
Multiple-choice knapsack constraint in graphical
models⋆

Pierre Montalbano1[0000−0001−8126−892X], Simon de Givry1[0000−0002−2242−0458],
and George Katsirelos2[0000−0002−3727−6698]

1 Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France
{pierre.montalbano,simon.de-givry}@inrae.fr

2 Université Fédérale de Toulouse, ANITI, INRAE, MIA Paris, AgroParisTech,
75231 Paris, France gkatsi@gmail.com

Abstract. Graphical models, such as cost function networks (CFNs),
can compactly express large decomposable functions, which leads to ef-
ficient inference algorithms. Most methods for computing lower bounds
in Branch-and-Bound minimization compute feasible dual solutions of a
specific linear relaxation. These methods are more effective than solving
the linear relaxation exactly, with better worst-case time complexity and
better performance in practice. However, these algorithms are specialized
to the structure of the linear relaxation of a CFN and cannot, for exam-
ple, deal with constraints that cannot be expressed in extension, such as
linear constraints of large arity.
In this work, we show how to extend soft local consistencies, a set of
approximate inference techniques for CFNs, so that they handle linear
constraints, as well as combinations of linear constraints with at-most-
one constraints. We embedded the resulting algorithm in toulbar2, an
exact Branch-and-Bound solver for CFNs which has demonstrated supe-
rior results in several graphical model competitions and is state-of-the-
art for solving large computational protein design (CPD) problems. We
significantly improved performance of the solver in CPD with diversity
guarantees. It also compared favorably with integer linear programming
solvers on knapsack problems with conflict graphs.

Keywords: graphical model · cost function network · knapsack problem.

1 Introduction

A Graphical Model (GM) may express an arbitrary complex function on several
variables as a combination of smaller local functions on subsets of the variables.
GMs have been used to reason about logic and probabilities. A deterministic GM
can represent a Constraint Satisfaction Problem (CSP) where each local function
is a constraint evaluating to true (satisfied) or false (unsatisfied) and the com-
bination operator is Boolean conjunction. It can also represent a Cost Function

⋆ This research was funded by the French “Agence Nationale de la Recherche” through
grants ANR-18-EURE-0021 and ANR-19-P3IA-0004.

2 Montalbano et al.

Network (CFN), where each function evaluates to a cost and the combination op-
erator is addition [14]. A probabilistic GM represents a probability distribution
on random variables. Local functions may correspond to conditional probability
distributions as in Bayesian Networks (BN) or potentials as in Markov Random
Fields (MRF) [28]. They are combined by multiplication. In the following, we
focus on CFNs. It can be shown that finding the Maximum A Posteriori as-
signment on MRFs (MAP/MRF) or the Most Probable Explanation on BNs
(MPE/BN) can be cast as finding a solution of minimum cost in an appropriate
CFN [13]. By allowing infinite costs to represent infeasibility, CFNs can be seen
as a strict generalization of CSPs.

Exact methods to solve GMs/CFNs mostly rely on Branch-and-Bound (B&B)
algorithms [36,20]. These methods have proved useful in many GM applica-
tions, such as resource allocation [10], image analysis [23], or computational bi-
ology [4,1]. For those, it has been shown to outperform other approaches, includ-
ing Integer Linear Programming (ILP), MaxSAT and Constraint Programming
(CP) [25].

CFNs have no native way to express linear constraints. This is in large part
due to the algorithms used to compute lower bounds in B&B, which require that
all constraints be expressed in extension. In many cases, having the ability to
add such constraints would significantly improve the usefulness of CFNs. For
example, when searching for diverse solutions, the Hamming distance constraint
is naturally expressed as a linear constraint. There are ways to work around this
[39,40] but, as we show later, they come with a non-trivial performance penalty.
The lack of linear constraints is even more severe when the constraints have
large coefficients, as in the knapsack problem with a conflict graph (KPCG).
In this case, there is no workaround for the lack of linear constraints and CFN
technology cannot be applied.

Contributions. Here, we show how to extend soft local consistency algo-
rithms, a set of approximate inference techniques for CFNs, to deal with Pseudo-
Boolean linear constraints (PB constraints for short), i.e., linear constraints over
0/1 variables. In the presence of unary cost functions (a cost function coupling
a cost to each value), these correspond to knapsack constraints. We addition-
ally consider the combination of PB constraints with Exactly-One (EO) or At-
Most-One (AMO) constraints, which correspond to multiple-choice knapsack
constraints [37], allowing finite-domain variables.

This new ability enables more modeling options for GM/CFN users, which
we demonstrate by applying it to generating diverse solutions for Computational
Protein Design (CPD). Here, the objective function has quadratic and linear
terms that can be decomposed in a sum of binary cost functions on pairs of
variables (the quadratic terms) and unary cost functions on single variables
(linear terms). Searching for diverse solutions introduces linear constraints in
the model (see Section 5.1). Our approach also compared favorably with a state-
of-the-art ILP solver on knapsack problems with conflict graphs.

Multiple-choice knapsack constraint in graphical models 3

2 Related work

Problems defined by PB constraints are a generalization of the SAT problem.
Solvers for PB SAT typically use SAT-inspired constraint learning techniques,
either by direct translation to Conjunctive Normal Form (CNF) [41] or by gen-
eralizing the clause learning mechanism to PB constraints [19]. These solvers
typically do not compute lower bounds during search and have to rely on con-
flict reasoning only to prove bounds. A notable exception is RoundingSAT [26],
which uses a Linear Programming (LP) solver to compute bounds during search
and learn constraints from bound violations, but limits the number of iterations
given to the LP solver in order to keep the runtime overhead of the solver reason-
able. This is in contrast to our approach, which uses a suboptimal LP solver, but
places no resource bounds on it. Also, PB solvers are usually restricted to a lin-
ear objective, whereas our approach can combine PB constraints with non-linear
quadratic (or more) cost functions. PB solvers can also exploit the presence of
AMO or EO constraints to strengthen propagation of PB constraints [5,7].

ILP solvers are well suited to solve CFNs, given the local polytope. Their LP
solving is not limited to a specific form of LP, like soft local consistency algo-
rithms such as Existential Directional Arc Consistency (EDAC) [21] and Virtual
AC (VAC) [12] are, therefore they have no issue reasoning with other linear con-
straints, as well as combinations with AMO/EO constraints. However, previous
evaluations [25] showed that the size of the linear program that specifies that
local polytope is often too large even for such highly optimized implementations
and therefore they perform worse than a dedicated CFN solver in such problems.

On the CFN side, there has been work on clique constraints [22], a special case
of PB constraints. Dlask and Werner [16,17] have shown how to handle arbitrary
LPs using BCA algorithms, based on a generalization of VAC. However, despite
recent advances [49], BCA algorithms remain too costly for use at every node of
a B&B. Many (soft) global constraints can be described by a set of (soft) linear
constraints, but require an LP solver [34]. In addition, maintaining (weak) EDAC
and the coupling with the other local cost functions can be costly in practice.
This was also the case for other soft global constraints exploiting flow-based
or dynamic programming algorithms [33,35]. In our approach, we propose a
simple and effective soft local consistency called Full ∅-Inverse Consistency for
PB constraints. Finally, we can decompose linear constraints using cost functions
of arity 3 and intermediate variables [3], similar to CNF encodings used by PB
solvers. However, the size of the domains of the intermediate variables increases
linearly with the value of the coefficients of the PB constraints.

3 Preliminaries

Definition 1. A Cost Function Network (CFN) P is a tuple (X,D,C,⊤) where
X is a set of variables, with finite domain D(x) for x ∈ X. C is a set of con-
straints. Each constraint c ∈ C is defined over a subset of variables called its
scope (scope(c) ⊆ X). ⊤ is a maximum cost indicating a forbidden assignment.

4 Montalbano et al.

The size of the scope of a constraint is its arity. Unary (resp. binary) cost
functions have arity 1 (resp. 2). A partial assignment τ is an assignment of all
the variables xi in its scope (scope(τ)) to a value of its domain D(xi). The set
of all the partial assignments on a scope S is denoted τ(S). A constraint over a
scope S is denoted cS . The cost of a partial assignment τ for a constraint cS is
denoted cS(τ) with S ⊆ scope(τ). Without loss of generality, we assume all costs
are positive integers, bounded by ⊤, a special constant signifying infeasibility.
Hence if cS(τ) = ⊤ then the assignment τ is not a feasible solution. A constraint
cS is hard if for all τ ∈ τ(S), cS(τ) ∈ {0,⊤}, otherwise it is soft. A CFN P that
contains only hard constraints is a constraint network (CN). In the following,
we use the term cost function interchangeably with the term constraint. An as-
signment τ with scope(τ) = X is a complete assignment. The cost of a complete
assignment τ is given by cP (τ) =

∑
cS∈C cS(τ). The Weighted Constraint Sat-

isfaction Problem (WCSP) asks, given a CFN P , to find a complete assignment
minimizing cP (τ). This task is NP-hard [14]. When the underlying CFN is a CN,
the problem is the CSP, which we call crisp CSP here. In the following, we use
WCSP to refer both to the optimization task and the underlying CFN.

In this paper, we assume there exists exactly one unary constraint for each
variable and we say that the unary cost of xi = v for some v ∈ D(xi) is ci(v). We
also assume the existence of a constraint c∅ with empty scope, which represents
a constant in the objective function and, since there exist no negative costs, it
is a lower bound on the cost of all possible assignments.

Exact methods to solve GMs/CFNs mostly rely on Branch-and-Bound (B&B)
algorithms [36,20]. At every node of the B&B tree, the solver computes a bound
and closes the node if that bound is higher than the cost of the incumbent solu-
tion or if it represents infeasibility. Typical bounding algorithms compute either
static memory-intensive bounds [15] or memory-light ones [12] better suited to
dynamic variable orderings. The latter, on which we focus here, are called Soft
Arc Consistencies (SAC) because they reason on each non-unary cost function
one by one, in a generalization of propagation in CSP.

Soft arc consistencies use c∅ as the lower bound and compute a reparame-
terization of the instance with a higher c∅. A reparameterization P ′ of a WCSP
P is a WCSP with an identical structure, i.e., one where there exist constraints
over the same scopes, the costs assigned by each individual cost function may
differ, but cP (τ) = cP ′(τ) for all complete assignments τ .

Procedure MoveCost(cS1
, cS2

, τ1, α): Move α units of cost between the
tuple τ1 of scope S1 and tuples τ2 that extend τ1 in scope S2

Data: Scopes S1 ⊂ S2

Data: τ1 ∈ τ(S1)
Data: cost α to move

1 cS1(τ1)← cS1(τ1) + α
2 foreach τ2 ∈ τ(S2) | τ2[S1] = τ1 do
3 cS2(τ2)← cS2(τ2)− α

Multiple-choice knapsack constraint in graphical models 5

All reparameterizations that we study here are computed as a sequence of lo-
cal Equivalence Preserving Transformations (EPTs). Let S1 ⊂ S2 be two scopes
with corresponding cost functions cS1 and cS2 . Procedure MoveCost describes
how a cost α moves between the corresponding cost functions. To see its correct-
ness, observe if τ1 is used in a complete assignment, then exactly one extension
of τ1 to S2 will be used. Therefore, the sum of cS1

and cS2
remains unaffected

whether the cost α is attributed to τ1 in cS1
or to all of its extensions τ2 in

cS2 . As an example, it is clear that adding a cost α on cx(a) and subtracting a
cost α on c{x,y}({x = a, y = b}) for all b ∈ D(y) preserves problem equivalence.
Indeed, paying α when we assign x = a (cost function cx(a) = α) or when we
assign x = a and y = b (∀b ∈ D(y)) (cost function c{x,y}({x = a, y = b}) = α,
∀b ∈ D(y)) is equivalent. As a matter of terminology, when α > 0, cost moves
from the larger arity cost function cS2

to the smaller arity cS1
and the move is

called a projection, denoted project(cS1 , cS2 , τ1, α). When α < 0, cost moves to
the larger arity cost function cS2 and the move is called an extension, denoted
extend(cS1

, τ1, cS2
,−α), equivalent to MoveCost(cS1

, cS2
, τ1, α). When S1 = ∅

and |S2| = 1, with S2 = {xi}, the move is called a unary projection, denoted
unaryProject(ci, α), equivalent to MoveCost(c∅, ci, ∅, α). We never perform ex-
tensions from c∅, so it monotonically increases during the run of an algorithm
and as we descend a branch of the search tree.

Finding which cost moves lead to an optimal reparameterization, which
means one that derives the optimal increase in the lower bound, is not obvi-
ous. It has been shown that any reparameterization can be derived by a set of
local cost moves [29] and that the optimal reparameterization (with α rational) –
and, equivalently, the optimal set of cost moves – can be found from the optimal
dual solution of the following linear relaxation of the WCSP [12], whose feasible
region is called the local polytope:

min
∑

cS∈C,τ∈τ(S)

cS(τ)× yτ

s.t.

yτ1 =
∑

τ2∈τ(S2),τ2[S1]=τ1

yτ2 ∀cS1
, cS2

∈ C,S1 ⊂ S2,

τ1 ∈ τ(S1), |S1| ≥ 1∑
τ∈τ(S)

yτ = 1 ∀cS ∈ C, |S| ≥ 1

However, solving this LP to optimality is often prohibitively expensive be-
cause the worst-case complexity of an exact LP algorithm is O(N2.5) [50], with
N ∈ O(ed + nd) for binary WCSPs, where e is the number of distinct binary
cost functions, n is the number of WCSP variables and d is the maximum do-
main size. The poor asymptotic complexity matches empirical observation [25].
Moreover, the particular structure of this LP does not allow for a more efficient
solving algorithm, as it has been shown that solving LPs of this form is as hard
as solving any LPs [38]. Instead, work has focused on producing good but poten-

6 Montalbano et al.

tially suboptimal feasible dual solutions. Various algorithms have been proposed
for this, going all the way back to Schlesinger [44], who first expressed the prob-
lem as linear optimization and gave a specific algorithm for optimizing the dual.
Since Schlesinger, a long line of algorithms has been pursued both in areas like
image analysis [29,51,46,30,45,47], where Block-Coordinate Ascent (BCA) algo-
rithms were developed, and constraint programming [43,31,21,53,12], where they
are called soft local consistencies. Notably, the strongest algorithms from both
lines of research, such as TRWS [29] and VAC [12] converge on fixpoints with
the same properties.

We do not describe all the existing local consistency algorithms but we need
the following consistency properties:

Definition 2. A WCSP P is Node Consistent (NC) [31] if for every variable
xi ∈ X there exists a value v ∈ D(xi) such that ci(v) = 0 and for every value
v′ ∈ D(xi), c∅ + ci(v

′) < ⊤.

In the following, we assume that a WCSP is NC before our propagator runs.

Definition 3. A WCSP P is ∅-Inverse Consistent (∅IC) [53] if for every cost
function cS ∈ C there exists a tuple τ ∈ τ(S) such that cS(τ) = 0.

Definition 4. A WCSP P is Existential Arc Consistent (EAC) [21] if it is NC
and for every xi ∈ X there exists a value v ∈ D(xi) such that ci(v) = 0 and
for every cost function cS ∈ C, xi ∈ S, |S| > 1, there exists a tuple τ ∈ τ(S)
verifying τ [xi] = {v} (i.e., xi = v in τ) and cS(τ) +

∑
xj∈S cj(τ [xj]) = 0. Value

v is called an EAC support.

This last definition applies only to binary cost function networks.3 A weaker
notion of EAC has been defined on global cost functions in order to avoid cost
oscillation [33]. Given a variable xi, it relies on a partition of the unary cost
functions cj(τ [xj]), xj ∈ X such that each part is associated to some non-unary
cost function cS related to xi (xi ∈ S).

We follow another weakening approach related to ∅IC. We strengthen the
previous definition to take into account unary costs as in EAC.

Definition 5. A WCSP is Full ∅-Inverse Consistent (F∅IC) if for every cost
function cS ∈ C there exists τ ∈ τ(S) such that cS(τ) +

∑
xj∈S cj(τ [xj]) = 0.

Compared to existing notions of consistency, F∅IC is weaker than T-DAC [2].
It is also weaker than EAC on binary cost function networks, but it is incompa-
rable with weak EAC [33] on non-binary networks.

Example 1. Consider two variables x, y with D(x) = D(y) = {a, b, c} and three
cost functions cx, cy, c{x,y} such that the only non-zero costs are cx(a) = cy(a) =
1, c{x,y}({x = b, y = b}) = c{x,y}({x = b, y = c}) = c{x,y}({x = c, y = b}) = 1,
and c{x,y}({x = c, y = c}) = 2.

3 An extension to ternary cost functions has been proposed [42] but it requires man-
aging all scope intersections and not only unary cost functions.

Multiple-choice knapsack constraint in graphical models 7

Let ∀u ∈ D(x), αu = minv∈D(y)(c{x,y}({x = u, y = v}) + cy(v)) and ∀v ∈
D(y), βv = maxu∈D(x)(αu−c{x,y}({x = u, y = v})). We apply project(cx, c{x,y},
{x = u}, αu) for each value u ∈ D(x) and extend(cy, {y = v}, c{x,y}, βv) for each
value v ∈ D(y). These cost moves will result in adding a cost βv − αu to every
tuple in c{x,y}. We have αa = 0, αb = αc = 1 and βa = 1, βb = βc = 0. All
the costs remain positive (proof in [32]). The reparameterized cost functions are
cx(a) = cx(b) = cx(c) = 1, c{x,y}({x = a, y = a}) = c{x,y}({x = c, y = c}) = 1,
the rest being equal to 0. We can now increase c∅ by 1 using unaryProject(cx, 1).
The resulting WCSP is EAC.

For each of the consistencies we defined above, there exist corresponding al-
gorithms that compute parametrization that satisfy them in polynomial-time4.
Given the connection to linear programming, these reparameterizations map to
feasible dual solutions of the local polytope. However, these algorithms rely on
all constraints being expressed in extension, meaning that for all constraints the
cost of every partial assignment must be explicitly written. This is not the case
for many constraints that are typically used in modeling in CP, namely global
constraints, i.e., those whose definition does not imply a fixed arity. In order to
enforce these soft local consistencies in instances that contain global constraints,
we need to define bespoke algorithms. In contrast with crisp CSPs, these al-
gorithms must do more than prune values that appear in no feasible solution.
They must compute a reparameterization such that the constraint satisfies the
appropriate consistency, F∅IC here.

Here, we deal with pseudo-Boolean (PB) linear constraints and their general-
izations. These are constraints of the form

∑
xi∈S wixi△C, where S is a scope, all

xi ∈ S are Boolean variables, wi and C are constants and △ ∈ {<,≤, ̸=,≥, >}.
A PB constraint is normalized if wi, C ≥ 0 and △ is ≥. Any PB constraint
can be written as a combination of normalized PB constraints. It is possible to
detect in linear time whether this constraint is satisfiable in a crisp CSP, by
testing if

∑
xi∈S max(0, wi) ≥ C. It is also possible to detect values that appear

in no solutions by computing all partial sums of |S|− 1 variables, in linear time.
A PB constraint is an at-most-one (AMO) constraint if it has the form∑

xi∈S xi ≤ 1, normalized as
∑

xi∈S −xi ≥ −1. It is an exactly-one (EO) con-
straint if it has the form

∑
xi∈S xi = 1.

4 Pseudo-Boolean constraints in CFNs

The specific constraint we consider here is a pseudo-Boolean constraint
∑

xi∈S wixi

≥ C along with a partition of its variables into sets A1, . . . , Ak such that there
exists an EO constraint among the variables of each partition Ai.

Reformulations. This formulation allows us to express PB constraints over
multi-valued variables. Let S be a scope over a set of WCSP variables with arbi-
trary domains, and wiv weights for each value. The constraint

∑
xi∈S,v∈D(xi)

wivxiv

4 E.g., EDAC [21], an extension of EAC property, is maintained in O(ed2 max(nd,⊤))
for a WCSP with n variables, maximum domain size d, and e binary cost functions.

8 Montalbano et al.

≥ C, where xiv is the 0/1 variable which takes the value 1 if xi = v, matches
the pattern described above, with partitions Ai = {xiv | v ∈ D(Xi)}.

Finally, this formulation admits the case where there exists an AMO con-
straint over some partitions: we add another 0/1 variable in each such partition
and give it weight 0, so that this partition now has an EO constraint.

Constraint representation. We will focus here on F∅IC as the soft consis-
tency we aim to enforce. But first, we need an appropriate encoding that can
represent the state of the constraint after a series of cost moves to and from
unary cost functions, without storing a cost for each of the exponentially (in the
arity of the constraint) many tuples. Observe first that the cost of any given
tuple starts out at 0 for allowed tuples and ⊤ for tuples that violate the con-
straint. After some cost moves, the cost of each tuple is the sum of costs that
have been moved to or from the values it contains. Therefore, it can be expressed
as a linear function. Let δiv be the total cost that has been moved between the
constraint and the corresponding unary cost and δ∅ the cost we have moved from
this constraint to c∅. Therefore, initially δ∅ = 0 and δiv = 0 for all i, v. We use
the following integer program as the representation of the constraint.

min
∑

xi∈S,v∈D(xi)
δivxiv − δ∅ (1)

s.t. ∑
xi∈S,v∈D(xi)

wivxiv ≥ C (2)∑
v∈D(xi)

xiv = 1, ∀xi ∈ S (3)

xiv ∈ {0, 1}, ∀xi ∈ S, v ∈ D(xi) (4)

We call this ILP∅. The main property of ILP∅ is that the cost of any feasible
complete assignment is equal to the cost of the corresponding tuple in cS after
any sequence of cost moves. Hence, opt(ILP∅) > 0, if and only if cS is not ∅IC,
and we can move some cost to c∅: project(c∅, cS , ∅, opt(ILP∅)).

However, for the purposes of detecting violations of F∅IC, it is not enough to
look at the cost of tuples of the constraint, as we must also take unary costs into
account. Therefore, while ILP∅ remains the representation of the constraint, the
propagator considers the problem with the modified objective

min
∑

xi∈S,v∈D(xi)

(δiv + ci(v))xiv − δ∅ (5)

Let this problem be ILPF∅. cS is F∅IC if and only if opt(ILPF∅) = 0. In the
following, we write piv = δiv + ci(v) for compactness, when it does not matter
how much of the coefficient came from δiv and how much came from ci(v). In
contrast with ILP∅, if opt(ILPF∅) > opt(ILP∅), we cannot move opt(ILPF∅)
units of cost to c∅. Instead, we first have to move some cost from unary cost
functions into the constraint before we can project it to c∅. In this case, the
composition of piv from δiv and ci(v) is significant.

Multiple-choice knapsack constraint in graphical models 9

Unfortunately, ILP∅ and ILPF∅ have the knapsack problem as a special case,
hence it is NP-hard to determine whether a PB constraint is ∅IC or F∅IC.
Therefore, we detect only a subset of cases where the constraint is not F∅IC by
relaxing the integrality constraint (4) into 0 ≤ xiv ≤ 1 and solving the resulting
linear programs, called LP∅ and LPF∅, respectively. This forgoes the guarantee
that opt(LPF∅) = 0 if and only if the constraint is F∅IC, and satisfies only the
’only if’ part. More simply, if opt(LPF∅) > 0 then the constraint is not F∅IC,
and similarly for LP∅ and ∅IC.

LPF∅ has a special structure. It is a Multiple-Choice Knapsack Problem
(MCKP) [37], or a knapsack problem with special ordered sets [27]. These can be
solved more efficiently than arbitrary LPs, a fact that we use in our propagator.

4.1 Solving the Knapsack LP

We obtain an optimal solution x∗ of the primal LPF∅ by applying Pisinger’s
greedy algorithm [37]. This gives a x∗ in time O(N logN) 5, with N = |x∗|, such
that either x∗ has no fractional value or it has exactly two fractional values. In
the latter case, the WCSP variable xk ∈ S, verifying ∃s, s′ ∈ D(xk) such that
0 < x∗

ks, x
∗
ks′ < 1, is called a split class and xks, xks′ are the split variables. We

denote by o =
∑

xi∈S,v∈D(xi)
pivx

∗
iv − δ∅, the optimal solution cost of LPF∅.

Consider now the dual of LPF∅:

max C × ycc +
∑

xi∈S yi (6)

s.t.

ycc × wiv + yi ≤ piv ∀xi ∈ S, v ∈ D(xi)

ycc ≥ 0

Where ycc is the dual variable corresponding to the capacity constraint and
yi corresponds to the EO constraint of xi. From the optimal primal solution, it
is easy to compute the optimal dual solution. Let xk be the split class, xks, xks′

the split variables and for i ̸= k, define the variable xis as the variable used in
the optimal solution, i.e., x∗

is = 1.

ycc =
pks − pks′

wks − wks′

yk = pks − ycc × wks = pks′ − ycc × wks′

yi = pis − ycc × wis ∀xi ∈ S \ {xk}

From the dual solution y, we compute the reduced cost rcy(xiv) of every
variable xiv, i.e., the slack of the dual constraint that corresponds to x. When
context makes it clear, we omit y and write rc(xiv).

The reduced cost of a variable x can be interpreted as the amount by which
we must decrease the coefficient of x in the objective function in order to have

5 The Dyer-Zemel algorithm [18,52] can compute a solution in O(N) time, but we have
not yet implemented it.

10 Montalbano et al.

x > 0 in the optimal solution. We explain later that this implies that we can
project some cost to unary cost functions.

In the specific case of LPF∅, we have:

rc(xks) = rc(xks′) = 0

rc(xis) = 0 ∀xi ∈ S \ {xk}
rc(xiv) = piv − ycc × wiv − yi ∀xi ∈ S, v ̸= s

Observation 1 Consider the linear program LP ′
F∅ which is identical to LPF∅

but has p′iv = piv − rc(xiv). Then opt(LP ′
F∅) = opt(LPF∅).

Proof. The optimal solution x∗ of LPF∅ has the same cost o in LPF∅ and LP ′
F∅,

as the coefficients of the variables that are greater than 0 are unchanged. The
optimal dual solution x∗ remains feasible in LP ′

F∅, as the slack in the dual of
LPF∅ matches exactly the reduction in the right-hand side. Moreover, as the
dual objective did not change, it has the same cost and matches the primal cost,
so opt(LP ′

F∅) = o = opt(LPF∅). ⊓⊔

Example 2. Consider the following problem:

min 40x11 + 55x12 + 85x13 + 47x21 + 95x22

s.t.

4x11 + 14x12 + 24x13 + 16x21 + 40x22 ≥ 40∑
v∈D(xi)

xiv = 1 ∀xi ∈ {x1, x2}

0 ≤ xiv ≤ 1 ∀xi ∈ {x1, x2}, v ∈ D(xi)

Pisinger’s algorithm gives the optimal primal solution x∗ = {0, 1, 0, 7
12 ,

5
12}

with cost o = 55 + 7
12 × 47 + 5

12 × 95 = 122.
We deduce the following dual optimal solution : ycc = 2, y1 = 55− 2× 14 =

27, y2 = 47− 2× 16 = 15.
The following reduced costs are obtained : rc(x12) = rc(x21) = rc(x22) = 0
and rc(x11) = 5, rc(x13) = 10, we deduce that replacing the previous objective
function by the following one does not change the cost of the optimal solution:

min 35x11 + 55x12 + 75x13 + 47x21 + 95x22

We observe that the solution x∗ = {0, 1, 0, 7
12 ,

5
12} is still optimal.

4.2 Propagation

Given a PB constraint and the associated unary costs, it is possible to increase
the lower bound by at least opt(LPF∅). Our goal is to extend as little cost
as possible from the unary cost functions in order to make opt(LP∅) = o =
opt(LPF∅) and then project o to c∅.

Multiple-choice knapsack constraint in graphical models 11

Procedure TransformPB(cS , ycc, yi, o)

Data: cS : PB constraint
Data: ycc, yi, o: optimal dual solution of LPF∅

1 for all the variables xiv do
2 ci(v)← ci(v)− ycc × wiv − yi + δiv
3 δiv ← ycc × wiv + yi

4 c∅ ← c∅ + o
5 δ∅ ← δ∅ + o

If we move |ci(v) − rc(xiv)| between the constraint and each unary cost
function and value, then opt(LP∅) = o and we can project o to c∅. Indeed
we have |ci(v) − rc(xiv)| = |(ycc × wiv + yi) − δiv|, we thus obtain the EPTs
performed by Procedure TransformPB.

Theorem 1. Algorithm TransformPB preserves equivalence.

Proof. Recall that piv = ci(v) + δiv and that rc(xiv) ≥ 0. If ci(v)− rc(xiv) ≥ 0
then the cost move is an extension of less than ci(v), it is valid. If ci(v)−rc(xiv) <
0 then the cost move is a projection, while the cost of any solution x′ with x′

iv = 1
is at least o− ci(v) + rc(xiv). This operation is also valid.

Finally, to check that our sequence of EPTs justifies the increase of c∅ by
o, we compute the optimum of LP∅. From Observation 1, opt(LP∅) = o, which
means we can project o to c∅ and increase δ∅ to bring opt(LP∅) = opt(LPF∅) =
0. ⊓⊔

We can improve on this by observing that the integer optimum must be
integral. Therefore, we can increase c∅ by ⌈o⌉. In this case, it is also necessary
to round up all cost moves. By rounding up, we can no longer rely on Observation
1, but it still holds that opt(LP∅) = 0. We also approach ∅IC by verifying that
for any value xab we have δab +min

∑
xi∈S\xa,v∈D(xi)

(δiv + ci(v))xiv − δ∅ = 0.

If this is not the case, we can project a positive cost to ca(b).
Procedure Propagate is the entry point to the propagator. It enforces domain

consistency on the PB constraint, then solves LPF∅. If there is more than one
optimal solution we prefer the one minimizing the reduced cost of the EAC
support of each variable. Finally, it uses Procedure TransformPB, to perform
cost moves.

Theorem 2. Procedure Propagate runs in O(nd log nd) time where n is the
number of WCSP variables involved and d the maximum domain size.

Proof. Pisinger’s algorithm dominates the complexity, as it runs in O(N logN),
where N is the number of LP variables. In our case, N = nd, so it takes
O(nd log nd) time. Domain consistency on the linear inequality can be performed
in linear time. Finally, Procedure TransformPB iterates once over all variables
and values and performs constant time operations on each. Hence, the total com-
plexity is O(nd log nd). ⊓⊔

12 Montalbano et al.

Procedure Propagate(cS)

Data: cS : PB constraint with EO partitions
1 DomainConsistency(cS)
2 (ycc, yi, o) = DualSolve(LPF∅)
3 TransformPB(cS , ycc, yi, o)

Example 3. Returning to Example 2, where cS is the PB constraint with EO
partitions over two WCSP variables x1 and x2, we had the following reduced
costs: rc(x12) = rc(x21) = rc(x22) = 0, rc(x11) = 5, rc(x13) = 10, the optimal
cost was 122. We deduce the following cost moves:

– extend(c1, {x1 = 1}, cS , 35)
– extend(c1, {x1 = 2}, cS , 55)
– extend(c1, {x1 = 3}, cS , 75)

– extend(c2, {x2 = 1}, cS , 47)
– extend(c2, {x2 = 2}, cS , 95)
– project(c∅, cS , ∅, 122)

It implies the resulting costs: δ11 = 35, δ12 = 55, δ13 = 75, δ21 = 47, δ22 = 95,
δ∅ = 122. The unary costs after these operations are c1(2) = c2(1) = c2(2) = 0,
c1(1) = 5, c1(3) = 10. If we construct the table of possible assignments of
LP∅ obtained after the extensions, we can see that cS({x1 = 1, x2 = 2}) = 8,
cS({x1 = 2, x2 = 2}) = 28, cS({x1 = 3, x2 = 1}) = 0, cS({x1 = 3, x2 = 2}) =
48, and all the other assignments don’t satisfy the constraint. We observe that
the optimal solution is 0, hence our extensions justify the increase of c∅.
Now assume that other EPTs outside the PB constraint have modified the unary
costs: c1(1) → c1(1) + 16 = 21, c1(2) → c1(2) + 30 = 30, c1(3) → c1(3)− 9 = 1.
We want to compute a new lower bound for the PB constraint by solving LPF∅:

min 56x11 + 85x12 + 76x13 + 47x21 + 95x22 − 122

s.t.

4x11 + 14x12 + 24x13 + 16x21 + 40x22 ≥ 40∑
v∈D(xi)

xiv = 1 ∀xi ∈ {x1, x2}

0 ≤ xij ≤ 1 ∀xi ∈ {x1, x2}, v ∈ D(xi)

The optimal solution is x∗ = {0, 0, 1, 1, 0} and its cost is o = 76+47− 122 = 1.
We deduce the dual optimal solution ycc = 1, y1 = 52, y2 = 31 with reduced
costs rc(x11) = rc(x13) = rc(x21) = 0 and rc(x12) = 19, rc(x22) = 24. We
carry out the following cost moves: extend(c1, {x1 = 1}, cS , 21), extend(c1, {x1 =
2}, cS , 11), extend(c1, {x1 = 3}, cS , 1), project(c2, cS , {x2 = 2}, 24), project(c∅, cS , ∅, 1),
with δ11 = 56, δ12 = 66, δ13 = 76, δ21 = 47, δ22 = 71, δ∅ = 123.

Multiple-choice knapsack constraint in graphical models 13

5 Experimental results

We implemented our approach in toulbar2, an exact WCSP solver in C++,6

winner of past UAI-2008, 2014 competitions. toulbar2 default variable ordering
heuristic is the weighted degree heuristic [8], in order to gain information from
PB constraints, we adapted an explanation-based weighted degree for linear
inequality presented by Hebrard and Siala [24]. For all the tests we imposed a
time limit of 30 minutes (except for CPD with 1 hour) on a single core of an
Intel Xeon E5-2680 v3 at 2.50 GHz and 256 GB of RAM. We compared our
PB propagator with other modeling approaches in protein design. We compared
toulbar2 to state-of-the-art ILP solver cplex 20.1 on knapsack problems with
conflict graphs. We also compared toulbar2 on pseudo-Boolean Competition
2016 (previously out of reach by toulbar2) but the results were not competitive
with recent PB solvers (not reported here for the lack of space).

5.1 Sequence of diverse solutions for CPD

A protein is a chain of simple molecules called amino acids. This sequence de-
termines how the protein will fold into a specific 3D shape. The Computational
Protein Design (CPD) [4] problem consists of identifying the sequence of amino
acids that should fold into a given 3D shape. This problem can be modeled as
a CFN7 with unary and binary cost functions representing the energy of the
protein but the criteria only approximate the reality, thus producing a sequence
of diverse solutions increases the chance of finding the correct real sequence of
amino acids. Each time a solution is found, a Hamming distance constraint is
added to the model to enforce the next solution to be different from the previous
ones. This Hamming distance can be directly encoded as a PB linear constraint,
in the form of Eq. (2), with EO partitions associated to domains (Eq. (3)). For
each variable, a negative weight of −1 is associated to the value found in the
last solution (other values having a zero-weight) and the weighted sum in Eq. (2)
must be greater than or equal to −(|X|−ζ), where ζ corresponds to the required
minimum Hamming distance.

This has been implemented in toulbar2 and compared to previous automata-
based encoding approaches (ternary, hidden, and dual encodings from [40]) on
30 instances [48].8 Selected instances have from 23 to 97 residues/variables with

6 https://github.com/toulbar2/toulbar2 version 1.2.
7 Other paradigms such as ILP or Max-SAT have been tested but the ex-
perimental results using their corresponding state-of-the-art solvers were in-
ferior to the CFN approach using toulbar2 [4,1]. E.g., for CPD instance
1BK2.matrix.24p.17aa.usingEref self digit2 (n = 24, d = 182, e = 300), cplex 20.1
solves it in 42.84 seconds, toulbar2 in 0.37 seconds. RoundingSAT [26] timed out
after 10 hours.

8 http://genoweb.toulouse.inra.fr/~tschiex/CPD-AIJ/Last35-instances.
We removed 5 instances (1ENH.matrix.36p.17aa, 1STN.matrix.120p.18aa,
HHR.matrix.115p.19aa, 1PGB.matrix.31p.17aa, 2CI2.matrix.51p.18aa) on which
toulbar2 timed out after 9,000 seconds even without diversity constraints [1].

https://github.com/toulbar2/toulbar2
http://genoweb.toulouse.inra.fr/~tschiex/CPD-AIJ/Last35-instances

14 Montalbano et al.

Fig. 1. Cactus plot of CPU solving time (log scale) for different encodings of Hamming
distance constraints on CPD.

maximum domain size going from 48 to 194 rotamers/values. The number of
unary and binary cost functions goes from 276 to 4, 753. For each instance, the
time limit was 1 hour and the solver halts after finding a greedy sequence of
10 diverse solutions, the Hamming distance is ζ = 10, and we enforce VAC on
unary and binary cost functions in preprocessing (options -A -d: -a=10 -div=10
-divm=(0 for dual, 1 for hidden, 2 for ternary, and 3 for the PB encoding)).
Figure 1 reports the solving time of each encoding. The dual and ternary en-
codings failed to give 10 diverse solutions for one instance, while the PB and
hidden encodings didn’t. Moreover the PB encoding is faster for 29 instances
and it solves 23 of them in less than 30 seconds while dual, hidden, and ternary
encodings solve respectively 12, 13, and 4 instances in less than 30 seconds. Note
that we are computing a greedy sequence of solutions, the different encodings do
not return the exact same sequence (except for 7/30 instances). We also com-
pared for each instance the number of backtracks and time (not reported here)
of the previous toulbar2 default encoding (dual) with the PB encoding. In all
the instances the PB encoding needs fewer backtracks than the dual encoding
and except for one instance, the PB encoding is also faster. Automata-based
encodings have the flaw of introducing extra variables that can disturb the vari-
able ordering heuristic (by default, min domain size over weighted degree [9])9

and local consistency algorithm (by default, EDAC during search, except partial
F∅IC for PB constraints). While the PB encoding directly encodes the Hamming
distance, it is heavier to propagate as we can see by comparing the number of
backtracks per second (170 for PB encoding and 1060 for dual encoding).

9 Additionally, the PB constraint provides finer-grain weights using explanations [24]
when linear coefficients are not all equal as it is the case in the KPCG benchmark.

Multiple-choice knapsack constraint in graphical models 15

tb2 cplext cplexd tb2 cplext cplexd

C1 718 689 720 720 701 720
C3 597 487 614 718 513 639
C10 490 318 457 633 346 547
R1 720 705 720 720 705 720
R3 720 573 682 720 589 691
R10 571 365 519 665 384 583

Table 1. Number of solved instances (left) and number of times a solver found the
best solution within the time limit (right) for six different classes of KPCG.

5.2 Knapsack problem with a conflict graph

We compare here toulbar2 and cplex on Knapsack with Conflict Graph
(KPCG) [6,11], a knapsack problem combined with binary constraints represent-
ing conflicts between pairs of variables. We use 6 different classes C1,C3,C10,R1,
R3,R10. In three of them the weight and the profit of each variable are corre-
lated (class C) otherwise the profit is random between [1, 100] (class R). The
numbers 1, 3, 10 correspond to a multiplying coefficient of the capacity, which
has the effect of making the instances harder as the multiplier increases. In each
class half of the instances have capacity 150, weights are uniformly distributed in
[20, 100], and the number of Boolean variables varies between 120, 250, 500, and
1000. For the other half, the capacity is 1000, weights are uniformly distributed
in [250, 500], and the number of Boolean variables varies between 60, 120, 349,
and 501. Additionally, the density of the conflict graph varies from 0.1 to 0.9.
In total, each class has 720 instances. We used a direct encoding for toulbar2.
For cplex, we tried with both tuple and direct encodings (tuple encoding cor-
responds to the local polytope with integer variables) [25]. Table 1 reports the
number of instances solved by each solver. toulbar2 was more efficient than
cplex with the tuple encoding and competitive with cplex using the direct en-
coding for four out of six classes. Moreover, toulbar2 finds the best solutions
for the largest number of instances in every class.

6 Conclusion and future work

It is now possible to model pseudo-Boolean linear constraints in deterministic
and probabilistic graphical models. This provides greater modeling flexibility and
allows a WCSP solver like toulbar2 to solve more problems, such as compu-
tational protein design problems with diversity guarantee or knapsack problems
with conflict graphs. One of the weaknesses of our approach is that the algorithm
fundamentally produces a suboptimal solution to the linear program, because
it propagates the pseudo-Boolean linear constraints one by one and does not
take into account other constraints (except at-most-one constraints). There are
several ways to improve this, including adapting work previously done in this
context on Lagrangian relaxation [30] or an approach closer to VAC [16]. It also
opens up possibilities for other uses of linear constraints in the WCSP frame-
work, such as the generation of cuts.

16 Montalbano et al.

References

1. Allouche, D., Barbe, S., de Givry, S., Katsirelos, G., Lebbah, Y., Loudni, S., Ouali,
A., Schiex, T., Simoncini, D., Zytnicki, M.: Operations Research and Simulation in
Healthcare, chap. Cost Function Networks to Solve Large Computational Protein
Design Problems. Springer (2021)

2. Allouche, D., Bessière, C., Boizumault, P., de Givry, S., Gutierrez, P., Lee, J.H.,
Leung, K.L., Loudni, S., Métivier, J.P., Schiex, T., Wu, Y.: Tractability-preserving
transformations of global cost functions. Artificial Intelligence 238, 166–189 (2016)

3. Allouche, D., Bessière, C., Boizumault, P., de Givry, S., Gutierrez, P., Loudni, S.,
Metivier, J.P., Schiex, T.: Filtering decomposable global cost functions. In: Proc.
of AAAI-12. Toronto, Canada (2012)

4. Allouche, D., Davies, J., de Givry, S., Katsirelos, G., Schiex, T., Traoré, S., André,
I., Barbe, S., Prestwich, S., O’Sullivan, B.: Computational protein design as an
optimization problem. Artificial Intelligence 212, 59–79 (2014)

5. Ansótegui, C., Bofill, M., Coll, J., Dang, N., Esteban, J.L., Miguel, I., Nightingale,
P., Salamon, A.Z., Suy, J., Villaret, M.: Automatic detection of at-most-one and
exactly-one relations for improved SAT encodings of pseudo-boolean constraints.
In: Proc. of CP-19. pp. 20–36. Stamford, CT, USA (2019)

6. Bettinelli, A., Cacchiani, V., Malaguti, E.: A branch-and-bound algorithm for the
knapsack problem with conflict graph. INFORMS Journal on Computing 29(3),
457–473 (2017)

7. Bofill, M., Coll, J., Suy, J., Villaret, M.: An mdd-based SAT encoding for pseudo-
boolean constraints with at-most-one relations. Artif. Intell. Rev. 53(7), 5157–5188
(2020)

8. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAI. vol. 16, p. 146 (2004)

9. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: Proc. of ECAI-04. vol. 16, p. 146 (2004)

10. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio Link Frequency
Assignment. Constraints 4(1), 79–89 (1999)

11. Coniglio, S., Furini, F., San Segundo, P.: A new combinatorial branch-and-bound
algorithm for the knapsack problem with conflicts. European Journal of Opera-
tional Research 289(2), 435–455 (2021)

12. Cooper, M.C., de Givry, S., Sánchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artificial Intelligence 174(7-8), 449–478 (2010)

13. Cooper, M.C., de Givry, S., Schiex, T.: Graphical models: Queries, complexity,
algorithms (tutorial). In: Proc. of 37th International Symposium on Theoretical
Aspects of Computer Science (STACS-20). LIPIcs, vol. 154, pp. 4:1–4:22. Mont-
pellier, France (2020)

14. Cooper, M.C., de Givry, S., Schiex, T.: Valued Constraint Satisfaction Problems,
pp. 185–207. Springer International Publishing (2020)

15. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Jour-
nal of the ACM (JACM) 50(2), 107–153 (2003)

16. Dlask, T., Werner, T.: Bounding linear programs by constraint propagation: Appli-
cation to Max-SAT. In: Proc. of CP-20. pp. 177–193. Louvain-la-Neuve, Belgium
(2020)

17. Dlask, T., Werner, T.: On relation between constraint propagation and block-
coordinate descent in linear programs. In: Proc. of CP-20. pp. 194–210. Louvain-
la-Neuve, Belgium (2020)

Multiple-choice knapsack constraint in graphical models 17

18. Dyer, M.E.: An o(n) algorithm for the multiple-choice knapsack linear program.
Mathematical programming 29(1), 57–63 (1984)

19. Elffers, J., Nordström, J.: Divide and conquer: Towards faster pseudo-boolean solv-
ing. In: Proc. of IJCAI. pp. 1291–1299. Stockholm, Sweden (2018)

20. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting Tree Decomposition and Soft
Local Consistency in Weighted CSP. In: Proc. of AAAI-06. Boston, MA (2006)

21. de Givry, S., Heras, F., Zytnicki, M., Larrosa, J.: Existential arc consistency: Get-
ting closer to full arc consistency in weighted CSPs. In: Proc. of IJCAI-05. pp.
84–89. Edinburgh, Scotland (2005)

22. de Givry, S., Katsirelos, G.: Clique cuts in weighted constraint satisfaction. In:
Proc. of CP-17. pp. 97–113. Melbourne, Australia (2017)

23. Haller, S., Swoboda, P., Savchynskyy, B.: Exact map-inference by confining com-
binatorial search with LP relaxation. In: Proc. of AAAI-18. pp. 6581–6588. New
Orleans, Louisiana, USA (2018)

24. Hebrard, E., Siala, M.: Explanation-based weighted degree. In: Proceedings of
CPAIOR 2017. pp. 167–175 (2017)

25. Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M.,
de Givry, S.: Multi-language evaluation of exact solvers in graphical model discrete
optimization. Constraints 21(3), 413–434 (2016)

26. Jo Devriendt, A.G., Nordström, J.: Learn to relax: Integrating 0-1 integer lin-
ear programming with pseudo-boolean conflict-driven search. In: Proc. of CP-AI-
OR’2020. Vienna, Austria (2020)

27. Johnson, E.L., Padberg, M.W.: A note of the knapsack problem with special or-
dered sets. Operations Research Letters 1(1), 18–22 (1981)

28. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

29. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE transactions on pattern analysis and machine intelligence 28(10), 1568–
1583 (2006)

30. Komodakis, N., Paragios, N., Tziritas, G.: MRF energy minimization and beyond
via dual decomposition. IEEE transactions on pattern analysis and machine intel-
ligence 33(3), 531–552 (2010)

31. Larrosa, J.: On arc and node consistency in weighted CSP. In: Proc. AAAI’02. pp.
48–53. Edmondton, (CA) (2002)

32. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for
weighted CSP. In: Proc. of IJCAI-03. vol. 3, pp. 239–244 (2003)

33. Lee, J.H.M., Leung, K.L.: Consistency techniques for flow-based projection-safe
global cost functions in weighted constraint satisfaction. Journal of Artificial In-
telligence Research 43, 257–292 (2012)

34. Lee, J.H., Leung, K.L., Shum, Y.W.: Consistency techniques for polytime linear
global cost functions in weighted constraint satisfaction. Constraints 19(3), 270–
308 (2014)

35. Lee, J.H., Leung, K.L., Wu, Y.: Polynomially decomposable global cost functions
in weighted constraint satisfaction. In: Proc. of AAAI-12. Toronto, Canada (2012)

36. Marinescu, R., Dechter, R.: And/or branch-and-bound for graphical models. In:
Proc. of IJCAI-05. pp. 224–229. Edinburgh, Scotland (2005)

37. Pisinger, D., Toth, P.: Knapsack problems. In: Handbook of combinatorial opti-
mization, pp. 299–428. Springer (1998)

38. Prusa, D., Werner, T.: Universality of the local marginal polytope. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1738–
1743 (2013)

18 Montalbano et al.

39. Ruffini, M., Vucinic, J., de Givry, S., Katsirelos, G., Barbe, S., Schiex, T.: Guar-
anteed diversity & quality for the weighted CSP. In: 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI). pp. 18–25. IEEE (2019)

40. Ruffini, M., Vucinic, J., de Givry, S., Katsirelos, G., Barbe, S., Schiex, T.: Guaran-
teed diversity and optimality in cost function network based computational protein
design methods. Algorithms 4(6:168) (2021)

41. Sakai, M., Nabeshima, H.: Construction of an ROBDD for a PB-constraint in
band form and related techniques for PB-solvers. IEICE TRANSACTIONS on
Information and Systems 98(6), 1121–1127 (2015)

42. Sánchez, M., de Givry, S., Schiex, T.: Mendelian error detection in complex pedi-
grees using weighted constraint satisfaction techniques. Constraints 13(1), 130–154
(2008)

43. Schiex, T.: Arc consistency for soft constraints. In: Proc. of CP-00. pp. 411–424.
Singapore (2000)

44. Schlesinger, M.: Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh
pomekh (Syntactic analysis of two-dimensional visual signals in noisy conditions).
Kibernetika 4, 113–130 (1976)

45. Sontag, D., Choe, D., Li, Y.: Efficiently searching for frustrated cycles in MAP
inference. In: Proc. of UAI. pp. 795–804. Catalina Island, CA, USA (2012)

46. Sontag, D., Meltzer, T., Globerson, A., Weiss, Y., Jaakkola, T.: Tightening LP re-
laxations for MAP using message-passing. In: Proc. of UAI. pp. 503–510. Helsinki,
Finland (2008)

47. Tourani, S., Shekhovtsov, A., Rother, C., Savchynskyy, B.: Taxonomy of dual
block-coordinate ascent methods for discrete energy minimization. In: Proc. of
AISTATS-20. pp. 2775–2785. Palermo, Sicily, Italy (2020)

48. Traoré, S., Allouche, D., André, I., de Givry, S., Katsirelos, G., Schiex, T., Barbe,
S.: A new framework for computational protein design through cost function net-
work optimization. Bioinformatics 29(17), 2129–2136 (2013)

49. Trösser, F., de Givry, S., Katsirelos, G.: Relaxation-aware heuristics for exact op-
timization in graphical models. In: Proc. of CP-AI-OR’2020. pp. 475–491. Vienna,
Austria (2020)

50. Vaidya, P.: Speeding-up linear programming using fast matrix multiplication. In:
30th Annual Symposium on Foundations of Computer Science. pp. 332–337 (1989)

51. Werner, T.: A Linear Programming Approach to Max-sum Problem: A Review.
IEEE Trans. on Pattern Recognition and Machine Intelligence 29(7), 1165–1179
(Jul 2007)

52. Zemel, E.: An o(n) algorithm for the linear multiple choice knapsack problem and
related problems. Information Processing Letters 18(3), 123–128 (1984)

53. Zytnicki, M., Gaspin, C., de Givry, S., Schiex, T.: Bounds Arc Consistency for
Weighted CSPs. Journal of Artificial Intelligence Research 35, 593–621 (2009)

	Multiple-choice knapsack constraint in graphical models

