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Abstract

Heuristics are important techniques designed to find quickly good feasible solutions for
hard integer programs. Most heuristics depend on a solution of the relaxed linear pro-
gram. Another approach based on Lagrangian relaxation offers a number of advantages
over linear programming, namely it is extremely fast for solving large problems. Wedelin
heuristic is such a Lagrangian based heuristic, initially developed to solve airline crew
scheduling problems. The performance of this method depends crucially on the choice
of its numerous parameters. To adjust them and learn which ones have important influ-
ence on whether a solution is found and its quality, we propose to conduct a sensitivity
analysis followed by an automatic tuning of the most influential parameters.

We have implemented a C++ open-source solver called baryonyx which is a parallel
version of a (generalized) Wedelin heuristic. We used the Morris method to find useful
continuous parameters. Once found, we fixed other parameters and let a genetic op-
timization algorithm using derivatives adjust the useful ones in order to get the best
solutions for a given time limit and training instance set. Our experimental results done
mostly on crew and bus driver scheduling benchmarks tackled as set partitioning prob-
lems show the significant improvements obtained by tuning the parameters and the good
performances of our approach compared to state-of-the-art exact and inexact integer
programming solvers.
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1. Introduction

Heuristics are important techniques designed to find quickly good feasible solutions
for hard integer programs. Most heuristics depend on a solution of the relaxed linear
program. Another approach based on Lagrangian relaxation offers a number of important
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advantages over linear programming [13], namely it is extremely fast for solving large
problems.

Wedelin heuristic [32] is such a Lagrangian based heuristic. Wedelin [33] described the
basic principle of the algorithm and its application in the Carmen system for scheduling
crew rotations for airlines. Alefragis et al. [2] presented a scalable parallelization of
the original algorithm used in the Carmen system. Grohe and Wedelin [15] and [34]
introduced a similar algorithm for the max-sum problem. Ernst et al. [12] described a
variation of the Wedelin algorithm and applied it to the staff planning problem. Bastert
et al. [4] presented many extensions and generalizations of Wedelin algorithm with various
improvements. They evaluated the performance of their variant on a set of instances
from different sources, where the results were favorable compared to FICO Xpress, a
commercial optimization software. Starting from [4], we propose an extension performing
multiple runs in parallel.

A major difficulty in the use of optimization methods is the parameter setting. It is
important for each problem to find a set of parameter values that leads to optimal per-
formances. Choosing the best values manually requires a lot of experimentation. There
are several methods for automatic configuration of parameter values [10, 16]. Eiben et al.
[10] classify methods into two categories according to the manner of use, before running
the optimization algorithm (parameters tuning) and during its execution (parameter
control).

The control methods include self-adjust the parameter values for the resolution and
dynamically control these values to improve the solution search. These techniques
are widely applied to self-adjust the parameters of evolutionary algorithms [16], such
as crossover rate [35], mutation rate [28] and population size [11] for genetic algo-
rithms. These methods can be subdivided into two branches: deterministic and (self-
)adaptive [18]. Deterministic methods are based on deterministic rules, which do not
change during the execution of the algorithm. Their goal is to calculate approximate val-
ues of parameters and adjust them according to the problem [3]. Adaptive methods use
information on the current state of the search to change parameter values. Adaptation is
effected by changing the objective function, by increasing or decreasing the penalty coef-
ficients for violations of constraints, from one generation to another. This prevents poor
settings to conduct future generations [17]. These control methods are developed in an
automated framework for setting the parameters of a specific problem (one instance). If
the goal is to solve different instances, these methods can be costly in terms of computing
time, given the number of parameters and instances.

The principle of parameter tuning methods is simpler. Parameters do not change
values during search. They are adjusted before the execution of the algorithm, and
remain unchanged after. The settings obtained by learning on a subset of instances is
used to solve all instances of a problem. Different parameter tuning strategies exist in the
literature and depend on the type of parameters: discrete, continuous or categorical. Two
famous examples are CALIBRA [1] and ParamILS [20] parameter tuning methods for
the discrete case. They explore the parameter configuration search space using (iterated)
local search. CALIBRA limits the number of parameter configuration evaluations using
partial statistical designs. ParamILS saves computation time by doing partial evaluations
of the training set.

A sensitivity analysis can facilitate parameter tuning by focusing on important pa-
rameters for a problem. The goal is to reduce the time and effort in resolving sensitive
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parameters. In the literature, the work on the use of both techniques (sensitivity analysis
to reduce the parameter search space and automatically adjusting their values) is not
much discussed.

Kim et al. [23] perform a sensitivity analysis on the dynamic parameters of sea ice
model, using automatic differentiation. Information on the gradient provided by the
latter are used in a parameter optimization algorithm based on quasi-Newton method[37].
Teodoro et al. [30] combine sensitivity analysis and automatic parameter tuning for an
image segmentation problem. This approach permits to identify the least influential
parameters and reduce the parameter configuration search space (100 points instead of
trillion points).

In these previous works, parameter tuning is performed for a single instance. In this
paper we propose a protocol to generate a universal set of parameter values from a subset
of instances of a given problem to be solved by our multi-run Wedelin algorithm. The
basic idea is to i) select a subset of instances, ii) investigate the sensitivity of parameters
for fixing the values of the non-sensitive parameters to their default values, iii) automat-
ically adjust the values of the significant parameters by black-box optimization, and iv)
apply the learned parameter setting on all instances of the problem.

In Section 2, we describe the Wedelin heuristic and our multi-run extension for par-
allelism. In Section 3, we present our protocol for parameter tuning. In Section 4, we
give experimental results and conclude.

2. A Parallel Version of Wedelin Heuristic

We are interested in minimizing 0/1 linear programs of the following form:

min cx

s.t. Ax = b

x ∈ {0, 1}n

where c ∈ Rn is a vector of n costs, b ∈ Nm a column vector of constant terms, and
A ∈ {0, 1}m×n a coefficient matrix for the constraints. In the following, constraint index i
refers to the ith row in equation Ax = b, and index j to the jth column in A associated to
variable xj . Let J = {1, . . . , n} be the set of column indices, and J(i) = {j : aij = 1} ⊆ J
the subset of column indices occurring in constraint i. Similarly, let I = {1, . . . ,m} be
the set of row indices, and I(j) = {i : aij = 1} ⊆ I the subset of constraint indices
involving xj .

In this paper we adopt an approximate method, called Wedelin algorithm or In-
the-middle algorithm. This method is designed for solving linear problems on Boolean
variables [32] and uses the Lagrangian relaxation.

2.1. The Lagrangian relaxation
The Lagrangian relaxation consists in moving into the objective function all the con-

straints. These constraints are built into the objective function as linear combinations
where the coefficients are Lagrangian multipliers. They penalize the objective function
if one of the integrated constraint is violated. This relaxation has the advantage over
linear relaxation to directly provide integer solutions and to tackle large size problems.
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2.2. The Wedelin Heuristic

In this paper, we are particularly interested in a specific heuristic based on the La-
grangian relaxation known as Wedelin heuristic. This method solves linear programming
problems with Boolean variables with a specific mathematical form such as the set par-
titioning problem. This heuristic tries to directly solve the linear problem:

min
x

cx− π(Ax− b) (1)

s.c. x ∈ {0, 1}n

Where π = {π1, π2, ..., πm} ∈ Rm represent the Lagrangian multipliers or dual vari-
ables. The resolution is trivial when πi elements in π are fixed to π̂:

π̂b+ min
x

(c− π̂A)x (2)

s.c. x ∈ {0, 1}n

The solution x̂j is constructed with the reduced cost sign with (cj − π̂aj) and aj the
associated column in the coefficient matrix A.

x̂j =

 1 if (cj − π̂aj) < 0,
0/1 if (cj − π̂aj) = 0,
0 if (cj − π̂aj) > 0.

(3)

If the reduced cost c̄ = (c− π̂A) is non-zero, the solution is unique. However, if one
or a few elements of c̄ are zero, it will be difficult to find a feasible solution for the not
relaxed problem. The goal of this algorithm is to find a π̂ where all elements are non-zero
and where the single solution of the relaxed problem is realizable for the primal problem.

We note that the change of the value of a single component π̂i modifies the values
(and signs) of the reduced costs c̄, and therefore affects the x̂ solution.

The main idea of the Wedelin algorithm (see Algorithm 1) is to consider iteratively a
single constraint i, updating the element π̂i such that the x̂ vector satisfies the i constraint
of the primal problem. There is always a selection range of π̂i. The algorithm chooses
the value of π̂i in the middle of this interval. This corresponds to the dual search for
descent by coordinates.

Algorithm 1 represents the core of the solver. It takes as input a definition of the
problem: the matrix A and the vectors b and c. It expects an output vector of Boolean,
x̂, a solution of the problem. The algorithm starts at line 1 with the construction of
an initial x̂ vector which permits to build the list of violated constraints R. It uses
the Bastert et al. [4] proposal to penalize variables with positive costs. The main loop
begins at line 2 and run until the loop limit p and/or the κmax is reached. For each
violated constraints (line 3), it (i) decreases the preferences p̂, (ii) produces the reduced
cost vector r and sort it according to the reduced costs, (iii) updates the Lagrangian
multipliers at line 4, (iv) affects the x̂ vector and the preference matrix p̂. Finally, at line
6, we update the list of violating constraints and exit with the solution found or adjust
the κ adjustment and the iteration l.
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Input : A ∈ {0, 1}m×n, b ∈ Nm, c ∈ Rn
Output: x̂ ∈ {0, 1}n with Ax̂ = b and cx̂ small or message no solution

1 for j ∈ {1, . . . , n} do // Build an initial variable assignment

if cj ≤ 0 then x̂j ← 1
else x̂j ← 0

end
Let π̂ ∈ Rm, π̂ ← 0, p̂ ∈ Rm×n, p̂← 0, l← 1, κ← κmin,
R← {i :

∑n
j=1 aij x̂j 6= bi} // List of violated constraints

2 while l ≤ ρ and κ ≤ κmax do
3 for i ∈ R do // Update every violated constraint

for j ∈ J(i) = {j : aij 6= 0} do p̂ij ← θ × p̂ij // History exp. decay

for j ∈ J(i) do // Build reduced costs
rj ← cj −

∑
i∈I(j) aij π̂i −

∑
i∈I(j) p̂ij

end
rϕ[1] < rϕ[2] < ... < rϕ[|J(i)|] // Sort variables by increasing red. costs

4 π̂i ← π̂i + 1
2 (rϕ[bi+1] + rϕ[bi]) // Update Lagrangian multipliers

if l ≤ ω then ∆← 0 // Do not perturb reduced costs during warmup

5 else ∆← κ
1−κ (rϕ[bi+1] − rϕ[bi]) + δ

for j ∈ {1, . . . , bi} do // Update variables and preferences positively
p̂iϕ[j] ← p̂iϕ[j] + ∆ ; x̂ϕ[j] ← 1

end
for j ∈ {bi + 1, . . . , |J(i)|} do // or negatively

p̂iϕ[j] ← p̂iϕ[j] −∆ ; x̂ϕ[j] ← 0
end

end
6 R← {i :

∑n
j=1 aij x̂j 6= bi} // Update the list of violated constraints

if R = ∅ then return x̂ // If empty, exit with solution found

κ← κ+ κstep(
|R|
m )α // Adaptive adjustment of step size

l← l + 1 // Next iteration

end
return no solution found
Algorithm 1: Wedelin algorithm with local preferences and adaptive step size.
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2.3. The Parallel Solver Baryonyx

In this paper, we introduce a new integer and Boolean linear programming solver
called baryonyx. This solver is largely based on the algorithms provided in Bastert et al.
[4]. We have introduced several modifications to the proposed algorithms to (i) allow the
reuse of previous solutions found, (ii) diversify the search, and also (iii) exploit todays
symmetric multiprocessor CPUs.

Baryonyx accepts two modes: solver and optimizer. In the solver mode, it runs once
trying to satisfy all the constraints (the exact implementation of Algorithm 1). In the
optimizer mode, it runs in parallel according to the number of processors, and tries to
satisfy all the constraints and to optimize the solution at each run, reporting the best
solution found for all runs when it reaches its time limit.

The Wedelin heuristic depends only on the δ parameter (line 5 in Algorithm 1) to
diversify the search. To improve diversification, we develop several random processes (see
the technical documentation of baryonyx). The most important process of diversification
is the initialization mechanism of x̂. Indeed, x̂ is used to determine violated constraints
before any computation. Default, a deterministic initialization is proposed by Bastert
et al. [4] where x̂j equals 1 if cj ≤ 0 otherwise 0. We propose to extend this part by
combining a random process and several different algorithms. We use the Bernoulli’s law
and its parameter p ∈ [0, 1] to provide random Boolean.

random Each x̂i are initialized with the Bernoulli law.

bastert For each x̂i, either the variable is initialized by the cost variable ci (See section 1
in Algorithm 1) or by a random Boolean.

best For each x̂i, either the variable is initialized by the best solution found previously
x̂i or by random Boolean.

Since Wedelin’s algorithm runs several times in baryonyx, we changed the initialization
of x̂ for each iteration. The default baryonyx choice is the best-cycle policy. It starts with
the bastert policy. If is fails to find a solution, it restarts with the random policy, else it
uses the best solution found as initial solution and it tries to improve this solution with
the best policy three times. If it fails it switches to the first step of the algorithm (bastert
policy) otherwise it keeps the best policy. Figure 1 shows the diagram of the best-cycle
policy.

To further increase the diversification, we exploit the symmetric multiprocessor CPUs.
Each core shares matrices A, vectors b and c. The vector x̂ is local for each process. Each
core have its own pseudo-random number generator initialized with different random seed.

3. Learning Continuous Parameter Values

In this section, we present our protocol for tuning continuous parameters of Wedelin
heuristic automatically.

Algorithm 1 has eleven numerical parameters as described in Table 1. Parameters
τ,Γ, ρ, ω are integers whereas the others are continuous. We assume a fixed time limit τ
and a fixed number of cores Γ, and treat the other integer parameters as continuous values
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Figure 1: The best-cycle algorithm is designed to both improve diversification and to look for a better
solution when a solution is found. Each box represents a run of the complete Wedelin algorithm. The
solver stops when time limit is reached.

Table 1: baryonyx numerical parameters with their typical domain ranges and descriptions.

Parameter Range Description

τ [1,+∞[ CPU time limit (in seconds)
Γ [1,+∞[ Number of parallel runs
ρ [102, 105] Number of iterations inside a run
ω [0, 100] Number of warmup iterations before using κ
κmin [0, 0.5] Minimum value for κ approximation
κstep [10−4, 10−2] Step value for κ approximation
κmax [0.6, 1] Maximum value for κ approximation
α [0, 2] Adaptive adjustment of κ based on the number

of violated constraints [4]
δ [10−3, 10−1] Random perturbation on reduced costs
θ [0, 1] Strength of history of local preferences p̂ [4]
p [10−4, 1− 10−4] Bernoulli distribution with success probability p
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using a rounding function. So, we have nine continuous parameters to tune. The Wedelin
heuristic is viewed as a complex function with K = 9 input parameters (x1, . . . , xK) or
factors and a single output value y(x1, . . . , xK) which corresponds to the quality of the
parameter configuration over a set of training instances. For each benchmark category,
we select an evenly distributed subset (20%) of instances to be part of the training set.

3.1. Quality of a parameter configuration

The quality of a parameter configuration (x1, . . . , xK) is computed as follow. First, we
execute our parallel baryonyx solver on every training instance using a modified Wedelin-
Good configuration1. Each execution uses Γ′ cores2 in parallel during 2τ time limit. We
collect the best linite and worst uinite solution objective values returned by Algorithm 1
for each instance e. If no solution is found we remove this instance from the training
set. During the training phase, the normalized quality of a parameter configuration is
obtained from the mean over N valid training instances of the relative distance gap to
the best initial solutions:

y(x1, . . . , xK) = 1− 1

N

N∑
e=1

le − linite

10uinite − linite

If no solution is found for a particular instance and parameter configuration then we
assume le = 10uinite . By multiplying uinite by 10, we assume not finding a solution is at
least ten times worse than finding a good solution close to the best initial solution. When
y > 1, we have found a better configuration than the modified WedelinGood configuration.

3.2. Selection of important parameters by sensitivity analysis

We used the Morris method [26, 27] to determine which inputs have important effects
on the output. The goal is to discover which parameters are important and cannot be ig-
nored. These parameters will be fine tuned later on (see Section 3.3). For that a factorial
sampling plan is built from individually randomized one-factor-at-a-time designs. The
Morris method randomly selects L initial configurations within a regular K-dimensional
d-level grid. Each parameter is discretized into d levels including its bounds (given in
Table 1). Starting from each initial configuration, a configuration trace is constructed
by changing the value of one parameter at a time until all the parameters have been
modified. The step value is usually chosen as ∆ = (d − 1)/2. See an example in Fig-
ure 2(left). Each trace corresponds to K+1 configuration evaluations, resulting in a total
of L×(K+1) evaluations.The Morris method performs a limited amount of configuration
evaluations which is a linear function of the number of parameters K.

The Morris method provides qualitative sensitivity measures allowing to rank the
input factors in order of importance, but not to quantify by how much one given factor
is more important than another [27]. In Figure 2(right) we show estimated means (µ∗k =

1We set α = 1, p = 0.5 with the best-cycle strategy, and a randomized order of violated constraints
at each iteration.

2In our experiments, we used a smaller number of cores Γ′ = 3 during the training phase than during
the test phase (Γ = 30) in order to save computation time.
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Figure 2: (Left) Example of L = 6 traces in the Morris design for K = 2 parameters discretized into
d = 8 levels. The step value here is ∆ = 1. (Right) Sensitivity measures of the elementary effects for
the CSPLib022 benchmark.

∑L
l=1 |δylk|/L) and standard deviations (σk =

√∑L
l=1(δylk − µk)2/L, µk =

∑L
l=1 δy

l
k/L)

of the distribution of (absolute values of) elementary effects δylk found by the Morris
method for some benchmark category with:

δylk =
y(x1, . . . , xk−1, xk + ∆, xk+1, . . . , xK)− y(x1, . . . , xk, . . . , xK)

∆

When µ∗k is large but not σk, parameter xk has an important overall influence on the
output. If both measures are large, it corresponds to a non-linear effect on the output or
an input involved in interaction with other factors [27]. This is the case for parameter
κstep in Figure 2(right). We use µ∗k to rank the input factors.

In our experiments, we have K = 9, L = 50, d = 10. We selected the four most
important factors, κmin, κstep, δ, θ, which was the same set of parameters found by the
Morris method in all our benchmark categories.

3.3. Optimization of Selected Parameter Values

genoud (GENetic Optimization Using Derivatives) [25] is a black-box optimization
method for solving nonlinear, nonsmooth, and even discontinuous functions. It com-
bines a genetic algorithm with a quasi-Newton method. The quasi-Newton method is
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [14] using a built-in numerical
derivative. It helps to quickly find a local optimum when the current parameter con-
figuration is “in a smooth neighborhood of the local optimum point” [25]. It may also
prevent to find the global optimum if used too early or too aggressively. In practice, a
number of initial warmup generations are explored before BFGS is applied on the best
individual in the current population.

genoud starts with a random population including the modified WedelinGood configu-
ration. Then, next generations are built from 8 genetic algorithm operators (used in equal
proportion) dedicated to continuous parameters: Cloning, Uniform Mutation, Boundary
Mutation, Non-Uniform Mutation, Polytope Crossover, Simple Crossover, Whole Non-
Uniform Mutation, and Heuristic Crossover [25]. For instance, the Polytope Crossover
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computes a new parameter configuration that is a convex combination of as many indi-
viduals as there are parameters to tune.

In our experiments, a (hard) maximum number of 10 generations is performed with
a population size of 100. BFGS is applied on the best individual at each generation after
the eighth generation. We observed between 803 to 1157 evaluations of the output value
y. It can be more than 10× 100 due to BFGS evaluations and less because genoud will
not evaluate the same configuration twice.

4. Experimental Results

Baryonyx is a free software (MIT license) in C++17 for solving Boolean and integer
linear programming problems. It is provided as a command line program, as a shared
library, and has an encapsulation to the R software. Following results were achieved
using the version 0.4 of baryonyx built with gcc-7.2.

The baryonyx wrapper for R is called Rbaryonyx. It relies on the rcpp package to
facilitate exchanges between the two libraries. Rbaryonyx can read lp files, solves the
problem and returns a list of solution(s) and solving information data to easily link with
other packages such as R sensitivity [22] for the Morris method and rgenoud [25].

All computations were performed on a cluster of 32-physical-core Intel Xeon CPU
E5-2683 v4 at 2.1 GHz and 4 GB of RAM per core. In order to speed up the parameter
tuning process, we parallelize the evaluation of the training instances, by taking care that
the actual number of executions of baryonyx multiplied by Γ′ is less than the available
number of cores. Depending on the size of the training set, each parameter configuration
evaluation took between 1 to 1.5 minute. The Morris method took between 9 to 13 hours
per benchmark family. The genoud method took from 14 to 28 hours.

In the following, we compare baryonyx against IBM ILOG cplex version 12.8 and
LocalSolver3 version 8.0. cplex is a state-of-the-art exact MIP solver. LocalSolver is
a mathematical programming local search solver using a simulated annealing based on
ejection chain moves specialized for maintaining the feasibility of Boolean constraints and
an efficient incremental evaluation using a directed acyclic graph [6]. Every solver ran in
parallel mode using 30 cores. The solving time limit is 60 seconds (except for VCS where it
is 1, 800 sec.). cplex and LocalSolver use their default parameter configurations4. baryonyx
ran with three different static parameter configurations (Supplementary Table .7) plus
the one found by rgenoud (Supp. Table .8, where the corresponding generation of the
best configuration found is also mentioned).

When available, we also report results from other publications [7, 9, 4, 31], but we
must treat these results with care as they do not correspond to the same computer, nor
time limit, and were obtained on a sequential machine.

All the instances have been preprocessed by cplex. A direct translation of 0/1 linear
programming lp file format into LocalSolver lsp format has been done.

3https://www.localsolver.com
4For cplex, we set EPAGAP = EPGAP = EPINT = 0 to avoid premature stop.
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4.1. SPP benchmark

This test set consists in 55 instances of airline crew scheduling problems expressed as
set partitioning problems. These problems are obtained from the OR-library [5]5. SPP
instances were provided by four different airline corporations where a subset of these
problems was initially solved in [19], and further experimented by other exact [7] and
local search methods [8, 31].

These instances are easily solved by cplex within the 60-second time limit. The same
optimum values were also reported in [7] and [31] (when available). LocalSolver could
not find a solution on four instances, whereas all baryonyx configurations always found
a solution. Using default or optimized by genoud configurations were the best options,
respectively at 0.06% and 0.01% to the optimum.

Table 2: Computational results (relative distance to best-known solutions for solved instances and in
parentheses number of solved instances) on SPP instances [5].

Instances baryonyx cplex
Local-
Solver [7] [31]

default fast good genoud

aa
(6)

0.23 %
(6)

0.80 %
(6)

1.19%
(6)

0.08%
(6)

0.00%
(6)

23.02%
(3)

0.00%
(6)

1.64%
(6)

us
(4)

0.09 %
(4)

1.48%
(4)

2.60%
(4)

0.02%
(4)

0.00%
(4)

0.00%
(3)

0.00%
(4)

0.04%
(4)

nw
(43)

0.00%
(43)

2.64%
(43)

3.96%
(43)

0.00%
(43)

0.00%
(43)

8.53%
(43)

0.00%
(43) N/A

kl
(2)

0.69%
(2)

0.00%
(2)

0.00%
(2)

0.00%
(2)

0.00%
(2)

0.00%
(2)

0.00%
(2) N/A

Mean
(55)

0.06%
(55)

2.26%
(55)

3.41%
(55)

0.01%
(55)

0.00%
(55)

8.54%
(51)

0.00%
(55) N/A

4.2. Telebus benchmark

Telebus6 [7] is a scheduling problem to program tour vehicles for disabled persons in
Berlin. The goal is to provide a one-off service with minimum costs, while respecting
a set of constraints, such as vehicle capacity and mandatory breaks. The problem was
modeled in two steps. The first step, “clustering”, identifies all possible bus circuits that
can carry several people at a time. The goal is to select a set of controls with a minimal
vehicle travel distance. In the second step, “chaining”, the selected commands are chained
to generate bus circuits that respect all the constraints. The objective is to minimize
the total distance traveled by the vehicles. These two steps represent 28 instances of
set partitioning problems divided into two equal-size subfamilies (14 v/clustering, 14
t/chaining) corresponding to different periods in the year 1996. t/chaining instances are
more difficult than v/clustering instances and their optimum is mostly unknown (except
for t0415, t0420, t0421).

cplex solved all v/clustering and t0415 instances within the time limit, doing slightly
better than the original branch-and-cut method of [7] and the 4-flip neighborhood local
search algorithm of [31]. baryonyx and LocalSolver were a few percent below.

5http://people.brunel.ac.uk/~mastjjb/jeb/orlib/sppinfo.html
6http://www.zib.de/opt-long_projects/TrafficLogistics/Telebus/index.en.html
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baryonyxrgn performed extremely well on t/chaining instances, obtaining the best
results among all tested methods except on three instances where cplex and 4-flip local
search found better solutions. In particular, for two open instances (t1717/t1722), it
improved MIPLIB 2017 best reported solutions (from 184271/114245 to 165881/167523).

Looking at our training set, we observed it does not include any v-instances because
the initial modified WedelinGood evaluation (see Section 3.1) failed to produce any solu-
tions.

Table 3: Computational results (relative distance to best-known solutions for solved instances and in
parentheses number of solved instances) on telebus instances [7].

Instances baryonyx cplex
Local-
Solver [7] [31]

default fast good genoud

v0415-0421
(7)

0.14%
(7)

0.12%
(7)

0.11%
(7)

0.30%
(7)

0.00%
(7)

0.04%
(7)

0.00%
(7)

0.00%
(7)

v1616-1622
(7)

0.43%
(7)

1.08%
(7)

1.45%
(7)

1.43%
(7)

0.00%
(7)

6.21%
(7)

0.01%
(7)

0.09%
(7)

t0415-0421
(7)

0.02 %
(7)

0.01 %
(7)

0.03%
(7)

0.03%
(7)

0.61%
(7) (0)

1.88%
(7)

0.95%
(6)

t1716-1722
(7)

16.05%
(7)

30.37%
(7)

9.29%
(7)

0.00%
(7)

11.19%
(7)

150.25%
(4)

9.70%
(7)

10.71%
(7)

Mean
(28)

4.16%
(28)

7.89%
(28)

2.72%
(28)

0.44%
(28)

2.95%
(28)

35.82%
(18)

2.90%
(28)

3.01%
(27)

We also compared our solver using WedelinFast and WedelinGood static configurations
with the original version developed by Bastert [4]. Our methods were able to find a
solution for all the instances whereas the original approach could not for at least six
instances. It demonstrates the robustness of doing multiple runs in parallel compared to
a single run (using a longer 600-second time limit) as done in [4].

4.3. CSPLib022 benchmark

CSPLib0227 is a library of 12 bus driver scheduling problems reformulated as set
partitioning problems. The problems come from different bus companies: Reading (r1
to r5a), Centre West Ealing area (c1, c1a, c2), the former London Transport (t1 and
t2). These problems are relatively small and easy. cplex took less than 7.7 seconds to
solve its most difficult instance c1a. baryonyxrgn found all the optima in less than 2.2
seconds (solving time) for the largest instance r3. LocalSolver did not find the optimum
for this instance, neither found a solution for two other instances. The iterative repair
local search method GENET [9] got the worst results.

4.4. VCS benchmark

VCS instances are randomly generated bus and driver scheduling problems. VCS1200
is a medium-size instance ( 1, 200 constraints, 130, 000 variables), and VCS1600 is a large
problem ( 1, 600 constraints, 500, 000 variables) [36].

With a 1, 800-second time limit, cplex did not find any integral solution for the largest
instance whereas baryonyx with its default setting or the one found by genoud produced

7http://www.csplib.org/Problems/prob022
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Table 4: Computational results (relative distance to best-known solutions for solved instances and in
parentheses number of solved instances) on CSPLib022 instances [29].

Instances baryonyx cplex LocalSolver [9]
default fast good genoud

CSPLib022
(12)

6.87%
(12)

0.00%
(12)

0.00%
(12)

0.00%
(12)

0.00%
(12)

1.54%
(10)

26.24%
(8)

relatively good solutions (5.3% to the optimum for VCS1600). A first solution at 5.7% to
the optimum for VCS1600 was found by default baryonyx in 280 seconds (solving time).

Table 5: Computational results (relative distance to best-known solutions for solved instances and in
parentheses number of solved instances) on VCS instances [36].

Instances baryonyx cplex
default fast good genoud

VCS
(2)

9.25%
(2) (0) (0)

7.32%
(2)

12.68%
(1)

In order to find the optimum values, we also ran cplex without any time limit. It
took 1 hour for VCS1200 and 4.3 hours for VCS1600 to be solved to optimality by cplex
version 12.7.1 on a 4-core Intel CPU i7-4600U at 2.1 GHz.

4.5. Nqueens benchmark

Nqueens8 instances represent the weighted n-queen problem where the goal is to
place n queens on a chessboard n × n so that none of them attack each other (exactly
one queen in each row and each column, at most one queen in each ascending diagonal
and each descending diagonal). There are n2 0/1 variables xi,j . The objective function
is to minimize

∑
i,j ci,jxi,j with ci,j a random value uniformly sampled from [1, n]. The

largest instance among 8 has 1 million variables.
This problem combines set partitioning linear constraints (for rows and columns) and

set packing linear constraints (for diagonals). It shows the ability of baryonyx to tackle
efficiently a larger class of integer linear programs, with better results than cplex and
LocalSolver thanks to parameter tuning by genoud.

Table 6: Computational results (relative distance to best-known solutions for solved instances and in
parentheses number of solved instances) on nqueens instances.

Instances baryonyx cplex LocalSolver
default fast good genoud

nqueens

(8)
4.33%
(6)

8.11%
(7)

5.44%
(8)

0.61%
(8)

453.26%
(8)

36.34%
(8)

8https://forgemia.inra.fr/thomas.schiex/cost-function-library/tree/master/random/

wqueens
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5. Conclusion

baryonyx is a parallel multi-start meta-heuristic which offers good results on large
crew and bus driver scheduling problems expressed as set partitioning problems in a
relatively short amount of time. It can be used just after preprocessing to provide a
good initial upper bound for a complete branch-and-bound solver. Depending on the
usage context and time available, when off-line tuning of the parameters is allowed, we
show a methodological process to select the important factors and optimize them. Even
using a small training set, we could significantly improve the results. This methodology
is readily available as supplementary R scripts next to baryonyx source code. Concerning
the comparison with the other solvers, it is important to note that we did not try to tune
their parameters and better results could be obtained as reported in [21]. Concerning the
set partitioning problems (all our benchmarks except nqueens), more preprocessing rules
could be applied.We made some preliminary experiments with set covering problems but
the results were not as good as with set partitioning or set packing problems. It remains
as future work to evaluate our solver on a larger set of benchmarks.

We plan to exploit the Lagrangian multipliers to give dual bound information which
could make our solver exact in some cases, a feature already available in LocalSolver
using linear relaxation. Dealing with a quadratic objective function as done in [15] is
also an important topic we would like to work on and apply to planning problems in
agronomy [24].

Acknowledgments. We are grateful to the GenoToul (Toulouse) Bioinformatic plat-
form for providing us computational support for this work.
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Table .7: Static parameter configurations for baryonyx.

Parameters
Configurations

WedelinFast WedelinGood baryonyx default
τ 60 seconds (1800 for VCS)
Γ 30 parallel runs (only 3 for training)
ρ 105 iterations
ω 20 warmup iterations

κmin 0
κstep 10−3 2× 10−4 10−3

κmax 0.6
α 0 1

δ 0.01 (1− θ)minn
j=1 |cj |,cj 6=0

maxn
j=1 |cj |

θ 0.4 0.6 0.5
p 0 0.5

Violated constraint order none random
Initialization policy bastert best-cycle

Table .8: Learnt parameter configurations for baryonyxrgn. Remaining parameters use baryonyx default
configuration. After every benchmark name, we put between square brackets the generation number
where this configuration has been found by rgenoud.

baryonyxrgn

κmin κstep δ θ
SPP (VCS) [10] 0.00 1.88× 10−4 3.19× 10−3 2.85× 10−1

telebus [1] 1.05× 10−1 4.10× 10−4 1.13× 10−2 3.54× 10−1

CSPLib022 [0] 0.00 2.00× 10−4 1.00× 10−2 6.00× 10−1

nqueens [1] 3.37× 10−2 7.45× 10−3 9.04× 10−3 7.89× 10−1
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