2.6i)

The optimal solution is x3 = 1, x5 = 1, x6 = 0.2, x7 = 0.2 all other variables are 0
with objective value 11.8. ■

We can use the optimal relaxed solution to obtain an LB at each node, if LB ≥
UB then we don’t need to visit the subtree. If the optimal relaxed solution corre-
sponds to a feasible solution of the ILP, then we update the UB. A common strategy
to choose the next decision variable in the (B&B) algorithm is to select a variable
having a fractional value in the optimal relaxed solution. For example, if x6 = 0.2

in the optimal relaxed solution then we can create 2 branches, one with x6 ≤ 0 and
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11.8

14 12.6

infeasible 14

x6 = 1 x6 = 0

x1 = 1 x1 = 0

Figure 2.2: Example of a search tree developed to solve ILP (2.9a)- (2.6i)

the other with x6 ≥ 1.

Example 2.3. We consider the KPCG (2.4a)-(2.4i) and its LP relaxation (2.9a)-
(2.6i). The first optimal fractional solution is x3 = 1, x5 = 1, x6 = 0.2, x7 = 0.2 with
objective value 11.8. x6 is a fractional variable, we choose it as the first decision
variable. If we set x6 = 1 then the new optimal fractional solution is x6 = 1, x7 = 1

with objective value 14. It corresponds to an integer solution, we update the upper
bound, UB=14. We don’t need to pursue the search in this branch.
If we set x6 = 0, then the optimal relaxed solution is x1 = 0.6, x2 = 0.4, x3 = 0.4,
x5 = 1 with objective value 12.6. We continue the search and set x6 = 0, x1 = 1.
The resulting problem is infeasible. We continue and set x6 = 0, x1 = 0.The optimal
fractional solution is x2 = 1, x5 = 1 with objective value 14. This ends the search,
the optimal objective value of (2.4a) is 14. Figure 2.2 represents the search tree,
each node is associated with a lower bound, and each edge to an assignment. ■

An additional feature for efficient MIP solving is cut generation. Cuts are ad-
ditional linear constraints that are added to a linear programming relaxation to
tighten the bounds and reduce the feasible solution space of the relaxation to get
closer to the integer solution space. Those cuts are typically found after solving
the linear relaxation. Learning cuts during a branching algorithm corresponds to
a branch and cuts procedure. In this context, a cut is global if it is valid at every
node of the search tree, while it is local if it is true only for a subtree. Cuts were
introduced by Gomory in 1960 [Gomory 1960]. He has shown that an ILP can be
solved by sequentially adding cuts to the linear relaxation, this defined the cutting
plane algorithm. Later, Balas et al. introduced how to learn globally valid Gomory
cuts inside a branch and cuts procedure [Balas et al. 1996]. This led to a signifi-
cant improvement in the results and since then modern MIP solvers have employed
several cutting-plane algorithms. We refer the reader to [Marchand et al. 2002] for
more information on cuts in MIP.

Dual and Reduced costs

The dual of an LP P ((2.5)) is defined by the LP:

max{bT y|AT y ≤ c, y ∈ R+} (2.7)
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The dual introduces one dual variable for each primal constraint and one dual con-
straint for each primal variable. Analyzing the dual can provide useful information
on the primal (P ), in particular, if P is feasible then its dual is also feasible. More-
over, the objective value of any dual solution gives a lower bound of the primal.
When the primal and dual solutions are both optimal, they coincide, ensuring the
optimality of the problem.
Given a solution y of the dual, the reduced cost of xi is defined by the slack of
its corresponding dual constraint: rcy(xi) = ci − AT

i yi. If y is optimal, then the
reduced cost of a variable can be seen as the amount by which we must decrease the
coefficient ci of xi in the objective function to obtain xi > 0 in the optimal solution.
Equivalently it can be interpreted as a lower bound on the difference of objective
value between any feasible solution with xi > 0 and the optimal solution.

Example 2.4. The dual of LP (2.9a)-(2.6i), involves 14 variables {y1, . . . , y14}
(one for each constraint and one for each upper bound constraint xi ≤ 1) and 7
constraints.

max 10y1 − y2 − y3 − y4 − y5 + y8 + y9 + y10 + y11 + y12 + y13 + y14

3y1 − y2 − y3 + y8 ≤ 4

5y1 − y2 − y4 + y9 ≤ 9

3y1 − y3 − y4 + y10 ≤ 4

3y1 − y5 + y11 ≤ 3

5y1 − y5 + y12 ≤ 5

5y1 + y6 − y7 + y13 ≤ 7

5y1 − y6 + y7 + y14 ≤ 7

yi ≥ 0, i = 1, . . . , 7

yi ≤ 0, i = 8, . . . , 14

The optimal dual solution y is y1 = 1.4,y3 = 0.2,y5 = 1.2,y12 = −0.8 with objective
value 11.8. The reduced costs are:

• rcy(x1) = 4− 3× 1.4− 0.2 = 0

• rcy(x2) = 9− 5× 1.4 = 2

• rcy(x3) = 4− 3× 1.4− 0.2 = 0

• rcy(x4) = 3− 3× 1.4− 1.2 = 0

• rcy(x5) = 5− 5× 1.4− 1.2− 0.8 = 0

• rcy(x6) = 7− 5× 1.4 = 0

• rcy(x7) = 7− 5× 1.4 = 0
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We can observe that the non-zero variables of primal optimal solutions x3 = 1, x5 =

1, x6 = 0.2, x7 = 0.2 and x1 = 1, x5 = 1, x6 = 0.2, x7 = 0.2 have all reduced costs 0.
■

2.3 Constraint Programming

Constraint programming (CP) [Rossi et al. 2006] is a powerful paradigm that enables
the modeling and solving of complex combinatorial problems. In CP, problems are
represented as a set of variables, domains, and constraints, such a triplet defines a
Constraint Network (CN). Variables represent the unknowns or decision variables in
the problem, while domains define the possible values that these variables can take.
Constraints capture the relationships, conditions, and rules that must be satisfied by
the variables. The objective is to find solutions that satisfy all the constraints, this
defines the Constraint Satisfaction Problem (CSP). Both ILP and CP offer comple-
mentary approaches to tackle complex optimization challenges, with ILP excelling
in problems where linear relationships prevail, while CP provides flexibility in mod-
eling various constraints and discrete decision spaces. It’s important to note that
the picture is way more complicated when discussing actual solving performance.
Many other parameters can impact the efficiency of the solving, and ILP/CP can
perform poorly or well on problems where we expected the opposite.

One of the notable advantages of CP is its ability to handle global constraints1.
They are high-level, reusable, and generic constraints that capture common patterns
or complex relationships between variables. They provide a powerful tool to model
efficiently and concisely different kinds of problems (see example 2.5). Moreover, a
solver can take advantage of their particular structure to reduce the search space
and enable a more efficient solving.

A very well-known global constraint is the AllDifferent constraint, which enforces
that all the variables in its scope must take a different value. In this thesis, we will
mainly focus on linear constraints as defined in ILP.

Example 2.5. We can model the famous Sudoku puzzle as a CSP. As a reminder,
a Sudoku is a 9 × 9 grid decomposed into 9 3 × 3 sub-grids. The objective is to fill
the 81 cells with digits from 1 − 9 without introducing the same digits twice within
the same row, column, or sub-grid. In the CP model, the variables correspond to
the cells, let xij correspond to the cell located at row i and column j. The domains
of each variable are the 9 digits D = {1, . . . , 9}. Let Xk designed the cells of the
sub-grids k, with k ∈ {1, . . . 9}. The constraints enforce the rules of the CSP, for
each row i, column j, and sub-grid k, we have the following binary constraints:

CRi : xij ̸= xij′ ∀i, j′, j < j′ ∈ {1, . . . , 9}
CCj : xij ̸= xi′j ∀i, j, i < i′ ∈ {1, . . . , 9}

CSk : xij ̸= xi′j′ ∀xij , xi′j′ ∈ Xk, i ̸= i′, j ̸= j′, k ∈ {1, . . . , 9}
1Here is a catalog of global constraints. https://sofdem.github.io/gccat/gccat/titlepage.

html

https://sofdem.github.io/gccat/gccat/titlepage.html
https://sofdem.github.io/gccat/gccat/titlepage.html
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Equivalently we can express the constraints using the global constraint AllDifferent,
let XRi, XCj , XSk be the set of variables in each row i, column j, and subgrid k,
respectively

CRi : AllDifferent(XRi) i ∈ {1, . . . , 0}
CCj : AllDifferent(XCj) j ∈ {1, . . . , 0}
CSk : AllDifferent(XSk) k ∈ {1, . . . , 0}

This reduces the number of constraints from 972 to 27. ■

Additionally, CP supports constraint optimization, where objectives and pref-
erences can be incorporated to find optimal or near-optimal solutions based on
predefined criteria. The application of constraint programming has yielded sig-
nificant advancements in various fields, including artificial intelligence, operations
research, scheduling, supply chain management, graph algorithms, computer vision,
and computational linguistics [Rossi et al. 2006]. Its ability to handle combinato-
rial problems with large solution spaces, complex constraints, and diverse problem
structures makes it a valuable tool for tackling real-world challenges.

2.3.1 Constraint Satisfaction Problem

Before introducing Weighted Constraint Satisfaction Problem (WCSP) we define
Constraint Satisfaction (CSP). We directly use a notation depicting that CSPs are
a particular form of WCSPs. A Constraint Network (CN) is a triplet ⟨X,D,C⟩
where :

• X = {x1, . . . , xn} are variables.

• D = {D1, . . . ,Dn} are the domains of the variables.

• C is a set of constraints.

Let J ⊆ X be a subset of variables, we denote by ℓ(J) the Cartesian product
Πi∈JDi of the domains of the variables in J . An assignment (or a tuple) τ ∈ ℓ(J) is
a mapping from each i ∈ J to a value a ∈ Di. If J = X then τ defines a complete
assignment, otherwise it is a partial assignment. A partial assignment is infeasible if
at least one of the constraints in C is not satisfied. By τi we denote the value of xi in
τ , τJ corresponds to the values of the variables J ∈X. For a given CN, a solution to
the corresponding Constraint Satisfaction Problem (CSP) is a complete assignment
satisfying all the constraints in C. A constraint cS ∈ C is defined by a pair ⟨S, rS⟩
where S ⊆ X is the scope and rS is a function rS : ℓ(S) → {0;⊤}, the value 0
correspond to an allowed tuple while ⊤ to a forbidden tuple. The size of the scope
is the arity of the constraint. Each constraint is either represented in extension or
intention. A constraint represented in extension, also known as a table constraint,
explicitly lists all the allowed or forbidden tuples. Only low arity constraints can be
written in extension within a reasonable memory size limit because the number of
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Figure 2.3: Graphical representation of the binary constraints. A thick edge corre-
sponds to a forbidden tuple.

tuples grows exponentially with arity. A constraint given in intention, is defined by
a function or a logical expression that specifies the relationship between the vari-
ables, for example, global constraints are typically given in intention.

Example 2.6. We can model KPCG instance (2.4a)-(2.4i) as a CN, the problem
has 7 variables X = x1, . . . , x7 with domains {0, 1}. There are 6 constraints, one
global constraint c1,2,3,4,5,6,7 : 3x1 + 5x2 + 3x3 + 3x4 + 5x5 + 5x6 + 5x7 ≥ 10, and 5
binary constraints. When the number of tuples is not too large, each constraint can
be represented as a table where only the allowed tuples are written:

c1,2 x1 x2 c1,3 x1 x3 c2,3 x2 x3 c4,5 x4 x5 c6,7 x6 x7
1 0 1 0 1 0 1 0 1 1
0 1 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0

Graphs can provide a more visual representation, particularly when we have binary
constraints. Each variable is represented by a bubble, each value is represented by a
node, and an edge between 2 nodes indicates a forbidden tuple (see 2.3). Note that
constraints c1,2, c1,3 and c2,3 can be contracted using the clique global constraint.
Such a constraint enforces that at-most-one variable within the scope can take value
1. Here we have c1,2,3 : clique(x1, x2, x3). We present how to model the objective
function in example 2.8. ■

To solve a CSP, one can typically use a backtracking search combined with an
algorithm removing the values that won’t appear in any solution of the current
search space. We refer to this technique as pruning the inconsistent values. Remov-
ing those values reduces the search space, in this sense it serves the same purpose
as bounding techniques used in ILP. Unfortunately, determining whether a value
is inconsistent is most of the time an NP-Hard task [Rossi et al. 2006]. The CP
community tried (and is still trying) to find the best trade-off between time spent
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looking for inconsistent values and numbers (or quality) of the pruned values.
A common approach to prune inconsistent values is to define local consistency al-
gorithms. Those algorithms reason only on a subset of constraints and remove the
values which are locally inconsistent. The most used one is Generalized Arc Consi-
tency (GAC).

Definition 2.1 (Generalized Arc Consistency). Let P = ⟨X,D,C⟩ be a CSP.
A value a ∈ Di is said to be generalized arc consistent (GAC) with respect to a
constraint cS ∈ C, if there exists at least one assignment τ ∈ ℓ(S) with τi = a

verifying cS(τ) = 0. A variable is GAC with respect to a constraint cS ∈ C, if all
its values are GAC with respect to cS. A variable is said to be GAC with respect to
the whole CSP P if it is GAC with respect to all its constraints in C. A CSP P is
said to be GAC if all its variables are GAC.

GAC on a binary CSP is also known as Arc Consistency (AC).

Example 2.7. Given the CSP given in example 2.6, we can observe that for each
variable xi there exists at least two allowed tuples in each constraint: one with xi = 1

and one with xi = 0. The CSP is GAC. If we add the constraint x1 = 1 then there
exists no tuple allowed by c1,2 such that x1 = 1 and x2 = 1 hence we can delete the
value x2 = 1. The same goes for x3 = 1. Once it’s done, the CSP is GAC. ■

The arc consistent closure of a CSP P (noted AC(P )) is the unique CSP that
results from removing values from domains that violate the arc consistency prop-
erty. If AC(P ) is empty then P is infeasible. This happens as soon as the domain
of one variable becomes empty. We call this a domain wipe-out. Over the years,
different approaches have been proposed to enforce GAC as efficiently as possible on
table constraints [Yap et al. 2020]. Aside GAC, there exists different local consis-
tency algorithms trying to find the best trade-off between strength and complexity
of the propagation [Rossi et al. 2006]. One approach can perform well for one class
of instances and can be ineffective for another one. In general, establishing GAC
on a global constraint is NP-hard [Bessiere et al. 2004] and only partial filtering
can be enforced [Rossi et al. 2006]. However, for some particular global constraints
(like AllDifferent), an efficient dedicated algorithm enforcing GAC has been de-
signed [Rossi et al. 2006].
The CSP can also be used to model optimization problems. An objective func-
tion is modeled by adding an extra variable obj and a constraint enforcing that
obj must be equal to the function we try to minimize/maximize. The cost of any
solution corresponds to the value of obj, therefore the domain of obj can be large as
it must contain all possible values between the best-known lower and upper bounds.
This is referred to as the Constraint Satisfaction Optimization Problem. An op-
timal solution can be obtained by solving a sequence of CSPs [Van Hentenryck
et al. 1992, Rossi et al. 2006]. For example, for a minimization problem, each time
the solver solves a CSP and finds a solution with obj=sol, it adds the constraint
obj < sol. Solving the resulting CSP will give a new solution with a lower cost. The
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solver will keep finding better solutions until it derives an infeasible CSP, in this
case, we know that the last solution was optimal.

Example 2.8. Following example 2.6, we can model an objective function by intro-
ducing a variable obj with domain [0, 39] and a constraint obj = 4x1 + 9x2 + 4x3 +

3x4 + 5x5 + 7x6 + 7x7. ■

2.3.2 Weighted Constraint Satisfaction Problem

Weighted CSP (WCSP) is an extension of the CSP that incorporates costs associated
with the constraints and variables assignments. Those costs can be represented by
using soft constraints, also called Cost Functions. A cost function cS is defined by
a pair ⟨S, cS⟩ where S ⊆ X is the scope and cS is a function cS : ℓ(S) → [0,⊤],
the cost ⊤ ∈ R+ ∪ {∞} is a special constant symbolizing infeasibility. Just like for
CSP constraints, a cost function can be expressed in extension or in intention.
A Cost Function Network (CFN) is a quadruplet ⟨X,D,C,⊤⟩ where :

• X = {x1, . . . , xn} are variables.

• D = {D1, . . . ,Dn} are the domains of the variables.

• C is a set of cost functions.

A cost function having arity 2 is a binary cost function. A cost function having
arity 1 is a unary cost function. We define the cost function having an empty scope
as c∅. This cost will count in every assignment and provides a natural lower bound
because negative costs are not allowed in a CFN. In the following, we suppose that
all the unary costs functions and c∅ are defined in C and C+ = C \ {c∅}. The
cost of a complete assignment τ ∈ ℓ(X) is cP (τ) =

∑
S∈C cS(τS). If the cost is

≥ ⊤ then τ defines a forbidden assignment. We denote by e the number of distinct
cost functions, n the number of WCSP variables, and d the maximum domain size.
The WCSP asks to find a complete non-forbidden assignment having minimum cost.

Example 2.9. Following example 2.6, we can add unary costs to model the KPCG
problem (2.4a)-(2.4i). As for CN, low arity cost functions can be represented as
tables. We add one extra column to indicate the cost associated with each tuple.
High arity global constraints need a specific representation, see chapter 3 for linear
constraints. We change the domains name from {0, 1} to {a, b}, to avoid confusing
values with costs.

c1,2 x1 x2 cost c1,3 x1 x3 cost c2,3 x2 x3 cost c4,5 x4 x5 cost c6,7 x6 x7 cost
a a 0 a a 0 a a 0 a a 0 a a 0
a b 0 a b 0 a b 0 a b 0 a b ⊤
b a 0 b a 0 b a 0 b a 0 b a ⊤
b b ⊤ b b ⊤ b b ⊤ b b ⊤ b b 0

x1 cost x2 cost x3 cost x4 cost x5 cost x6 cost x7 cost
a 0 a 0 a 0 a 0 a 0 a 0 a 0
b 4 b 9 b 4 b 3 b 5 b 7 b 7
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Figure 2.4: Graphical representation of the binary cost functions. A thick edge
indicates a forbidden tuple.

We can also use a graph, the names of the values are written outside the bubble, and
the non-zeros unary costs are inside. The non-zero costs are written on the edges
(see figure 2.4).

■

CFN provides a flexible framework where costs can be used to represent various
aspects, such as preference amongst the constraints/variables, and probabilities...
Just like for CSP, the resolution of WCSP relies on backtracking search and con-
straint propagation. The Soft Local Consistency algorithms sequentially examine
small subsets of cost functions. On top of removing the locally inconsistent values,
it computes a lower bound which can be used to backtrack if it exceeds the upper
bound. To find and enforce a lower bound, those algorithms rely on the notion of
equivalent WCSP.

Definition 2.2 (Equivalent WCSP). Two WCSPs P, P ′ are equivalent if they have
the same structure, i.e., the set of scopes and variables are identical. And cP (τ) =
cP ′(τ) for all complete assignments τ ∈ ℓ(X). However, the cost distribution inside
individual cost functions might differ.

When two WCSPs are equivalent, we also say they are a reparametrization, of
each other. A reparametrization is better if c∅ is higher. All the reparametrizations
presented here are based on local Equivalence Preserving Transformations (EPTs).
An EPT corresponds to the movement of costs between two cost functions. Let S ⊂
S′ be two scopes with corresponding cost functions cS , cS′ . Procedure MoveCost
describes how to move a cost α from cS to cS′ and keep the equivalence. Note
that to keep a valid WCSP the costs need to stay in the range of possible costs, in
particular, an EPT must not create any negative costs.

To see its correctness, observe that if τ is used in a complete assignment, then
only exactly one extension of τ to S′ must be used. Therefore, the sum of cS and
cS′ remains unaffected whether the cost α is attributed to τ in cS or to all of its
extensions τ ′ in cS′ .
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Procedure MoveCost(cS , cS′ , τ, α): Move α units of cost between the tuple
τ of scope S and tuples τ ′ that extend τ in scope S′

Data: Scopes S ⊂ S′

Data: τ ∈ ℓ(S)
Data: cost α to move
cS(τ)← cS(τ) + α ;
foreach τ ′ ∈ ℓ(S′) | τ ′S = τ do

cS′(τ ′)← cS′(τ ′)− α ;

b
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Figure 2.5: Graphical example of an extension extend(c1, (1, a), c1,2, 1)) (b), a pro-
jection project(c2, c1,2, (2, b), 1) (c) and a unary projection unaryProject(c2, 1) (d).
An edge corresponds to a cost of 1.

As a matter of terminology, when α > 0, cost moves from the larger arity
cost function cS′ to the smaller arity cS and the move is called a projection, de-
noted project(cS , cS′ , τ, α).When α < 0, cost moves to the larger arity cost func-
tion cS′ and the move is called an extension, denoted extend(cS , τ, cS′ ,−α).When
S = ∅ and |S′| = 1, with S′ = {i}, the move is called a unary projection, denoted
unaryProject(ci, α), equivalent to MoveCost(c∅, ci, ∅, α). We never perform exten-
sions from c∅, so it monotonically increases during the run of an algorithm and as
we descend a branch of the search tree.

Example 2.10. As an example, let’s consider figure 2.5, we have 2 Booleans vari-
ables with domains {a, b} and one binary constraint. A cost of 1 is moved from
x1 = a to c1,2 (fig b), as a consequence c1(a) is decreased and the cost of all the
tuples using x1 = a in c1,2 are increased:
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• c1(a)→ 0

• c1,2(a, a)→ 1

• c1,2(a, b)→ 1

Observe that this operation is an extension (extend(c1, (1, a), c1,2, 1)) and doesn’t
alter the cost of any assignment, both in (a) and (b) cP ((a, a)) = 2, cP ((a, b)) = 1,
cP ((b, a)) = 1, cP ((b, b)) = 1.
Figure 2.5 (c) displays a projection project(c2, c1,2, (2, b), 1) and (d) a unary projec-
tion unaryProject(c2, 1). ■

If we consider only integer costs, finding an optimal reparametrization with the
highest possible c∅ is an NP-Hard task [Cooper & Schiex 2004]. However, the
optimal reparametrization allowing rational costs can be found from the optimal
dual solution of the following linear relaxation of the WCSP [Cooper et al. 2010]
called the local polytope. Also, the rational solution is in general higher, so this is a
rare case where computationally easier problems give better results.

Local Polytope

minObj
def
= c∅ +

∑
i∈X,a∈Di

ci(a)xia +
∑

cS∈C+,τ∈ℓ(S)

cS(τ)xS:τ (2.8a)

s.t. ∀i ∈X,
∑
a∈Di

xia = 1 (2.8b)

∀cS ∈ C+, i ∈ S, a ∈Di

( ∑
τ∈ℓ(S),τi=a

xS:τ
)
− xia = 0 (2.8c)

The local polytope corresponds to the linear relaxation of the tuple encoding of
the WCSP. Each value (i, a) is represented by a Boolean variable xia taking value
1 if xi = a, similarly, tuple τ ∈ ℓ(S) is represented by a Boolean variable xS:τ

taking value 1 if τ is chosen. The objective function tries to minimize the sum
of the cost functions (2.8a). While constraints (2.8b) enforce that each variable
must be assigned to exactly one value. Finally, constraints (2.8c) enforce that the
assignment of variables and tuples are compatible, also called marginal consistency
constraints. Constraints enforcing that only one tuple should be selected for each
scope are redundant with constraints (2.8c), therefore they are not written.

Example 2.11. As an example we write parts of the local polytope corresponding to
Example 2.9. We exclude the linear constraint because it has not yet been defined how
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we can model it in the local polytope, which is the subject of the following chapter.

min 4x1b + 9x2b + 4x3b + 3x4b + 5x5b + 7x6b + 7x7b

+⊤x12:bb +⊤x13:bb +⊤x23:bb +⊤x45:bb +⊤x67:ab +⊤x67:ba (2.9a)

s.t

x12:aa + x12:ab − x1a = 0 (2.9b)

x12:ba + x12:bb − x1b = 0 (2.9c)

x12:aa + x12:ba − x2a = 0 (2.9d)

x12:ab + x12:bb − x2b = 0 (2.9e)

x13:aa + x13:ab − x1a = 0 (2.9f)

. . .

x67:ab + x67:bb − x7b = 0 (2.9g)

xia + xib = 1 i = 1, . . . , 7 (2.9h)

xia, xib ≥ 0, i = 1, . . . , 7 (2.9i)

■

In practice, solving this LP at each node of a search tree is prohibitively ex-
pensive and does not perform well [Hurley et al. 2016]. Indeed, solving LPs with
this particular structure is as hard as solving any LPs [Prusa & Werner 2013] and
the worst-case complexity of an exact LP algorithm is O(N2.5) [Vaidya 1989], with
N ∈ O(ed + nd) for binary WCSPs, where e is the number of distinct binary cost
functions, n is the number of WCSP variables and d is the maximum domain size.
An alternative approach involves finding lower bounds of the local polytope by com-
puting good feasible dual solutions. This led in parallel to Block-Coordinate Ascent
(BCA) algorithms used in image analysis [Kolmogorov 2006, Werner 2007, Sontag
et al. 2008, Komodakis et al. 2010, Sontag et al. 2012, Tourani et al. 2020] ([Savchyn-
skyy 2019] surveys all those works) and soft local consistencies [Schiex 2000, Lar-
rosa 2002a, de Givry et al. 2005, Zytnicki et al. 2009, Cooper et al. 2010] in constraint
programming. In this thesis we are interested in the latter. Those methods have a
strong connection with the dual problem of the local polytope:

Dual Local Polytope

max
∑
i∈X

πi s.t. (2.10a)

∀i ∈X, a ∈Di πi −
∑

cS∈C+,i∈S

φia:S ≤ ci(a) (2.10b)

∀cS ∈ C+, τ ∈ ℓ(S)
∑

i∈S,a∈Di,τi=a

φia:S ≤ cS(τ) (2.10c)

Where πi is a dual variable corresponding to primal constraint (2.8b) and φia:S

corresponds to (2.8c). Given a dual feasible solution, we can modify the objective
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function of the (Local Polytope) to obtain an equivalent problem but with an in-
creased c∅. This modification can be obtained through a set of EPTs. A dual value
πi corresponds to cost move unaryProject(xi, πi) and φia:S corresponds to cost
move MoveCost(ci, cS , (i, a), φia:S). However, we need to relax the non-negativity
condition on EPTs, meaning that one individual EPT might create a negative cost
but the full set of EPTs must give a valid CFN. We can notice that the quantity
πi−

∑
cS∈C+,i∈S φia:S (lhs of (2.10b)) is the sum of costs moved from/to ci(a), same

goes for
∑

i∈S,a∈Di
φia:S (lhs of (2.10c)) and cS(τ). It follows that given a dual

solution of (Dual Local Polytope), a reparametrization can be extracted from the
reduced costs rc(xia) and rc(xS:τ ) by setting ci(a) to rc(xia), cS(τ) to rc(xS:τ ) and
c∅ to the optimum objective value (also observed in [Trösser et al. 2020]).

Example 2.12. Following example 2.11, the dual local polytope of example 2.9 is:

max
∑

i∈[1,7]

πi (2.11a)

s.t.

Π1 − φ1a:12 − φ1a:13 ≤ 0 (2.11b)

Π1 − φ1b:12 − φ1b:13 ≤ 4 (2.11c)

. . . (2.11d)

Π7 − φ7a:67 ≤ 0 (2.11e)

Π7 − φ7b:67 ≤ 7 (2.11f)

φ1a:12 + φ2a:12 ≤ 0 (2.11g)

φ1a:12 + φ2b:12 ≤ 0 (2.11h)

φ1b:12 + φ2a:12 ≤ 0 (2.11i)

φ1b:12 + φ2b:12 ≤ ⊤ (2.11j)

. . .

φ6b:67 + φ7a:67 ≤ 0 (2.11k)

φ6b:67 + φ7b:67 ≤ ⊤ (2.11l)

In this example, Π1 corresponds to costs moved from c1 to c∅. If φ1b:12 is negative
it corresponds to costs moved from c1(b) to c12, similarly φ1b:13 corresponds to costs
moved from c1(b) to c23. We can see that equation 2.11c enforces that we do not
move more costs from c1(b) than it is available. ■

2.4 Soft Local Consistency Algorithms

Similarly to local consistency for CSP [Rossi et al. 2006], soft local consistency
(SLC) reasons on a local level by considering only a subset of cost functions. Those
algorithms are designed to remove the locally inconsistent values and produce a
local maximum corresponding to a dual feasible solution of the (Local Polytope).
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Each dual feasible solution can be translated into a set of EPTs increasing c∅ by
the cost of the dual solution. For clarity, we directly present the properties which
define each SLC and the sequence enforcing those properties. Once again, we need
to find a good trade-off between the strength of propagation (how much it increases
c∅) and the complexity of its enforcement. We first introduce a simple and natural
SLC: node consistency.

Definition 2.3 (Node Consistency (NC) [Larrosa 2002b]). A WCSP (X,D,C,⊤)
is node consistent if for any variable xi ∈X.

1. ∀a ∈Di, ci(a) + c∅ < ⊤.

2. ∃a ∈Di such that ci(a) = 0.

Node consistency can be enforced by iterating over the unary cost functions,
removing the values having a cost greater than ⊤ and applying unaryProject when
mina∈Di ci(a) > 0. The complexity of this algorithm isO(nd) in time and space [Lar-
rosa 2002b]. If a domain becomes empty, then the WCSP is infeasible. Similarly,
we can verify the existence of a zero-cost tuple in every cost function.

Definition 2.4 (∅-Inverse Consistency (∅IC) [Zytnicki et al. 2009]). A WCSP P is
∅-Inverse Consistent if for every cost function cS ∈ C there exists a tuple τ ∈ ℓ(S)
such that cS(τ) = 0.

∅IC can be obtained by iterating over the cost functions cS ∈ C and apply-
ing project(c∅, cS , ∅,minτ∈ℓ(S) cS(τ)) if minτ∈ℓ(S) cS(τ) > 0. We strengthen the
previous definition to take into account unary costs.

Definition 2.5 (Full ∅-Inverse Consistency (F∅IC)). A WCSP is Full ∅-Inverse
Consistent if for every cost function cS ∈ C there exists τ ∈ ℓ(S) such that cS(τ)+∑

xj∈S cj(τ [xj ]) = 0.

F∅IC can be obtained by first extending the cost from the unary cost functions
to cS and then applying project(c∅, cS , ∅,minτ∈ℓ(S) cS(τ)).
In practice, F∅IC is only employed on specific global constraints where enforcing
a higher level of consistency is too demanding (see chapter 3). Otherwise, a good
strategy to increase c∅ is to move costs from the higher arity constraint to the unary
cost functions. For this purpose, we now introduce SLC based on Arc Consistency
and the notion of support. Soft AC algorithms were particularly used to solve binary
CFNs, most of them are defined only in this context. From now on, we suppose NC
is enforced before employing the different Soft AC algorithms.

Definition 2.6 (Simple support). Let cx,y be a cost function, a simple support of
value a ∈Dx for the function cx,y is a value b ∈Dy such that cx,y(a, b) = 0.

Definition 2.7 (Soft Arc Consistency (SAC) [Cooper & Schiex 2004]). A value
(x, a) is Soft Arc Consistent if it has a simple support on every cost function cS ∈ C

with x ∈ S. A variable is SAC if all its values are SAC. A WCSP is SAC if all its
variables are SAC. A WCSP is SAC* if it verifies SAC and NC.
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Figure 2.6: Establishing SAC on the CFN (a). First establish SAC on x1 = a (b)
then on x2 = b, enforcing node consistency on x2 increase c∅ (c)

Soft Arc Consistency can be achieved by iterating over each pair of (value, cost
function), if a value (x, a) has no support on cS then it means that for every tuple
τ ∈ ℓ(S) with τx = a, cS(t) > 0, therefore a positive cost can be moved to cx(a).
After this cost move, NC might need to be re-enforced.

Definition 2.8 (Full Support). Let cx,y be a cost function, a full support of value
a ∈Dx for the function cx,y is a value b ∈Dy such that cx,y(a, b) + cy(b) = 0.

Definition 2.9 (Full Arc Consistency (FAC) [de Givry et al. 2005]). A value (x, a)

is Full Arc Consistent if it has a full support on every cost function cS ∈ C with
x ∈ S. A variable is FAC if all its values are FAC. A WCSP is FAC if all its
variables are FAC. A WCSP is FAC* if it verifies FAC and NC.

Clearly, if a WCSP is FAC then it is also SAC, hence FAC is strictly stronger
than SAC. To apply FAC we need to find a full support for every value on every
constraint, if we have a binary constraint cx,y and we want to find a full support
for (x, a) we need to find b ∈ Dy s.t cx,y(a, b) = 0 and cy(b) = 0. The strategy is
to first choose a value from Dy such that cx,y(a, b) ̸= ⊤, commonly, we choose the
value (y, b) minimizing cy(b) + cx,y(a, b). Then we transfer the unary cost cy(b) to
the constraint cx,y, it sets cy(b) = 0. Then applying the EPT project from cx,y to
(x, a) sets cx,y(a, b) = 0.
Unfortunately, it is impossible to enforce FAC on every WCSP as shown in figure
2.7. Indeed, when finding a full support for value x1 = 1 we break the full support of
x2 = 1, and vice versa when enforcing FAC on x2 = 1. To avoid this issue, Larossa
and Schiex [Larrosa & Schiex 2003] added an ordering to the variables to push the
costs always in the same direction.

Definition 2.10 (Directional Arc Consistency (DAC) [Larrosa & Schiex 2003]).
(xi, a) is Directed Arc Consistent if it has a full support for every cost function cij
with i < j. A variable is DAC if all its values are DAC. A WCSP is DAC if all its
variables are DAC. A WCSP is DAC* if it verifies DAC and NC.

DAC aims to find full support for every variable, but only on a particular sub-
set of cost functions determined by the ordering. Larrosa and Schiex proposed an
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algorithm for a WCSP with binary cost functions [Larrosa & Schiex 2003], its com-
plexity is O(ed2) in time and O(ed) in space, e is the number of distinct binary cost
functions, and d is the maximum domain size. They also propose a definition and
an algorithm for a stronger consistency associating AC with DAC, it is Full Directed
Arc Consistency :

Definition 2.11 (Full Directed Arc Consistency (FDAC) [Larrosa & Schiex 2003]).
A WCSP is FDAC if it verifies DAC and AC. It is FDAC* if it verifies FDAC and
NC.

The complexity of Larrosa and Schiex algorithm [Larrosa & Schiex 2003] is
O(end3) in time and O(ed) in space. Another way to get closer to FAC is described
in [de Givry et al. 2005], it is Existential Arc Consistency.

Definition 2.12 (Existential Arc Consistency (EAC)). A variable x is EAC if and
only if it admits at least one value a such that cx(a) = 0 and there exists a full
support of (x, a) for every cost function cxy. A WCSP is EAC if all its variables are
EAC.

In FAC we wanted to find full support for each value on all the cost functions, in
EAC we just want to have at least one value with full support. This property can be
associated with the precedent one, to define Existential Directed Arc Consistency.

Definition 2.13 (Existential Directed Arc Consistency (EDAC) [de Givry et al. 2005]).
A WCSP is EDAC if it verifies FDAC and EAC. It is EDAC* if it verifies EDAC
and NC.

The algorithm enforcing EDAC has a time complexity of O(ed2max(nd,⊤)) and
O(ed) in space. EDAC proposes a good trade-off between strength of propagation
and complexity, and it is currently the default algorithm in the WCSP solver Toul-
bar22.

As mentioned before, Optimal Soft Arc Consistency (OSAC), can be obtained
by solving the dual of the (Local Polytope). In order to enforce OSAC we need to

2https://github.com/toulbar2/toulbar2

https://github.com/toulbar2/toulbar2
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relax the non-negativity condition on the EPTs, meaning that one individual EPT
might create a negative cost, but the full sequence of EPTs must give a valid WCSP.

Definition 2.14 (Optimal Soft Arc Consistency (OSAC) [Cooper et al. 2010]). A
WCSP is optimal soft arc consistent if there exists no sequence of EPTs increasing
c∅.

In the next section, we will provide a detailed introduction to Virtual Arc Con-
sistency (VAC), as it holds significant relevance with several contributions of this
thesis. Finally, we study the relation between the different local consistencies.

Definition 2.15. Let ϕ and ψ be two soft local consistencies. We say that ϕ implies
ψ if all WCSP verifying ϕ also verifies ψ.

For example FDAC implies DAC and AC. We can also compare the SLC accord-
ing to the value of c∅. To fairly compare the SLC depending of an ordering like DAC
or EDAC, we suppose they are always applied with the best possible configuration,
meaning that there exists no ordering producing a better c∅.

Definition 2.16. Let ϕ and ψ be two soft local consistencies. We say that ϕ is
c∅-superior than ϕ, if for every WCSP where ϕ has been enforced with its best
configuration, enforcing ψ doesn’t increase c∅.

For example, the author of [Cooper et al. 2010] has shown that VAC produces
better bounds than EDAC, while there exists an instance verifying VAC but not
EDAC. If ϕ is not c∅-superior to ψ and vice versa then we say that the two SLC are
c∅-incomparable. For example, figure 2.8 depicts 2 CFNs one where F∅IC gives a
better lower bound than SAC, and one where SAC gives a better lower bound than
F∅IC, therefore the two properties are c∅-incomparable. Figure 2.9 [Dehani 2014]
(French) and table 2.1 recapitulate the strength of SLC algorithms and their com-
plexity. Notice that soft AC-based algorithms are defined for binary CFNs while
VAC and OSAC can be applied to CFNs with any arity, therefore for a fair compar-
ison, we give the time complexity to enforce the different SLC on a binary WCSP
only.



2.4. Soft Local Consistency Algorithms 23

SAC* DAC*

FDAC* EAC

EDAC*

VAC

OSAC

NC

F∅IC

∅IC

ϕ

ψ

ϕ ψ

+

-

c∅-superiority

ϕ implies ψ

ϕ is c∅-incomparable to ψ

Figure 2.9: Relation between the different level of local consistency

In practice, OSAC is the algorithm giving the best lower bound, but its com-
plexity doesn’t make it usable in large problems. A viable strategy is to change
the level of local consistency during the search, for example, using VAC only in
prepossessing and then using EDAC during search has been proven worthwhile on
different instances [Hurley et al. 2016].

Soft Global Cost Functions

Global constraints play a major role in the modeling flexibility of the CP paradigm.
Research has been pursued to include those global constraints in CFN, either as
hard global constraints, in this case, we want to deduce a lower bound when con-
sidering the global constraint plus the associated unary costs. Or as soft global
constraints where a cost measure evaluates the cost of a given tuple depending on
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Algorithm Time Complexity
NC [Larrosa 2002b] O(nd)

∅IC [Zytnicki et al. 2009] O(ed2)

F∅IC [Montalbano et al. 2022] O(ed2)

SAC [Larrosa 2002b] O(n2d2 + ed3)

DAC [Larrosa & Schiex 2003] O(ed2)

FDAC [Larrosa & Schiex 2003] O(end3)
EDAC [de Givry et al. 2005] O(ed2max(nd,⊤))
V ACε [Cooper et al. 2010] O(ed2⊤/ε)
OSAC [Cooper et al. 2010] O(e4.5d5.5logM)

Table 2.1: Time complexity to enforce different levels of local consistency on a
binary WCSP. Where n is the number of variables, d the maximal domain size, e
the number of binary cost functions, r the maximal arity and M the maximal finite
cost.

how it violates the global constraint. Some global cost functions are decomposable in
well-organized networks of cost functions of bounded arity [Allouche et al. 2012, Al-
louche et al. 2016], on which applying usual SAC algorithms is equivalent to a direct
application on the original global cost function. Otherwise, depending on the global
cost function a chosen level of soft local consistency can be efficiently enforced [Lee
& Leung 2009, Lee & Leung 2012].

2.4.1 Virtual Arc Consistency

Virtual Arc Consistency produces high-quality bounds but is quite expensive to
enforce. It relies on a particular CSP that can be derived from a WCSP instance.

Definition 2.17 (Bool(P ) [Cooper et al. 2010]). Let P ⟨X,D,C,⊤⟩ be a WCSP.
Bool(P ) ⟨X,Di,C⟩ is a CSP such that D contains all the values a ∈ Di, xi ∈ X

with ci(a) = 0. And cS = ⟨S, rS⟩ ∈ C+ if cS ∈ C and ∀τ ∈ ℓ(S) rS(τ) = 0 if
cS(τ) = 0, otherwise rS(τ) = ⊤.

In simpler terms, Bool(P ) allows exactly the tuples and values having a zero
cost (see figure 2.10). Hence, we can observe that if Bool(P ) is feasible it means
the optimal cost of P is c∅, otherwise if Bool(P ) is infeasible it means c∅ can be
increased by a positive amount. Applying local consistency algorithms on Bool(P )

to detect inconsistencies defines new levels of soft local consistency for P .

Definition 2.18 (Virtual Arc Consistency [Cooper et al. 2010]). A WCSP P is
virtual arc consistent if the (generalized) arc consistency closure of the CSP Bool(P )

is non-empty.

If the arc consistency closure is empty, it has been shown that it is possible to
increase c∅ by a positive amount.
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Theorem 2.1 ([Cooper et al. 2010]). Let P be a WCSP such that c∅ < ⊤. Then
there exists a sequence of EPTs which when applied to P leads to an increase in c∅
if and only if the arc consistency closure of Bool(P ) is empty.

In practice, we need the sequence of AC operations proving the infeasibility of
Bool(P ) to increase c∅ in P. Hence, it is not wanted to completely solve the CSP
defined by Bool(P ), both because it is an NP-hard problem and because we could
not use this information to increase c∅. The algorithm to enforce VAC can be
decomposed into 3 phases:

1. Establish (G)AC on Bool(P ). If no conflict occurred, then quit.

2. Given σ a sequence of arc consistency operations which led to a conflict, find
a minimal subsequence of σ which provokes the conflict. Convert this subse-
quence into EPTs and produce the maximum achievable increase λ of c∅ while
keeping all costs non-negative.

3. Apply the sequence of EPTs and go back to phase 1.

Running VAC on a small example will help have a better understanding. Phase
1 corresponds to establishing AC in figure 2.10 Right. We find directly that value
y = a has no support on cx,y and z = b has no support on cz,w, those values can
be removed. Consequently, y = b has no support on cy,z and a domain wipe-out
occurs at variable y. Phase 2 trace-back those operations to derive a sequence of
EPTs increasing c∅ by a cost λ (figure 2.11). We know the last EPT we want to
perform is unaryProject(y, λ), to perform this EPT values (y, a) and (y, b) request
a cost λ. Therefore, we start the algorithm with a cost λ on cy(a), cy(b) fig.2.11(a).
Then we follow the operations made in Phase 1 to deduce from which cost function
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we could take a cost λ to fulfill the requests of (y, a) and (y, b). The reason (y, a)

has been removed is cx,y, we deduce we can obtain cy(a) = λ by projecting a cost
from cx,y to (y, a). To perform the projection, a cost λ is requested by all the tuples
of cx,y verifying y = a, similarly, a cost λ is requested by all the tuples of cy,z
verifying y = b fig.2.11(b). Both cx,y(b, a) and cy,z(b, a) have a cost > 0 in P , their
requests are already fulfilled and do not need to be traced-back. On the other hand,
cx,y(a, a) and cy,z(b, b) have been removed because of cx(a) and cz(b), a cost λ is
requested from (x, a) and (z, b) fig.2.11(c). The algorithm continues to trace back
values removal necessary to explain the domain wipe-out fig.2.11 (d) and (e). Note
that one value/tuple can participate in multiple value removal, in this case it will
request a cost k×λ, where k is the number of times the value participated in a value
removal. Once the algorithm is done, every value/tuple in figure 2.11 (e) associated
with a cost has a positive unary/binary cost in P . If a value (xi, a) with ci(a) > 0

requests kλ, then to keep non-negative cost while satisfying all the requests made
to (xi, a), we need λ ≤ ci(a)

k . We choose λ to be the maximal cost satisfying all the
requests. Here we have λ = 1. Finally, phase 3 performs the actual sequence of
EPTs to increase c∅ by λ (fig.2.12). Those 3 phases correspond to one iteration of
VAC, we repeat those operations until Bool(P ) is GAC.

• Initial WCSP is in figure 2.12.(a)

• extend(cx, a, cx,y, 1)

• extend(cw, b, cz,w, 1)

• project(cy, cx,y, a, 1)

• project(cz, cz,w, b, 1)

• The obtained WCSP is in figure 2.12.(b)

• extend(cz, b, cy,z, 1)

• project(cy, cy,z, b, 1)

• unaryProject(y, 1)

• Final WCSP verifying VAC is in figure 2.12.(c).

VAC can be used to enforce tight bounds, however, the number of iterations made
by VAC can be unbounded. Indeed, in phase 2 λ is obtained by dividing a cost by
the number of requests, if this number is high then λ will be very small (<1). There
exist cases where the algorithm will iteratively increase c∅ by a very small amount
(<1) and never terminate. To avoid this situation, it is possible to add a threshold ε,
if more than a given number of iterations does not improve c∅ by more than ε then
VAC stops. To not discover the same conflict twice, whenever an increase of c∅ lower
than ε is detected then the unary/binary cost responsible for fixing λ is ignored for
the next iterations. This defines VACε. A complementary heuristic is to also add
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a threshold θ when creating Bool(P ). Only the values/tuples with a cost greater
than θ are considered forbidden in Bool(P ), the others are allowed. If θ is high then
if VAC discovers a conflict, it has more chance to be a large cost contribution. If
θ is low then more tuples are forbidden in Bool(P ) and VAC has more chance to
discover a conflict but with a possibly small contribution. The heuristic consists of
first applying VAC with a high θ in the hope of discovering large cost contributions
and decreasing θ along the iterations.

2.5 SAT, Pseudo-Boolean Optimization, and Conflict-
Based Learning

2.5.1 SAT

The Boolean satisfiability problem, commonly referred to as SAT, is fundamental
and well-studied in computer science and artificial intelligence. It is defined by a set
of Boolean variables, and a formula, where the formula is a conjunction of clauses,
each clause is a disjunction of a literals, and a literal is either a variable itself (x) or
the negation of a variable (x). The objective is to find an assignment of the variables
satisfying the formula (satisfying all the clauses), if one exists then the problem is
said satisfiable else it is unsatisfiable.

Example 2.13. We can model our KPCG instance (without objective function)
using SAT . We first give the SAT modeling of the conflict graph:

C1 : x1 ∨ x2
C2 : x1 ∨ x3
C3 : x2 ∨ x3
C4 : x4 ∨ x5
C5 : x6 ∨ x7
C6 : x6 ∨ x7

Concerning the linear constraint, a direct encoding would need to explicitly give all
the tuples forbidden by the linear constraints. However, there exist various ways to
represent linear constraints in SAT: Binary Decision Diagrams, Multi-valued Deci-
sion Diagrams or sorting networks see [Abío & Stuckey 2014] for a survey. ■

The most basic approach to solve SAT is the Davis–Putnam–Logemann–Loveland
(DPLL) algorithm [Davis et al. 1962], it visits the search space using a rooted tree.
It iteratively chooses a branching literal and assigns it to true, if all the clauses are
satisfied then the obtained problem is satisfiable, the remaining variables can be
assigned to true or false and the algorithm ends. If at least one clause is unsatis-
fiable, then the solver tries to assign the branching literal to false. Otherwise, the
search continues by selecting a new branching literal. To enhance the efficiency of
the search, the solver performs a simple inference rule called Unit Propagation (UP):
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whenever a clause is not satisfied and contains only one non-assigned literal then
this literal is assigned to true, we say that the literal has been propagated by UP.
When a literal is propagated, another clause may become unit, and UP will deduce
another assignment. This can be represented as a trail. The trail is a chronological
record of all the literal assignments that have been made during the solving process.
It keeps track of the order in which literals were assigned and their assigned values
(true or false). For example,ρ = {x1 = True, x2 = False, x3 = False} indicates
that x1 is the first assigned literal followed by x2 and x3. The trail also records a
reason motivating why the solver assigned each literal. It can be a decision made by
DPLL, noted as ’d’ in the trail, or a consequence of unit propagation, noted with the
last propagated clause (see example 2.14). Each time a decision literal is assigned,
it is associated with a decision level, the current decision level being the last known
decision level. The trail allows the solver to know which literal has been assigned
in which decision level. In particular, we will be interested in the literals assigned
during the current decision level, which corresponds to all literals assigned after the
last decision. Infeasibility is detected if UP leads to an empty clause.

Example 2.14. Following example 2.13, if we assign x1 = True then x2, x3 must
be set to false to satisfy constraints C1, C2. This partial assignment also verifies C3.
The corresponding trail would be ρ = {x1

d
= True, x2

C1= False, x3
C2= False} ■

Another approach to obtain a proof of unsatisfiability is to use the resolution
proof system, which aims to associate the information embedded in two clauses to
derive a new clause, this operation is repeated until an empty clause is derived.
The resolution proof system is sound and complete, but it is not directly used in
practice, however, it plays a major role in the well-known Conflict Directed Clause
Learning (CDCL) algorithm [Marques-Silva & Sakallah 1999]. The resolution proof
system relies on the resolution rule

v ∨
∨n

i=1 li v ∨
∨m

j=1 l
′
j∨n

i=1 li ∨
∨m

j=1 l
′
j

(2.12)

By iteratively applying the resolution rule, the proof system attempts to derive an
empty clause, indicating a contradiction and hence proving the unsatisfiability of the
original formula. CDCL is an extension of the DPLL algorithm, the idea is to learn
a constraint after a conflict (when a clause is falsified). The learned clause should
prevent the solver from discovering this same conflict again. In the context of SAT,
when a conflict occurs, the solver starts conflict analysis. It identifies two clauses,
the first one is the conflicting clause Cconf , which corresponds to the falsified clause
under the current assignment. We know that a clause is falsified only if all its literals
are falsified, as we are enforcing UP this is possible only if one or more literals in
Cconf have been falsified at the current decision level (by enforcing UP on another
clause or branching decision at this level). We can use the trail to trace back the last
literal from Cconf to be falsified and which clause is the reason for this propagation,
this gives the second clause, the reason clause Creason. If v was the last falsified
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literal then we know that v appears in Cconf and v appears in Creason, so we can
apply the resolution rule 2.12 on the two clauses. The result is a clause where v does
not appear, this clause is still conflicting under the current assignment, we update
Cconf and identify using the trail a new clause Creason and apply the resolution rule.
We repeat those operations until a stopping criterion, the most common one being
First Unique Implication Point (1-UIP) [Marques-Silva & Sakallah 1999, Moskewicz
et al. 2001, Audemard et al. 2008], basically the operation stops when the resulting
clause contains at most one literal falsified at the current decision level.

Example 2.15. Following example 2.13, we add two clauses to trigger a simple
conflict:

C7 : x2 ∨ x3 ∨ x4 ∨ x6 ∨ x7
C8 : x2 ∨ x3 ∨ x5 ∨ x6 ∨ x7

If we assign x1 = True then x2, x3 must be set to false to satisfy constraints C1, C2.
If we then assign x6 = False then C5 propagates x7 = False, it follows that C7,
C8 propagates x4 = True, x5 = True and C4 is conflicting. The corresponding trail
would be ρ = {x1

d
= True, x2

C1= False, x3
C2= False, x6

d
= False, x7

C5= False, x4
C7=

True, x5
C8= True}. We set Cconflict = C4, Creason = C8 and apply the resolution

rule 2.12:

x4 ∨ x5 x2 ∨ x3 ∨ x5 ∨ x6 ∨ x7
C9 : x4 ∨ x2 ∨ x3 ∨ x6 ∨ x7

Clause C9 is conflicting under assignment x1 = True, x2 = False, x3 = False, x6 =

False, x7 = False, x4 = True, we set Cconflict = C9, Creason = C7 and apply the
resolution rule 2.12:

x4 ∨ x2 ∨ x3 ∨ x6 ∨ x7 x2 ∨ x3 ∨ x4 ∨ x6 ∨ x7
C10 : ∨x2 ∨ x3 ∨ x6 ∨ x7

Clause C10 is conflicting under assignment x1 = True, x2 = False, x3 = False, x6 =

False, x7 = False, we set Cconflict = C10, Creason = C5 and apply the resolution
rule 2.12:

x2 ∨ x3 ∨ x6 ∨ x7 x6 ∨ x7
C11 : x2 ∨ x3 ∨ x6

Clause C11 contains only one variable falsified at the current decision level (x6) we
stop the procedure. Observe that with this clause when assigning x1 = True, the
solver will automatically deduce x6 = True by unit propagation. ■

CDCL is now the most common approach to solving SAT problems. On top
of this framework, many algorithms, heuristics, and efficient implementation tech-
niques have been developed over the years, which led to the efficiency of current
SAT solvers. For more information on SAT see [Biere et al. 2021].
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2.5.2 Pseudo-Boolean Optimization

Pseudo-Boolean optimization (PBO), is a mathematical framework for solving op-
timization problems where the objective function and constraints are defined over a
set of Boolean variables, which can take values of either 1 (true) or 0 (false). We use
the same notation as in SAT, x corresponds to the negation of x, and we have the
relation x = 1−x. PBO extends SAT by incorporating polynomial pseudo-Boolean
constraints i.e. weighted combinations of products of Boolean variables and their
negations. In this thesis, we restrict ourselves to linear PBO, where the constraints
are exclusively weighted combinations of variables and their negation. PBO pro-
vides a more expressive framework than SAT; it is known that one PB constraint
can represent an exponential number of clauses [Dixon et al. 2004]. Moreover, while
both SAT and PBO have the potential to benefit from the cutting plane proof sys-
tem [Gomory 1960], which is theoretically more powerful than the resolution proof
system commonly used in SAT, it is in practice more challenging to take advantage
of the power of cutting planes in SAT than in PBO due to the native presence of PB
constraints in PBO. In particular, a subset of the cutting plane rules can be used to
adapt the techniques developed in SAT.

Example 2.16. Our KPCG instance has only Boolean variables hence its formu-
lation is very similar to ILP, we simply convert it in the usual form with only ≥
constraints and positive coefficients.

min 4x1 + 9x2 + 4x3 + 3x4 + 5x5 + 7x6 + 7x7

s.t

C1 : 3x1 + 5x2 + 3x3 + 3x4 + 5x5 + 5x6 + 5x7 ≥ 10

C2 : x1 + x2 ≥ 1

C3 : x1 + x3 ≥ 1

C4 : x2 + x3 ≥ 1

C5 : x4 + x5 ≥ 1

C6 : x6 + x7 ≥ 1

C7 : x7 + x6 ≥ 1

xi ∈ {0, 1}, i = 1, . . . , 7

■

There exist several ways to solve a PBO problem. One is to transform the
pseudo-Boolean constraints into a SAT formula and run CDCL [Eén & Sörens-
son 2006, Gebser et al. 2012, Martins et al. 2014, Sakai & Nabeshima 2015]. An-
other way is to work natively on linear constraints [Chai & Kuehlmann 2003, Dixon
& Ginsberg 2002, Elffers & Nordström 2018, Le Berre & Parrain 2010, Sheini &
Sakallah 2006], in this case, they behave similarly to SAT solvers and notably CDCL
has been extended to a pseudo-Boolean formulation and will be discussed in the next
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section. The basic inference rule to propagate the constraints is Domain Propaga-
tion. For each constraint it is possible to detect whether a given literal needs to be
set to true by looking at the slack of the constraint. The slack measures how far a
current partial assignment is from falsifying a constraint. Given a partial assignment
τ and a linear constraint C1 =

∑n
i=1 αili ≥ b, the slack is:

slack(C1, τ) =
n∑

i=1
linot falsified by τ

αi − b (2.13)

If a literal li verifies αi > slack(C1, τ), then li must be assigned to true as a negative
slack corresponds to a conflicting constraint. When a literal is assigned, we need
to verify the slack of all the constraints having the given literal in its scope. Once
again, the different assignments can be represented as a trail, reporting sequentially
when and why a literal has been assigned.

Example 2.17. Following example 2.16, if we assign x1 = 1, we obtain the following
slack:

• slack(C1, {x1 = 1}) = 3 + 5 + 3 + 3 + 5 + 5 + 5− 10 = 19

• slack(C2, {x1 = 1}) = 0 it follows that x2 = 0

• slack(C3, {x1 = 1}) = 0 it follows that x3 = 0

• slack(C4, {x2 = 0, x3 = 0}) = 1 the constraint is not conflicting.

• slack(C1, {x1 = 1, x2 = 0, x3 = 0}) = 11

The corresponding trail is ρ = {x1
d
= 1, x2

C2= 0, x3
C3= 0} ■

It is possible to simulate a similar behavior to CDCL in PBO, the conflicting
constraint Cconflict is a constraint having a negative slack, once again we use the
trail to find the last propagated literals and derive a reason constraint Creason. We
will use the following rules to resolve this conflict.∑n

i=1 αili ≥ b∑n
i=1min(αi, b)li ≥ b

(saturation)

(2.14)

αl +
∑n

i=1 αili ≥ b, βl +
∑n′

i=1 βl
′
i ≥ b′ ρ, ρ′ ∈ N∗, ρα = ρ′β∑n

i=1 ραili +
∑n′

i=1 ρ
′βl′i ≥ ρb+ ρ′b′ − ρα

(cancellation)

(2.15)
αl +

∑n
i=1 αili ≥ b∑n

i=1 αili ≥ b− α
(weakening)

(2.16)

The saturation rule is always worth applying as it reduces the size of the coefficients
and may help derive better bounds when we use an LP solver. The cancellation
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rule serves the same purpose as the resolution rule in SAT. Unfortunately, in this
context if we apply the cancellation rule on Cconflict and Creason we obtain a possibly
non-conflicting constraint under the current assignment, meaning that learning this
constraint will not prevent the solver from discovering this conflict again. Chai and
Kuehlmann [Chai & Kuehlmann 2003] show that the weakening rule will help to
obtain a conflicting constraint after the cancellation rule. The most basic strategy
is to weaken one by one the satisfied or unassigned literals of Creason, until the
cancellation leads to a conflicting constraint, after each weakening the saturation
rule can be applied. Finally, the resulting conflicting constraint becomes Cconflict

and the process is repeated.

Example 2.18. Following example 2.16, suppose we assign x1 = 1, it follows that
x2 = 0, x3 = 0, the current trail is ρ = {x1

d
= 1, x2

C2= 0, x3
C3= 0}. Suppose the next

decision is x6 = 0 then C6 propagates x7 = 0 it follows slack(C1, {x1 = 1, x2 =

0, x3 = 0, x6 = 0, x7 = 0}) = 1 enforcing that x4 = 1, x5 = 1, finally the slack of C5

is negative and we reached a conflict. The trail is ρ = {x1
d
= 1, x2

C2= 0, x3
C3= 0, x6

d
=

0, x7
C6= 0, x4

C1= 1, x5
C1= 1} and we have Cconflict = C5 and Creason = C1. We first

apply the cancellation rule 2.15 on x5

5x5 + 3x1 + 5x2 + 3x3 + 3x4 + 5x6 + 5x7 ≥ 10 x5 + x4 ≥ 1

C8 : 3x1 + 5x2 + 3x3 + 2x4 + 5x6 + 5x7 ≥ 7

We observe that slack(C8, {x1 = 1, x2 = 0, x3 = 0, x6 = 0, x7 = 0, x4 = 1}) =

−4 < 0, the constraint is conflicting. We set Cconflict = C8 and continue. The next
variable in the trail is x4 = 1, we set Creason = C1.

3x1 + 5x2 + 3x3 + 2x4 + 5x6 + 5x7 ≥ 7 5x5 + 3x1 + 5x2 + 3x3 + 3x4 + 5x6 + 5x7 ≥ 10

C9 : 15x1 + 25x2 + 15x3 + 10x5 + 25x6 + 25x7 ≥ 35

When dividing by 5 we obtain C9 : 3x1+5x2+3x3+2x5+5x6+5x7 ≥ 7 We observe
that slack(C9, {x1 = 1, x2 = 0, x3 = 0, x6 = 0, x7 = 0}) = −2 < 0, the constraint is
conflicting. Next variable is x7, we set Creason = C6

5x7 + 3x1 + 5x2 + 3x3 + 2x5 + 5x6 ≥ 7 x7 + x6 ≥ 1

C9 : 3x1 + 5x2 + 3x3 + 2x5 + 10x6 ≥ 7

We can apply the saturation rule 2.14 to obtain C10 : 3x1+5x2+3x3+2x5+7x6 ≥
7. We observe that slack(C9, {x1 = 1, x2 = 0, x3 = 0, x6 = 0}) = −2 < 0, the
constraint is conflicting, only one variable falsified at the current decision variable
(x6), we can stop the conflict analysis. With this new constraint, if we assign x1 = 1

and perform domain propagation, then the solver deduces x6 = 1. ■

Other strategies and rules have been built around this algorithm, for example in
Sat4j 3 the unassigned literals of Creason are weakened first. Alternatively, Elffers

3http://www.sat4j.org/index.php
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and Nordström [Elffers & Nordström 2018] use the division rule instead of the sat-
uration rule and weaken all the non-falsified literals with a coefficient not divisible
by the coefficient of the propagated literal.∑n

i=1 αili ≥ b∑n
i=1⌈αi/c⌉li ≥ ⌈b/c⌉

(division by c) (2.17)

Example 2.19. Coming back to example 2.18, we now want to derive a constraint
using the division rule. Given the trail ρ = {x1

d
= 1, x2

C2= 0, x3
C3= 0, x6

d
= 0, x7

C6=

0, x4
C1= 1, x5

C1= 1}. We first consider variable x5, we have Cconflict = C5 and
Creason = C1. In Creason the coefficient of x5 is 5, we first weaken the variables in
Creason non falsified by ρ and with a coefficient not divisible by 5.

Creason ← 5x2 + 3x3 + 3x4 + 5x5 + 5x6 + 5x7 ≥ 7

We then divide by 5, using the division rule 2.17.

5x2 + 3x3 + 3x4 + 5x5 + 5x6 + 5x7 ≥ 7

x2 + x3 + x4 + x5 + x6 + x7 ≥ 2

The coefficient of x5 in Cconflict is already one. We proceed to the cancellation rule
2.15:

x2 + x3 + x4 + x5 + x6 + x7 ≥ 2 x5 + x4 ≥ 1

C8 : x2 + x3 + x6 + x7 ≥ 1

We observe that slack(C8, {x1 = 1, x2 = 0, x3 = 0, x6 = 0, x7 = 0, x4 = 1}) =

−1 < 0, the constraint is conflicting. We set Cconflict = C8 and continue. The
next variable in the trail is x4 = 1, it doesn’t appear in C8, we continue. The next
variable is x7, we set Creason = C6. The coefficient of x7 and x7 is one, we proceed
to the resolution rule:

x2 + x3 + x6 + x7 ≥ 1 x7 + x6 ≥ 1

C9 : x2 + x3 + 2x6 ≥ 1

We can apply the saturation rule 2.14 to obtain C9 : x2+x3+x6 ≥ 1. We observe that
slack(C9, {x1 = 1, x2 = 0, x3 = 0, x6 = 0}) = −1 < 0, the constraint is conflicting,
only one variable falsified at the current decision variable appears (x6), we can stop
the conflict analysis. With this new constraint, if we assign x1 = 1 and perform
domain propagation, the solver deduces x6 = 1. ■

2.5.3 Other Conflict Driven Learning

Other paradigms also adopted a conflict-based learning mechanism. We present the
main concepts behind some of them.
NoGood recording for CSP [Dechter 1990, Katsirelos & Bacchus 2005]. This
method identifies and records specific sets of variable assignments, known as "no-
goods" that are found to be infeasible or lead to contradictions during the search.
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When a conflict occurs, a nogood is generated, capturing the conflicting variable
assignments. These nogoods are stored and utilized to prevent the search algorithm
from revisiting the same or similar states in the future
MaxCDCL for MaxSAT [Li et al. 2021]. MaxSAT is an optimization version of
SAT where the objective is to find an assignment satisfying a set of hard clauses
and falsifying the minimal number of soft clauses. Therefore, a conflict in MaxSAT
can occur, if a hard clause is falsified or if more than UB soft clauses are falsified.
MaxCDCL defines two different procedures to learn a clause from both conflicts.
MIP conflict analysis [Achterberg 2007, Witzig 2022]. In the context of an MIP
problem solved by a branch and bound algorithm, where the LP relaxation of the
problem is solved at each node. We distinguish two different conflicts. First, the
infeasibility has been detected by domain propagation and a single constraint is con-
flicting. A procedure analogous to CDCL can be performed. The solver constructs
a conflict graph describing the relation between the deduced bound changes due to
propagation and branching decisions. This conflict graph can be analyzed to learn a
new constraint. The second type of conflict occurs if the LP relaxation is infeasible.
We suppose that an objective cutoff constraint forbids assignment with a higher
objective value than the current UB. Therefore, the LP relaxation can be infeasible
because its optimal objective value is higher than the UB. In this case, it is possible
derive a dual solution and relies on the lemma of Farkas [Farkas 1902] to produce a
proof of infeasibility:

Definition 2.19 (Farkas constraint [Achterberg 2007]). Given an LP problem min{cTx|Ax ≥
b, x ∈ R+} and a dual solution y then the Farkas constraint is defined as:

yTAx ≥ yTb (2.18)

A Farkas constraint can be modified, strengthened, and added to the pool of
constraints. Those kinds of constraints are built exclusively to prune more values
with domain propagation. Indeed, as they are directly derived from an aggregation
of globally valid constraints, they will not help the LP solver to derive better bounds,
thus they do not actually enter the LP relaxation. Those constraints can also be
used as a starting point for the conflict graph analysis.
In more recent works, Witzig shows how to learn constraint from internal feasible
nodes, this defines conflict-free learning [Witzig 2022]. At each node, it is possible
to produce a Farkas constraint (also referred as dual proof constraint) from a dual
solution. This constraint is not directly useful but it can be strengthened according
to the information obtained by going deeper into the search tree. Once again, those
constraints are used only to prune inconsistent values.

Example 2.20. Following example 2.4, we had the dual solution y = {y1 =

1.4,y3 = 0.2,y5 = 1.2,y12 = 0.8} with objective value 11.8. The Farkas constraint
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issued from y is:

1.4× (3x1 + 5x2 + 3x3 + 3x4 + 5x5 + 5x6 + 5x7)

+0.2× (−x1 − x3) + 1.2× (−x4 − x5)− 0.8x5

≥ 1.4× 10− 0.2− 1.2− 0.8

⇐⇒ 4x1 + 7x2 + 4x3 + 3x4 + 5x5 + 7x6 + 7x7 ≥ 11.8

■
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3.1 Representing and propagating linear constraints

Linear constraints are expressive and compact constraints providing a powerful tool
for modeling and solving a wide range of optimization problems, including computer
science, operations research, and artificial intelligence [Boros & Hammer 2002]. Un-
fortunately, representing linear constraints in extension introduces a number of tu-
ples which is exponential in the arity of the constraint, hence the default way of
representing constraints in CFNs is intractable for such constraints. One possibility
would be to represent the linear constraints in intention and integrate an LP solver
to handle them. However, solving an LP at each node could be very expensive as
Hurley et al [Hurley et al. 2016] have shown that ILP solvers can be significantly
slower than dedicated WCSP solvers. Moreover, the LP solver can be subject to
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numerical instability. It is not wanted to introduce numerical instability into exact
solvers that may work exclusively with integers to guarantee the optimality of their
solution.

In this chapter, we introduce a method for representing in a CFN any linear
constraints without introducing extra variables. We extend soft local consistency
algorithms to handle those constraints. More precisely we focus on PB constraints∑

i∈S wixi ≥ C along with a partition of its variables into sets A1, . . . , Ak ∈ S,⋃k
j=1Aj = S. For each partition Aj a constraint enforces that only one variable

can take value one:
∑

xj∈Aj
xj = 1. Such constraint is known as an Exactly One

(EO) constraint, while
∑

xj∈Aj
xj ≤ 1 is an At Most One (AMO) constraint. This

formulation is more general than a single PB constraint. In particular, it allows
us to extend PB constraints to multi-valued variables. Let S be a scope over a
set of WCSP variables with arbitrary domains and wiv the weight associated with
value v ∈ Di. As we do in the local polytope Local Polytope, for each variable
in S, we use 0/1 variables xiv which take value 1 if xi = v and 0 if xi ̸= v.
The constraint

∑
i∈S,v∈Di

wivxiv ≥ C matches the pattern described above, with
partitions Ai = {xiv | v ∈ Di}. Without loss of generality, we suppose that the
weights and the capacity are all positive. Finally, this formulation admits the case
where there exists an AMO constraint over some partitions: we add another 0/1
variable in each such partition and give it weight 0, so that this partition now has an
EO constraint. Note that all those 0/1 variables are used to represent the constraint
but do not appear outside of it, and we never branch on those variables.

Example 3.1. Suppose we have a WCSP with 2 variables X = {x1, x2} with do-
mains D1 = {1, 2, 3} and D2 = {1, 2}, we can express a PB constraint using Boolean
variables x11, x12, x13, x21, x22.

4x11 + 14x12 + 24x13 + 16x21 + 40x22 ≥ 40

x11 + x12 + x13 = 1

x21 + x22 = 1

x11, x12, x13, x21, x22 ∈ {0, 1}

A solution of this problem could be x13 = 1, x21 = 1 and corresponds to x1 = 3, x2 =

1 in the WCSP. ■

Constraint representation.

We will focus here on F∅IC (definition 2.5 in section 2.4) as the soft local consistency
we aim to enforce. But first, we need an appropriate encoding that can represent
the state of a linear constraint after a series of cost moves (procedure MoveCost)
between the unary cost functions and the constraint, without storing a cost for
each of the exponentially (in the arity of the constraint) many tuples. Observe that
initially, the cost of any given tuple starts at 0 for allowed tuples and ⊤ for tuples
that violate the constraint. After some cost moves, the cost of each tuple is the sum
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of costs that have been moved to or from the values it contains. Therefore, it can
be expressed as a linear function. Let δiv be the total cost that has been moved
between the constraint and the corresponding unary cost ci(v). A cost move from
civ to the linear constraint increases δiv, while a cost move in the opposite direction
decreases it. Hence, we can have negative δ costs. We represent by δ∅ the cost
moved from this constraint to c∅. This quantity is necessarily positive. Initially, no
cost moves have been performed and all the δ costs are 0. After any sequence of
EPTs, the cost of an assingment τ is defined by:

cS(τ) =

{∑
τi=v(δiv)− δ∅ if τ satisfies the constraint

⊤ otherwise
(3.1)

We require that cS(τ) ≥ 0 for all τ to maintain the invariant that no negative
costs are present in any part of a WCSP.

Example 3.2. The PB constraint in example 3.1 is small enough to be represented
as a table. This example aims to show how we use the δ costs to implicitly represent
the PB constraint. We give the table representation of the PB constraint (cPB), the
values of the δ costs and the unary costs of x1 and x2.

x1 x2 Cost
1 1 ⊤
2 1 ⊤
3 1 0
1 2 0
2 2 0
3 2 0

δ Cost
δ11 0
δ12 0
δ13 0
δ21 0
δ22 0
δ∅ 0

x1 Cost
1 40
2 55
3 85

x2 Cost
1 47
2 95

Suppose we do the following sequence of EPTs:

• extend(c1, (x1, 3), cPB, 30)

• extend(c2, (x2, 2), cPB, 20)

• project(c∅, cPB, ∅, 20)

• project(c1, cPB, (x2, 2), 10)

The updated costs are:
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x1 x2 Cost
1 1 ⊤-20-10=⊤
2 1 ⊤-20-10=⊤
3 1 30-20-10=0
1 2 20-20=0
2 2 20-20=0
3 2 30+20-20=30

δ Cost
δ11 0
δ12 0
δ13 30
δ21 -10
δ22 20
δ∅ 20

x1 Cost
1 40
2 55
3 85-30=55

x2 Cost
1 47+10=57
2 95-20=75

We observe that the cost of each tuple is equal to the sum of the δ of the values it
contains minus δ∅. ■

From equation 3.1, the minimal cost assignment of a linear constraint cS can be
obtained by solving the following integer program:

min
∑

i∈S,v∈Di
δivxiv − δ∅ (3.2a)

s.t. ∑
i∈S,v∈Di

wivxiv ≥ C (3.2b)∑
v∈Di

xiv = 1, ∀i ∈ S (3.2c)

xiv ∈ {0, 1}, ∀i ∈ S, v ∈Di (3.2d)

We call this ILP∅(cS). The main property of ILP∅(cS) is that cS is ∅IC if and
only if opt(ILP∅(cS)) = 0. Otherwise if opt(ILP∅(cS)) > 0 we can move some costs
to c∅: project(c∅, cS , ∅, opt(ILP∅(cS))).

However, to detect violations of F∅IC, it is not enough to look at the cost of
tuples of the constraint, as we must also take unary costs into account. Therefore,
the propagator we design considers the problem with a modified objective:

min
∑

i∈S,v∈Di
(δiv + ci(v))xiv − δ∅ (3.3a)∑

i∈S,v∈Di
wivxiv ≥ C (3.3b)∑

v∈Di
xiv = 1, ∀i ∈ S (3.3c)

xiv ∈ {0, 1}, ∀i ∈ S, v ∈Di (3.3d)

Let this problem be ILPF∅. A linear constraint cS is F∅IC if and only if opt(ILPF∅) =

0. In the following, we write piv = δiv + ci(v) for compactness, when it does not
matter how much of the coefficient came from δiv and how much came from ci(v).
In contrast with ILP∅(cS), if opt(ILPF∅) > 0, we cannot move opt(ILPF∅) units of
cost to c∅. Instead, we first have to move some cost from unary cost functions into
the constraint before we can project it to c∅. In this case, the composition of piv
from δiv and ci(v) is significant.
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Example 3.3. Following example 3.2. After the cost moves, ILP∅(cS) is:

min 30x13 − 10x21 + 20x22 − 20

s.t.

4x11 + 14x12 + 24x13 + 16x21 + 40x22 ≥ 40∑
v∈Di

xiv = 1 ∀xi ∈ {x1, x2}

0 ≤ xiv ≤ 1 ∀xi ∈ {x1, x2}, v ∈Di

The optimal solution of this problem is 0, therefore the constraint is ∅IC.
The objective function of ILPF∅ is:

min 40x11 + 55x12 + (30 + 55)x13(−10 + 57)x21 + (20 + 75)x22 − 20

The optimal solution is 112, therefore the constraint is not F∅IC. ■

Unfortunately, ILP∅(cS) and ILPF∅ have the knapsack problem as a special
case, hence it is NP-hard to determine whether a linear constraint is ∅IC or F∅IC.
Therefore, we detect only a subset of cases where the constraint is not F∅IC by
relaxing the integrality constraint (3.3d) and (3.2d) into 0 ≤ xiv ≤ 1 and solving
the resulting linear programs, called LP∅ and LPF∅, respectively. This forgoes the
guarantee that opt(LPF∅) = 0 if and only if the constraint is F∅IC, and satisfies
only the ‘if’ part. More simply, if opt(LPF∅) > 0 then the constraint is not F∅IC,
and similarly for LP∅ and ∅IC.

LPF∅ has a special structure. It is a Multiple-Choice Knapsack Problem (MCKP)
[Pisinger & Toth 1998], or a knapsack problem with special ordered sets [Johnson &
Padberg 1981]. These can be solved more efficiently than arbitrary LPs, a fact that
we use in our propagator.

3.1.1 Solving the Knapsack LP

We obtain an optimal solution x∗ of the primal LPF∅ by applying Pisinger’s greedy
algorithm [Pisinger & Toth 1998]. This gives an optimal solution x∗ in timeO(N logN)
1, with N = |x∗|, such that either x∗ has no fractional value or it has exactly two
fractional values. In the latter case, the WCSP variable k ∈ S, verifying ∃s, s′ ∈Dk

such that 0 < x∗ks, x
∗
ks′ < 1, is called a split class and xks, xks′ are the split variables.

We denote by o =
∑

i∈S,v∈Di
pivx

∗
iv − δ∅, the optimal cost of LPF∅. Consider now

the dual of LPF∅:

max C × ycc +
∑

i∈S yi − δ∅
s.t.

ycc × wiv + yi ≤ piv ∀i ∈ S, v ∈Di (3.4)

ycc ≥ 0

1The Dyer-Zemel algorithm [Dyer 1984, Zemel 1984] can compute a solution in O(N) time, but
we have not yet implemented it.
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Where ycc is the dual variable corresponding to the capacity constraint and yi
corresponds to the EO constraint of xi. It is easy to compute the optimal dual so-
lution from the optimal primal solution. If the optimal primal solution is fractional,
let k be the split class, xks, xks′ the split variables. Otherwise if the optimal primal
solution is integer then we set k = −1. For i ̸= k, define the variable xis as the
variable used in the optimal solution, i.e., x∗is = 1. We define the dual solution y

as:

ycc =

{
pks−pks′
wks−wks′

if k ̸= −1
0 if k = −1

(3.5a)

∀i ∈ S yi = pis − ycc × wis (3.5b)

Lemma 3.1. The dual solution y defined by 3.5a-3.5b is optimal.

Proof. First, we show that y defines a feasible dual solution. The optimal primal
solution is issued from Pisinger’s algorithm, which is based on a particular ordering
of the variables. First, for each variable i ∈ S the values j ∈ Di are ordered by
decreasing weight wij . Then for each consecutive value verifying pij−1 − pij > 0 a
slope pij−1−pij

wij−1−wij
is defined, the value of a slope is necessarily positive. Finally, the

slopes are sorted in increasing order. In a greedy principle, the algorithm follows
the ordering of the slopes to derive the optimal relaxed solution. The value of ycc
corresponds to the last considered slope, therefore ycc ≥ 0. Moreover, this choice
for ycc also proves that every dual constraint 3.4 is verified.
We now show that y has the same objective value as the optimal relaxed solution
x∗. We omit the constant term δ∅ in the proof.
The objective value of y is:

C × ycc +
∑
i∈S

yi = C × ycc +
∑
i∈S

pis − ycc × wis

= ycc(C −
∑
i∈S

wis) +
∑
i∈S

pis

If x∗ is an integer solution then ycc = 0 and
∑
i∈S

pis =
∑

i∈S,v∈Di

pivx
∗
iv. Hence, y is

optimal.
Otherwise, if x∗ is fractional. From Pisinger’s algorithm, we know that C =∑
i∈S,v∈Di

wivx
∗
iv, therefore:

C −
∑
i∈S

wis = (x∗ks − 1)wks + x∗ks′wks′

= (x∗ks − 1)wks + (1− x∗ks)wk′s

= (wks − wks′)(x
∗
ks − 1)
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Finally:

ycc(C −
∑
i∈S

wis) +
∑
i∈S

pis

=
pks − pks′
wks − wks′

(wks − wks′)(x
∗
ks − 1) +

∑
i∈S

pis

= (pks − pks′)(x∗ks − 1) +
∑
i∈S

pis

=
∑

i∈S\{k}

pis + x∗kspks − x∗kspks′ + pks′

=
∑

i∈S\{k}

pis + x∗kspks + x∗ks′pks′

=
∑

i∈S,v∈Di

pivx
∗
iv

We deduce that y is the optimal dual solution.

From the dual optimal solution y, we compute the reduced cost rcy(xiv) of every
variable xiv, i.e., the slack of the dual constraint that corresponds to xiv (see 2.2).
In this chapter, since y always unambiguously refers to the optimal dual solution,
we omit y and write rc(xiv).

The reduced cost of a variable x can be interpreted as the amount by which we
must decrease the coefficient of x in the objective function in order to have x > 0 in
the optimal solution. We explain later that this implies that we can project some
cost to unary cost functions.

In the specific case of LPF∅, we have:

rc(xks) = rc(xks′) = 0

rc(xis) = 0 ∀i ∈ S \ {k}
rc(xiv) = piv − ycc × wiv − yi ∀i ∈ S, v ̸= s

Observation 3.1. Consider the linear program LP ′
F∅ which is identical to LPF∅

but has ∀i ∈ S, v ∈Di, p′iv = piv − rc(xiv). Then opt(LP ′
F∅) = opt(LPF∅).

Proof. The optimal solution x∗ of LPF∅ has the same cost o in LPF∅ and LP ′
F∅,

as the coefficients of the variables that are greater than 0 are unchanged. The
optimal dual solution y is also a dual solution of LP ′

F∅, as the slack in the dual of
LPF∅ matches exactly the reduction in the right-hand side between LPF∅ and LP ′

F∅.
Moreover, as the dual objective did not change, it has the same cost and matches
the primal cost, so opt(LP ′

F∅) = o = opt(LPF∅).
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Example 3.4. Consider the following problem:

min 40x11 + 55x12 + 85x13 + 47x21 + 95x22

s.t.

4x11 + 14x12 + 24x13 + 16x21 + 40x22 ≥ 40∑
v∈Di

xiv = 1 ∀xi ∈ {x1, x2}

0 ≤ xiv ≤ 1 ∀xi ∈ {x1, x2}, v ∈Di

Pisinger’s algorithm gives the optimal primal solution x∗ = {0, 1, 0, 7
12 ,

5
12} with cost

o = 55 + 7
12 × 47 + 5

12 × 95 = 122.
We deduce the following dual optimal solution :

• ycc = 2

• y1 = 55− 2× 14 = 27

• y2 = 47− 2× 16 = 15

The following reduced costs are obtained: rc(x12) = rc(x21) = rc(x22) = 0 and
rc(x11) = 5, rc(x13) = 10, and we deduce that replacing the previous objective
function by the following one does not change the cost of the optimal solution:

min 35x11 + 55x12 + 75x13 + 47x21 + 95x22

We observe that the solution x∗ = {0, 1, 0, 7
12 ,

5
12} is still optimal. ■

3.1.2 Propagation

As explained in section 2.4, soft consistency algorithms (except OSAC) solve the
LP relaxation of a WCSP only approximately, and they are not confluent, meaning
they may converge to different fixed points. The exact set of EPTs produced by a
propagation algorithm may affect both the bound produced in the current run, but
also the bounds produced in future runs.

Empirically, it appears that it is better to leave as much cost as possible in lower
arity constraints: it is better to have costs in the nullary constraint c∅ than a unary
constraint, it is better to have costs in unary constraints than binary constraints,
and so on. A significant factor to consider is the sequence in which we propagate
the constraints, this will be discussed later (see section 3.1.4).

Given a linear constraint and the associated unary costs, it is possible to increase
the lower bound c∅ by at least opt(LPF∅). Since that is the primary consideration,
we design our algorithm to always do that. Additionally, we aim to extend as little
cost as possible from the unary cost functions in order to make opt(LP∅) = o =

opt(LPF∅) and then project o to c∅.
If we move a cost ci(v)−rc(xiv) between the linear constraint and each unary cost

function and value, then opt(LP∅) = o and we can project o to c∅. Note that this
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quantity can be positive or negative and its sign gives the direction of the cost move.
If it is positive the cost goes from the unary cost function to the linear constraint, and
the other direction if it is negative. As we have ci(v)−rc(xiv) = (ycc×wiv+yi)−δiv,
we thus obtain the EPTs performed by Procedure TransformPB.

Procedure TransformPB(cS , ycc, yi, o)
Data: cS : PB constraint
Data: ycc, yi, o: optimal dual solution of LPF∅

for all the variables xiv do
ci(v)← ci(v)− ycc × wiv − yi + δiv ;
δiv ← ycc × wiv + yi;

c∅ ← c∅ + o ;
δ∅ ← δ∅ + o;

Theorem 3.1. Algorithm TransformPB preserves equivalence.

Proof. Recall that piv = ci(v)+ δiv and that rc(xiv) ≥ 0. If ci(v)− rc(xiv) ≥ 0 then
the cost move is an extension of less than ci(v), which is valid. If ci(v)− rc(xiv) < 0

then the cost move is a projection, by definition of the reduced cost, the cost of any
solution x′ with x′iv = 1 is at least o− ci(v) + rc(xiv). This operation is also valid.

Finally, to check that our sequence of EPTs justifies the increase of c∅ by o, we
compute the optimum of LP∅. From Observation 3.1, opt(LP∅) = o, which means
we can project o to c∅ and increase δ∅ to bring opt(LP∅) = opt(LPF∅) = 0.

We can improve on this by observing that the optimal solution of ILPF∅ is
necessary integral. Therefore, we can get closer to this optimal integer solution by
increasing c∅ by ⌈o⌉. In this case, it is also necessary to round up all cost moves.
By rounding up, we can no longer rely on Observation 3.1, but it still holds that
opt(LP∅) = 0. We also approach ∅IC by verifying that for any value xjb, the minimal
cost tuple (not necessarily satisfying the capacity constraint (3.2b)) with xjb = 1

has cost 0. The cost of this minimal tuple is equal to δjb +min
∑

i∈S\xj ,v∈Di
(δiv +

ci(v))xiv − δ∅. If this cost is non-zero, we can project a positive cost to cj(b).
Procedure Propagate is the entry point to the propagator. It enforces domain

consistency on the linear constraint, this can be done by computing the solution
having the maximum achievable weight. If changing the value of one variable pro-
duces an infeasible solution then we can delete this value. Then it solves LPF∅, if
there is more than one optimal solution, we prefer the one minimizing the reduced
cost of the EAC support of each variable. Finally, it uses Procedure TransformPB,
to perform cost moves.

Theorem 3.2. Procedure Propagate runs in O(nd log nd) time where n is the num-
ber of WCSP variables involved and d the maximum domain size.

Proof. Pisinger’s algorithm dominates the complexity, as it runs in O(N logN),
where N is the number of LP variables. In our case, N = nd, so it takes O(nd log nd)
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Procedure Propagate(cS)
Data: cS : PB constraint with EO partitions
DomainConsistency(cS) ;
(ycc, yi, o) = DualSolve(LPF∅) ;
TransformPB(cS , ycc, yi, o) ;

time. Domain consistency on a linear inequality can be performed in linear time.
Finally, Procedure TransformPB iterates once over all variables and values and per-
forms constant time operations on each. Hence, the total complexity is O(nd log nd).

Example 3.5. Returning to Example 3.4, where cS is the PB constraint with EO
partitions over two WCSP variables x1 and x2, we had the following reduced costs:
rc(x12) = rc(x21) = rc(x22) = 0, rc(x11) = 5, rc(x13) = 10, the optimal cost was
122. We deduce the following cost moves:

• extend(c1, (1, 1), cS , 40− 5 = 35)

• extend(c1, (1, 2), cS , 55)

• extend(c1, (1, 3), cS , 85− 10 = 75)

• extend(c2, (2, 1), cS , 47)

• extend(c2, (2, 2), cS , 95)

• project(c∅, cS , ∅, 122)

It implies the resulting δ costs:

• δ11 = 35

• δ12 = 55

• δ13 = 75

• δ21 = 47

• δ22 = 95

• δ∅ = 122

The unary costs after these operations are c1(2) = c2(1) = c2(2) = 0, c1(1) = 5,
c1(3) = 10. If we construct the table of possible assignments of LP∅ obtained after
the extensions, we can see that:

• cS({x1 = 1, x2 = 2}) = δ11 + δ22 − δ∅ = 8

• cS({x1 = 2, x2 = 2}) = δ12 + δ22 − δ∅ = 28

• cS({x1 = 3, x2 = 1}) = δ13 + δ21 − δ∅ = 0

• cS({x1 = 3, x2 = 2}) = δ13 + δ22 − δ∅ = 48
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All the other tuples don’t satisfy the constraint. We observe that the optimal solution
is 0, hence our extensions justify the increase of c∅.
Now assume that other EPTs outside the PB constraint have modified the unary
costs:

• c1(1)→ c1(1) + 16 = 21

• c1(2)→ c1(2) + 30 = 30

• c1(3)→ c1(3)− 9 = 1

We want to compute a new lower bound for the PB constraint by solving LPF∅:

min(21 + 35)x11 + (30 + 55)x12 + (75 + 1)x13 + (0 + 47)x21 + (0 + 95)x22 − 122

s.t.

4x11 + 14x12 + 24x13 + 16x21 + 40x22 ≥ 40∑
v∈Di

xiv = 1 ∀xi ∈ {x1, x2}

0 ≤ xij ≤ 1 ∀xi ∈ {x1, x2}, v ∈Di

The optimal solution is x∗ = {0, 0, 1, 1, 0} and its cost is o = 76 + 47 − 122 = 1.
We deduce the dual optimal solution ycc = 1, y1 = 52, y2 = 31 with reduced costs
rc(x11) = rc(x13) = rc(x21) = 0 and rc(x12) = 19, rc(x22) = 24. We carry out the
following cost moves:

• extend(c1, (1, 1), cS , 21)

• extend(c1, (1, 2), cS , 11)

• extend(c1, (1, 3), cS , 1)

• project(c2, cS , (2, 2), 24)

• project(c∅, cS , ∅, 1)

with δ11 = 56, δ12 = 66, δ13 = 76, δ21 = 47, δ22 = 71, δ∅ = 123. ■

3.1.3 F∅IC and dual solution of the local polytope

In chapter 2, we showed how the EPTs on table constraints can be matched to a
dual solution of the Local Polytope. In this section, we extend this theoretical result
to integrate the EPTs made by algorithm Propagate on linear constraints. We first
extend the local polytope to include linear constraints. Let P ‘⟨X,D,C,⊤⟩ be a
WCSP, we denote by W ⊆ C the set of linear constraints and C+= C \ {c∅}. Let
the LPs (PrimalLin), (DualLin) define the primal and dual problem of P . The linear
constraints are defined by equation (3.6d), where W ∈ Rm×n

+ , b ∈ Rm
+ . Without loss

of generality, we suppose that all constraints are greater or equal with only positive
coefficients in the rhs and lhs. By default, the scope of all the linear constraints is X,
but the matrix W may have zero entries and the effective scope of each individual
linear constraint may be smaller. We denote by wk

ia (resp wk
S:τ ) the coefficient of
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value (i, a) (resp τ ∈ ℓ(S)) in the row k of W and the dual variable corresponding
to row k is λk.

PrimalLin

minObj
def
= c∅ +

∑
i∈X,a∈Di

ci(a)xia +
∑

cS∈C+\W,τ∈ℓ(S)

cS(τ)xS:τ (3.6a)

s.t. ∀i ∈X,
∑
a∈Di

xia = 1 (3.6b)

∀cS ∈ C+\W, i ∈ S, a ∈Di

( ∑
τ∈ℓ(S),τi=a

xS:τ

)
− xia = 0 (3.6c)

Wx ≥ b (3.6d)

DualLin

max
∑
i∈X

πi +
m∑
k=1

λkbk s.t. (3.7a)

∀i ∈X, a ∈Di

m∑
k=1

wk
iaλk + πi −

∑
cS∈C+,i∈S

φia:S ≤ ci(a) (3.7b)

∀cS ∈ C+\W, τ ∈ ℓ(S)
m∑
k=1

wk
S:τλk +

∑
i∈S,a∈Di,τi=a

φia:S ≤ cS(τ) (3.7c)

∀1 ≤ k ≤ m λk ≥ 0 (3.7d)

We can obtain a feasible dual solution y = {Π, φ,Λ} (initialized to 0) by analyzing
the sequence of EPTs made by the consistency algorithms. If an EPT implies a
unary constraint ci or a table constraint cS we proceed as seen in Chapter 2:

• operation unaryProject(ci, α) gives πi ← πi + α

• operation MoveCost(ci, cS , {xi = a}, α) gives φia:S ← φia:S + α

Otherwise if procedure Propagate is called on the linear constraint cSk
, then y de-

pends only on the values of ycc and yi computed in the last iteration of TransformPB:

• λk ← ycc

• πi ← πi + yi ∀i ∈ Sk

Lemma 3.2. The dual solution y defines a feasible solution and its objective value
matches the cost of c∅.

Proof. From chapter 2, we know that when there are no linear constraints then
πi−

∑
cS∈C+,i∈S φia:S corresponds to the quantity of cost moved to/from ci(a). We
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show that
∑m

k=1w
k
iaλk + πi −

∑
cS∈C+,i∈S φia:S (lhs of (3.7b)) also corresponds to

the quantity of cost moved to/from ci(a) in the presence of linear constraints. Given
a linear constraint cSk

, procedure TransformPB maintain that δia corresponds to
the quantity of cost moved between ci(a) and cSk

. We have δia = ycc × wia + yi.
Therefore, if we set λk = ycc and πi = πi + yi, then the quantity δia appears in the
lhs of (3.7b). We can do this for every linear constraint. Hence, we show that the lhs
of (3.7b) corresponds to the quantity of (possibly negative) cost moved from ci(a)

to any constraints. A similar result can be obtained concerning the lhs of (3.7c)
and cS(τ). Theorem 3.1 proved that the sequence of EPTs conducted during the
propagation is valid, meaning that all costs remain positive, hence the sum of all
the (possibly negative) costs moved from a value must be lower than its unary cost.
We deduce that both (3.7b) and (3.7c) are verified by y.
We prove that the objective value of y corresponds to the increase of c∅ by using
a similar reasoning. We know that δ∅ gives the quantity of cost moved from a
linear constraint to c∅. Moreover, procedure TransformPB maintains the fact that
the optimal objective value of LP∅ is 0, meaning that the dual optimal objective
value of LP∅ is δ∅. The optimal dual solution of LP∅ is computed during procedure
TransformPB, its cost is bk × ycc +

∑
xi∈S yi. Setting λk ← ycc and πi ← πi + yi

will increase the objective value of y by exactly bk× ycc+
∑

xi∈S yi. In the end, the
cost of y is the sum of all the δ∅ plus the costs of unary projections, which exactly
matches the increase of c∅.

We know how to produce a dual solution with cost c∅, however, the way we rep-
resent linear constraints fails to validate a convenient property verified with table
constraints. If y is a dual solution partially obtained by algorithm Propagate and P̃
the resulting reparametrization of P , it does not hold that the dual solution ỹ = 0

of P̃ has a cost c∅. The reason is simple, with our representation the constant −δ∅
appears in ILP∅(cS). Therefore, the dual solution ỹ = 0 will have a cost c∅− δ∅. It
signifies that with linear constraints it is not possible to capture the dual solution
corresponding to the reparametrization transforming one internal node to another.
This is shown in example 3.6. In practice, it has no incidence on the solving process
but it will be noteworthy when we try to design a learning mechanism in chapter 5.
We dig deeper into the analysis to concretely understand where this extra cost comes
from and why it is necessary. In the linear constraint, the initial cost of any assign-
ment is 0 if it satisfies the constraint and ⊤ otherwise. After some cost moves, the δ
are modified according to a dual solution y = (y∗, y∗cc) and procedure TransformPB.
The cost of any tuple satisfying the constraint is:∑

i∈X,j=τi

δij − δ∅ (3.8)

=
∑

i∈X,j=τi

(y∗ccwij + y∗i )− y∗cc × C −
∑
i∈X

y∗i (3.9)

= y∗cc(
∑

i∈X,j=τi

wij − C) (3.10)
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If the tuple verifies the constraint then this cost is positive. Furthermore, we can see
it is exactly equal to y∗cc times the slack between the weight achieved by the tuple
and the capacity. Where the weight of a tuple denotes the quantity

∑
i∈X,j=τi

wij . This

is not a coincidence. Indeed, we find again this result by considering a knapsack
constraint transformed into an equality constraint by adding an extra slack variable
s. This corresponds to expressing the ILP ILPF∅ in its normal form:

min
∑

i∈S,v∈Di
(δiv + ci(v))xiv − δ∅ (3.11a)∑

i∈S,v∈Di
wivxiv − s = C (3.11b)∑

v∈Di
xiv = 1, ∀i ∈ S (3.11c)

xiv ∈ {0, 1}, ∀i ∈ S, v ∈Di (3.11d)

s ≥ 0 (3.11e)

Suppose a black box is returning an optimal dual solution y = (y∗, y∗cc). The
procedure TransformPB gives the following δ costs:

δiv = y∗ccwij + y∗i (3.12)

δs = −ycc (3.13)

δ∅ = y∗cc × C +
∑
i∈X

y∗i (3.14)

For any tuple τ satisfying the constraint, the value of the slack variable s is
∑

i∈X,j=τi

wij−

C. Therefore, the cost of any assignment τ is:

∑
i∈X,j=τi

δij + sδs − δ∅ (3.15)

=
∑

i∈X,j=τi

(y∗ccwij + y∗i )− y∗cc(
∑

i∈X,j=τi

wij − C)− y∗cc × C −
∑
i∈X

y∗i (3.16)

= 0 (3.17)

All the tuples have a zero cost. In this situation, it would not be necessary to main-
tain the δ costs.
Consequently, in our representation, the redundant costs appearing in a reparametriza-
tion are directly connected to the reduced cost of a slack variable. Introducing this
slack variable in the WCSP solver would allow us to remove completely the δ costs.
However, those slack variables can have a very large domain and it can be practically
challenging to model them in discrete optimizers. In our particular case, toulbar2
is not able to model them.

Example 3.6. Let P be the WCSP with 4 variables with domain {a, b} and 2 linear
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constraints:

min 2x1a + 3x2a + 4x3a

s.t

c123 : 2x1a + 2x2a + 2x3a ≥ 3

c134 : x1b + x3a + x4a ≥ 2

∀i ∈ [1, . . . , 4] xia + xib = 1

∀i ∈ [1, . . . , 4] xia + xib ∈ {0, 1}

The dedicated propagator Propagate first propagates c123. It considers an LP with
constraints c123 and the EO constraints xia + xib = 1, 1 ≤ i ≤ 3. The dual optimal
solution is λ123 = 1.5, π1 = −1 and cost 3.5 (rounded to 4). It performs the following
cost moves:

• Extend(c1, (1, a), c123, 2)

• Project(c1, c123, (1, b), 1)

• Extend(c2, (2, a), c123, 3)

• Extend(c3, (3, a), c123, 3)

• Project(c∅, c123, ∅, 4)

The following LP gives the obtained reparametrization. We write as δ123 the δ costs
stored in c123 . Those costs are invisible outside the propagation of c123.

minx1b + x3a + 4 + [δ123 : 2x1a − x1b + 3x2a + 3x3a − 4]

s.t

c123 : 2x1a + 2x2a + 2x3a ≥ 3

c134 : x1b + x3a + x4a ≥ 2

∀i ∈ [1, . . . , 4] xia + xib = 1

∀i ∈ [1, . . . , 4] xia + xib ∈ {0, 1}

The solver propagates c134. The optimal dual solution is λ134 = 1, π4 = −1 and cost
1. We deduce the EPTs :

• Extend(c1, (1, b), c134, 1)

• Extend(c3, (3, a), c134, 1)

• Project(c4, c134, (4, b), 1)

• Project(c∅, c134, ∅, 1)
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The resulting reparametrization is:

x4b + 5 + [δ134 : x1b + x3a − x4b − 1] + [δ123 : 2x1a − x1b + 3x2a + 3x3a − 4]

s.t

c123 : 2x1a + 2x2a + 2x3a ≥ 3

c134 : x1b + x3a + x4a ≥ 2

∀i ∈ [1, . . . , 4] xia + xib = 1

∀i ∈ [1, . . . , 4] xia + xib ∈ {0, 1}

The propagation stops here. The dual solution corresponding to this reparametriza-
tion is y = {λ123 = 1.5, λ134 = 1, π1 = −1, π4 = −1}.
If we assign x1 = b, then c1(a) = ⊤. We call this new problem P̃x1=b. We can notice
that the zero dual solution of P̃x1=b has a cost 5-4-1=0.
Domain propagation on c123 leads to x2 = a, x3 = a. All the variables of the con-
straint are assigned, propagating c123 gives an optimal dual solution λ123 = 0, π1 =

−1, π3 = 3, π2 = 3 with cost 1 (we have δ∅ = 4). The EPTs involving removed
values are unnecessary, therefore the only deduced EPT is:

• Project(c∅, c123, ∅, 1)

Propagating c134 gives dual optimal solution λ134 = 0, π1 = 1, π3 = 1 with cost 1.
The deduced EPTs are:

• Extend(c4, (4, b), c134, 1)

• Project(c∅, c134, ∅, 1)

In the resulting reparametrization, only one tuple of c123 is feasible and it has a 0
cost, therefore it is unnecessary to keep track of the δ costs. Similarly, for constraint
c134 variables x1b and x3a are assigned we can directly add their δ costs to δ∅. The
removed values are associated with an arbitrarily large cost of 100.

100x1a + 100x2b + 100x3b + 7

s.t

c123 : 2x1a + 2x2a + 2x3a ≥ 3

c134 : x1b + x3a + x4a ≥ 2

∀i ∈ [1, . . . , 4] xia + xib = 1

∀i ∈ [1, . . . , 4] xia + xib ∈ {0, 1}

The propagation stops here. The dual solution corresponding to this reparametriza-
tion is ỹ = { ˜λ123 = 0, ˜λ134 = 0, π̃1 = 0, π̃2 = 3, π̃3 = 4} and its cost is 7.
We can see that the increase of LB at node P̃ is 2 but dual solution ỹ has a cost of
7. It doesn’t correspond to the EPTs only performed at node P̃ . ■
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3.1.4 Additional Considerations

We describe here the different implementation details or heuristics we tried/used to
improve the main algorithm or to make it more compatible with toulbar2. The
different heuristics were tested on a benchmark composed of 22 KPCG instances
[Bettinelli et al. 2017] (500-1000 Boolean variables with graph density varying from
0.1 to 0.9, one linear constraint), 5 weighted capacity warehouse instances [Kratica
et al. 2001](600 variables of maximum domain size 100, up to 90901 cost func-
tions with 300 linear constraints), 12 multi-demand multi-dimensional knapsack
instances (MDMKP) [Cappanera & Trubian 2005] (100 Boolean variables, 6 lin-
ear constraints), 24 instances from the OPT-SMALLINT-LIN 2016 pseudo-Boolean
Competition:2 area_delay, dt-problems, trarea_ac (250-26836 Boolean variables,
76-55586 linear constraints).

Ordering the constraints

The order in which we propagate the constraints has great leverage on the quality
of the lower bound. The propagation process is triggered whenever the domain
of a variable is modified or its cost is changed. In this case, all the constraints
having this variable in its scope must be propagated, so we must decide which
constraints must be propagated first. Constraint propagation is based on soft local
consistency, depending on the previous propagation one cost can be inside or outside
the reach of the local consistency algorithm. This is amplified by the fact that the
algorithm Propagate is based on a relaxed optimal solution and might extend more
cost than necessary to the linear constraint. Once a cost has been moved to a linear
constraint, it becomes invisible for other soft local consistency algorithms. We tried
several approaches to order the constraints:

• Random: Constraints are sorted randomly.

• Decreasing arity: Follows the arity.

• Increasing/Decreasing DAC Ordering: The DAC ordering of the variables is
used by the soft local consistency EDAC (see definition 2.13 in chapter 2). We
sort the constraint depending on the variable with the lowest DAC ordering
within the scope.

• Decreasing Tightness: For linear constraints, it depends on how hard it is to
satisfy the constraint (capacity divided by maximal achievable weight). For
cost functions expressed in extension, it is the sum of the costs divided by the
number of non-zero costs.

• Lagrangian: For linear constraints, it studies the Lagrangean Relaxation [Martello
& Toth 1987]. This relaxation introduces a Lagrangian multiplier and it has
been shown that the optimal value of the lagrangean multiplier is equal to the

2http://www.cril.univ-artois.fr/PB16/
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Table 3.1: Comparison of the average solving time and average number of nodes for
different ordering of the linear constraints. The number of instances for each class
and the number of solved instances are written in parentheses.

KPCG(21) mdmkp(12) OPT-SMALLINT(22) warehouse(2)

Decreasing DAC
413s

1132228
(21)

97s
1454059

(12)
361s

1319537
(20)

1411s
177883

(2)

Arity
506s

1317228
(21)

97s
1454059

(12)
711s

4162782
(17)

1435s
241034

(2)

Random
501s

1750695
(19)

141s
2188354

(12)
867s

4692683
(14)

1216s
169077

(2)

Lagrangian
422s

1132228
(21)

139s
1950697

(12)
1104s

6023148
(11)

1732s
76074

(2)

Increasing DAC
687s

1610471
(19)

99s
1454059

(12)
1101s

6287224
(12)

1834s
241034

(2)

Tightness
489s

1141141
(21)

324s
4009239

(11)
1090s

60764183
(12)

1943s
72927

(1)

value of the dual variable ycc at optimality. We sort the linear constraints by
increasing lagrangean multiplier and follow the DAC ordering otherwise. We
also tested with decreasing lagrangean multiplier but this led to slightly worse
results and is not reported here.

Table 3.1 gives the results obtained for the different classes. One KPCG, 3
warehouses, and 2 OPT-SMALLINT instances are removed because unsolved by all
the approaches. Overall the DAC decreasing ordering seems to be the most polyva-
lent. However, there is room for improvement as the random ordering is competitive
and solves some instances significantly faster. For example, the instance normalized-
lo_16x16_008.opb.metafix.opb is solved in 3.2s with the random ordering, 931s with
increasing DAC and unsolved in 2000s with the other orderings. For the mdmkp
benchmark which contains only 6 linear constraints, we can see that the ordering
has a clear impact on the solving process. This difference is even greater when
the instance is a combination of linear constraints and table constraints as in the
OPT-SMALLINT instances. Finding the best ordering seems to be a difficult task,
especially when we consider that other heuristics can influence the solving process
and benefit or not from the constraint ordering. This may explain why the DAC-
based ordering produces better results, as it is used in several places in toulbar2.
In the following we always use the DAC-based ordering of the constraint.

Solving the MCKP exactly

We implemented a basic dynamic programming algorithm to solve the MCKP ex-
actly (problem ILPF∅). The user can control in toulbar2 if he wants to use an
exact solution with the option "−kpdp = [integer]" (-2: never, -1: only in pre-
processing, 0: at every search node, k > 0: at every k search nodes). During the
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propagation, the dynamic program is called to solve ILPF∅ and obtain an integer
optimal solution with cost opt. Then to compute the exact reduced cost of a value
(i, v) not used in the optimal solution (xiv = 0)) 3, the solver fixes xiv = 1 and
solves again ILPF∅. The difference between this solution and opt is the reduced
cost of xiv. Note that the order of the variables has an impact on the computed
reduced costs, here we choose to follow the DAC ordering. If the solvers alternate
between optimal and relaxed solutions, then the solver doesn’t perform any EPTs
if the computed relaxed solution has a lower cost than the last integer solution.
The instances of the pseudo-Boolean competition mainly contain linear constraints
associating a weight of 1 to the variables. In this context, Pisinger’s algorithm
directly derives an optimal integer solution, therefore, it is unnecessary to use an
exact approach, so we exclude them from the benchmarks. First, as expected this
approach is very effective on pure knapsack problems, as long as the coefficients are
not too large. On 60 instances with 50-200 variables taken from [Pisinger 2005] 38
are solved within the 2000s when computing a relaxed optimal solution against 58
when using an optimal solution. The average solving time on the instances solved by
both approaches is 38s when using the relaxed optimal solution and 1s when using
the optimal one. On the other instances, we experimented computing a relaxed op-
timal solution (Default), an optimal solution at every node (kpdp=0), only during
preprocessing (kpdp=-1), every 1000 (kpdp=1000) and every 10000 (kpdp=10000)
nodes. The results are shown in table 3.2, 1 KPCG and 3 warehouses instances
are removed because unsolved with all the approaches. Solving the MCKP exactly
at each node is prohibitive, with only 6 instances solved versus 35 when not using
an exact approach. We observe that for some instances it can drastically decrease
the number of nodes visited (18199 nodes and 1, 080 seconds versus 3703662 nodes
and 230 seconds on one KPCG instance). However, note that our choice of im-
plementing linear constraint as ≥ constraints with positive coefficients impacts the
efficiency of the dynamic programming when considering ≤ constraints. Indeed, if
the constraint is 2x1+7x2+8x3+9x4+10x5 ≤ 10 then the equivalent ≥ constraint
is −2x1− 7x2− 8x3− 9x4− 10x5 ≥ −10. When we remove the negative coefficients
we get 2x̄1 + 7x̄2 + 8x̄3 + 9x̄4 + 10x̄5 ≥ 26. The capacity went from 10 to 26, this
will impact the dynamic programming but not the Pisinger’s algorithm. For the
instance cited above the number of variables is 500 and the capacity went from 450
to 29709.
Surprisingly, the number of nodes does not decrease when computing an optimal
solution occasionally. The exact approach will modify the distribution of the costs
and the branching decision. In particular, the cost distribution is impacted by the
computed reduced costs, in the exact approach it depends on an ordering heuris-
tically chosen. While an ordering heuristic only appears briefly in the Pisinger’s
algorithm when two variables have similar profit/weight. Therefore, this approach
can be more "fair" and does not wrongly mislead the solver.

3The values verifying xiv = 1) necessarily have a reduced cost of 0.
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Table 3.2: Comparison of the average solving time and the average number of nodes
for different settings of the kpdp parameter. The number of instances for each class
and the number of solved instances are written in parentheses.

KPCG(21) mdmkp(12) warehouse(2)

Default
413s

1132228
(21)

97s
624681

(12)
1411s
72088

(2)

kpdp=0
1838s
77053

(5)
2000s
5012

(0)
1780s
295435

(1)

kpdp=-1
496

1141347
(20)

211s
1648119

(12)
1646s
300100

(1)

kpdp=1000
738s

1825849
(16)

524s
1836749

(12)
1319s
80849

(2)

kpdp=10000
571s

1380769
(20)

245s
1689858

(12)
2000s

2199623
(0)

Weighted degree heuristic

By default, toulbar2 uses the weighted degree heuristic [Boussemart et al. 2004b]
to define the variable ordering. This heuristic associates a weight to each variable,
those weights are updated whenever the solver reaches a conflict. The solver looks at
the last propagated constraint and identifies a set of variables explaining the conflict,
then it increases the weight of the variables within this explanation. For a linear
constraint cS the solver first verifies if the constraint is satisfiable under the current
assignment. If this is the case then the conflict appeared because the lower bound
is greater than the upper bound, and the last increase was made by the linear con-
straint. It increases the weight of all the variables in the scope. Otherwise, if the con-
straint is unsatisfiable, we use a simple greedy algorithm to identify the explanation
(based on [Hebrard & Siala 2017]). We compute MaxWeight the maximal achiev-
able weight with the current domains Di \ Ai, where Ai corresponds to the values
removed from Di. Then, MaxWeight =

∑
i∈S maxa∈Di\Ai

wia. If the constraint
failed we knowMaxWeight < capacity. We verify for each variable xi (following the
reverse DAC order4). If MaxWeight−maxa∈Di\Ai

wia +maxa∈Di wia ≥ capacity,
then xi is part of the explanation. Indeed, if the value with initially the largest
weight had not been removed then there would be no conflict. Otherwise, we set
MaxWeight←MaxWeight−maxa∈Di\Ai

wia +maxa∈Di wia and continue.
We also add a specific behavior when all the weights of the variables are equal, in
this case: we do nothing. This is specifically designed for the instances of the OPT-
SMALL-INT competition where some instances have a large number of cardinality
constraints. In this context, we observed that the weighed degree heuristic was
not efficient. A possible reason for this failure is that in those instances conflicts
often appear on several constraints at the same time, however, we always follow
the same constraint ordering and stop at the first conflict. As a consequence, the

4We also tried to follow the DAC order, but it led to worse results
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Table 3.3: Comparison of the average solving time and average number of nodes for
different weighted degree strategies for linear constraint. The number of instances
for each class and the number of solved instances are written in parentheses.

KPCG(21) mdmkp(12) OPT-SMALLINT(21) warehouse(3)

No increases
534s

1398969
(20)

277s
5537327

(12)
269s

744727
(21)

1597s
169992

(2)

Increase All
523s

1402069
(20)

275s
5537327

(12)
815s

4387631
(14)

1528s
195749

(3)

Increase Explanation
413s

1132228
(21)

97s
1454059

(12)
283s

698432
(20)

1607s
176702

(2)

procedure repeatedly increases the weights of the same possibly unmeaningful vari-
ables/constraints.
We tried several approaches:

• Do nothing.

• Increase the weights of all the variables.

• Increase the weight of an explanation as defined above.

Table 3.3 gives the results obtained for the different classes, 1 KPCG, 2 warehouses,
and 3 OPT-SMALLINT instances are removed because unsolved by all the ap-
proaches. We can observe that increasing all the weights or none of them produces
similar results for KPCG and mdmkp, but increasing all the weights is significantly
worse in OPT-SMALLINT instances. This justifies our choice of ignoring the con-
straint where all the weights are equal. Using the explanation produces clear better
results for KPCG and mdmkp, it solves one less instance on warehouse and OPT-
SMALLINT. We choose to keep this heuristic as the default heuristic.

3.2 VAC on linear constraints

VAC [Cooper et al. 2010] is a local consistency algorithm aiming to increase the
lower bound of a WCSP P by working on a derived CSP: Bool(P ). For every cost
function in P , only the tuples and values having a zero cost are allowed in Bool(P )

(see definition 2.17 in chapter 2). If Bool(P ) is inconsistent then it means the lower
bound of P can be increased. If the inconsistency of Bool(P ) is detected by AC,
then VAC has been designed to extract a sequence of EPTs to increase c∅. It has
shown good performance when used to obtain a strong initial lower bound. But
whereas VAC has been defined on any WCSP, it would need in our case to enforce
GAC on linear constraints with assignment costs, which is NP-Hard. Moreover,
the linear constraints are not represented in extension, thus it is not possible to
explicitly list all the tuples having a non-zero cost. However, we show that we can
use algorithm Propagate to detect a subset of the inconsistent tuples. Hence, we
design a new version of VAC (VAC-lin), where GAC is applied to any non-linear
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constraints while we use algorithm Propagate to propagate linear constraints. Just
like the original VAC, VAC-lin can be decomposed in 3 phases.

1. Establish an incomplete GAC in Bool(P ), where algorithm Propagate is ap-
plied to linear constraints. If no conflict occurred then we can’t prove that P
is not VAC.

2. Given σ a sequence of arc consistency operations which led to a conflict in
Bool(P ). Find a minimal subsequence of σ triggering the conflict, for linear
constraints we analyze the reduced costs and use conflict explanations [He-
brard & Siala 2017] to identify the necessary AC operations to obtain a conflict.
Similarly to VAC we convert this subsequence in SAC operations and produce
the maximum achievable increase λ of c∅ while keeping all costs non-negative.

3. Apply the sequence of SAC operations and go back to phase 1.

The theorem behind VAC (theorem 2.1 in section 2.4.1) can be extended to show
VAC-lin is sound.

Theorem 3.3. Let P be a WCSP such that c∅ < ⊤. If applying GAC on non-linear
constraints and our dedicated algorithm on linear constraints leads to a conflict, then
there exists a sequence of soft arc consistency operations which when applied to P
leads to an increase in c∅.

Proof. Any value removed by our algorithm would have been removed by applying
GAC on linear constraints. Theorem 2.1 concludes the proof.

VAC has been extended with a heuristic where we associate a threshold θ to
Bool(P ) [Cooper et al. 2010]. Only the tuples and values having a cost < θ are
allowed in Bool(P ). If θ is high then if VAC discovers a conflict, it has more
chance to be a large cost contribution. If θ is low then more tuples are forbidden in
Bool(P ) and VAC has more chance to discover a conflict but with a possibly small
contribution. The heuristic consists of first applying VAC with a high θ in the hope
of discovering large cost contributions and decreasing θ along the iterations. We
directly integrate this in VAC-lin.

3.2.1 VAC-lin subroutines

In this section, we present the different algorithms used to enforce VAC-lin. Al-
gorithm 1 presents how the 3 phases are coordinated. It first calls the first phase
VAC-lin-Phase1. If a conflict occurs it calls the second phase VAC-lin-Phase2. Fi-
nally, if c∅ can be increased by a positive cost, it calls the last phase VAC-lin-Phase3
to increase c∅. We highlight the modifications needed to integrate linear constraints
in VAC-lin. To obtain a more coherent algorithm we adapt the former algorithm
of VAC to a new notation. We describe the different structures we need to enforce
VAC-lin:
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• θ is a threshold. It is a positive cost, when building Bool(P ) only the costs
greater than θ are considered forbidden. In practice, θ decreases over the
iterations of VAC. This heuristics tends to find large cost improvements first.

• P is a queue. It contains pairs of (value,constraint) that need to be propagated
in Bool(P ). Initially, it contains every possible pair (line 5), then whenever a
value is removed, all the constraints linked to this value need to be propagated
again (line 9).

• Q is a queue. It contains the values removed when applying incomplete GAC
on Bool(P ). Q is built in Phase 1 and used in Phase 2.

• M is a Boolean function. It indicates for each value (i, a) ∈ Q whether its
removal is necessary to trigger a conflict in Bool(P ).

• killer associates for each value (i, a) ∈ Q a constraint cS whose propagation
removed value (i, a) and an explanation for this removal. An explanation is a
set of values such that if those values are removed from cS then cS propagates
the removal of (i, a). We want the explanation to be as small as possible. A
minimal explanation corresponds to an explanation such that every value in
the explanation is necessary to deduce the removal of (i, a).

• λ is a positive cost, it corresponds to a cost movable to c∅. λ is computed in
Phase 2.

• k associates to a value (i, a) ∈ Q the quantity of quantum λ requested by the
value. This quantity depends on the number of times the value appears in an
explanation.

• kS depends of the cost function cS . It associates to a value (i, a) the quantity
of quantum that needs to be transferred from (i, a) to cS .

Algorithm 1: VAC-lin Main
Initialize all k, kS to 0, λ← ⊤ ;
conflict, explanation← VAC-lin-Phase1() ;
if (conflict = ∅) then return;
foreach (i, a) ∈ explanation do

k(i, a)← 1,M(i, a)← true;
if (ci(a) ̸= 0) then M(i, a)← false, λ← min(λ, ci(a)) ;

λ← VAC-lin-Phase2() ;
if λ > 0 then

VAC-lin-Phase3();
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Phase 1

In the first phase, VAC-lin considers Bool(P ) and applies GAC on non-linear con-
straints and an incomplete GAC on linear constraints. It ends when a conflict
appears or no more values can be removed. Each propagator returns a cost (OPT ),
a set of removed values (Killed), and an explanation for the removals (KillerSet).
Whenever a value (i, a) is removed because it has no support on constraint cS ,
this value is added to a queue Q (line 6) and it is recorded by updating the killer
structure: killer(i, a) = (cS ,KillerSet) (line 7). The function SimplePass(i, cS)
describes how GAC is enforced on variable xi and a non-linear constraint cS . The
procedure is similar to VAC, if a value (i, a) is not GAC then it is removed, a zero
cost and an empty explanation are returned. They will be automatically updated
in Phase 2.
LinPass1(cS)) presents how to enforce an incomplete GAC on a linear constraint
cS using algorithm Propagate. We differentiate two situations, either the constraint
is conflicting and we want to obtain an explanation before going to phase 2. Or
the constraint is not conflicting and we verify if some values can be removed. The
constraint can be conflicting if it is not feasible or if its optimal cost is > θ (none
of its tuples are allowed in Bool(P )). If the linear constraint is not feasible then it
computes a minimal explanation using conflict explanation [Hebrard & Siala 2017]
(line 2) and goes to phase 2. Otherwise, it removes the values that are not domain
consistent (line 1) and computes an optimal solution of LP∅ with the associated
reduced costs. Notice that, in Bool(P ), LP∅ and LPF∅ are equivalent because the
unary costs of the remaining variables are all zeros. If the optimal cost OPT veri-
fies OPT > θ (line 3), then we reached a conflict, an explanation can be obtained
by analyzing the reduced costs of the removed values. Indeed, if rc(i, a) < 0 then
the minimal cost solution with xia = 1 has a cost lower than OPT , therefore the
removal of (i, a) is necessary to preserve an optimal cost OPT . The set of values
verifying rc(i, a) < 0 explains the conflict. However, this explanation might not be
minimal. The solver returns, OPT and the explanation and moves to phase 2.
If the constraint is not conflicting, then OPT < θ (line 4). We want to verify if
some values are not GAC with the constraint. In our case, it corresponds to val-
ues having a non-zero minimal cost tuple. We once again use the reduced costs to
detect a subset of those values. A value (i, a) verifying rc(i, a) > θ − OPT is not
GAC. Indeed, its minimal cost tuple cost at least OPT + rc(i, a) = θ, therefore
(i, a) can be removed from Bool(P ). We can’t detect without extra computational
work a dedicated explanation for each removal. Therefore, the solver computes a
very straightforward explanation containing all the previously removed values. If
possible this set is refined in Phase 2. A cost of 0, the set of all the values removed
in LinPass1, and the explanation is returned.
In the case a domain wipe-out occurs, then VAC-lin returns the values of the vari-
able and goes to Phase 2 (line 8). To limit the computation time of VAC-lin, we
prioritize applying GAC on non-linear constraints and then incomplete GAC on
linear constraints.
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Algorithm 2: VAC-lin iteration - Phase 1: Instrumented AC
(* Revise variable i w.r.t. constraint cS *);
Function SimplePass(i, cS)

Killed← ∅;
foreach a ∈ di do

if ∄t ∈ τ(S) s.t. ti = a and cS(t) ̸= ⊤ then
Killed← Killed

⋃
(i, a) ;

return (0,∅,Killed);

Function LinPass1(cS)
/* Domain-Consistency(cS) returns the values removed by

domain consistency */
1 BP ← Domain-Consistency(cS) ;

if cS is not satisfiable then
2 KillerSet← Minimal-Explanation();

return (0,KillerSet, ∅)
OPT ← Optimal-Relaxed-Solution(cS);

3 if OPT > θ then
KillerSet← {(i, a) | rc(i, a) < 0};
return (OPT,KillerSet, ∅)

4 else
KillerSet← {(i, a) | (i, a) has been removed in Bool(P ) };
Killed← {(i, a) | rc(i, a) > θ −OPT}

⋃
BP ;

return (0,KillerSet,Killed)

Function VAC-lin-Phase1()
5 P ← {(i, cS) | cS ∈ C, i ∈ S};

while P ̸= ∅ do
(i, cS)← P.Pop();
if cS is a linear constraint then

(OPT,KillerSet,Killed)← LinPass1(cS);
if OPT ̸= 0 then

return (cS ,KillerSet)

else
(OPT,KillerSet,Killed)← SimplePass(cS);

foreach (i, a) ∈ Killed do
delete a from di;

6 Q.Push(i, a);
7 killer(i, a)← (cS ,KillerSet);
8 if di = ∅ then return (i,

⋃
a∈di(i, a));

9 else P ← P ∪ {(j, cS′) | cS′ ∈ C, S′ ̸= S, {i, j} ⊂ S′, j ̸= i};

return (∅, ∅);
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Phase 2

In the second phase, we want to trace back the operations leading to a conflict in
Bool(P ) and collect a minimal subset of value deletions that is sufficient to explain
it. We use a Boolean function M to mark the values with a zero cost in P necessary
to explain the conflict. Initially, only the values in the explanation returned by
phase 1 are marked. The marked values are also added to the queue R (line 20),
this queue will be used in Phase 3. Our objective is to identify a set of values/tuples
with non-zero costs that can be used as a source to move costs to the marked values.
Ultimately if we move a cost to the values in the explanation returned by phase 1
then we can increase c∅. To do this, the solver revisits the queue Q starting from the
last inserted value. For each marked value (i, a), it studies the explanation stored in
killer (i,a). The idea is to use the values/tuples captured by killer (i,a) as a source to
move cost to (i, a). If it meets a non-zero cost then we found a source, otherwise, if
it meets a zero cost then the value is marked. In this phase, we also want to compute
the maximal cost λ that can be sent to c∅. We use the same data structure as the
one described in VAC: k(i, a) corresponds to the number of quantum requested by
value (i, a) and kS(i, a) the number of quantum that (i, a) must extend to cS . We
have k(i, a) =

∑
S∈C,i∈S kS(i, a). Similarly, k(S, τ) defines the quantity of costs

requested by tuple τ in cost function S. Those requests are linked to the number of
times a value/tuple appears in an explanation. We choose λ to be the maximal cost
satisfying all the requests. For example, if a cost of 4 is available on value (i, a) and
k(i, a) = 2, then λ ≤ 4

2 = 2. Once again the procedure is different if the explanation
is a non-linear or a linear constraint.
If the removal was propagated by a non-linear constraint then the procedure remains
the same as in VAC (line 21). Let cS be a non-linear constraint responsible for the
removal of (i, a). We know that in Bool(P ) every tuple τ ∈ ℓ(S) verifying τi = a is
forbidden. Either τ already have a cost cS(τ) > θ in P (line 22) and was directly
removed from Bool(P ). In this case, we increase k(S, τ) and verify if λ needs to be
updated by computing cS(τ)

k(S,τ .
If cS(τ) = 0, then there exists a value (j, b) removed in Bool(P ) such that τj = b.
Value (j, b) explains the removal of τ and we trace it back (line 23). We update
the different structure in function Update-Structures((i, a), cS , (j, τj)).Structures,
k(j, b) and kS(j, b) are increased by k(i, a), if cj(b) < θ then the value is marked,
otherwise λ is compared to cj(b)

k(j,b) .
If a value (i, a) has been removed due to a linear constraint, we want to compute the
minimal cost tuple with xi = a in the linear constraint. The procedure is described
by the function LinPass2 (line 10), it returns a cost corresponding to an approxima-
tion of the minimal cost tuple. There exist several possibilities. First, the minimal
cost tuple with xi = a can also verify xb = j for some (j, b) ∈ killer(i, a). This can
be discovered by considering a modified LP∅ where we add the constraints xia = 1

(line 10) and xjb = 0 ∀(j, b) ∈ killer(i, a) (line 11). If this new problem is not feasible
then there exists no tuple verifying xi = a and xj ̸= b ∀(j, b) ∈ killer(i, a). Therefore,
the minimal cost tuple necessarily verifies xb = j for some (j, b) ∈ killer(i, a). In this
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case, the minimal cost tuple costs at least min(j,b)∈killer(i,a) cj(b). Moreover, there
exists no tuple with xjb = 0 ∀(j, b) ∈ killer(i, a) forbidden in Bool(P ) but allowed in
P . Therefore, it means that there is no tuple in cS that may limit the value of λ.
Hence, LinPass2 returns a cost of λ× k(i, a). We use conflict explanation [Hebrard
& Siala 2017] to refine the explanation (line 12).
Otherwise, if a solution exists with xjb = 0, ∀(j, b) ∈ killer(i, a) and xia = 1, then
it computes an optimal solution of the modified LP∅. Note that the values in
killer(i, a) are forbidden, but we still analyze their reduced costs. The values veri-
fying rc(xjb) ≤ −OPT need to be traced back (line 13) and define the explanation
of the removal. Indeed, the minimal cost tuple with xjb = 1 and xia = 1 has a
cost of at most OPT − OPT = 0, hence it is necessary to move some costs from
xjb to the linear constraint to obtain a non-zero cost on all the tuples verifying
xi = a. Otherwise, if −OPT < rc(xjb) < 0, then the minimal cost tuple τ with
τj = b verifies cS(τ) > 0, to be more precise cS(τ) = OPT + rc(xjb). VAC-lin stops
tracing whenever it finds a positive cost, therefore it is not necessary to trace back
value (j, b). However, the cost τ (or the approximation of cost we have) needs to be
returned as it may limit the value of λ line 14). It is interesting to point out that
another strategy would have been to not consider τ as a limiting tuple and trace
back (j, b). In Phase 3 the cost of τ would have been increased by the cost moved
from (j, b) to the linear constraint and ensure us that no negative cost would be cre-
ated. However, we have no guarantee that this would increase λ, indeed, by tracing
(j, b) we might find a cost limiting the value of λ (or not). Moreover, VAC-lin works
in iteration, hence if a better increase of c∅ is possible by tracing (j, b), this will be
discovered in the next iteration of VAC-lin.
Finally, in both cases, the k, kS structures are updated, the quantity of quantum
requested by the values in the minimal explanation is increased by the quantity of
quantum requested by (i, a) (lines 16,17) and those values are marked (structure
M) if their unary cost is null (line 18). We also update λ (line 19) if necessary.

Phase 3

Finally, in phase 3, all EPTs are performed according to k, kS structure and λ. Af-
ter this sequence, we know a cost of λ can be moved to c∅ (line 24). In the case
the conflict appeared in a linear constraint, then it is possible to apply algorithm
Propagate (line 25), this is useful to detect if we can increase c∅ by a cost higher
than the λ we approximated. Example 3.7 illustrates how to enforce VAC-lin on the

WCSP 3.1.
The space complexity of VAC-lin is dominated by the killer structure, for each con-
straint we associate to each value an explanation with maximal size arity−1. Hence
the space complexity is O(er2d) (vs O(erd) for VAC), where r is the largest arity, e
the number of constraints and d the maximal domain size. As for time complexity,
enforcing GAC on non-linear constraints can be done in O(ndre) while algorithm
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Algorithm 3: VAC-lin iteration - Phase 2: Computing λ
10 Function LinPass2(cS ,KillerSet, (i, a))

Fix xia = 1;
11 foreach (j, b) ∈ KillerSet do Fix xjb = 0;

if cS is not satisfiable then
12 killer (i,a).second ← Minimal-Explanation();

return k(i, a)× λ
OPT ← Optimal-Relaxed-Solution(cS);

13 killer (i,a).second ← {(j, b) ∈ KillerSet | rc(j, b) ≤ −OPT} ;
14 Mintuple← min−OPT<rc(j,b)≤0 rc(j, b) ;
15 return OPT +Mintuple

Function Update-Structures((i, a), cS ,KillerSet)
foreach (j, b) ∈ KillerSet do

16 k(j, b)← k(j, b) + k(i, a);
17 kS(j, b)← kS(j, b) + k(i, a) ;
18 if (cj(b) = 0) then M(j, b)← true ;
19 else λ← min(λ,

cj(b)
k(j,b)) ;

Function VAC-lin-Phase2()
while (Q ̸= ∅) do

(i, a)← Q.Pop() ;
if (M(i, a)) then

20 R.Push(i, a) ;
cS ← killer(i, a).first;

21 if cS is not a linear constraint then
foreach τ ∈ ℓ(S) s.t. τi = a do

22 if (cS(τ) ̸= 0) then
k(S, τ)← k(S, τ) + k(i, a);
λ← min(λ, cS(τ)

k(S,τ));
else

23 Let j ∈ S, j ̸= i be a variable that invalidates τ in
Bool(P );
Update-Structures((i, a), cS , (j, τj))

else
OPT ← LinPass2(cS , killer(i, a).second, (i, a));
OPT ← OPT

k(i,a) ;
if OPT < λ then λ← OPT ;
Update-Structures((i, a), cS , killer(i, a).second))
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Algorithm 4: VAC-lin iteration - Phase 3: Applying equivalence-
preserving transformations

Function VAC-lin-Phase3(conflict)
while (R ̸= ∅) do

(j, b)← R.Pop() ;
cS ← killer(j, b).first ;
if cS is not a linear constraint then

foreach i ∈ S, i ̸= j, a ∈ Di s.t. kS(i, a) ̸= 0 do
Extend(i, a, S, λ× kS(i, a));
kS(i, a)← 0 ;

Project(S, j, b, λ× k(j, b)) ;

else
foreach (i, a) ∈ killer(j, b).second s.t. kS(i, a) ̸= 0 do

Extend(i, a, cS , λ× kS(i, a));
kS(i, a)← 0 ;

Project(S, j, b, λ× k(j, b)) ;

24 if conflict is a variable then UnaryProject(conflict, λ);
else

/* conflict is a linear constraint */
OPT ← Optimal_Relaxed_Cost(conflict);

25 if OPT ≥ λ then Propagate(conflict);
else Project(conflict, c∅, λ);
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Figure 3.1: (left) The original WCSP. (right) The WCSP after propagation of VAC-
lin (the δ costs associated with the linear constraints are not written).

Propagate needs at most O(rdlog(rd)). Concerning phase 2, there are at most nd
values in the queue P, each value is either associated with a non-linear constraint
and it needs at most O(dr−1), or with a linear constraint and it needs at most
O(rdlog(rd)). If r is sufficiently large then the time complexity is O(ndr). Finally
an O(edr + rdlog(rd)) applies to phase 3.

Example 3.7. Let P be a WCSP with 5 Boolean variables {x1, x2, x3, x4, x5} with
domain {a, b}, and constraints ctr1 : 7x1a + 7x2a + 3x3a + 3x4a + 3x5a ≥ 10,
ctr2 : x1a + x4b ≥ 1, c1(a) = 2, c3(a) = 2, and c24(a, b) = 2. This is depicted
by figure 3.1. Using algorithm Propagate does not increase the LB.
If we apply VAC-lin. In Bool(P ), x1a and x3a are directly removed, it follows by do-
main propagation on ctr1 that x2b can be removed and we set killer(2, b) = {x1a, x3a}.
It follows that x4b is not AC with x2 and can be removed. Finally ctr2 is infeasible
with explanation {x1a, x4b}, Bool(P ) is not AC.
We set λ = ⊤ = 20 and start tracing back the AC operations. ctr2 is infeasible
because x1a and x4b has been removed. We directly have c1(a) = 2 we can update
the k structure k(1, a) = 1 and λ: λ = c1(a)

k(1,a) = 2. Value x4b has been removed
because it has no support on c24, we update the k of the two tuples satisfying x4 = b:
k({2, 4}, (a, b)) = 1, k({2, 4}, (b, b)) = 1. The first tuple verifies c24(a,b)

k({2,4},(a,b)) = 2 ≥ λ.
The second tuple verifies c24(b, b) = 0: we need to trace back the removal of x2b. We
observe that if x2b = 1, x1a = 0 and x3a = 0 then the constraint ctr1 is unsatisfied.
We detect a minimal explanation:

• The initial maximal achievable weight is 6.

• If x1a is allowed then the maximal achievable weight is 6 + 7 = 13 ≥ 10. We
add x1a to the explanation and continue.

• If x3a is allowed then the maximal achievable weight is 6+3 = 9 < 10. Hence,
x3a is not needed to explain the conflict, we update the maximal achievable



3.2. VAC on linear constraints 69

weight to 9.

We continue by tracing again x1a, we update the k structure: k(1, a) = k(1, a)+1 =

2. We need to update λ: λ = c1(a)
k(1,a) = 1.

We deduce the following EPTs:

• extend(c1, {x1 = a}, ctr1, 1)

• project(c2, ctr1, {x2 = b}, 1)

• ectend(c2, {x2 = b}, c4, 1)

• project(c2, c24, {x4 = b}, 1)

• extend(c4, {x4 = b}, ctr2, 1)

• extend(c1, {x1 = a}, ctr2, 1)

Constraint ctr2 now propagates a cost of 1 (see 3.1). ■

3.2.2 Discussion on VAC-lin

VAC-lin shares the same flaws as VAC but it exaggerates them. Indeed, both al-
gorithms can produce small increases of lower bound leading to a very large (or
even unbounded) number of iterations. In VAC-lin, this is enhanced by the fact
we do several approximations when we apply VAC-lin. First, we over-estimate the
number of requested quantum λ (k data structure) to ensure that no negative cost
will be created. The approximation arises when one variable (i, a) is responsible for
multiple removals through the same constraints. In this case the request counter
k(i, a) will be increased at each removal. However, depending on the cost distribu-
tion within the constraint it is possible to do better, as shown in example 3.8. For
linear constraints, it requests to solve once again a modified ILP∅(cS). Note that
this flaw has never been highlighted in the original VAC because it has only been
implemented for binary constraints. Secondly, in function LinPass2 from phase 2,
we only get an approximation of the minimal cost tuple and the explanation. Ob-
taining better information would require solving an ILP or modifying LinPass2 to
take λ as a parameter. However, if λ is a parameter of LinPass2, then whenever
λ is modified, we would need to re-do all the previous calls to LinPass2 with the
updated λ.

Example 3.8. Suppose the following pattern of 3 Boolean variables and one ternary
constraint appears in a bigger problem. The unary costs are all zeros except c3(a) =
2, the ternary constraint is defined by table 3.4.
If we apply VAC on this problem then when applying Phase 1, value (3, a) is re-
moved from Bool(P ). With the removal of (3, a) then (1, a) and (2, a) are not GAC
with the ternary constraint. Suppose now a conflict occurred and we go to phase 2.
Furthermore, suppose that both (1, a), (2, a) appear in the explanation and we found
k(1, a) = 1, k(2, a) = 1. Then when tracing (1, a), we get that (3, a) is responsible
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x1 x2 x3 Cost
a a a 5
a a b 5
a b a 0
a b b 5
b a a 0
b a b 5
b b a 5
b b b 0

Table 3.4: Ternary constraint

for the removal and set k(3, a) = 1 with λ = 2. When tracing (2, a), (3, a) is again
responsible and we set k(3, a) = 1 + 1 = 2 and λ = 1. However, in this situation,
it is possible to keep λ = 2. Indeed, if (3, a) transfers a cost of 2 to the ternary
constraint then it is possible to transfer a cost of 2 to both (1, a) and (2, a) without
introducing negative costs. This is possible only because c1,2,3(a, a, a) > 2 × λ = 4,
otherwise, λ = 1 is the best we can do. ■

3.3 Detecting Exactly One constraints

As described in section 3.1 each linear constraint is associated with a partition of
its variables into EO sets. The intuitive partition we described is ideal to assert
that multi-valued variables are assigned to exactly one value, but the algorithm
will work the same way with any partition. This is interesting as we could capture
conflicts involving the values of the linear constraint and encode them using an
EO constraint. This extra information can help to derive a better lower bound.
Unfortunately, to keep an MCKP we can’t associate a linear constraint with more
than one partition. However, we can observe that if for a given partition the values
of multiple-valued variables all belongs to the same set then every solution of the
associated MCKP implicitly verifies the unicity of assignment of the multi-valued
variables. Indeed, each variable appears in only one EO set and for every EO set
exactly one value will be chosen, therefore each variable will be assigned to at most
one value. Our objective is now to associate a partition to each linear constraint,
either it can be given as an input or we can define a procedure to detect and select
them as in [Ansótegui et al. 2019] (for SAT) or [de Givry & Katsirelos 2017](where
the constraints are directly added to the problem). We implemented a two-step
procedure that first creates a conflict graph before finding a clique cover of each
sub-graph induced by a linear constraint.

Conflict Graph

A conflict graph captures conflicts between two values. Each vertex corresponds
to a value and an edge between two vertices expresses that no tuple using both
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values can be part of an optimal solution. To obtain a conflict graph we assign one
variable and propagate this information, if a value is removed then we create an edge
between this value and the value assigned. We repeat this process for all possible
values. Observe that a value can be removed either by a hard constraint e.g. domain
consistency on a linear constraint, or by node consistency. The latter case requires a
good initial lower and upper bound. Computing this conflict graph can be expensive
as it needs to apply EDAC on non-linear constraints and the algorithm Propagate
on linear constraints after each assignment. In practice on large instances, we only
apply EDAC and domain propagation on linear constraints.

Clique Cover Detection

A clique in a graph is a subset of vertices such that every pair of vertices is adjacent.
A clique in a conflict graph corresponds to an AMO constraint. A clique cover of the
conflict graph defines a partition of the values into AMO constraints, which is exactly
what we want to associate with our linear constraints (an AMO constraint can easily
be transformed into an EO constraint by adding one variable corresponding to "not
selecting any of the values in the AMO constraint"). The larger the clique the
more likely it will be helpful during the search, hence we ideally want to obtain
a minimum clique cover, but this is NP-hard to obtain. Instead, we opted for a
simple greedy algorithm, it begins with an empty set of cliques, and then, for each
variable, it selects the value having the largest degree in the conflict graph and tries
to add it to an existing clique, if it is not possible then it creates a new clique with
only this value. We can obtain a partition for a given linear constraint by finding
a clique cover on the subgraph of the conflict graph induced by the values of the
linear constraint (see Algorithm 5). It is also possible to run the clique detection on
the whole conflict graph and add some of them directly to the problem.

3.4 Results

We implemented our approach in toulbar2, an exact WCSP solver in C++5.
toulbar2’s default variable ordering heuristic is the weighted degree heuristic
[Boussemart et al. 2004b] with additional last conflict heuristic [Lecoutre et al. 2009].
By default toulbar2 uses the soft local consistency EDAC [de Givry et al. 2005]
to compute bounds on binary table constraints, and our dedicated propagator for
linear constraints. For warehouse, CPD, and some instances of the PB competition
we also give the results when enforcing VAC or VAC-lin in preprocessing (VAC is
implemented only for binary constraints). For all tests, we imposed a time limit of
30 minutes (except for CPD with 1 hour and 10 hours for Warehouse) on a single
core of an Intel Xeon E5-2680 v3 at 2.50 GHz and 256 GB of RAM. We compared
our PB propagator with other modeling approaches in protein design. We compared

5https://github.com/toulbar2/toulbar2 version 1.2.

https://github.com/toulbar2/toulbar2
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Algorithm 5: AMO detection for linear constraints
Function Constraint_Graph(X,D)

Create an empty graph G;
foreach i ∈ X, a ∈ Di do

Add vertex (i, a) to G;

foreach i ∈ X, a ∈ Di do
Assign xi = a;
/* Here, Propagate() returns the set of removed values.

*/
Removed_V alues← Propagate();
foreach (j, b) ∈ Removed_V alue do

Add edge (i, a)− (j, b) to G ;

return G

Function CliqueCover(G,S)
H ← G(S);
Sort S in decreasing order of maximum degree in H;
Create an empty list CC;
foreach i ∈ S do

Find a ∈Di such that deg((i, a)) in H is the largest;
Add_To_Partition← false;
k ← 0;
while k < |CC| and not Add_To_Partition do

if (i, a) can be inserted in CC[k] then
CC[k].append((i, a));
Add_To_Partition← true;

k ← k + 1;

if not Add_To_Partition then
CC.append([(i, a)]);

return CC
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toulbar2 to the state-of-the-art ILP solver cplex 20.1 on knapsack problems with
conflict graphs. We also compared toulbar2 on Pseudo Boolean Competition 2016
(PB16), the results are not competitive with recent PB solvers but those instances
were previously out of reach by toulbar2.

3.4.1 Pseudo Boolean Competition 2016

We tested toulbar2 on the 1600 instances OPT-SMALLINT-LIN proposed by
the PB16 competition.6 All instances are Boolean and made up exclusively of lin-
ear constraints,7 the number of variables, constraints, and the arity of the con-
straints vary greatly. We compared toulbar2 to the PB solvers NaPS [Sakai &
Nabeshima 2015] v1.02b (winner of PB16), RoundingSat [Devriendt et al. 2021] v2
and to ILP solvers, cplex and scip v7.0.2 (SoPlex). We applied the settings to seek
an exact solution with cplex (epagap = epgap = epint = 0 and eprhs = 10−9),
the default parameters were used for the other solvers. On all the instances, 1200
are solved by at least one solver. We report the number of solved instances in less
than 1800 seconds by each solver for each family of the competition in Table 3.6.
Table 3.5 reports for each solver the number of instances solved exclusively by this
solver, and compares two-by-two the solving times. We consider a solver faster
than another if it is at least 5% faster or if the instance is solved by one solver but
not by the other one. Our approach does not seem ideal for this kind of problem,
the effectiveness of toulbar2 is uneven between the families, it can be competitive
(caixa,primesdimacsnf...) or not suited at all (rand,radar...). According to Table 3.5
toulbar2 is almost dominated by cplex and RoundingSat, the explanation may
be that the PB16 competition is mainly composed by instances with a large num-
ber of constraints with a large arity, in this case, toulbar2 propagation might be
slower than RoundingSat and weaker than cplex. The 5 instances only solved
by toulbar2 are from the sub-family auto-corr_bern (31 instances) and edgecross
(20 instances) of the minlplib2-pb-0.1.0 family, where constraints have a small arity
(5 max). The same experiments were performed on the family lion9-single-obj from
the OPT-BIGINT-LIN, these results show that our approach can also be applied to
coefficients of large size without exceeding the state-of-the-art solvers except with
rare exceptions.

We also experimented using VAC-lin in pre-processing on those instances. The
full result is not reported as in many instances VAC-lin doesn’t increase the LB or is
too time-consuming to enforce. However, it is effective on some families of instances,
such as the area family (area_delay, area_Delay, area_Opers, area_partials, trarea_ac).
Figure 3.2 shows the effect of enforcing VAC or VAC-lin in preprocessing on the solv-
ing time of the 69 instances of the area family. In practice, enforcing VAC is not
worth it, it increases the lower bound for only 5 instances and is slower than the de-
fault toulbar2 on every instance. It was expected as VAC has been implemented
only for binary constraints and those instances don’t contain a large network of bi-

6http://www.cril.univ-artois.fr/PB16/
7We transform each equality constraint into two inequality constraints.
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Table 3.5: Comparison of the solving time on the OPT-SMALLINT-LIN Pseudo
Boolean Competition 2016, an entry reports how many times the solver in the
column is faster than the solver in the row

RoundingSat NaPS tb2 scip cplex
RoundingSat – 382 114 397 690

NaPS 677 – 242 601 761
tb2 924 694 – 792 871
scip 751 577 314 – 923

cplex 440 396 111 136 –
Exclusively solved 17 21 5 2 30

Table 3.6: Results for the Pseudo Boolean Competition 2016
Number of instance RSat NaPS tb2 scip cplex VBS

area_delay,Delay,_opers,_partials 59 57 53 50 58 59 59
(bounded)_golomb_rulers 34 12 12 9 10 10 12

caixa 21 21 21 21 21 21 21
courseass 5 3 4 1 5 5 5

data 89 34 19 6 40 48 49
decomp 10 2 8 0 0 0 8
domset 15 0 0 0 0 0 0

dtproblems 60 60 40 56 60 60 60
EmployeeScheduling 17 0 12 0 12 14 14

factor 192 192 192 192 192 192 192
fctp 31 31 16 1 31 31 31

featureSubscription 20 19 20 0 0 0 20
flexray/fome 10 4 4 0 4 5 5

frb*opb 40 0 16 0 4 4 16
garden 7 5 6 5 6 6 6
graca 20 20 20 3 16 12 20

haplotype 8 8 8 0 0 0 8
heinz 45 22 18 6 22 24 30
j*opt 139 98 100 90 88 94 100

kullmann 7 1 0 0 2 2 2
logicsynthesis 74 62 34 32 70 71 71
marketsplit 40 9 8 8 11 12 12

milp, minlplib2,miplib/2003/3,mps 248 106 76 79 142 151 164
pbfvmcformulae 22 8 1 0 9 16 16
primesdimacscnf 156 128 121 118 132 129 133

radar 12 6 0 0 12 12 12
randbiglist,newlist 44 44 44 12 44 44 44

routing 15 15 15 14 15 15 15
sroussel 60 23 3 0 18 20 29

synthesisptlcmoscircuits 10 10 4 7 10 10 10
testset 6 6 6 6 6 6 6

trarea_ac 10 9 3 7 10 10 10
ttp 8 2 2 2 2 2 2

unibo 36 12 3 0 4 14 18
vtxcov,wnq 30 0 0 0 0 0 0

TOTAL 1600 1030 890 728 1057 1100 1201
BIGINT lion-single-obj 216 196 124 111 180 187 202
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Figure 3.2: Cactus plot of CPU solving time for toulbar2 with VAC or VAC-lin
in preprocessing for the OPT-SMALLINT-LIN area family.

nary constraints. However, VAC-lin shows good performances, on the 69 instances,
67 are solved within 1800 seconds when using VAC-lin in preprocessing and 56 with-
out. The average time to solve those 56 instances is divided by 2 when enforcing
VAC-lin in preprocessing, it goes from 164 seconds without VAC-lin to 80 seconds
with VAC-lin. This approach is even competitive with scip and RoundingSat
as shown in figure 3.3. However, cplex is still significantly more efficient on this
benchmark.

3.4.2 XCSP3 competition

toulbar2 participated in the track Mini COP of the XCSP competition in 2022
and 20238. All the instances are modeled in the XCSP format which includes all the
major global constraints used in the CP community [Boussemart et al. 2016]. For
example, you can find constraints to model comparison (AllDifferent, AllEqual...)
counting (Sum, Cardinality...), or scheduling (Cumulative...). We encoded most of
those constraints as a set of linear constraints. The score of the solvers reported in
table 3.4.2,3.4.2 depends on the quality of the best upper bound and if they proved
optimality. The result of the competition shows that toulbar2 was able to be
competitive with other CP solvers. It is second in 20229 and we can observe it is the
solver with the highest number of instances solved to optimality (see table 3.4.2).
We participated in XCSP 2023 competition with 2 different solvers. Among the
differences, lintoulbar2 includes VAC-lin but not toulbar2 . The instances

8https://www.xcsp.org/competitions/
9Full results: https://www.cril.univ-artois.fr/XCSP22/competitions/cop/mini-cop

https://www.xcsp.org/competitions/
https://www.cril.univ-artois.fr/XCSP22/competitions/cop/mini-cop
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Figure 3.3: Cactus plot of CPU solving time for toulbar2 with VAC-lin in pre-
processing and different solvers for the OPT-SMALLINT-LIN area family.

Solver Score Optimum Best Bound
Virtual Best Solver 152.00 63 152
Mistral 93.00 34 99
toulbar2 86.00 51 87
miniRBO 74.50 41 78
Sat4j-both 58.50 39 60
Sat4j-rs 43.00 33 46
Glasgow 31.50 21 34

Table 3.7: Result for the XCSP 2022 competition.

were harder for toulbar2 than the previous year, the number of instances solved
to optimality dropped significantly. Still, toulbar2 was first on the mini COP
track10 (some solvers in table 3.4.2 are off competition). lintoulbar2 has shown
good performance in some families of instances but was penalized because VAC-lin
was not working correctly at the time of the competition.

3.4.3 Capacitated warehouse location problems

In the Warehouse Location Problem (WLP), a company considers opening ware-
houses at some candidate locations in order to supply its existing stores. The ob-
jective is to determine which warehouses to open, and which of these warehouses
should supply the various stores, such that the sum of the maintenance and supply

10Full results: https://www.cril.univ-artois.fr/XCSP23/competitions/cop/mini-cop

https://www.cril.univ-artois.fr/XCSP23/competitions/cop/mini-cop
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Solver Score Optimum Best Bound
Virtual Best Solver 148.00 43 105
Mistral 100.00 18 76
Choco 66.50 23 38
Exchequer 42.50 24 18
toulbar2 39.50 14 25
lintoulbar2 32.00 12 19
Sat4j-both 26.00 11 14
Sat4j-resolution 19.50 9 7
miniRBO 13.00 13 0
Seapearl 7.00 3 0

Table 3.8: Result for the XCSP 2023 competition.

costs is minimized. Each store must be supplied by exactly one open warehouse.
The capacitated WLP contains one multiple-choice knapsack constraint per ware-
house such that the total demand of the assigned stores to the warehouse does not
exceed its capacity. We add an extra linear constraint such that the sum of the
capacity of the open warehouses is greater than the total demand of all the stores.
This redundant constraint helps to reduce the search effort. We made experiments
on 15 instances [Kratica et al. 2001]11 having from 100 (five capmo instances), 200
(capmp) to 300 (capmq) warehouses and stores (i.e., up to 90,901 cost functions, in-
cluding 301 linear constraints of arity 300), using the same CFN modeling approach
as in [de Givry et al. 2005] (0/1 variables for warehouses and domain variables for
stores representing which warehouse is its supplier) plus the additional PB con-
straints with EO partitions. A direct formulation with linear constraints and 0/1
variables is given to PB and ILP solvers.

Table 3.9 reports the number of solved instances within a 10-hour CPU time
limit. We also report the mean solving time and number of backtracks (unsolved
instances are discarded). We compared our approach with the same solvers as for
the PB16 competition and also with the CP solver or-tools v9.0.9048 (using its
flatzinc interface and free search option). cplex got the best results, being 19
times (resp. 115) faster than scip (resp. or-tools). toulbar2 was run with
VAC or VAC-lin in prepossessing, in both cases 2/15 instances remain unsolved
within the time limit. VAC-lin performs better than VAC on all instances except
capmq5, capmq3, capmq2, where VAC is significantly faster (5900 sec vs 10700 sec on
capmq3). Although it develops much more nodes (≈ ×1, 000) than its competitors,
toulbar2 with or without VAC-lin was able to solve 5 instances (capmo3, capmp2,
capmp5, capmq2, capmq5) faster than scip, the second-best competitor. It is also
faster than or-tools on 9 instances. RoundingSat and NaPS could not solve
any instances in less than 10 hours.

11https://forgemia.inra.fr/thomas.schiex/cost-function-library/-/tree/master/
crafted/warehouses

https://forgemia.inra.fr/thomas.schiex/cost-function-library/-/tree/master/crafted/warehouses
https://forgemia.inra.fr/thomas.schiex/cost-function-library/-/tree/master/crafted/warehouses
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Table 3.9: CPU time in seconds and number of backtracks (or search nodes for ILP
solvers) in parentheses of 15 Capacitated Warehouse Location Problems.

tb2-VAC tb2-VAC-lin or-tools scip cplex12.10
capmo1 6516 (794380) 1963 (543700) 1803 (82) 86 (243) 21 (544)
capmo2 - - 30273 (100) 267 (1895) 89 (3265)
capmo3 539 (56939) 41 (12930) 444 (76) 133 (475) 9,68 (520)
capmo4 4889 (893422) 2458 (961056) 2337 (90) 79 (393) 21 (535)
capmo5 25724 (1157974) 3760 (495966) 5498 (81) 119 (540) 16 (780)
capmp1 - - 4009 (120) 550 (835) 153 (5691)
capmp2 950 (42640) 737 (68270) 2431 (126) 3314 (15197) 57 (608)
capmp3 2963 (108036) 2002 (104123) 1878 (145) 111 (5) 7,2 (0)
capmp4 875 (72360) 654 (99297) 6618 (161) 617 (1044) 18 (639)
capmp5 1668 (81340) 421 (126054) 1553 (130) 1283 (1693) 192 (2911)
capmq1 2699 (233675) 1875 (44147) 6754 (118) 568 (19) 31 (0)
capmq2 1415 (14167) 2315 (237403) 8021 (197) 2209 (804) 76 (496)
capmq3 5925 (1316417) 10732 (568451) 5387 (177) 846 (24) 80 (642)
capmq4 1896 (133219) 1708 (9080) 17898 (229) 433 (5) 101 (1124)
capmq5 2019 (10957) 8692 (815237) 11219 (183) 7042 (5796) 44 (0)

Total solved 13 13 15 15 15
Average time 4,468 sec. 2,873 sec. 7,075 sec. 1,177 sec. 61,2 sec.

3.4.4 Knapsack problem with a conflict graph

We compare here toulbar2 and cplex on Knapsack with Conflict Graph (KPCG)
[Bettinelli et al. 2017, Coniglio et al. 2021], a knapsack problem combined with
binary constraints representing conflicts between pairs of variables. We use 6 dif-
ferent classes C1,C3,C10,R1,R3,R10. In three of them, the weight and the profit
of each variable are correlated (class C) otherwise the profit is random between
[1, 100] (class R). The numbers 1, 3, 10 correspond to a multiplying coefficient of
the capacity, which has the effect of making the instances harder as the multiplier
increases. In each class half of the instances have a capacity of 150, weights are
uniformly distributed in [20, 100], and the number of Boolean variables varies be-
tween 120, 250, 500, and 1000. For the other half, the capacity is 1000, weights
are uniformly distributed in [250, 500], and the number of Boolean variables varies
between 60, 120, 349, and 501. Additionally, the density of the conflict graph varies
from 0.1 to 0.9. In total, each class has 720 instances. We used a direct encoding for
toulbar2 i.e we keep the Boolean variables, and if there is a conflict between xi, xj
then we add a binary cost function between xi and xj with cij = ⊤. For cplex, we
tried with both tuple and direct encodings (tuple encoding corresponds to the local
polytope with integer variables) [Hurley et al. 2016]. Table 3.10 reports the number
of instances solved by each solver. toulbar2 was more efficient than cplex with
the tuple encoding and competitive with cplex using the direct encoding for four
out of six classes. Moreover, toulbar2 finds the best solutions for the largest num-
ber of instances in every class. We also tested generating EO constraints from the
conflict graph and associate them with the knapsack constraint (toulbar2-EO).
This approach gives better results on the hardest benchmarks C10, R10 but not on
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tb2 tb2-EO cplext cplexd tb2 tb2-EO cplext cplexd

C1 711 708 689 720 720 720 701 720
C3 592 593 487 614 703 705 513 640
C10 490 492 318 457 592 591 346 539
R1 720 720 705 720 720 720 705 720
R3 720 720 573 682 720 720 589 691
R10 554 574 365 519 630 646 384 572

Table 3.10: Number of solved instances (left) and number of times a solver found
the best solution within the time limit (right) for six different classes of KPCG.

all the benchmarks. Even if toulbar2-EO derives better bounds, it has a different
variable/value ordering than toulbar2 depending on the instances it reduces the
number of nodes or not. This approach is also slowed down by the time taken to
create the EO constraints (up to 175 seconds for problems with 1000 variables and
high-density conflict graph) and a heavier propagation of the linear constraints.

3.4.5 Sequence of diverse solutions for CPD

A protein is a chain of simple molecules called amino acids. This sequence determines
how the protein will fold into a specific 3D shape. The Computational Protein
Design (CPD) [Allouche et al. 2014b] problem consists of identifying the sequence of
amino acids that should fold into a given 3D shape. This problem can be modeled
as a CFN12 with unary and binary cost functions representing the energy of the
protein but the criteria only approximate the reality, thus producing a sequence of
diverse solutions increases the chance of finding the correct real sequence of amino
acids. Each time a solution is found, a Hamming distance constraint is added to
the model to enforce the next solution to be different from the previous ones. This
is a greedy procedure, as it commits to each solution as soon as it is found, and
therefore it cannot guarantee that the set of solutions it reports is optimal, even
though each solution extends the set of solutions optimally.

The Hamming distance constraint can be directly encoded as a PB linear con-
straint. For each variable, a negative weight of −1 is associated with the value
found in the last solution (other values having a zero weight) and the weighted sum
must be greater than or equal to −(|X| − ζ), where ζ corresponds to the required
minimum Hamming distance.

This has been implemented in toulbar2 and compared to previous automata-
based encoding approaches (ternary, hidden, and dual encodings from [Ruffini et al. 2021])

12Other paradigms such as ILP or Max-SAT have been tested but the experimental re-
sults using their corresponding state-of-the-art solvers were inferior to the CFN approach
using toulbar2 [Allouche et al. 2014b, Allouche et al. 2021]. E.g., for CPD instance
1BK2.matrix.24p.17aa.usingEref_self_digit2 (n = 24, d = 182, e = 300), cplex 20.1 solves it
in 42.84 seconds, toulbar2 in 0.37 seconds. RoundingSat [Devriendt et al. 2021] timed out
after 10 hours.
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on 30 instances [Traoré et al. 2013].13 Selected instances have from 23 to 97 residues
(variables) with maximum domain size from 48 to 194 rotamers (values). The num-
ber of unary and binary cost functions varies from 276 to 4, 753. For each instance,
we set the time limit of 1 hour and the solver halts after finding 10 diverse solu-
tions. We set the parameter ζ for the minimum Hamming distance parameter for
each new solution to ζ = 10. We enforce VAC on unary and binary cost functions
in preprocessing (options -A -d: -a=10 -div=10 -divm=(0 for dual, 1 for hidden, 2
for ternary, and 3 for the linear encoding)). Figure 3.4 reports the solving time of
each encoding. The hidden and ternary encodings failed to give 10 diverse solutions
for respectively one and 2 instances. The linear encoding is faster for 28 instances
and it solves 24 of them in less than 30 seconds while dual, hidden, and ternary
encodings solve respectively 12, 12, and 3 instances in less than 30 seconds.
Note that since we are computing a greedy sequence of solutions, the different en-
codings do not return the exact same sequence. Therefore, the set of diversity guar-
antee constraints is different, and each approach solves a slightly different sequence
of problems. To be certain that the greedy approach does not deeply influence those
results, we also tested the different encodings on instances with 10 initial diversity
guarantee constraints. The task is to find one optimal solution. Figure 3.5 reports
the solving time of each encoding. The obtained results are close to the previous one,
with the linear encoding dominating the other approaches. We compared for each
instance the number of nodes (Fig. 3.6) and time (Fig. 3.7) of the linear encoding
and the dual encoding (previous toulbar2 default encoding). In all the instances
the linear encoding needs fewer nodes than the dual encoding and except for two
instances, the linear encoding is also faster. Automata-based encodings have the
flaw of introducing extra variables that can disturb the variable ordering heuristic
and local consistency algorithm (by default, EDAC during search, except partial
F∅IC for PB constraints). While the linear encoding directly encodes the Ham-
ming distance, it is heavier to propagate as we can see by comparing the number of
nodes per second (403 for linear encoding and 1480 for dual encoding).

3.5 Conclusion and future work
It is now possible to model pseudo-Boolean linear constraints in deterministic and
probabilistic graphical models. This provides greater modeling flexibility and allows
a WCSP solver like toulbar2 to solve more problems, such as computational pro-
tein design problems with diversity guarantee or knapsack problems with conflict
graphs. One of the weaknesses of our approach is that the algorithm fundamentally
produces a suboptimal solution to the linear program. It propagates the pseudo-
Boolean linear constraints one by one and is sensitive to the constraint ordering.
To address this issue we extended VAC algorithm to handle linear constraints and

13http://genoweb.toulouse.inra.fr/~tschiex/CPD-AIJ/Last35-instances. We re-
moved 5 instances (1ENH.matrix.36p.17aa, 1STN.matrix.120p.18aa, HHR.matrix.115p.19aa,
1PGB.matrix.31p.17aa, 2CI2.matrix.51p.18aa) on which toulbar2 timed out after 9,000 seconds
even without diversity constraints [Allouche et al. 2021].

http://genoweb.toulouse.inra.fr/~tschiex/CPD-AIJ/Last35-instances
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Figure 3.4: Cactus plot of CPU solving time (log scale) to find 10 diverse solutions
for different encodings of Hamming distance constraints on CPD.

Figure 3.5: Cactus plot of CPU solving time (log scale) on 30 CPD instances with
10 diversity constraints using different encodings.
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Figure 3.6: Comparison of the number of nodes on 30 CPD instances with 10
diversity guarantee constraints.

Figure 3.7: Comparison of CPU solving time in seconds on 30 CPD instances with
10 diversity guarantee constraints (log scale).
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added the possibility of associating conflicting assignments with linear constraints.
It showed its efficiency on several benchmarks.
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We introduced in chapter 2 several local consistency algorithms. In particu-
lar, we described Virtual Arc Consistency (VAC), which is achieved when the arc
consistency closure of Bool(P ) is non-empty. In this chapter, we define Virtual
Pairwise Consistency (VPWC), which can be obtained by enforcing Pairwise Con-
sistency on Bool(P ). In constraint programming, Pairwise Consistency (PWC) is
a consistency defined for non-binary CSP. In contrast to AC-based consistency, it
has the possibility to exploit interactions between pairs of constraints. Therefore,
it provides a stronger pruning but is more expensive to enforce. It was compared
to generalized AC for solving non-binary CSPs given in extension [Samaras & Ster-
giou 2005a, Schneider & Choueiry 2018a, Wang & Yap 2019, Wang & Yap 2021]. It
shows good performance in some benchmarks but is not preferred by default. Recent
algorithms enforcing PWC on a CSP rely on a binary encoding, we also explore a
similar idea in the CFN framework.

4.1 Pairwise Consistency

We recall that a Constraint Network (CN) is a triplet < X,D,C >, where X are
the variables, D the domains, and C the constraints. A constraint cS ∈ C is
defined by a pair < S, rS > where S ⊆ X is the scope S ⊆ X and rS is a function
rS : DS → {0;⊤}. For u, v ∈ {0,⊤}, we will denote the logical conjunction by
u ∧ v = u+ v and the disjunction by u ∨ v = min{u, v}. We assume a CN contains
all unary constraints, i.e., {i} ∈ C ∀i ∈ X.
For any B ⊆ A ⊆ X, we define the projection of a constraint rA: DA → {0,⊤} onto
variables B to be the constraint rA|B: DB → {0,⊤} given by

rA|B(x) =
∨

x′∈DA: x′|B=x

rA(x
′) ∀x ∈DB. (4.1)
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We say that a pair of constraints {rA, rB} is Pairwise Consistent (PWC) if they
admit the same set of assignments to their shared variables, i.e.,

rA|A∩B = rB|A∩B (4.2)

where ‘=’ denotes here equality of functions. A CN is PWC if all possible pairs of its
constraints are PWC. If we restrict PWC to pairs of constraints where one constraint
is unary, we come back to (generalized) arc consistency (GAC) (see definition 2.1).
PWC or GAC can be enforced on a CN P by iteratively forbidding assignments
that violate (4.2). The minimal set of changes required to enforce PWC (or GAC)
is unique, and the resulting CN is called the PWC (or GAC) closure of P .

We say that a local consistency ψ′ is not weaker than a local consistency ψ if for
every CN instance for which the ψ-consistency closure is empty, the ψ′-consistency
closure is also empty. We say that ψ and ψ′ are equally strong if ψ′ is not weaker
than ψ and vice versa. We say that ψ′ is strictly stronger than ψ if ψ′ is not weaker
than ψ but they are not equally strong.

• For binary CNs, AC is equally strong as PWC.

• For non-binary CNs, PWC is strictly stronger than AC.

• For CSPs of arity more than 2 with all unary constraints, AC is equally strong
as the local consistency obtained by enforcing PWC on constraint pairs {rA, ri}
(i.e., enforcing the equality ri = rA|{i}) for all i ∈ A ∈ S.

The PWC relation of constraints is clearly reflexive and symmetric. It is in
general not transitive, but it satisfies the following weaker condition:

Theorem 4.1. [Janssen et al. 1989] Let C1, . . . , Cn ∈ S be such that for every
i = 1, . . . , n, we have C1 ∩ Cn ⊆ Ci. Let, for every i = 1, . . . , n − 1, constraint rCi

be PWC with rCi+1. Then rC1 is PWC with rCn.

Thus, enforcing PWC for some constraint pairs implies that the PWC condition
holds also for some other pairs, which can simplify algorithms [Janssen et al. 1989,
Schneider & Choueiry 2018b].

4.2 Dual Encoding of a Cost Function Network

Depending on the studied CN, the choice of the encoding can significantly impact the
efficiency of the solver. A particular encoding may offer advantages due to its ability
to provide a more concise representation and enable more efficient propagation and
search algorithms. A well-known encoding is the Dual encoding, it allows encoding
any CN into a binary CN [Samaras & Stergiou 2005b]. This encoding highlights the
relation between pairs of constraints and allows a more powerful filtering by using arc
consistency-based algorithms. However, it might introduce large domain variables.
The dual encoding of a CN P = (X,D,C) is a binary CN Dual(P ) = (C, D̄, C̄)

where:
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• The variables of the dual problem are the scope C of P .

• The domain of variableA ∈ C of the dual problem is D̄A = {τ ∈DA s.t rA(τ) =

0}.

• The scopes are C̄ = { {A} | A ∈ C } ∪ { {A,B} | A,B ∈ C, A ∩B ̸= ∅ }.

• The dual binary constraints with scope {A,B} ∈ C̄ are the channeling con-
straint r̄AB: DA ×DB → {0,⊤} with values:

r̄AB(y, y
′) =

{
0 if yi = y′i ∀i ∈ A ∩B
⊤ otherwise

∀y = (yi)i∈A ∈DA, y
′ = (y′i)i∈B ∈DB.

Note that we suppose that the unary constraints are in the set of constraints, this
is not usually the case in the literature. In particular, the hidden and double encod-
ing [Samaras & Stergiou 2005b] have been defined to keep the primal variables in the
resulting binary encoding. With our assumption, the dual and double encoding are
equivalent. The dual encoding can be used to enforce PWC on the primal problem.

Theorem 4.2. [Janssen et al. 1989] Let P be a CN. P is PWC if and only if it’s
dual is AC.

By taking advantage of theorems 4.2 and 4.1, PWC can be achieved by applying
well-optimized AC algorithms [Schneider & Choueiry 2018b].

Similarly, the notion of dual encoding can be extended to CFN, it will help
to produce better bounds with soft arc consistency based algorithms. The dual
encoding of a CFN P = (X,D,S, f) is a binary CFN Dual(P ) = (S \ {∅}, D̄, S̄, f̄)

where:

• The variables of the dual problem are the scopes S \ {∅} of P .

• The domain of variable A ∈ S \ {∅} of the dual problem is D̄A = DA.

• The scopes are S̄ = {∅} ∪ { {A} | A ∈ S } ∪ { {A,B} | A,B ∈ S, A∩B ̸= ∅ }.

• The dual nullary cost function is unchanged: f̄∅ = f∅.

• The dual unary cost function with scope {A} ∈ S̄ is the function f̄A = fA.

• The dual binary cost function with scope {A,B} ∈ S̄ is the channeling con-
straint f̄AB: DA ×DB → {0,⊤} with values:

f̄AB(y, y
′) =

{
0 if yi = y′i ∀i ∈ A ∩B
⊤ otherwise

∀y = (yi)i∈A ∈DA, y
′ = (y′i)i∈B ∈DB.

Once again, as we make the assumption that all the unary cost functions are in the
set of scopes, the dual and double encoding of a CFN are equivalent.

Example 4.1. Let P be the CFN described in Example 2.9, represented by the
hypergraph in Fig. 4.1(a). Then, Dual(P ) has 9 dual variables, y1, y123, y14, . . . , y5.
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Figure 4.1: (a) Hypergraph of a CFN, (b) its dual graph, (c) a minimal dual graph,
(d) the partial dual graph used in the experiments, (e) a binary channeling constraint
created by the dual encoding (an edge depicts a 0-cost assignment).

The domain of the dual variables corresponds to the tuple of the corresponding primal
constraint, hence the domain size of y1,2,3 and y2,3,4 is 12, 8 for y2,3,5 and 9 for y1,4.
Dual(P ) has 16 binary channeling constraints, as shown by the constraint graph in
Fig. 4.1(b). Using Theorem 4.1, a minimal dual graph can be produced with only 9
binary constraints (Fig. 4.1(c)).

■

4.3 Virtual Pairwise Consistency

Following the idea of VAC, we introduce Virtual Pairwise Consistency (VPWC), a
soft local consistency stronger than VAC.

Definition 4.1. A CFN P is VPWC if the PWC closure of Bool(P ) is non-empty.

Combining Definition 4.1 and previous results [Janssen et al. 1989], we get that
enforcing VPWC is possible using existing algorithms.

Theorem 4.3. Let P be a CFN. P is VPWC if and only if Dual(P ) is VAC.

Proof. By theorem 4.2, we know that a CN has a non-empty PWC closure if and
only if its dual has a non-empty AC closure. Clearly, for any CFN P we have
Dual(Bool(P )) = Bool(Dual(P )). Therefore, P is VPWC iff Dual(Bool(P )) =

Bool(Dual(P )) has a non-empty AC closure, which means Dual(P ) is VAC.
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(a) f123 x1 x2 x3 Cost f234 x2 x3 x4 Cost f14 x1 x4 Cost
a a a 0 a a a 1 a a 2
a a b 1 a a b 1 a b 2
b a a 1 a a c 1 a c 2
b a b 1 f1 x1 f2 x2
c a a 1 b 2 a 0
c a b 1 c 2 b 2

(b) y123 Cost y234 Cost y14 Cost
aaa 0 aaa 1 aa 2
aab 1 aab 1 ab 2
baa 1 aac 1 ac 2
bab 1 y1 y2
caa 1 b 2 a 0
cab 1 c 2 b 2

Table 4.1: (a) Original CFN. (b) dual unary cost functions (missing tuples have 0
cost).

Example 4.2. Following Ex.4.1, we give the costs for each cost function in Ta-
ble 4.1(a). VAC on this problem derives a lower bound of 2, since x1 = a is not
consistent with r14. VAC on the dual (Table 4.1(b)) derives a lower bound of 3,
because (a) all values in y14 compatible with y1 = a (i.e., aa, ab, ac) have cost 2, and
(b) all values compatible with y123 = aaa in y234 (i.e., aaa, aab, aac) have a cost of
1, therefore they do not support y2 = a, making it inconsistent in y123. This leads
to a lower bound of 3.

■

The dual can help derive better lower bounds but introduces a possibly large
number of variables with large domains, which may slow down the search. We
propose to first dualize the problem and get a first strong lower bound, then return
to the primal. The following shows that this is always possible without introducing
higher order cost functions1.

Theorem 4.4. Let P be a CFN and let Q be a CFN equivalent to Dual(P ). Then
there exists a CFN Q′ equivalent to Q such that all binary constraints of Q′ are hard
and Q′ has the same lower bound as Q.

Proof. The main observation is that every dual binary cost function (the channeling
constraint) is piecewise-functional. It means that cij has a block structure (see
Fig. 4.1(e)): there exists a partition Hi = {β1, ..., βm} of the domain Di and a
partition Bj = {β′1, ..., β′m} of Dj such that for each v ∈ βk and v′ ∈ β′l we have
cij(v, v

′) < ⊤ whenever k = l and cij(v, v
′) = ⊤ whenever k ̸= l. In the context of

the dual encoding, the channeling constraints start with a cost 0 whenever k = l.
This implies that every value within the same block is initially supported by the

1This is unsurprising because the strongest bound that can be derived using EPTs is obtained
using a linear program which includes pairwise consistency constraints [Werner 2010].
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exact same set of values. A fact we can use to show that every EPT moving cost
into cij can be matched with another EPT moving cost out of it without affecting
the lower bound.
Indeed, if an EPT project(ci, cij , (i, v), α) increases the cost of a value v ∈ βl ∈ Hi,
it implies to keep the non-negativity that for every value v′ ∈ Dj supporting v

we have cij(v, v′) ≥ α. All the channeling constraints start with a cost 0 or ⊤.
It follows that every value v′ ∈ β′l moved a cost α′ ≥ α, corresponding to EPTs
extend(cj , (j, v

′), cij , α
′) (α′ might differ between values in β′l). We also know that

all the values in βl are supported by the same values, we deduce that if it is possible
to increase ci(v) by α then we can also increase the cost of every value in βl by α. If
all the values v′ ∈ β′l extend exactly a cost α′ = α then no non-zero finite cost will
remain in the channeling constraint after moving a cost α to the values v ∈ βl.

We can now summarize the base version of our approach. Given a CFN P ,
we apply EPTs to its dual encoding Dual(P ) (using a VAC algorithm) to obtain a
CFN Q with an increased lower bound. Theorem 4.4 lets us obtain from Q another
CFN Q′ in which all channeling cost functions are constraints. We can thus undo
the dual encoding, i.e., obtain a CFN P ′, equivalent to P , such that Q′ = Dual(P ′).
If Q was VAC then, by Theorem 4.3, P ′ is VPWC.

4.4 Experimental Results on UAI 2022 Competition

We won a recent competition on probabilistic graphical models. 2 We present results
on a set of 120 tuning instances, where 63 have maximum arity of 3.

We evaluate three solvers: daoopt (version from UAI 2012 competition with
1-hour settings as given in [Otten et al. 2012]), cplex (version 20.1.0.0, forcing com-
pleteness with zero absolute and relative gaps, translating CFN to 0-1 LP by the
tuple encoding [Hurley et al. 2016]), and toulbar2 (version 1.2.0) using two state-of-
the-art methods, Variable Neighborhood Search (VNS) [Ouali et al. 2020] winner of
UAI 2014 competition, 3 and Hybrid Best-First Search with VAC in preprocessing
(VACpre-HBFS), including VAC integrality heuristics [Trösser et al. 2020]. 4 We
implemented VPWC in the latest version of toulbar2. It is either enforced in prepro-
cessing (and then converted back to the primal, see Theorem 4.4) (VPWCpre-HBFS)
or maintained during search (HBFS-VPWC). EDAC is always enforced [Larrosa &
Heras 2005, Sánchez et al. 2008], providing a default value ordering heuristic when no
solution is found for solution-based heuristics [Demirovic et al. 2018]. The branching
heuristic is dom/wdeg [Boussemart et al. 2004a] combined with last conflict [Lecoutre
et al. 2009].

We use a slightly different binary encoding. We keep the original variables
and the original binary cost functions unchanged, and only dualize the original

2https://uaicompetition.github.io/uci-2022, see MPE and MMAP entries.
3http://auai.org/uai2014/competition.shtml, http://miat.inrae.fr/toulbar2
4Options -A -P=1000 -T=1000 -vacint -vacthr -rasps -raspsini in toulbar2-vacint.

https://uaicompetition.github.io/uci-2022
http://auai.org/uai2014/competition.shtml
http://miat.inrae.fr/toulbar2
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non-binary cost functions. It avoids creating extra dual variables and bijective
channeling constraints with a partition of blocks but a single value per block. We
add channeling constraints between dual and primal variables, this allows us to
only add channeling constraints between those pairs of dual variables that are not
redundant by Theorem 4.1. Observe the primal variables are exactly the same as
the dual variables on unary cost functions. By adding all the channeling constraints
between primal and dual variables (as in HVE) ensures that the minimal dual graph
is connected for each separator even if we remove dual variables for the binary cost
functions. Theorems 4.3 and 4.4 remain valid. Similarly, this encoding allows us
to not add channeling constraints between dual variables with intersecting scopes
equal to 1. Indeed, it has been shown that GAC is sufficient to enforce PWC if
the size of the intersecting scope is 1 [Schneider & Choueiry 2018b]. The resulting
non-minimal graph for Example 4.1 is shown in Fig. 4.1(d).

Furthermore, we apply this encoding only partially, indeed for high-arity con-
straints, a full dual encoding might mean a prohibitive amount of memory to store
the dual domains.

Hence, only non-binary cost functions of arity less than 10 and fewer than
215 non-forbidden tuples are dualized. Those remaining are lazily propagated by
VAC/EDAC when they have less than three unassigned variables in their scope.
The memory used by each channeling constraint between a pair of dual variables is
restricted to at most 1MB (arbitrarily chosen). Larger channeling constraints are ig-
nored. Additional preprocessing is performed beforehand for all the HBFS methods
in order to find better bounds. An initial upper bound is found by local search [Neveu
et al. 2004, Beuvin et al. 2021] and VAC-based heuristics [Trösser et al. 2020]. To
reduce the problem size and improve lower bounds, we apply bounded variable
elimination with a min-fill ordering [Dechter 1999, Larrosa 2000, Favier et al. 2011]5

and add ternary zero-cost functions on the most-preferred triangles (total memory
space of extra ternary functions limited to 1MB).6 It results in at most 6-ary (resp.
zero-cost ternary) cost functions for 84 (resp. 81) instances, making our encoding
applicable to 85 instances rather than 63. Finding a (quasi-)minimal dual graph
(see Theorem 4.1) yielded 700.3 channeling constraints on average, a 4.5% savings
compared to the complete dual graph.

The experiments were run on a single core of Intel Xeon E5-2683 2.1GHz pro-
cessors with 1-hour CPU-time and 8GB memory limit. toulbar2 was able to solve
optimally 86 instances using VACpre-HBFS or VNS. daoopt solved 92 instances and
cplex 95 instances. Using our partial dual encoding with VPWC applied in pre-
processing, VPWCpre-HBFS solved 95 instances, and when applied during search,
HBFS-VPWC solved 99 instances, 15% above VACpre-HBFS, being the best exact

5It is done only if the median degree in the original problem is less than 8, eliminating variables
with a current degree less than or equal to the original median degree.

6With additional options -i -pils -p=-8 -O=-3 -t=1. A triangle is defined by three variables
involved in three binary cost functions. The score of a triangle is given by the average cost in
the three functions. Triangles with the largest score are selected first. This approach allows to
simulate soft path inverse consistency [Nguyen et al. 2017].
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VACpre-HBFS VPWCpre-HBFS HBFS-VPWC
instance (n, d, e, a) (n′, e′, a′) (n′′, d′′, e′′) time (gap) time (gap) time (gap)
Grids21 (1600,2,4800,2) (799,2810,4) (1628,16,4675) - (42.4%) - (3%) 1216.83
Promedas12 (1766,2,1766,3) (826,1884,4) (1373,16,2223) 5.17 6.34 7.7
ProteinFold11 (400,2,1160,2) (190,604,4) (381,16,1005) - (16.1%) 8.48 12.43
wcsp12 (311,4,5732,3) (305,5887,3) (12708,64,70959) - (49.9%) - (19.3%) - (54.8%)

Table 4.2: UAI 2022 detailed results on a selection of four instances for HBFS
methods. ’-’ means the instance is unsolved in 1h. (in parentheses, remaining
optimality gap).
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Figure 4.2: Normalized lower and upper bounds (y-axis) as time passes (x-axis in
hour, zoomed on the bottom fig.) for cplex, daoopt, and toulbar2 on UAI 2022 tuning
benchmark.

method for this benchmark.
Table 4.2 shows for a selection of UAI 2022 instances their size in terms of num-

ber of variables n, maximum domain size d, number of cost functions e, maximum
arity a of the original problem, after preprocessing it with bounded variable elimi-
nation and adding triangles (n′, d′, e′, a′ with d′ = d), and after applying our partial
dual encoding (n′′, d′′, e′′, a′′ with a′′ = 2). It gives also the CPU-time in seconds
to solve an instance using HBFS methods or the remaining optimality gap if un-
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solved after 1 hour. On Grids21, only HBFS-VPWC solves the instance. Notice the
large improvement on the optimality gap by VPWCpre compared to VACpre. On
Promedas12 and ProteinFolding11, VPWCpre-HBFS develops 13 and 32250 nodes,
respectively, and takes about the same time as HBFS-VPWC which develops 4 and
992 nodes, respectively. For wcsp12, the size of the encoding slows down the search
too much, suggesting harder limits for our partial dual encoding.

We report in Fig. 4.2 the average normalized lower and upper bounds as time
passes (computed as in [Trösser et al. 2020]). Here VNS provides the best upper
bounds in limited time whereas HBFS-VPWC is slightly slower than VPWCpre-
HBFS, VACpre-HBFS, and VNS, but still faster than daoopt and cplex. Both
VPWCpre-HBFS and HBFS-VPWC offer the best average lower bounds in less than
1 hour. HBFS-VPWC found 117 best solutions, VPWCpre-HBFS 112, VACpre-
HBFS 106, VNS 105, daoopt 99, and cplex 95. VNS found 2 single-best solutions
(wcsp11, wcsp12). For the competition, we combined VNS and HBFS-VPWC se-
quentially.7

4.5 Conclusion

We have defined virtual pairwise consistency and shown how it can efficiently be
used in preprocessing or during search by applying the existing VAC algorithm to
a dual encoding of the problem. In the future, we will explore the benefit of other
binary encodings [Wang & Yap 2021] and adapt the VAC algorithm to the specific
constraints of the encoding as it is done in CSPs [Schneider & Choueiry 2018a,
Wang & Yap 2019]. Finding good heuristics to exploit a partial dual encoding in
conjunction with bounded variable elimination and zero-cost function addition is
also an interesting question.

7See toulbar2-ipr results on the UAI 2022 Tuning Leader Board. Multiple runs of VNS with
increasing floating-point precision were done with a total amount of time of 1

2
h. The remaining

time is allocated to HBFS-VPWC. Each search procedure gives its best solution found to the next
search procedure. On UAI 2022 tuning instances, this approach found 119 best solutions, ranking
first among our 7 tested methods.
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5.1 Introduction

The idea behind learning mechanisms is to use the information provided by a solver
during the search to learn a new constraint that will help for the end of the search,
it has shown its efficiency in different paradigms CDCL for SAT [Marques-Silva
& Sakallah 1999], NoGood recording for CSP [Dechter 1990, Katsirelos & Bac-
chus 2005], pseudo-Boolean resolution for PB solver [Chai & Kuehlmann 2003, Dixon
& Ginsberg 2002, Elffers & Nordström 2018, Le Berre & Parrain 2010, Sheini &
Sakallah 2006, Devriendt et al. 2021], MaxCDCL for MaxSAT [Li et al. 2021], MIP
conflict analysis for MIP[Achterberg 2007]. Those learning methods are triggered
when the solver encounters an infeasible problem, they are conflict based. Con-
straints learned that way are specifically designed to prune more inconsistent values.
A more recent approach is conflict free learning [Witzig 2022], it relies on Farkas
lemma [Farkas 1902] to produce Farkas constraints from a dual solution.

Definition 5.1 (Farkas constraint). Given an LP problem min{cTx|Ax = b, x ∈ Z}
and a dual solution y then the Farkas constraint is defined as:

yTAx = yTb (5.1)
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We denote in the following the Faraks constraint issued from dual solution y and
problem P by FarkasP (y). Farkas constraints were typically used as a proof of in-
feasibility when the LP was decided infeasible. Witzig shows that learning a Farkas
constraint on feasible nodes can be useful if the constraint is modified afterward,
according to the information obtained by going deeper in the search tree [Witzig &
Berthold 2020, Witzig 2022]. However, those constraints are derived from an ag-
gregation of LP primal constraints, furthermore, they do not exploit any knowledge
about the integrality of the variables. Therefore, those constraints will not help an
LP solver to directly derive better bounds in the future, but can help to remove
inconsistent values via domain propagation.
Even if those conflict-based/free learning are effective in their framework, they
do not meet our needs in CFN. Indeed, WCSP solvers have the specificity to
reparametrize the problem during the search. If the lower bound exceeds the upper
bound it is not possible to directly point out a set of cost functions and trigger a
procedure similar to conflict analysis. Furthermore, pruning strategies are limited
in CFN because hard inconsistencies are not at the core of cost functions (except
on some specific benchmarks). In WCSP solvers, the best way to cut the search
space is to produce good bounds. Whereas previously defined learning mechanisms
were exclusively designed to prune more values, it seems more interesting in those
conditions to learn constraints helping derive better lower bounds.
Our approach is based on Farkas constraints. By itself, we know that a Farkas con-
straint will not help an LP solver to derive better bounds, but, we specify how to
combine them to obtain constraints that are sound, logically redundant, but non-
redundant with respect to the linear relaxation. In particular, similarly to Witzig’s
approach, we show that a Farkas constraint computed at an internal node can be-
come useful if it is merged with Farkas constraints derived deeper in the search tree.
Those new constraints will produce better bounds and may prune values.

5.2 Learning bounds using guarantee constraints

Let PMILP be an ILP with Boolean decision variables expressed in standard form.
PMILP is defined by equation (5.2), where x ∈ {0, 1}n is the decision variables vector,
s ∈ Rm

+ is the slack variables vector. The constraints are defined by A ∈ Rm×n and
b ∈ Rm. To model the Boolean decision variables, we suppose that ∀1 ≤ i ≤ n the
bound constraint xi ≤ 1 is expressed in A. A slack variable xi0 is introduced to
obtain the equality constraint xi + xi0 = 1 or equivalently −xi − xi0 = −1. The
objective function is defined by cx ∈ Rn, cs ∈ Rm. In the literature, cs is often
omitted because it is equal to 0 in the conventional ILP standard form, however,
they are noteworthy in this chapter. We compactly represent PLP the LP relaxation
of PMILP and its associated dual problem PD by equations (5.3), (5.4). Where
z = x

⋃
s with z ∈ Rn+m

+ . We define the objective function c = cx
⋃
cs. We

also extend A ∈ Rm×(n+m) to also represent the slack variables in the constraint.
Observe that the local polytope of a WCSP (see equations Local Polytope in chapter
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2) fits in the description of PMILP .

min{cTxx+ cTs s|Ax− s = b, x ∈ {0, 1}, s ∈ R+} (5.2)

min{cT z|Az = b, z ≥ 0} (5.3)

max{bT y|AT y ≤ c, y ∈ R} (5.4)

Suppose we solve PMILP with a branch and bound procedure where each node
corresponds to a problem similar to (5.2) but with a restricted domain. To restrict
the domain of a variable we only modify the objective function. For example if
xi = 1 must be forbidden, then we set ci = ⊤, where ⊤ corresponds to the current
ub. This prevents the solver from choosing xi = 1 because its cost is too high to be
in the optimal solution. Hence, the difference between two nodes is exclusively the
objective function. In particular, the set of primal constraints and dual variables
are always described by LP’s (5.3) and (5.4).
Our goal is to be able to learn one linear constraint per node (sub-problem) such
that if we solve again the LP relaxation corresponding to this node, then, the learned
linear constraint alone enforces a lower bound equal to the best-known lower bound
for this sub-problem. If we learn such constraints then if another assignment leads
to the same sub-problem (or a superset) we can directly derive the best-known lower
bound without search. We can also hope that if we encounter a slightly different
problem then the learned constraint still helps to derive a useful bound. Example
5.1 gives a concrete example of what we want to achieve.

Example 5.1. Let P be an MILP problem:

min 3x1 + 4x2 + 6x3 + 8x4 + x5 + 6x6

s.t

2x1 + 2x2 + 3x3 + 4x4 + x5 + 6x6 − s = 10

x1 + x2 = 1

xi + xi0 = 1 xi ∈ {0, 1}∀i ∈ [1, 6]

xi0 ≥ 0 ∀i ∈ [1, 6]

s ≥ 0

Figure 5.1 shows the beginning of the search to find the optimal solution. At
each node, an LP solver gives the optimal relaxed solution. We can see at node N2

that the lower bound is 14, then at node N3 and N4 the optimal relaxed solution is
15 and 18. We can deduce that a better lower bound for the node N2 is 15. In our
learning procedure, we want to learn a constraint such that with this new constraint,
the relaxed optimal solution at node N2 is no better than 15. Similarly, at node N5

and N1, we want to learn a constraint justifying a lower bound of respectively 17
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Figure 5.1: Beginning of the search tree to find the optimal solution of example 5.1
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and 15.
Such constraints could enhance the future search, for example if from visiting the
sub-tree issued from N1 we derive the constraint 6x60 + x50 + 2s ≥ 3 and add it to
the LP. Then when the solver visits node N8, it finds an optimal relaxed solution of
13 without the extra constraint, while it finds 16 with the extra constraint and the
search is over. In the following, we detail how we can derive such constraints. ■

Our learning strategy will learn constraints with particular properties, we call
them guarantee constraints:

Definition 5.2 (Guarantee Constraint). Given an MILP P : min{cTxx+ cTs s|Ax−
s = b, x ∈ {0, 1}, s ∈ R+}, a constraint wT z = b′ is a guarantee constraint of the
bound γ if the LP min{cT z|wT z = b′, z ≥ 0}, has optimal objective value γ.

The largest bound a guarantee constraint can enforce is the optimal integer
objective value of the problem. An obvious guarantee constraint with such bound
for any MILP P with optimal objective value OPT is cT z = OPT . This constraint
enforces that the objective value must be equal to the optimal integer cost. An easy
way to characterize a guarantee constraint is to use the following observation:

Observation 5.1. Given an LP min{cT z|wT z = b, z ≥ 0}. If ∀j, cj ≥ wj then the
optimal cost of this problem is at least b.

Proof. The constraint wT z = b must be satisfied. We have ∀j, cj ≥ wj , which
implies constraint cT z ≥ b will also be satisfied. Hence, the objective value of any
solution will have a cost of at least b.

We call the guarantee constraints verifying that property memo constraints:

Definition 5.3 (Memo Constraint). Given an MILP P : min{cTxx+ cTs s|Ax− s =
b, x ∈ {0, 1}, s ∈ R+}. A constraint wT z = γ is a memo constraint of P guaranteeing
a bound γ if ∀j, cj ≥ wj.
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The constraint cT z = OPT is also a memo constraint guaranteeing a lower
bound OPT . A memo constraint can provide useful information on the problem
we are trying to solve. The left-hand side of a memo constraint identifies a part of
the objective function that is enough to justify a given lower bound represented by
the right-hand side. We can find such information in the dual problem, therefore,
it makes sense that Farkas constraints (definition 5.1) obtained from a dual feasible
solution are memo constraints.

Lemma 5.1. Let PMILP be an MILP and PLP its associated relaxed problem, if y
is a dual feasible solution of PLP , with objective value γ, then FarkasPLP

(y) will be
a memo constraint of PMILP guaranteeing a bound γ.

Proof. First, we notice that for any proof constraint issued from a dual solution y,
the coefficient of a variable zj is

∑
1≤i≤m yiaij , where aij denotes the coefficient of

variable zj in the row i of matrix A. This corresponds exactly to the lhs of the
dual constraint j under dual solution y. Moreover, by definition of the dual, the
rhs of dual constraint j is cj . As y is a dual feasible solution, the coefficient of zj
in FarkasPLP

(y) is necessarily lower or equal to cj . The rhs of FarkasPLP
(y) is

exactly the objective value of the dual solution y. Observation 5.1 concludes the
proof.

Notice that the Farkas constraint can have slack variables among its variables.
Hence, in our learning mechanism, it is possible to learn constraints involving slack
variables. This justifies the need to define the variables vector z.
From lemma 5.1, we can use a dual (not necessarily optimal) solution to derive a
memo constraint justifying the LB associated with each node. In particular, we can
compute a memo constraint at the leaf nodes, we distinguish 3 cases:

• PLP is feasible, we can derive a memo constraint from the optimal dual solu-
tion.

• PLP is infeasible, then the dual of PLP is unbounded or infeasible, in both
cases, we can obtain a memo constraint using a dual ray with an unbounded
objective value. This is how conflict analysis is usually triggered in MILP,
however, we keep the constraint as it is and do not pursue the conflict analysis
as done in [Achterberg 2007] (see chapter 2 for a brief description).

In any case, we obtain one memo constraint at each leaf node justifying the LB
associated with each of them. We can use those memo constraints as a starting
point for our learning mechanism. Indeed, in a branch and bound procedure, the
best-known lower bound of a sub-problem is equal to the best-known lower bound
amongst its children. Hence, the idea is to learn a guarantee constraint using the
guarantee constraints of the child nodes in a recursive manner, starting at the leaves.
It remains to define how to combine the guarantee constraints of the children into
one guarantee constraint.
It is tempting to resolve the variables one by one by using pseudo-Boolean resolution
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on the current decision variable. However, the obtained constraint is not necessarily
a guarantee constraint or it is not even possible to cancel the decision variable (see
example 5.2. We need to look elsewhere.

Example 5.2. Following example 5.1 and figure 5.1. Suppose that the UB is 100 and
therefore removed values appear with a coefficient of 100 in the objective function.
At node N3 the LP is:

min 3x1 + 100x10 + 100x2 + 6x3 + 100x30 + 8x4 + x5 + 6x6 + 100x60

s.t

c1 : 2x1 + 2x2 + 3x3 + 4x4 + x5 + 6x6 − s = 10

c2 : x1 + x2 = 1

bi : xi + xi0 = 1 ∀i ∈ [1, 6]

xi ∈ {0, 1}, xi0 ≥ 0 ∀i ∈ [1, 6]

s ≥ 0

Let λ1, λ2 be the dual variable associated to c1, c2 and yi the dual variable associated
to constraint bi. A dual optimal solution is y1 = 3,y3 = 6,y6 = 6 with cost 15. The
corresponding Farkas constraint is

3x1 + 3x10 + 6x3 + 6x30 + 6x6 + 6x60 = 15 (5.5)

It is a memo constraint guaranteeing a bound 15.
If we now look at node N4, the objective function is:

min 3x1 + 100x10 + 100x2 + 6x3 + 100x30 + 8x4 + x5 + 100x6

A dual optimal solution is λ1 = 2,y1 = −1,y5 = −1 with cost 18. The corresponding
Farkas constraint is

3x1 − x10 + 4x2 + 6x3 + 8x4 + x5 − x50 + 12x6 = 18 (5.6)

It is a memo constraint guaranteeing a bound 18.
If we follow the reasoning used in PBO, and simplify constraints where a variable xi
and its opposite xi0 appear then constraint 5.5 using can be read 15=15. Therefore,
we can’t resolve x6 and x60 from 5.5,5.6 with the cancellation rule.

■

5.2.1 The Fusion Resolution Rule

Nordstrom, Buss and Gocht, already defined a rule over pseudo-Boolean variables
close to the one we want, this is the Fusion Resolution rule. The fusion resolution
rule is described in [Buss & Nordström 2021] and is credited there to personal
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communication with Stephan Gocht. For convenience, we use the notation lσ with
σ ∈ {0, 1}, where l1 = l and l0 = l.

αjlj +
∑

i ̸=j,σ∈{0,1} α
σ
i l

σ
i ≥ b, αjlj +

∑
i ̸=j,σ∈{0,1} α

σ
i l

σ
i ≥ b′∑

i ̸=j α
σ
i l

σ
i ≥ min(b, b′)

(5.7)

This rule is briefly mentioned as useful to get a better formulation if two constraints
are differentiated only by one literal, but not used in an actual learning mechanism.
Here we define a slightly more general version of the fusion resolution rule where
the coefficients of the constraints can be different. Given two equality constraints
where xj and xj0 (the opposite value of xj) each appear in one constraint. We recall
that the vector z contains both the decision variables xi and the slack variables s
and xi0.

wjxj +
∑

ν ̸={j,j0}

wνzν = b (5.8a)

w′
j0xj0 +

∑
ν ̸={j,j0}

w′
νzν = b′ (5.8b)

With b, b′, wν , w
′
ν ∈ R. We consider the two sub-problems obtained by restricting

the domain of xj .

• If xj = 1 and therefore xj0 = 0 then

∑
ν ̸={j,j0}

wνzν = b− wj (5.9a)

∑
ν ̸={j,j0}

w′
νzν = b′ (5.9b)

• If xj = 0 and therefore xj0 = 1 then

∑
ν ̸={j,j0}

wνzν = b (5.10a)

∑
ν ̸={j,j0}

w′
νzν = b′ − w′

j0 (5.10b)

The optimal integer solution must satisfy at least one of the two systems. In partic-
ular, we can weaken each system by one constraint and only keep (5.9b) and (5.10a),
the optimal integer solution must satisfy at least one of the two constraints. We
specify the Fusion Resolution (FR) rule to capture this information in one constraint.

Definition 5.4 (Fusion Resolution Rule).

wjxj +
∑

ν ̸={j,j0}wνzν = b, w′
j0xj0 +

∑
ν ̸={j,j0}w

′
νzν = b′∑

ν ̸={j,j0}max(wν , w′
ν)zν ≥ min(b, b′)

(5.11)
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Theorem 5.1. For any pair of equality constraints, the fusion resolution rule is
sound.

Proof. We follow the same reasoning as the one described above. If an assignment
satisfies (5.8a) and (5.8b), then it also satisfies either (5.9b) or (5.10a). Clearly, any
solution satisfying one of the two constraints also satisfies (5.11). Therefore, any
solution of (5.8a)-(5.8b) satisfies (5.11).

Example 5.3. Following example 5.2. We want to resolve x6 from constraints (5.5)
and (5.6) using the FR rule. To meet the requirement of the FR rule we transform
(5.5) to remove x6, we obtain the constraint

3x1 + 3x10 + 6x3 + 6x30 = 9 (5.12)

If we apply the FR rule then we obtain the constraint:

3x1 − x10 + 4x2 + 6x3 + 8x4 + x5 − x50 + 12x6 = 18 3x1 + 3x10 + 6x3 + 6x30 = 9

3x1 + 3x10 + 4x2 + 6x3 + 6x30 + 8x4 + x5 ≥ 9
(5.13)

This defines a memo constraint guaranteeing an LB of 9 for the node N2 (see figure
5.1) whose objective function is:

min 3x1 + 100x10 + 100x2 + 6x3 + 100x30 + 8x4 + x5 + 6x6

■

This rule verifies the properties we want, it removes one variable but does not in-
crease the coefficients in the lhs. Hence, if we use the FR rule on 2 memo constraints
then it produces a memo constraint. Furthermore, if initially xj or xj0 were the only
coefficients for which we had cj < wj or cj0 < wj0, then the FR rule produces a
memo constraint from two non-memo constraints. However, the bound guaranteed
by the obtained memo constraints depends on the two rhs. In example (5.3), we
obtained a memo constraint of N2 guaranteeing the bound 9 while we wanted to
learn a constraint guaranteeing 15. The problem is that we needed to transform
equation (5.5) to equation (5.12) in order to meet the requirement of the FR rule,
but this operation decreased the rhs.
We adapt this rule to make it usable on any constraints and therefore without
modifying the rhs. Given two equality constraints.

wjxj + xj0wj0 +
∑

ν ̸={j,j0}

wνzν = b (5.14a)

w′
jxj + xj0w

′
j0 +

∑
ν ̸={j,j0}

w′
νzν = b′ (5.14b)

With b, b′, wν , w
′
ν , wj , wj0, w

′
j , w

′
j0 ∈ R. We consider the two sub-problems obtained

by restricting the domain of xj .



5.2. Learning bounds using guarantee constraints 103

• If xj = 1 and therefore xj0 = 0 then

wjxj +
∑

ν ̸={j,j0}

wνzν = b (5.15a)

w′
jxj +

∑
ν ̸={j,j0}

w′
νzν = b′ (5.15b)

• If xj = 0 and therefore xj0 = 1 then

wj0xj0 +
∑

ν ̸={j,j0}

wνzν = b (5.16a)

w′
j0xj0 +

∑
ν ̸={j,j0}

w′
νzν = b′ (5.16b)

Once again, the optimal integer solution must satisfy at least one of the two systems
and we weaken each system by one constraint to only keep (5.15b) and (5.16a).
Observe that we did the reasoning with two Boolean variables xj , xj0 verifying
xj + xj0 = 1. But the same reasoning could be done for a set of Boolean variables
xj0, . . . , xjn verifying

∑
0≤k≤n xjk = 1. If we consider variable xj1, we could define

2 systems, one with xj1 = 1 and one with xj1 = 0. A fact that can be used when
working on ILPs similar to the local polytope of a WCSP.

We call this version Memo Resolution (MR).

Definition 5.5 (Memo Resolution Rule).

wjxj + wj0xj0 +
∑

ν ̸={j,j0}wνzν = b, w′
jxj + w′

j0xj0 +
∑

ν ̸={j,j0}w
′
νzν = b′

wjxj + w′
j0xj0 +

∑
ν ̸={j,j0}max(wν , w′

ν)zν ≥ min(b, b′)

(5.17)

Example 5.4. Following example 5.2. Applying the MR rule directly on equations
(5.5) and (5.6), to resolve x6 gives:

3x1 − x10 + 4x2 + 6x3 + 8x4 + x5 − x50 + 12x6 = 18 3x1 + 3x10 + 6x3 + 6x30 + 6x6 + 6x60 = 15

3x1 + 3x10 + 4x2 + 6x3 + 6x30 + 8x4 + x5 + 6x6 ≥ 15
(5.18)

This defines a memo constraint of N2 guaranteeing a bound 15. ■

Currently, we are not able to state if the cutting planes method can derive the
constraint derived by the FR or the MR rules.

The MR rule is not able to remove the decision variable xj . However, if initially
xj or xj0 were the only coefficients for which we had cj < wj or cj0 < wj0, then
the MR rule produces a memo constraint from two non-memo constraints. In this
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sense, the MR rule is still resolving variable xj . Furthermore, the MR rule is not
symmetric, MemoResolution(ctr1, ctr2, xj) ̸=MemoResolution(ctr2, ctr1, xj), we
can use this to our advantage and choose which coefficients we want to keep.
If we come back to our initial problem PMILP , we can use the MR rule on the two
memo constraints returned by the child nodes to resolve the decision variable and
obtain a new constraint. In the following, we denote by Pxj=0 (resp Pxj=1) the
problem P with additional restriction xj = 0 (resp xj = 1), each child node returns
a memo constraint memoxj=0 (resp memoxj=1) guaranteeing a LB of rhsxj=0 (resp
rhsxj=1).

Lemma 5.2. Let P be a sub-problem. The constraint MemoResolution(memoxj=1,memoxj=0, xj)

is a memo constraint of P guaranteeing a lower bound of min(rhsxj=0, rhsxj=1).

Proof. We define the two memo constraints by:

memoxj=1 :
∑

wνzν = rhsxj=1

memoxj=0 :
∑

w′
νzν = rhsxj=0

The only difference between P and Pxj=1 is the coefficient cj0. Constraint
memoxj=1 is a memo constraint of Pxj=1 therefore ∀ν ̸= j0 we have wν ≤ cν
and only wj0 can verify wj0 > cj0. Similarly, coefficient w′

j in memoxj=0 is the
only one that can verify w′

j > cj . The two coefficients w′
j and wj0 do not appear in

MemoResolution(memoxj=1,memoxj=0, xj).
The rhs of MemoResolution(memoxj=1,memoxj=0, xj) is min(rhsxj=1, rhsxj=0).
Observation 5.1 proves that this constraint is guaranteeing a lower bound of
min(rhsxj=1, rhsxj=0).

The proof of lemma 5.2 justifies why in our learning process, we always choose
to apply the MR rule in the direction: MemoResolution(memoxj=1,memoxj=0, xj).
The memo constraint returned byMemoResolution(memoxj=0,memoxj=1, xj) guar-
antees the minimum of the guaranteed bounds of the child nodes. Therefore, if
memoxj=0,memoxj=1 justify the best-known lower bound of respectively Pxj=0 and
Pxj=1, then the constraint MemoResolution(memoxj=1,memoxj=0, xj) guarantees
the best-known lower bound of P . We can learn this constraint (or an equivalent
one). Notice that the MR rule returns a greater or equal constraint, therefore, we
transform it into an equality constraint by adding a slack variable.
We can use the MR rule in a recursive procedure, we obtain one memo constraint
at each node by applying the MR rule to resolve the next branching variable from
the memo constraints of the two child nodes. At the leaves, we obtain a memo
constraint from a dual solution. However, constraints learned that way will not
help the solver to get better bounds. Indeed, they are all issued from the bounds
and dual solutions obtained at leaf nodes, and a dual solution computed at a leaf
node is too specific because it includes all the previously assigned variables. As a
consequence, at each node, we learn a constraint depending on all the previously
assigned variables, this makes the constraint useful only if we do the same set of
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Figure 5.2: Beginning of the search tree of example 5.5. The increase of LB is
written at each node.
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assignments, which should never occur in a branch and bound. Put differently, the
memo constraint we compute at one node shares redundant information with the
memo constraint of the parent node. Indeed, a memo constraint identifies a subset
of the objective function that is involved in justifying a bound, in our case, this
corresponds to the LB of one node and it is equal to the LB of the parent node
plus the local increase of LB. As the LB of the parent node depends on the previous
decisions and removed values appear with a ⊤ objective value, those removed values
will appear in the memo constraint of the child nodes.
We want to define a finer-grain learning mechanism where a memo constraint does
not share redundant information with the memo constraint learned at the parent
node. In other words, at each node, we are only interested in how the LB increases
between this node and the leaves. We can notice that this quantity is obtained by
summing the increase of LB at the current node with the minimal increase of LB
between the child nodes and the leaves. Therefore, our new objective is to compute
a guarantee constraint guaranteeing the minimal increase of LB between one node
and the leaves by exploiting the guarantee constraints of the child nodes.

Example 5.5. Following example 5.1, figure 5.2 shows the beginning of the search
and highlights increases of LB. At each node, an LP solver gives the optimal relaxed
solution. We can see at node root that the LB is 12, then it increases by 2 at node
N2, at node N3 and N4 it increases by 1 and 4. We can deduce that we could increase
the LB by 3 at node N2. In our learning procedure, we want to learn a constraint
such that with this new constraint, the LB is increased by 3 at node N2. Similarly,
at node N5 and N1, we want to learn a constraint increasing the lower bound by
respectively 5 and 3. ■

It remains to somehow integrate the increase of LB at a current node in the
recursive procedure. We know this information is contained in the dual solution
but we are not able to capture it precisely. One possibility is to adapt the notion
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of reparametrizations as defined in the CFN framework (see chapter 2) to the ILP
framework. This would help us to modify the objective function along the obtained
dual solutions and two dual solutions will not contain redundant information.

5.2.2 ILP and reparametrization

We use the reduced costs to produce an equivalent problem with a modified objective
function. This result is well-known in the LP community studying the simplex
algorithm, we give a simple proof.

Definition 5.6. For any dual solution y, the reduced costs rcy with respect to y are
rcy = c−ATy.

Lemma 5.3. Let P be an LP {min cT z|Az = b, z ≥ 0} and y a dual solution of P
with cost yT b and associated reduced costs rcy. Then the LP {min rcy

T
z+yT b|Az =

b, z ≥ 0} is equivalent to P .

Proof. The set of constraints is the same in both problems, therefore, we only need
to show the equivalence of the objectives.

rcy
T
z = (c−ATy)T z = cT z − yTAz

Since z satisfies Az = b, we deduce that rcyT
z = cT z − yT b. Hence, rcyT

+ yT b =

cT z.

Example 5.6 illustrates how a problem can be reparametrized.

Example 5.6. Following example 5.1. Let N0 be an MILP problem:

min 3x1 + 4x2 + 6x3 + 8x4 + x5 + 6x6

s.t

c1 : 2x1 + 2x2 + 3x3 + 4x4 + x5 + 6x6 − s = 10

c2 : x1 + x2 = 1

bi : xi + xi0 = 1 ∀i ∈ [1, 6]

xi ∈ {0, 1}, xi0 ≥ 0 ∀i ∈ [1, 6]

s ≥ 0

Let λ1, λ2 be the dual constraint associated to c1, c2 and yi the dual variable associ-
ated to constraint bi. A dual optimal solution y with cost 12 is:

λ1 = 2

λ2 = −1
y5 = −1
y6 = −6
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We deduce the following reduced cost:

rcy(x1) = 0 rcy(x10) = 0

rcy(x2) = 1 rcy(x20) = 0

rcy(x3) = 0 rcy(x30) = 0

rcy(x4) = 0 rcy(x40) = 0

rcy(x5) = 0 rcy(x50) = 1

rcy(x6) = 0 rcy(x60) = 6

rcy(s) = 2

We define Ñ0 a problem equivalent to N0:

minx2 + x50 + 6x60 + 2s+ 12

s.t

c1 : 2x1 + 2x2 + 3x3 + 4x4 + x5 + 6x6 − s = 10

c2 : x1 + x2 = 1

bi : xi + xi0 = 1 ∀i ∈ [1, 6]

xi ∈ {0, 1}, xi0 ≥ 0 ∀i ∈ [1, 6]

s ≥ 0

For example, we can verify that the optimal integer solution x1 = 1, x20 = 1, x3 =

1, x40 = 1, x50 = 1, x6 = 1, s = 1 has cost 15 in both problems. ■

If y defines a feasible dual solution, then all the reduced costs are positive. This
lemma can also be applied to MILP, modifying the objective function according to
the reduced costs gives an equivalent problem. Also, observe, that this lemma is
true only for equality constraints, this explains why it is required to express the ILP
in its standard form.
At each node of the search tree, we compute a dual solution y and use lemma 5.3
to reparametrize P into an equivalent MILP P̃ . In this reparametrization, the
objective coefficient of the slack variables can be non-zero, this motivates why we
introduced cs. We suppose that all the constant terms appearing in the objective
function are gathered in c∅ ∈ R. Both the dual solution ỹ = 0 of P̃ and y has
objective c∅. Therefore, the dual solution computed by the children of P̃ does
not contain redundant information with y. They will capture only the specific
information related to the child nodes. We can exploit this property to integrate
reparametrization in our recursive procedure.

Lemma 5.4. Let P be a sub-problem and P̃ a reparametrization of P obtained
through lemma 5.3 and dual solution y. Summing any dual feasible solution of
P̃xj=0 with y leads to a dual solution satisfying all the dual constraints of P except
the one corresponding to xj.
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Proof. Let y be a dual solution of P and rcy the associated reduced costs. Then
the objective function c̃ of P̃xj=0 is ∀ν ̸= j, c̃ν = rcyν and c̃j = ⊤. Therefore, the
dual of P̃ is defined by:

max{bT y + c∅|AT y ≤ c̃, y ∈ R} (5.19)

Let yPxj=0 (yj0 for short) be a feasible solution of (5.19). Summing y and yj0 gives:

ATy +ATyj0 ≤ c+ c̃

Let A′ be the matrix A without the column corresponding to variable xj , we obtain:

A′Ty +A′Tyj0 ≤ A′Ty + rcy

⇔ A′Ty +A′Tyj0 ≤ A′Ty + c−A′Ty

⇔ A′Ty +A′Tyj0 ≤ c

Therefore, the dual solution y+yj0 satisfies all the dual constraints of P except the
one corresponding to xj .

Corollary 5.1. Summing any memo constraint of P̃xj=0 with FarkasP (y) gives a
constraint where all the coefficients in the lhs will be lower than their corresponding
coefficient in the objective function of P except for xj.

Proof. For all the variables outside xj , their coefficients in FarkasP (y) are lower
than c. And their coefficients in memoxj=0 are lower than c̃ = rcy. The end of the
proof is similar to the proof of lemma 5.4.

This lemma can easily be extended to the case where we study the child P̃xj=1. In
this case, summing any dual solution of P̃xj=1 with y gives a dual solution satisfying
all the dual constraints of P except the one corresponding to xj0.

Theorem 5.2. Let P be a sub-problem and P̃ a reparametrization of P obtained
through lemma 5.3 and dual solution y. Let memoxj=0,memoxj=1 be the memo con-
straints of respectively P̃xj=0 and P̃xj=1. The constraint MemoResolution(memoxj=1,memoxj=0, xj)+

FarkasP (y) is a memo constraint of P .

Proof. We first observe that the two following constraints are equivalent:

MemoResolution(memoxj=1,memoxj=0, xj) + FarkasP (y)

(5.20)

MemoResolution(memoxj=1 + FarkasP (y),memoxj=0 + FarkasP (y), xj)

(5.21)

From Corollary 5.1 we know that only the coefficient of xj from constraintmemoxj=0+

FarkasP (y) may be higher than its objective coefficient. By construction of the MR
rule, this coefficient does not appear inMemoResolution(memoxj=1+FarkasP (y),memoxj=0+

FarkasP (y), xj). We reason similarly for xj0 and memoxj=1 + FarkasP (y).
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Theorem 5.2 ensures that at each node of the search tree, summing the Farkas
constraint and the constraint returned by the MR rule gives a memo constraint guar-
anteeing the minimal guaranteed bound of the child nodes. If, memoxj=0,memoxj=1

justify the best known lower bound for respectively P̃xj=0 and P̃xj=1 then constraint
MemoResolution(memoxj=1,memoxj=0, xj)+FarkasP (y) justifies the best known
lower bound of P . With the reparametrization, we know that the learned con-
straints will depend on the current cost distribution but not directly on previous
assignments. Moreover, a memo constraint of problem P is a guarantee constraint
of all the reparametrizations of P . Therefore, during the search, if a sequence of
reparametrizations leads to a problem equivalent to P then the memo constraint of
P will still guarantee the correct bound.
Algorithm 6 explains how the reparametrization is integrated into the learning mech-
anism. It performs a branch and bound algorithm, where each node returns a memo
constraint (lines 8,9). The function ChooseNextVar(DecVars) is a heuristic selecting
the next branching decision (line 3). At each node, function GetDualSol(P ) returns
the optimal dual solution if it exists, otherwise, it returns a dual unbounded solution
(line 1). This dual solution is used to compute a Farkas constraint (line 2). Once
the two children have been visited it applies the MR rule on the returned memo con-
straints (line 4). Then, it computes the sum of this last constraint and the Farkas
constraint (line 5). This ≥ constraint is transformed to an equality constraint by
adding a slack variable (6). Finally, the constraint is learned (7) and returned (line
8).
This defines the basic approach. This can be adapted to fit the particularity of the
solved instances. For example, if we consider an ILP corresponding to the local
polytope of a WCSP, then, we know that the Boolean decision variables correspond
to the direct encoding of multi-valued variables, where value (i, a) is represented by
a Boolean variable xia taking value 1 if xi = a, and a constraint

∑
a∈Di

xia = 1

enforces that each variable must be assigned to only one value. We can integrate
this information into our procedure. The lemmas and theorems are the same but
instead of having variables xj and their opposite xj0, we have variables xja and
their opposite xjb∀b ∈Dj , b ̸= a. For example, if we branch on xja = 1 then all the
variables xjb∀b ∈Dj , b ̸= a are set to 0.

Example 5.7. Following example 5.6, we give a full run of our learning procedure
and show how it can enhance the search. We had dual optimal solution y : λ1 =
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Algorithm 6: Learning sub-problems bounds with reparametrization
/* Performs a branch and bound and learn constraints using the

dual solution at the leaf nodes;
P is the current LP ;
DecV ar is the current decision variable and we branch it on
Value;
DecV ars is a list of decision variables, and
ChooseNextV ar(DecV ars) an heuristic selecting a variable from
this list. ;
UB is the global upper bound;

*/
Function LearnDual(P ,DecVar,Value,DecVars)

assign(DecVar,Value,P ) ;
NewLB ← solve(P );

1 DualSol ← GetDualSol(P ) ;
2 DPC ← FarkasP (DualSol) ;

if NewLB<UB then
if DecVars is not empty then

/* Visit the two child nodes */
3 NextDec← ChooseNextVar(DecVars) ;

DualSol ← GetDualSol(P ) ;
P̃ ← Reparametrize(P,DualSol);
memo1=LearnDual(P̃ ,NextDec,1,DecOrder);
memo2=LearnDual(P̃ ,NextDec,0,DecOrder);

4 MemoCtr← MemoResolution(memo1,memo2,DecVar) ;
5 SumConstraint ← DPC+MemoCtr ;
6 SumEQConstraint ← AddSlackVariable(SumConstraint) ;
7 Learn SumEQConstraint ;
8 return SumConstraint ;

else
if NewLB < UB then

UB ← NewLB;

9 return DPC
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2, λ2 = −1,y5 = −1,y6 = −6 and obtained Ñ0 a reparametrization of N0:

minx2 + x50 + 6x60 + 2s+ 12

s.t

c1 : 2x1 + 2x2 + 3x3 + 4x4 + x5 + 6x6 − s = 10

c2 : x1 + x2 = 1

bi : xi + xi0 = 1 ∀i ∈ [1, 6]

xi ∈ {0, 1}, xi0 ≥ 0 ∀i ∈ [1, 6]

s ≥ 0

We also compute a Farkas constraint from y:

FarkasN0(y) : 3x1 + 3x2 + 6x3 + 8x4 + x5 − x50 + 6x6 − 6x60 − 2s = 12

Suppose the solver follows the branching decision made in the search tree depicted in
figure 5.1. The solver branches on x1 = 1, x2 = 0. The objective function of problem
N1 is:

objN1 : min 100x2 + x50 + 6x60 + 2s+ 12 (5.22)

The optimal relaxed solution is 12, and the search continues.
The solver branches on x3 = 1. The objective function of problem N2 is:

objN2 : min 100x2 + 100x30 + x50 + 6x60 + 2s+ 12 (5.23)

The new optimal solution is 14. We denote its dual optimal solution by yN2:

λN2
1 = −1
λN2
2 = 2

yN2
3 = 3

yN2
5 = 1

yN2
6 = 6

We obtain Farkas constraint:

FarkasN2(y
N2) : 3x30 + x50 − 4x4 + 6x60 + s = 2 (5.24)

The objective function is reparametrized and the solver branches on x6 = 1, hence
the objective function of node N3 is:

objN3 : min 100x10 + 100x2 ++100x30 + 4x4 + 100x60 + s+ 14 (5.25)
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The optimal cost is 1. One optimal dual solution is yN3:

λN3
1 = −1
λN3
2 = 2

yN3
3 = 3

yN3
6 = 6

We obtain Farkas constraint:

FarkasN3(y
N3) : 3x30 − 4x4 − x5 + 6x60 + s = 1 (5.26)

The solver backtracks and branches on x6 = 0. The objective function of node N4

is:

objN4 : min 100x10 + 100x2 + 100x30 + 4x4 + 100x6 + s+ 14 (5.27)

The optimal cost is 4. One optimal dual solution is yN4:

λN4
1 = 1

λN4
2 = −2

yN4
3 = −3

yN4
5 = −1

We obtain Farkas constraint:

FarkasN4(y
N4) : −3x30 + 4x4 − x50 + 6x6 − s = 4 (5.28)

The solver backtracks. We can apply the MR rule on FarkasN3 and FarkasN4

to resolve x6, we obtain:

3x30 − 4x4 − x5 + 6x60 + s = 1 − 3x30 + 4x4 − x50 + 6x6 − s = 4

3x30 + 4x4 + s ≥ 1
(5.29)

We transform this constraint into an equality constraint by introducing a slack vari-
able s1. Then this constraint is summed with FarkasN2 :

3x30 + x50 − 4x4 + 6x60 + s = 2 (5.30)

+ (5.31)

3x30 + 4x4 + s− s1 = 1 (5.32)
(5.33)

LearnN2 : 6x30 + x50 + 6x60 + 2s− s1 = 3 (5.34)

Constraint LearnN2 is a memo constraint of N2 guaranteeing an increase of LB of
3.
By following the same procedure we obtain a memo constraint for node N5:

LearnN5 : 5x3 + x50 + 2s− s2 = 5 (5.35)
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We can now apply the MR rule on LearnN2 and LearnN5 to resolve x3:

6x30 + x50 + 6x60 + 2s− s1 = 3 5x3 + x50 + 2s− s2 = 5

LearnN1 : x50 + 6x60 + 2s ≥ 3
(5.36)

We add a slack variable s3 and include the constraint in the LP.
The solver backtrack to N0 and considers the right branch where x1 = 0, x2 = 1 the
problem is:

min 100x1 + x2 + 100x20 + x50 + 6x60 + 2s+ 12

s.t

c1 : 2x1 + 2x2 + 3x3 + 4x4 + x5 + 6x6 − s = 10

c2 : x1 + x2 = 1

LearnN1 : x50 + 6x60 + 2s− s3 = 3

bi : xi + xi0 = 1 ∀i ∈ [1, 6]

xi ∈ {0, 1}, xi0 ≥ 0 ∀i ∈ [1, 6]

s ≥ 0

The optimal relaxed solution costs 16, and the search is over. Without the constraint
LearnN1, the optimal relaxed solution is 13, and the search continues. ■

5.2.3 Value Removal and Learning

Theorem 5.2 is sound only if the objective function is modified only by reparametriza-
tion or branching decision. In particular values outside the decision variables should
not be removed (see example 5.8). We discuss here how to integrate pruning oper-
ations into the learning mechanism.

Example 5.8. Let P be an ILP problem:

min 2x1 + 3x2 + 4x3

s.t

c1 : x1 + x10 = 1

c2 : x2 + x20 = 1

c3 : x3 + x30 = 1

c4 : x4 + x40 = 1

c5 : 2x1 + 2x2 + 2x3 − s1 = 3

c6 : −x1 + x3 + x4 − s2 = 1

∀i ∈ [1, . . . , 4] xi ∈ {0, 1}
∀i ∈ [1, . . . , 4] xi0 ≥ 0

s1, s2 ≥ 0



114 Chapter 5. Conflict-free learning

If we do the assignment x1 = 0 then constraint c5 assigns x2 and x3 by domain
propagation. With this information, the optimal cost is 9. We derive the Farkas
constraint

2x1 + 2x10 + 3x2 + 3x20 + 4x3 + 4x30 = 9 (5.37)

As you can see the variables x20, x30 appear with positive coefficients, therefore this
is not a memo constraint of Px1=0. ■

Suppose we have a MILP P with only equality constraints and Boolean decision
variables. Let R define a set of value removals. Suppose a process outside branching
decision removes a value xj . As seen in the example, xj can appear with a coef-
ficient wj > cj in the Farkas constraint, and therefore we do not obtain a memo
constraint of P . However, this constraint is a memo constraint of Pxj=0. One pos-
sibility to resolve xj is to compute the memo constraint of Pxj=1 and apply the MR
rule. The memo constraint returned by Pxj=1 depends on the process that removed
xj . We specify here the obtained constraint for a value removal induced by bound
propagation and node consistency.

Bound propagation

Let’s first have a look at equality constraints with no slack variables. Let ctr1 :∑
wixi = b be a constraint of P and applying bound propagation on ctr1 removes

xj . If we consider the problem Pxj=1 then we obtain a direct failure as the constraint
ctr1 is not satisfied. We study the sub-problem defined by ctr1 and the bound
constraint of each variable:

min
∑

cixi (5.38a)

s.t (5.38b)

ctr1 :
∑

wixi = b

∀i, xi + xi0 = 1 (5.38c)

We denote by λ the dual variable corresponding to ctr1 and yi the dual variables
corresponding to constraints (5.38c) associated with i. The dual problem is :

minλb+
∑

yi

s.t

∀i, λwi + yi ≤ ci

There exist two cases in which xj can be removed from ctr1.

1. The first case is:

wj +
∑
i/∈R

max(0, wi) < b (5.39)
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We define a dual solution y by setting λ to any positive value, then:

∀i /∈ R,yi = min(−λwi, 0, ci)

yk = −λwk

The cost of this dual solution is

λb− λwj +
∑
i/∈R

min(−λwi, 0, ci) (5.40)

This is equivalent to:

λb− λwj − λ
∑
i/∈R

max(wi, 0,−
ci
λ
) (5.41)

From assumptions (5.39) and ci ≥ 0, we deduce that this cost is >0, and
increasing λ will produce a new solution with an increased objective value.
Therefore, the dual problem is unbounded, and we can derive a Farkas con-
straint with an arbitrarily large rhs:∑

i∈R
λwi +

∑
i/∈R

(λwi +min(−λwi, 0, ci)) = λb− λwk +
∑
i/∈R

min(−λwi, 0, ci)

(5.42)

2. The second case is: ∑
i∈X\{R}

max(0, wi) > b (5.43)

This is simply a symmetry of the first case and we can define an unbounded
dual solution with the same reasoning.

Finally, we apply the MR rule to resolve variable xj from the memo constraint
(5.42) and the constraint obtained at node P . In practice, the negative coefficients of
(5.42) are arbitrarily large, hence we directly weaken them because they will always
be discarded when applying the MR rule. Therefore, the only variables appearing in
the constraint are {i ∈ R,wi > 0}. We say that those values provide an explanation
for the removal of xj . Their coefficients are arbitrarily large but it is possible to
saturate them after applying the MR.

If the constraint admits a slack variable with a negative coefficient: ctr2 :∑
wixi − s1 = b, then case (2) can’t be triggered as the slack variable can al-

ways be used to satisfy the constraint tightly. We derive the same constraint if case
(1) occurs.
If the slack variable appears with a positive coefficient, ctr3 :

∑
wixi + s2 = b then

case (1) can’t be triggered and we proceed as usual for case (2).
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Example 5.9. Following example 5.8. We derived a Farkas constraint 2x1+2x10+

3x2 + 3x20 + 4x3 + 4x30 = 9.
The constraint 2x1 + 2x2 + 2x3 − s1 = 3 is responsible for the removal of x20 =

1, x30 = 1. If we try to assign x20 = 1 then we obtain the following dual problem:

max 3λ+

3∑
i=1

yi

2λ+Π1 ≤ ⊤
Π1 ≤ 0

2λ+Π2 ≤ ⊤
Π2 ≤ 0

2λ+Π3 ≤ 4

Π3 ≤ 0

The problem is unbounded, for example, λ = 10, π3 = −20 is a dual solution with
cost 10, λ = 100, π3 = −200 is a dual solution with cost 100. A Farkas constraint
is:

100(2x1 + 2x2 − x30 − s1) = 100 (5.44)

If we use the MR rule to resolve x2 we obtain:

2x1 + 2x10 + 3x2 + 3x20 + 4x3 + 4x30 = 9, 100(2x1 + 2x2 − x30 − s1) = 100

200x1 + 2x10 + 200x2 + 4x3 + 4x30 ≥ 9
(5.45)

With the same reasoning, we can resolve x30 and obtain constraint:

200x1 + 2x10 + 3x2 + 4x3 ≥ 9 (5.46)

This constraint is a memo constraint of Px1=0 guaranteeing a bound 9. ■

5.2.3.1 Node Consistency

We say that a variable xj is not node consistent if cj + c∅ > ub, where c∅ denotes a
constant term appearing in the objective function. In our procedure, c∅ is increased
along the reparametrization and always corresponds to the current lb. When a value
is not node consistent it can be removed. We again study problem Pxj=1, we obtain
a direct bound violation because cj + lb > ub. A dual solution justifying this is
simply πj = cj . The obtained constraint is cjxj + cjxj0 = cj .
Let wjxj +

∑
wizi ≥ b be the constraint obtained by visiting the branch at node P .

Applying the MR rule leads to:

cjxj + cjxj0 = cj wjxj +
∑

i ̸=j wizi = b

cjxj +
∑

i ̸=j max(wi, 0)zi
≥ min(cj , b) (5.47)
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This constraint is a memo constraint of P guaranteeing a lower bound of min(ci, b).
If b ≥ ci, then propagating the learned constraint will give a direct bound violation
because c∅ + ci ≥ ub.

Algorithm 7 shows how removal can be included in our learning procedure. At
each node, bound propagation and node consistency are enforced (line 1). For
each removal, a reason constraint is captured, it can be either (5.42) or (5.47) (line
2). When the procedure derives a new constraint, we iteratively use the reason
constraint with the MR rule to make sure that removed values do not break the
memo property (line 2).

5.3 Learning bounds in a CFN solver

The learning mechanism we defined can be used on any ILP with Boolean deci-
sion variables expressed in standard form. This last requirement is necessary only
because we need lemma 5.3 to reparametrize the problem. However, if we can
reparametrize the problem without relying on lemma 5.3 then a similar strategy
could be defined for any ILP with Boolean decision variables. In particular, we
know that CFN solvers based on soft consistency algorithms (see chapter 2), na-
tively perform reparametrization corresponding to a dual solution of a local poly-
tope. We can use those characteristics to adjust the learning mechanism and learn
linear constraints in the CFN framework. This won’t be helpful if the CFN solvers
are not able to propagate the learned constraints, hence, we suppose they are ex-
tended with the dedicated propagator defined in chapter 3. We consider a problem
P <X,D,C,⊤ > associated with its local polytope PrimalLin and W ⊆ C as the
set of linear ≥ constraints.

PrimalLin

minObj
def
= c∅ +

∑
i∈X,a∈Di

ci(a)xia +
∑

cS∈C+\W,τ∈ℓ(S)

cS(τ)xS:τ (5.48a)

s.t. ∀i ∈X,
∑
a∈Di

xia = 1 (5.48b)

∀cS ∈ C+\W, i ∈ S, a ∈Di

( ∑
τ∈ℓ(S),τi=a

xS:τ

)
− xia = 0 (5.48c)

Wx ≥ b (5.48d)

We denote by y = {Π, ϕ,Λ} a dual solution of PrimalLin. Where πi corresponds
to constraint (5.48b), φia:S to constraint (5.48c) and λk to the row k of (5.48d).
In an LP solver, we had access to a dual solution and we defined how to reparametrize
the problem. For CFN solvers, we are in the opposite situation. The solver derives
a reparametrization through a sequence of EPTs and we need to define the dual
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Algorithm 7: Learning sub-problems bounds with reparametrization
/* Performs a branch and bound and learn constraints using the

dual solution at the leaf nodes;
P is the current LP ;
DecV ar is the current decision variable and we branch it on
Value;
DecV ars is a list of decision variables, and
ChooseNextV ar(DecV ars) an heuristic selecting a variable from
this list. ;
UB is the global upper bound;

*/
Function LearnDualWithRemoval(P ,DecVar,Value,DecVars)

assign(DecVar,Value,P ) ;
1 ValueRemoved ← ApplyNCandBP(P ) ;

foreach value ∈ V alueRemoved do
2 Reason(value) ← FindReason(value) ;

NewLB ← solve(P );
DualSol ← GetDualSol(P ) ;
DPC ← FarkasP (DualSol) ;
if NewLB<UB then

if DecVars is not empty then
/* Visit the two child nodes */
NextDec← ChooseNextVar(DecVars) ;
DualSol ← GetDualSol(P ) ;
P̃ ← Reparametrize(P,DualSol);
memo1=LearnDualWithRemoval(P̃ ,NextDec,1,DecOrder);
memo2=LearnDualWithRemoval(P̃ ,NextDec,0,DecOrder);
MemoCtr← MemoResolution(memo1,memo2,DecVar) ;
SumConstraint ← DPC+MemoCtr ;
foreach value ∈ V alueRemoved do

SumConstraint ←
MemoResolution(Reason(value),memo2,value) ;

3 SumEQConstraint ← AddSlackVariable(SumConstraint) ;
Learn SumEQConstraint ; return SumConstraint ;

else
if NewLB < UB then

UB ← NewLB;

return DPC
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solution. We already presented in section 3.1.3 how EPTs are reflected in the dual
solution. But we also showed that when linear constraints are involved, then the dual
solution of one node and its children contain redundant information (see example
3.6 in chapter 3). In particular, the lemma 5.4 and corollary 5.1 do not hold in this
context. Therefore, within our learning mechanism, the recursive procedure will
diffuse redundant information and we will not learn memo constraints.
However, we can still try to derive a dual solution sharing as little information as
possible with the dual solution computed at a parent node. Given a node P , its
child node P̃ , associated to dual solutions yP ,yP̃ with cost equal to cP∅, cP̃∅. The
dual solution ŷ = yP̃ − yP has a cost cP̃∅ − cP∅, this corresponds to the increase
of cost at node P̃ . Ideally, we want to compute a memo constraint guaranteeing
this bound. Unfortunately, ŷ may not be a dual feasible solution. Since the linear
constraints are ≥ constraints, their dual variables must satisfy Λ ≥ 0. Therefore
if some λk verifies λPk > λP̃k then λ̂k < 0 and the dual solution is not feasible (see
example 5.10). Furthermore, it is not possible to derive a Farkas constraint from
this particular dual unfeasible solution. Indeed, multiplying a ≥ constraint by a
negative coefficient gives a ≤ constraint. We can’t sum it with other ≥ constraints.
We have no choice but to define a different dual solution ŷ.

Π̂ = ΠP̃ −ΠP (5.49a)

∀λk ∈ Λ, λ̂k = max(λP̃k − λPk , 0) (5.49b)

Unfortunately, ŷ may still not be a dual feasible solution (see example 5.10). We
can still compute a Farkas constraint and use it in the learning approach, but it is
not possible anymore to claim that we learn a memo constraint at each node (see
example 5.10).

Example 5.10. Following example 3.6 (which is the WCSP formulation of example
5.2). We had the initial WCSP:

min 2x1a + 3x2a + 4x3a

s.t

c123 : 2x1a + 2x2a + 2x3a ≥ 3

c134 : x1b + x3a + x4a ≥ 2

∀i ∈ [1, . . . , 4] xia, xib ∈ {0, 1}

We found a dual solution yP = {λP123 = 1.5, λP134 = 1, πP1 = −1, πP3 = 0, πP3 =

0πP4 = −1} with cost 4.5 (rounded to 5).
After the reparametrization and the assignment of x1 = b we obtained problem P̃x1=b:

100x1a + x4b + 5 + [δ134 : x1b + x3a − x4b − 1] + [δ123 : 2x1a − x1b + 3x2a + 3x3a − 4]

s.t

c123 : 2x1a + 2x2a + 2x3a ≥ 3

c134 : x1b + x3a + x4a ≥ 2

∀i ∈ [1, . . . , 4] xia, xib ∈ {0, 1}
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We obtained a dual solution yP̃ = {λP̃123 = 0, λP̃134 = 0, πP̃1 = 0, πP̃2 = 3, πP̃3 =

4, πP̃4 = 0} with cost 7.
The dual solution ŷ = yP̃ − yP is not feasible because λ̂123 = −1.5 λ̂134 = −1.
If we define ŷ as in equation (5.49a)-(5.49b) then we obtain ŷ = {λ̂123 = 0, λ̂134 =

0, π̂1 = 1, π̂2 = 3, π̂3 = 4, π̂4 = 1} with cost 9. This does not define a valid dual fea-
sible solution of P̃x1=b (the optimum with integer 0/1 variables is 7 and the optimal
relaxed solution is 5). The obtained proof constraint is x1a + x1b + 3x2a + 3x2b +

4x3a + 4x3b + x4a + x4b = 9. This is not a memo constraint of P̃x1=b. ■

This approach can be implemented in a CFN solver. However, we need to make
sure that the learned constraints are expressible. For example, the tuple variable
xS:τ appears in the local polytope PrimalLin and thus can be involved in the learned
constraints. The CFN solver must be able to connect this tuple variable with the
actual tuple τ of the cost function S. In particular, if this tuple is removed then xS:τ

should be removed from all the learned linear constraints and vice versa. This is a
software engineering issue. It is unusual in CP solvers in general (and in toulbar2
in particular) to have the facility to be notified when a tuple becomes impossible,
which is why we need to map tuples to values. One way to be sure those interactions
are correctly modeled is to use the dual encoding of the CFN as defined in chapter
4.
The propagator Propagate has been defined only for ≥ constraints with positive
integer coefficients. The learned constraint does not directly verify this requirement.
To obtain integer coefficients, we need to round up all the coefficients of the rhs and
the lhs. The cost functions contain only integer cost, hence the obtained constraint
is still a memo constraint. One possibility to remove a negative coefficient is to use
the cancellation rule 2.15. But we already stated earlier that the cancellation rule
might break the memo property of the constraint. A second possibility is to weaken
the negative coefficients. If the learned constraint is a memo constraint, then it
remains a memo constraint after the weakening. Moreover, this weakening can lead
to a strengthened saturation rule and produce a stronger constraint than the one
obtained with the cancellation rule. Example 5.11 illustrates this.

Example 5.11. Consider the following LP:

minx1 + x2 + x3 + x4

3x1 + 2x2 + x3 − 2x4 ≥ 1

x1 + x10 = 1

x2 + x20 = 1

x3 + x30 = 1

x4 + x40 = 1

The optimal relaxed solution of this problem is {x1 = 1
3 , x2 = 0, x3 = 0, x4 = 0} with

cost 1
3 . The constraint is already saturated. If we cancel −2x4 using the constraint
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x4 + x40 = 1, we obtain 3x1 + 2x2 + x3 + 2x40 ≥ 3, the optimal solution is still
{x1 = 1

3 , x2 = 0, x3 = 0, x4 = 0}. But if we weaken the coefficient −2x4 and
saturate we obtain: x1 + x2 + x3 ≥ 1 with optimal cost 1. ■

Example 5.12 illustrates a complete process to learn one constraint in a CFN
solver.

Example 5.12. Following example 5.10. We had the constraint x1a + x1b +3x2a +

3x2b+4x3a+4x3b+x4a+x4b = 9. Values x2b and x3b have been removed by domain
propagation. We can proceed as explained in section 5.2.3 and derive constraint:
memox1=b : 7x1a + x1b + 3x2a + 4x3a + x4a + x4b ≥ 9.
If we branch on x1 = a then we derive constraint memox1=a : 3x1a + 7x1b + x4a +

x4b + 4x3a ≥ 8.
Applying the MR rule leads to:

7x1a + x1b + 3x2a + 4x3a + x4a + x4b ≥ 9, 3x1a + 7x1b + x4a + x4b + 4x3a ≥ 8

3x1a + x1b + 3x2a + 4x3a + x4a + x4b ≥ 8
(5.50)

The Farkas constraint issued from yP = {λP123 = 1.5, λP134 = 1, πP1 = −1, πP3 =

0, πP3 = 0, πP4 = −1} is:

2x1a + 3x2a + 4x3a − x4b ≥ 4.5 (5.51)

Summing constraints (5.50), (5.51) gives:

5x1a + x1b + 6x2a + 8x3a + x4a ≥ 12.5 (5.52)

This is not a memo constraint of P but it guarantees a bound of 5.5 (rounded to 6).
■

5.4 Experimental results

We tried to implement this approach in toulbar2 the same solver used in previous
chapters. For the moment, we haven’t converged to satisfying results. First, we
have not defined yet how to integrate all the features of toulbar2 into the learn-
ing mechanism. We also know that toulbar2 is very sensitive to the constraint
ordering. It is possible that this learning mechanism won’t work unless we define a
clever constraint ordering heuristic. Therefore, it is difficult to state if the learning
mechanism doesn’t help the solver or if we haven’t found the correct configuration
(or if the implementation is buggy).
As an alternative and to begin with an easier environment, we decided to implement
it in a very basic ILP Python solver. It follows the algorithm 7. We rely on cplex
python API to solve the LP relaxation and return an optimal dual solution with
associated reduced costs. In contrast with toulbar2, in this ILP framework, we
can learn constraints with slack variables, floating points, and negative coefficients.
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We apply the saturation rule before learning the constraints, this is possible because
the MR rule derives ≥ constraints. The variable ordering is fixed, and the solver
branches on the first decision variable with a fractional value. This defines the de-
fault version of MemoBound.

MemoBound is not cleverly optimized and can’t solve a large range of prob-
lems. It supports only ILPs with Boolean decision variables and linear or pairwise
constraints encoded in a dual encoding. All experiments are conducted on a single
core of an Intel Xeon E5-2680 v3 at 2.50 GHz and 256 GB of RAM. We compare
our approach to toulbar2, RoundingSat [Devriendt et al. 2021] v2 with a lin-
ear search (option –opt-mode=linear) and cplex 22.7. The non-optimized bound
propagation and explanation phases are costly, especially in Python. Hence, we are
not interested in the solving time and only measure the number of nodes visited by
the different approaches. In particular, the most relevant data is the difference of
nodes between our Python script with or without learning. The other solvers are
only there for reference.

5.4.1 Knapsack problem

We tested the different approaches on 20 randomly generated knapsack problems
with 100, 150, 200, 250, and 300 Boolean variables taken from [Chu & Stuckey 2013]1.
The capacity is randomly generated and can go up to 40000 (for instances with 300
variables. The weights are randomly generated between 1 and 300.
The Knapsack problem has a bounded number of subproblems and the same prob-
lem may be encountered several times in the search. This is a good opportunity to
see if the learning scheme is able to learn this.
We compare how the number of search nodes increases along the size of the knap-
sack. If we disable the learning in the Python script, then it needs on average 1315
nodes to solve the knapsack with 100 variables and 7076 to solve the one with 300
variables. Hence, the number of nodes has been multiplied by approximately 5.4.
If we use MemoBound, the number of nodes is multiplied by 3.14, therefore the
increase is almost linear. We deduce that For RoundingSat the number of deci-
sions is multiplied by 4.65. Finally, cplex is very efficient and solves 55 problems
at root. The number of nodes between 100 and 300 variables is multiplied by 5.11
(5.55 to 28), but the number of developed nodes is too small to be relevant. Figure
5.3 shows how the number of nodes increases along the size of the knapsack.
Remark that dynamic programming is designed to memoize the optimal solution
of the different sub-problems. It would be interesting to formally define how our
learning approach is related to dynamic programming on the knapsack problem.

1https://people.eng.unimelb.edu.au/pstuckey/dom-jump for mzn format or https://
forgemia.inra.fr/thomas.schiex/cost-function-library/-/tree/master/crafted/knapsack
for the opb/wcsp/lp format

https://people.eng.unimelb.edu.au/pstuckey/dom-jump
https://forgemia.inra.fr/thomas.schiex/cost-function-library/-/tree/master/crafted/knapsack
https://forgemia.inra.fr/thomas.schiex/cost-function-library/-/tree/master/crafted/knapsack
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Figure 5.3: Comparison of the number of nodes to solve knapsack instances.

5.4.2 KPCG

We also tested our approach on the easiest instances of the KPCG benchmarks (see
chapter 3). We present the results for different configurations in table 5.1. The
letter ‘R’ corresponds to a random distribution of the weights and the letter ‘C’ to a
distribution correlated to the profit. In superscript is noted a coefficient multiplying
the capacity. The letter is followed by a number corresponding to the number of
variables (120 or 250), and a decimal number giving the density of the conflict
graph. For example, R3120 − 0.1 are instances with a capacity multiplied by 3,
random distribution, 120 variables, and a graph density of 0.1. Each class contains
10 instances. For all the instances we used a tuple encoding (this corresponds to the
local polytope). On average, in those instances, MemoBound is able to divide by
4.16 (min 2.1, max 7.7) the number of nodes developed by the Python script. KPCG
is a version of knapsack more challenging for the dynamic programming algorithm,
but the learning scheme handles it without modification. This is seen because the
relative benefit of MemoBound increases as we decrease the density, thus getting
closer to pure knapsack. The cuts produced by cplex are very efficient and solve
all the instances very quickly.

5.4.3 Kbtree problem

We tested our approach on randomly generated binary clique trees [De Givry et al. 2006].
Those problems contain only binary cost functions and can be decomposed into over-
lapping cliques. The variables appearing in two (or more) cliques are the separator
variables. In those instances, the cliques follow a binary tree-like structure, with a
bounded treewidth. Therefore, when a separator is fully assigned, then the prob-



124 Chapter 5. Conflict-free learning

No learning MemoBound toulbar2 RoundingSat cplex
R1120− 0.1 1030 226 213 2660 0.3
R1120− 0.2 1054 270 260 2558 0
R1120− 0.3 1004 298 270 2546 1.7
R1250− 0.1 2123 418 522 8985 0
R3120− 0.1 2272 472 476 5330 0.8
R3120− 0.2 3064 906 1026 6061 39.2
R3120− 0.3 3115 1487 1886 6650 66.8
R3250− 0.1 9423 1223 1679 17532 10.3
C1120− 0.1 10989 2646 1580 6064 0
C1120− 0.2 8672 2292 1151 8779 5.8
C1120− 0.3 6437 2156 1537 8043 73

Table 5.1: Number of nodes developed to solve different configurations of the KPCG
problem.

Variables Constraints No learning MemoBound toulbar2-BTD RoundingSat cplex
kb-7-2-3-2-60 44 190 7.79 5.9 5.58 4649 0 (573)
kb-7-2-4-2-60 92 406 43 17 16.33 64549 0 (1235)
kb-7-2-5-2-60 188 838 1240 262 37 - 0 (2556)
kb-8-2-3-2-60 51 246 13.89 8 12 7568 0 (758)
kb-8-2-4-2-60 107 526 128 40 40 153374 0 (1613)
kb-9-2-3-2-60 58 309 26 14 27 19153 0(979)
kb-9-2-4-2-60 122 661 457 156 95 - 0(2071)

Table 5.2: Average number of nodes developed to solve kbtree instances with differ-
ent sizes. For cplex we give in parenthesis the number of iterations made by the
simplex algorithm

lem is separated into two (or more) separate sub-problems. A solver can exploit
that by storing for each instantiation of the separators the optimal solution of the
created sub-problems. Thus, the solver will not solve two times the problem issued
from the same assignment of the separators. This is the idea behind Back- track
bounded by Tree Decomposition (BTD) [Jégou & Terrioux 2003]. It first computes
a tree decomposition and uses it to make the search more efficient. toulbar2
has been augmented with BTD [De Givry et al. 2006] (option: -B=1 -O=-3 -Z -
root=3). It also produces an ordering following the tree decomposition, which is
given as input to MemoBound. RoundingSat was run with a linear search (option
–opt-mode=linear). The parameters of the random generator are (w, s, h, d, t) where
w + 1 is the clique size, s the separator size, h the height of the clique tree, d the
domain size, and t the constraint tightness (percentage of tuples with a non-zero
cost (unit cost).). We generated 100 random instances with cliques of size 8,9,10
a separator size of 2, a height of 3,4,5, Boolean variables, and a tightness of 60.
toulbar2-BTD solves directly those problems while other approaches solve the
tuple encoding. Table 5.2 gives the size corresponding to the original instance, and
the average number of nodes to solve the instances. The limit number of nodes was
1000000.
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With the correct ordering, MemoBound seems to be able to learn the tree de-
composition. For many instances it achieves similar speedups (in terms of nodes)
than toulbar2-BTD without explicit knowledge of the tree decomposition (only
the ordering). However, for some specific instances, the Python solver has abnormal
behavior. For example, for kbree-7-2-5-2-60, the median number of nodes is 45 for
MemoBound and 32 for toulbar2-BTD. Therefore, on the majority of instances
toulbar2-BTD and MemoBound performs similarly. But the average number of
nodes reported in table 5.2 is impacted by extreme values. In particular, there is
one instance that is solved after 53000 nodes without learning and 6700 with learn-
ing while toulbar2-BTD needs only 45 nodes. We suspect that taking the first
fractional value does not necessarily follow exactly the correct ordering and thus the
search is negatively impacted. One way to improve this would be to dynamically
detect the connected components and learn one constraint per component. There-
fore, even if we do not follow the correct ordering, the learning mechanism will be
able to derive one constraint per sub-problem.
RoundingSat has no information on the particular structure of the instances and
therefore doesn’t perform well. Finally, cplex is again very efficient and solves all
the instances at the root node using the simplex algorithm and cuts.

5.5 Conclusion

We designed a novel conflict-free learning mechanism memorizing through linear
constraints the lower bound of the encountered sub-problems. This approach can be
embedded in different optimization paradigms such as ILP or CFN. The first results
obtained on a basic Python script are encouraging. However, we haven’t yet tested
it in a fully functional solver. Maybe to obtain an effective learning mechanism it
is necessary to explore different heuristics, such as constraint selection, constraint
strengthening, or restarts. This conflict-free learning could also benefit from conflict-
based learning. It would be also interesting to theoretically prove how the learning
mechanism is related to dynamic programming and if it is able to simulate BTD.





Chapter 6

Conclusion

Contributions

In this thesis, we made several contributions to the state of the art in solving the
WCSP problem. First, in chapter 3 we presented how to integrate linear constraints
in a CFN. We defined how to represent them without introducing extra variables
and designed a dedicated propagator. With this new feature, the WCSP solver
toulbar2 is able to tackle new instances that were previously out of reach. In
some families of instances, it dominates or is competitive with other state-of-the-art
solvers. To improve the performance on some specific benchmarks we also extended
the VAC algorithm to handle linear constraints and added the possibility of auto-
matically detecting conflicts and embedding them in the linear constraints.
Secondly, we presented in chapter 4, Virtual Pair-Wise Consistency (VPWC) a newly
defined soft local consistency. We show how to exploit VAC and dual encoding to
efficiently enforce VPWC in preprocessing or during search. This has been tested
on toulbar2 and shows good performance in the UAI 2022 competition 1.
Finally, we introduced a new conflict-free learning mechanism. This approach
aims to learn the computed lower bounds based on dual proof constraints and
reparametrization. We defined a recursive procedure learning a constraint at each
node from the constraints computed at the child nodes. We show this method can be
implemented in MILP or CFN frameworks. A basic Python script that implements
the learning mechanism demonstrates encouraging preliminary results.

Perspectives

Most exciting future work concerns the learning mechanism. We only implemented
the approach in a basic unoptimized Python script but it remains to see how it actu-
ally performs in an efficient fully functional solver (Toulbar2, SCIP or Round-
ingSAt). We also didn’t explore the learning-related heuristics such as constraint
selection, constraint strengthening, or restarts. This work could also be enhanced by
an automatic detection of the connected components. It would make it possible to
learn one constraint per component and obtain finer grains lower bounds. Finally, a
good contribution would be to have theoretical proofs to relate the learning scheme
to other approaches such as dynamic programming or BTD.

1https://uaicompetition.github.io/uci-2022/

https://uaicompetition.github.io/uci-2022/
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Another direction could be to strengthen the lower bounds computed during the
search. This could be done by finding a better ordering of the linear constraints.
Maybe a machine learning-based approach could help to understand what are the
key elements to find the best ordering. Otherwise, we could look at heuristics play-
ing with the dual encoding. For example, it would be interesting to dualize as few
cost functions as possible while keeping a good lower bound. This could be done
dynamically during the search. Similarly, what we did in the UAI 2022 competition,
we could try to define a heuristic cleverly selecting which empty cost function to
add.
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Résumé en Français
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7.1 Chapitre 1: Introduction

L’optimisation joue un rôle fondamental dans notre expérience quotidienne. Nous
sommes sans cesse confrontés à de nouveaux défis, allant de la tournée de véhicules,
à la planification, aux systèmes de recommandation, ou à la conception de pro-
téines pour n’en citer que quelques-uns. Aborder ces problèmes est difficile car ils
peuvent impliquer un grand nombre de variables avec des interactions complexes.
La plupart d’entre eux sont hors de portée de la capacité cognitive humaine, nous
nous appuyons donc sur l’amélioration incessante des algorithmes pour trouver la
meilleure, ou du moins une bonne solution.
Il existe différentes approches de modélisation et de résolution, chacune étant conçue
pour résoudre une gamme différente de problèmes. Parmi les deux paradigmes les
plus courants, nous trouvons d’une part la Programmation par Contraintes (CP),
un cadre basé sur la logique et l’inférence. D’autre part, la Programmation Linéaire
en Nombres Entiers (ILP), spécialisée dans les interactions linéaires et faisant appel
à des mathématiques avancées. ILP et CP offrent des approches complémentaires
pour relever les défis complexes de l’optimisation. Cependant, il est fréquent qu’une
fois qu’une technique montre son efficacité dans un paradigme, les chercheurs es-
saient de l’adapter à l’autre paradigme. Un exemple notable est l’Apprentissage de
Clauses Basé sur les Conflits (CDCL). Il a été initialement défini pour le problème
de satisfaction booléenne (SAT), pour lequel il est devenu un pilier des solveurs SAT
modernes. Depuis lors, des approches dérivées ont été développées pour MaxSAT,
l’optimisation pseudo-booléenne, le Problème de Satisfaction de Contraintes (CSP)
ou ILP. Cette stratégie vise à apprendre des contraintes à partir des échecs ren-
contrés pendant la recherche. Les contraintes apprises amélioreront le reste de la
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recherche en empêchant le solveur de refaire la même erreur.
Les Modèles Graphiques (GM) utilisent des graphes pour encoder les relations com-
plexes entre les variables de décision, où les noeuds représentent des variables et
les (hyper)arêtes représentent des dépendances ou des corrélations entre elles. GM
offre un cadre flexible pour modéliser différents systèmes. Par exemple, les Réseaux
de Fonction de Coût (CFN) sont des modèles graphiques non orientés impliquant
des fonctions de coût locales. La tâche de trouver l’affectation minimisant la somme
de toutes les fonctions de coût locales est connue sous le nom de Problème de
Satisfaction de Contraintes Pondérées (WCSP). Ce problème se pose dans divers
domaines tels que l’analyse d’images [Savchynskyy 2019] ou la bioinformatique [Al-
louche et al. 2014a]. La résolution de WCSP repose sur une recherche arborescente et
la propagation de contraintes. Le solveur recherche une solution optimale en divisant
l’espace de recherche en sous-problèmes plus petits. Les techniques de propagation
de contraintes sont utilisées pour fournir une borne inférieure des sous-problèmes
rencontrés. Obtenir de bonnes bornes inférieures est crucial pour éviter d’explorer
des régions peu prometteuses.
Dans cette thèse, nous nous intéressons à diversifier la gamme d’instances modélis-
ables et résolubles par un solveur WCSP. Nous montrons d’abord comment intégrer
des contraintes linéaires dans un Réseau de Fonction de Coût (CFN). Ces contraintes
sont expressives, compactes et sont au coeur de solveurs ILP très efficaces. Ainsi,
traiter les contraintes linéaires dans les solveurs WCSP peut considérablement élargir
leur utilisation pratique. Deuxièmement, nous définissons la Cohérence Virtual Pair-
Wise, une nouvelle cohérence locale souple dérivant des bornes bonnes inférieurs.
Enfin, guidés par le succès des méthodes d’apprentissage basées sur les conflits dans
plusieurs domaines (comme SAT, l’optimisation pseudo-booléenne ou ILP), nous
concevons un nouveau mécanisme d’apprentissage sans conflit. Il vise à mémoriser
à travers une contrainte linéaire les bornes inférieures des sous-problèmes rencon-
trés. Si ce sous-problème apparaît une deuxième fois dans la recherche, propager la
contrainte précédemment apprise aidera à obtenir une bonne borne inférieure. Nous
montrons comment un tel mécanisme peut être intégré dans des solveurs MILP
classiques, avant d’étendre cela aux solveurs WCSP.

Ce manuscrit est organisé comme suit:

- Le Chapitre 2 introduit le concept général derrière plusieurs paradigmes util-
isés pour résoudre des problèmes combinatoires. Cela inclut la Programmation
Linéaire en Nombres Entiers, la Programmation par Contraintes, les Réseaux
de Fonction de Coût, SAT et l’Optimisation Pseudo-Booléenne.

- Le Chapitre 3 montre comment les contraintes linéaires peuvent être encodées
et propagées dans un CFN. Nous proposons également un algorithme éten-
dant la cohérence locale souple Virtual Arc [Cooper et al. 2010] (VAC) pour
traiter les contraintes linéaires. Enfin, nous donnons les résultats expérimen-
taux obtenus sur des instances impliquant des contraintes linéaires. La plupart
de la contribution de ce chapitre a été publiée à CPAIOR 2022 [Montalbano
et al. 2022].
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- Le Chapitre 4 exploite l’encodage dual d’un CFN et VAC pour imposer une
cohérence locale douce nouvellement définie : cohérence Virtual Pair-Wise.
Les résultats expérimentaux montrent les avantages d’une telle stratégie sur
plusieurs benchmarks. Cette contribution est un travail collaboratif avec
Tomas Werner de l’Université Technique de Prague et a été publiée à CPAIOR
2023 [Montalbano et al. 2023].

- Le Chapitre 5 introduit un mécanisme d’apprentissage sans conflit pour mé-
moriser les bornes inférieurs. Nous montrons comment intégrer cette approche
dans des solveurs MILP classiques, avant d’étendre cela aux solveurs WCSP.
Nous donnons quelques résultats préliminaires obtenus avec cette approche.
Nous préparons actuellement une soumission présentant cette contribution.

7.2 Chapitre 2: Optimisation dans les modèles graphiques

Ce chapitre définit les notions importantes abordées dans le manuscrit. Il se con-
centre sur les modèles graphiques (GM) et les différents outils utilisés pour résoudre
les problèmes d’optimisations liés au GM. D’un coté on trouve la Programmation
Linéaire en Nombre Entier (ILP) qui se base sur des contraintes linéaires et les
notions de problème primal/dual, et de l’autre la Programmation par Contrainte
(CP) plus axé sur des algorithmes de cohérences locale et les contraintes globales.
Les cadres ILP et CP offrent des approches complémentaires pour relever des dé-
fis d’optimisation complexes, l’ILP excellant dans les problèmes où les relations
linéaires prédominent, tandis que la CP offre une flexibilité dans la modélisation de
diverses contraintes et espaces de décision discrets. Il est important de noter que la
situation est bien plus compliquée lorsqu’on discute des performances de résolution
réelles. De nombreux autres paramètres peuvent impacter l’efficacité de la résolu-
tion, et l’ILP/CP peuvent se comporter mal ou bien sur des problèmes où nous nous
attendions à l’opposé.
S’ensuit une présentation des problèmes de satisfaction de contrainte pondérées
(WCSP), l’étude de ces derniers étant au coeur de la thèse. Un WCSP est un
problème d’optimisation définit par des variables discrètes et des fonctions de coûts.
Chaque fonction de coût est définit par un scope i.e un sous ensemble de variable,
un coût i.e un entier positif, est associé à chaque tuple réalisable dans le scope.
L’objectif est de trouver l’affectation minimisant la somme de toutes les fonctions
de coût locales. Une des approches pour résoudre un WCSP s’appuie sur un algo-
rithme de branch and bound et des algorithmes de cohérence locale souple (SLC).
L’objectif des SLC est de produire un minorant en considérant des interactions lo-
cales entre les fonctions de coût. Différentes SLC sont présentées dans le manuscrit,
et une hiérarchie se basant sur la qualité du minorant est donnée. Une des co-
hérences les plus fortes est Virtual Arc Consistency (VAC), celle ci s’obtient en
appliquant la cohérence d’arc sur un CSP particulier appelé Bool(P ) obtenu à par-
tir du WCSP P . Enfin le chapitre se conclu par une introduction des paradigmes
SAT et d’optimisation Pseudo Booléenne qui ont la particularité d’employer des
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mécanismes d’apprentissage par conflit pendant la recherche (CDCL par exemple).

7.3 Chapitre 3: Modèles graphiques et contraintes linéaire

Les contraintes linéaires sont des contraintes expressives et compactes fournissant
un outil puissant pour la modélisation et la résolution d’une large gamme de prob-
lèmes d’optimisation, notamment en informatique, en recherche opérationnelle et en
intelligence artificielle [Boros & Hammer 2002]. Par défaut, dans les WCSP les con-
traintes sont représentées en extension, c’est à dire que tout les tuples et leur coût
associé sont explicitement donnés. Malheureusement, représenter les contraintes
linéaires de cette manière introduit un nombre de tuples exponentiel dans l’arité
de la contrainte. Une possibilité serait de représenter les contraintes linéaires en
intention et d’intégrer un solveur LP pour les gérer. Cependant, résoudre un LP à
chaque noeud pourrait être très coûteux comme l’ont montré Hurley et al [Hurley
et al. 2016] puisque les solveurs ILP peuvent être significativement plus lents que
les solveurs WCSP dédiés. De plus, le solveur LP peut être sujet à une instabil-
ité numérique, il n’est pas souhaitable d’introduire une instabilité numérique dans
des solveurs exacts qui fonctionnent exclusivement avec des entiers pour garantir
l’exactitude de leur solution.

Dans ce chapitre, nous présentons une méthode pour représenter dans un CFN
toutes les contraintes linéaires sans introduire de variables supplémentaires. Nous
étendons les algorithmes de cohérence locale souple pour propager ces contraintes.
Plus précisément, nous nous concentrons sur les contraintes PB

∑
i∈S wixi ≥ C

ainsi qu’une partition de ses variables en ensembles A1, . . . , Ak ∈ S,
⋃k

j=1Aj = S.
Pour chaque partition Aj , une contrainte impose qu’une seule variable peut prendre
la valeur un :

∑
xj∈Aj

xj = 1. Une telle contrainte est connue sous le nom de
contrainte Exactly One (EO), tandis que

∑
xj∈Aj

xj ≤ 1 est une contrainte At Most
One (AMO). Cette formulation est plus générale qu’une seule contrainte PB. En
particulier, elle nous permet d’étendre les contraintes PB aux variables à plusieurs
valeurs. Soit S un ensemble de variables WCSP avec des domaines arbitraires et
wiv le poids associé à la valeur v ∈Di. Pour chaque variable dans S, nous utilisons
des variables 0/1 xiv qui prennent la valeur 1 si xi = v et 0 si xi ̸= v. La contrainte∑

i∈S,v∈Di
wivxiv ≥ C correspond au schéma décrit ci-dessus, avec des partitions

Ai = xiv | v ∈Di. Sans perte de généralité, nous supposons que les poids et la
capacité sont tous positifs.

Enfin, cette formulation admet le cas où il existe une contrainte AMO sur cer-
taines partitions : nous ajoutons une autre variable 0/1 dans chaque telle partition
et lui donnons un poids 0, de sorte que cette partition a maintenant une contrainte
EO. Notez que toutes ces variables 0/1 sont utilisées pour représenter la contrainte
mais n’apparaissent pas à l’extérieur de celle-ci, en particulier, nous ne branchons
jamais sur ces variables.

Example 7.1. Supposons que nous ayons un WCSP avec 2 variables X = x1, x2
avec des domaines D1 = 1, 2, 3 et D2 = 1, 2, nous pouvons exprimer une contrainte
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PB en utilisant des variables booléennes x11, x12, x13, x21, x22.

4x11 + 14x12 + 24x13 + 16x21 + 40x22 ≥ 40

x11 + x12 + x13 = 1

x21 + x22 = 1

x11, x12, x13, x21, x22 ∈ 0, 1

Une solution à ce problème pourrait être x13 = 1, x21 = 1 et correspond à x1 =

3, x2 = 1 dans le WCSP. ■

La suite du chapitre montre qu’une contrainte linéaire peut être propagée à partir
de la solution dual d’un problème de sac à dos à choix multiple. Cette propagation
mène à une application d’une version faible de la cohérence locale souple Full zero-
inverse. S’ensuit une discussion sur les différentes heuristiques liées à l’inclusion des
contraintes linéaires (choix des variables de branchement, ordre de propagation...).
Une des faiblesses de notre approche est que l’algorithme produit fondamentalement
une solution sous-optimale au programme linéaire. Pour remédier à ce problème,
nous avons étendu l’algorithme VAC pour gérer les contraintes linéaires et ajouté la
possibilité d’associer des affectations conflictuelles avec des contraintes linéaires.

Enfin, l’approche a été implémenté dans le solveur Toulbar2 et testé sur plusieurs
jeux d’instances. Les résultats montrent que ce travail offre une plus grande flexi-
bilité de modélisation et permet un solveur WCSP tel que toulbar2 de résoudre
davantage de problèmes, tels que des problèmes de conception de protéines com-
putationnelles avec garantie de diversité ou des problèmes de sac à dos avec des
graphes de conflit. Parfois toulbar2 est même compétitif avec les autres solveurs
PBO ou ILP.

7.4 Chapitre 4: Cohérence Pair-Wise virutelle

Dans le chapitre 2 plusieurs algorithmes de cohérence locale ont été présentés. En
particulier, nous avons décrit la Virtual Arc Consistency (VAC), qui est atteinte
lorsque la fermeture de cohérence d’arc de Bool(P ) n’est pas vide. Dans ce chapitre,
nous définissons la Virtual Pair-Wise Consistency (VPWC), qui peut être obtenue
en imposant la cohérence Pair-Wise sur Bool(P ).

En programmation par contraintes, la cohérence Pair-Wise (PWC) est une co-
hérence définie pour les CSP non binaires. Contrairement à la cohérence basée
sur les arcs, elle a la possibilité d’exploiter les interactions entre les paires de con-
traintes. Par conséquent, elle permet de filtrer plus efficacement les valeurs mais est
plus coûteuse à imposer. Elle a été comparée à AC généralisée pour la résolution
de CSP non binaires donnés en extension [Samaras & Stergiou 2005a, Schneider &
Choueiry 2018a, Wang & Yap 2019, Wang & Yap 2021]. Elle montre de bonnes
performances dans certains benchmarks mais n’est pas préférée par défaut. Les
algorithmes récents imposant la PWC sur un CSP reposent sur un encodage bi-
naire, nous explorons également une idée similaire dans le cadre des CFN. En effet,
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ce chapitre présente l’encodage dual qui permet d’exprimer un CSP non-binaire en
CSP binaire. Les algorithmes de cohérence par arc filtre plus efficacement les valeurs
sur ce CSP binaire que sur le CSP original. Cependant, des variables avec de larges
domaines et un grand nombres de contraintes peuvent être introduites dans le dual,
ralentissant ainsi les algorithmes de filtrage. Cette encodage dual peut être étendu
au WCSP et de la même manière les algorithmes de cohérence locale souple pro-
duisent des meilleurs minorants sur ce problème dual. En particulier, VAC n’a pas
été implémentée pour les WCSP non-binaires, de ce fait, utiliser l’encodage dual per-
met d’appliquer VAC même sur un problème non-binaire. Il est montré qu’appliquer
VAC sur l’encodage dual est équivalent à appliquer VPWC sur le problème original.

Un autre avantage de l’encodage dual réside dans sa flexibilité, l’utilisateur peut
choisir quelle partie du problème originale il est souhaitable de dualiser (encodage
dual partiel). De plus, pendant la recherche, après avoir appliquer VAC (ou tout
autre algorithme) sur le problème dual, il est possible de le dé-dualiser et de pour-
suivre la recherche sur un problème non-binaire mais avec un premier bon minorant.
Des résultats expérimentaux sur la compétition UAI 2022 montre que cette approche
est pertinente et compétitive.

7.5 Chapitre 5: Apprentissage sans-conflit

L’idée derrière les mécanismes d’apprentissage est d’utiliser les informations fournies
par un solveur pendant la recherche pour apprendre une nouvelle contrainte qui
aidera pour le reste de la recherche. Cela a montré son efficacité dans différents
paradigmes tels que CDCL pour SAT [Marques-Silva & Sakallah 1999], l’enregistrement
de NoGood pour CSP [Dechter 1990, Katsirelos & Bacchus 2005], la résolution
pseudo-Booléenne pour les solveurs PB [Chai & Kuehlmann 2003, Dixon & Gins-
berg 2002, Elffers & Nordström 2018, Le Berre & Parrain 2010, Sheini & Sakallah 2006,
Devriendt et al. 2021], MaxCDCL pour MaxSAT [Li et al. 2021], l’analyse de con-
flit MIP pour MIP [Achterberg 2007]. Ces méthodes d’apprentissage déclenchées
lorsqu’un solveur rencontre un problème infaisable sont qualifiées basées sur les con-
flits. Les contraintes apprises de cette manière sont spécifiquement conçues pour fil-
trer davantage de valeurs incohérentes. Une approche plus récente est l’apprentissage
sans conflit [Witzig 2022], qui repose sur le lemme de Farkas [Farkas 1902] pour pro-
duire des contraintes de Farkas à partir d’une solution duale.

Definition 7.1 (Contrainte de Farkas). Étant donné un problème LP min cTx|Ax = b, x ∈ Z
et une solution duale y, la contrainte de Farkas est définie comme suit :

yTAx = yTb (7.1)

Les contraintes de Farkas étaient généralement utilisées comme preuve d’infaisabilité
lorsque le LP était déclaré infaisable. Witzig montre que l’apprentissage d’une con-
trainte de Farkas sur des noeuds réalisables peut être utile si la contrainte est mod-
ifiée selon les informations obtenues en approfondissant l’arbre de recherche [Witzig
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& Berthold 2020, Witzig 2022]. Cependant, ces contraintes sont dérivées d’une agré-
gation de contraintes primales LP, de plus, elles n’exploitent aucune connaissance
sur l’intégralité des variables. Par conséquent, ces contraintes n’aideront pas un
solveur LP à dériver directement de meilleures bornes à l’avenir, mais peuvent aider
à éliminer les valeurs incohérentes via la propagation de domaine.

Même si ces apprentissages basés ou non sur les conflits sont efficaces dans leur
cadre, ils ne répondent pas à nos besoins dans les CFN. En effet, les solveurs WCSP
ont la particularité de reparamétrer le problème pendant la recherche. Si la borne
inférieure dépasse la borne supérieure, il n’est pas possible de pointer directement un
ensemble de fonctions de coût et de déclencher une procédure similaire à l’analyse
de conflits. De plus, les stratégies de filtrage sont limitées dans les CFN car les
incohérences dures ne sont pas au coeur des fonctions de coût (sauf sur certains
benchmarks spécifiques). Dans les solveurs WCSP, la meilleure façon de réduire
l’espace de recherche est de produire de bonnes bornes. Alors que les mécanismes
d’apprentissages précédemment définis étaient exclusivement conçus pour filtrer da-
vantage de valeurs, il semble plus intéressant dans ces conditions d’apprendre des
contraintes aidant à dériver de meilleures bornes inférieures.

Notre approche est basée sur les contraintes de Farkas. Par elle-même, nous
savons qu’une contrainte de Farkas n’aidera pas un solveur LP à dériver de meilleures
bornes, mais nous spécifions comment les combiner pour obtenir des contraintes
qui sont valides, logiquement redondantes, mais non redondantes par rapport à la
relaxation linéaire. En particulier, de manière similaire à l’approche de Witzig, nous
montrons qu’une contrainte de Farkas calculée à un noeud interne peut devenir utile
si elle est fusionnée avec des contraintes de Farkas dérivées plus profondément dans
l’arbre de recherche. Ces nouvelles contraintes produiront de meilleures bornes et
pourront filtrer des valeurs.

Dans la suite du chapitre les auteurs définissent un mécanisme d’apprentissage
dans le cadre MILP où la recherche de solution optimale se fait grâce à algorithme
de branch and bound et la relaxation LP est résolue à chaque noeud. L’objectif est
d’être en mesure d’apprendre une contrainte linéaire par noeud (sous-problème) de
sorte que si nous résolvons à nouveau la relaxation LP correspondante à ce noeud,
alors, la contrainte linéaire apprise à elle seule impose une borne inférieure égale à
la meilleure borne inférieure connue pour ce sous-problème. Si nous apprenons de
telles contraintes, alors si une autre affectation mène au même sous-problème (ou
à un sur-ensemble), nous pouvons déduire directement la meilleure borne inférieure
connue sans recherche. Nous pouvons également espérer que si nous rencontrons un
problème légèrement différent, alors la contrainte apprise aide toujours à déduire
une borne utile. L’exemple 7.2 donne un exemple concret de ce que nous voulons
réaliser.
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Figure 7.1: Début de l’arbre de recherche pour trouver la solution optimale de
l’exemple 7.2
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Example 7.2. Soit P un problème MILP :

min 3x1 + 4x2 + 6x3 + 8x4 + x5 + 6x6

s.t.

2x1 + 2x2 + 3x3 + 4x4 + x5 + 6x6 − s = 10

x1 + x2 = 1

xi + xi0 = 1

xi ∈ {0, 1} ∀i ∈ [1, 6]

xi0 ≥ 0 ∀i ∈ [1, 6]

s ≥ 0

La figure 7.1 montre le début de la recherche pour trouver la solution optimale.
À chaque noeud, un solveur LP donne la solution relaxée optimale. Nous pouvons
voir au noeud N2 que la borne inférieure est 14, puis au noeud N3 et N4 la solution
relaxée optimale est 15 et 18. Nous pouvons en déduire qu’une meilleure borne
inférieure pour le noeud N2 est 15. Dans notre procédure d’apprentissage, nous
voulons apprendre une contrainte telle qu’avec cette nouvelle contrainte, la solution
relaxée optimale au noeud N2 n’est pas inférieur à 15. De même, au noeud N5 et N1,
nous voulons apprendre une contrainte justifiant une borne inférieure respectivement
de 17 et 15.
De telles contraintes pourraient améliorer la recherche future, par exemple si en
visitant le sous-arbre issu de N1, nous déduisons la contrainte 6x60 + x50 + 2s ≥ 3

et l’ajoutons au LP. Ensuite, lorsque le solveur visite le noeud N8, il trouve une
solution relaxée optimale de 13 sans la contrainte supplémentaire, tandis qu’il trouve
16 avec la contrainte supplémentaire et la recherche est terminée. Dans la suite, nous
détaillons comment nous pouvons dériver de telles contraintes. ■

La stratégie d’apprentissage apprend des contraintes avec des propriétés par-
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ticulières, elles sont nommées contraintes de garantie, une contrainte de garantie
est associée à une borne γ, si elle est ajoutée aux contraintes d’un MILP P , alors
elle assure que le minorant de la relaxation linéaire est au moins γ. Il existe une
classe de contrainte qui constitue des contraintes de garantie, ce sont les mémos con-
traintes. Les auteurs les caractérisent comme des contraintes dont les coefficients
linéaires sont plus petits que les coefficients de la fonction objective. En partic-
ulier, les contraintes de Farkas sont des mémos contraintes. Ainsi, le mécanisme
d’apprentissage est défini pour apprendre des mémos contraintes à chaque noeud
garantissant la meilleure borne inférieure connue pour ce sous-problème. Pour ce
faire, une approche récursive est définie où à chaque noeud une mémo contrainte
est apprise en utilisant les mémos contraintes des deux noeuds enfants. Pour cela,
les auteurs proposent une version alternative de la Fusion Resolution [Buss & Nord-
ström 2021] permettant de combiner les mémos contraintes des noeuds enfants pour
obtenir une mémo contrainte au noeud parent. Aussi, pour apprendre des con-
traintes plus précises, il est montré comment intégrer dans un solveur ILP la notion
de reparamétrage utilisée dans les CFN. Pour compléter cette approche, les auteurs
présentent une manière d’inclure des mécanismes de suppression de valeurs dans
ce mécanisme d’apprentissage. Enfin, ils discutent des avantages et inconvenants à
inclure ce processus dans un solveur WCSP.
Cette approche a été implémentée dans un petit solveur en python servant de preuve
de concept. Les résultats sur les différents benchmarks sont prometteurs mais une
implémentation du processus d’apprentissage dans un solveur complet et la défini-
tion d’heuristiques sont nécessaires pour conclure sur l’efficacité de cette approche.

7.6 Chapitre 5: Conclusion

Contributions

Dans cette thèse, nous avons apporté plusieurs contributions à l’état de l’art dans
la résolution du problème WCSP. Tout d’abord, dans le chapitre 3, nous avons
présenté comment intégrer des contraintes linéaires dans un CFN. Nous avons défini
comment les représenter sans introduire de variables supplémentaires et avons conçu
un propagateur dédié. Avec cette nouvelle fonctionnalité, le solveur WCSP toul-
bar2 est capable de traiter de nouvelles instances qui étaient auparavant hors de
portée. Dans certaines familles d’instances, il domine ou est compétitif avec d’autres
solveurs de pointe. Pour améliorer les performances sur certains benchmarks spé-
cifiques, nous avons également étendu l’algorithme VAC pour gérer les contraintes
linéaires et ajouté la possibilité de détecter automatiquement les conflits et de les
intégrer dans les contraintes linéaires.

Deuxièmement, nous avons présenté dans le chapitre 4 la cohérence Virtual Pair
Wise (VPWC) une cohérence locale souple nouvellement définie. Nous montrons
comment exploiter VAC et l’encodage dual pour appliquer efficacement VPWC en
prétraitement ou pendant la recherche. Cela a été testé sur toulbar2 et montre
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de bonnes performances dans la compétition UAI 2022.
Enfin, nous avons introduit un nouveau mécanisme d’apprentissage sans conflit.

Cette approche vise à apprendre les bornes inférieures calculées sur la base des con-
traintes de Farkas, et du reparamétrage. Nous avons défini une procédure récursive
qui apprend une contrainte à chaque noeud à partir des contraintes calculées au
niveau des noeuds enfants. Nous montrons que cette méthode peut être implémen-
tée dans des cadres MILP ou CFN. Un script Python de base qui met en oeuvre le
mécanisme d’apprentissage démontre des résultats préliminaires encourageants.

Perspectives

Le futur travail le plus excitant concerne le mécanisme d’apprentissage. Nous
n’avons implémenté l’approche que dans un script Python de base non optimisé,
mais il reste à voir comment elle se comporte réellement dans un solveur entière-
ment fonctionnel et efficace (Toulbar2, SCIP ou RoundingSAt). Nous n’avons
pas non plus exploré les heuristiques liées à l’apprentissage telles que la sélection de
contraintes, le renforcement des contraintes ou les redémarrages. Ce travail pour-
rait également être amélioré par une détection automatique des composantes con-
nectées. Cela permettrait d’apprendre une contrainte par composant et d’obtenir
des bornes inférieures plus fines. Enfin, une bonne contribution serait d’avoir des
preuves théoriques pour relier le schéma d’apprentissage à d’autres approches telles
que la programmation dynamique ou BTD.

Une autre direction pourrait être de renforcer les bornes inférieures calculées
pendant la recherche. Cela pourrait être fait en trouvant un meilleur ordonnance-
ment des contraintes linéaires. Peut-être qu’une approche basée sur l’apprentissage
automatique pourrait aider à comprendre quels sont les éléments clés pour trouver
le meilleur ordonnancement. Sinon, nous pourrions examiner les heuristiques jouant
avec l’encodage dual. Par exemple, il serait intéressant de dualiser le moins de fonc-
tions de coût possible tout en conservant une bonne borne inférieure. Cela pourrait
être fait dynamiquement pendant la recherche. De même, ce que nous avons fait
dans la compétition UAI 2022, nous pourrions essayer de définir une heuristique
sélectionnant intelligemment quelle fonction de coût vide ajouter.
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