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Abstract Cost Function Networks (aka Weighted CSP) allow to model a variety of prob-
lems, such as optimization of deterministic and stochastic graphical models including
Markov random Fields and Bayesian Networks. Solving cost function networks is thus an
important problem for deterministic and probabilistic reasoning. This paper focuses on local
consistencies which define essential tools to simplify Cost Function Networks, and pro-
vide lower bounds on their optimal solution cost. To strengthen arc consistency bounds, we
follow the idea of triangle-based domain consistencies for hard constraint networks (path
inverse consistency, restricted or max-restricted path consistencies), describe their system-
atic extension to cost function networks, study their relative strengths, define enforcing
algorithms, and experiment with them on a large set of benchmark problems. On some of
these problems, our improved lower bounds seem necessary to solve them.
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1 Introduction

Graphical model processing is a central problem in AI. The Cost Function Network frame-
work (CFN [25] as an instance of the valued CSP framework.), where the goal is to optimize
the combined cost of local cost functions, captures problems such as weighted MaxSAT,
Weighted CSP or Maximum Probability Explanation in probabilistic networks.1 CFNs have
applications in resource allocation [4], combinatorial auctions, bioinformatics [26, 27]. . .

Dynamic programming approaches such as bucket or cluster tree elimination can be used
to tackle such problems but are inherently limited by their exponential time and space behav-
ior on graphical models with high tree-width. Instead, Depth First Branch and Bound allows
to keep a polynomial space complexity but requires good (strong and cheap) lower bounds
on the minimum cost to be efficient. In the last years, increasingly better lower bounds have
been designed by enforcing soft local consistencies on CFNs. Arc consistencies such as
AC*, DAC*, FDAC*, EDAC* [17] or VAC [6] are inspired from arc consistency in hard
constraint networks. They have a small order polynomial enforcing time but do not always
provide tight enough lower-bounds. The linear programming based OSAC consistency [9]
provenly gives the strongest lower bound that can be obtained by arc consistency but is usu-
ally too expensive to compute. It now becomes useful to look beyond arc consistencies. Up
to now, few higher order consistencies have been proposed for CFNs [8, 12].

In this paper, we show that strong soft consistencies can be defined for CFNs by extend-
ing hard high order consistencies defined for CSPs. Among hard high order consistencies,
the family of triangle-based consistencies (Restricted Path Consistency or RPC, Path Inverse
Consistency or PIC, and maxRestricted Path Consistency or maxRPC) are specifically inter-
esting because they have a stronger pruning power than arc consistency, and a cheaper
computational cost than other high order consistencies. Their extension to CFNs is however
non trivial, and enforcing algorithms create ternary cost functions.

The rest of the paper is organized as follows. Section 2 is a background section on con-
straint and cost function networks, associated local consistencies and enforcing operations.
The next sections focus on our contributions. Section 3 gives a definition of new local con-
sistencies. Section 4 introduces different ways to compare the strength of soft consistencies
in general. This is then used to compare the proposed consistencies to each other and to
existing consistencies. Section 5 focuses on the algorithms for enforcing the proposed con-
sistencies. The last section gives experimental results when these consistencies are used as
pre-processing or maintained during search on a large set of benchmarks. We observe that
the strengthened bound provided by triangle consistencies (TRICs) are necessary to solve
some problems that could not be solved otherwise.

2 Background

A constraint satisfaction problem (CSP) is a triple (X,D, C) where X is a set of n variables,
D is a set of n domains (variable i ∈ X takes values from Di ∈ D), and C is a set of

1We use the terminology of Cost Function Networks by similarity to Constraint Networks. The Weighted
Constraint Satisfaction Problem (WCSP) is the problem of solving a CFN. For outsiders, guessing what a
Cost Function Network could be, is also much easier.
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constraints. Each constraint cS ∈ C defined over a set S of variables specifies the allowed
assignments τS of values for variables in S, denoted by τS ∈ cS . S and |S| are the scope and
the arity of the constraint cS . For simplicity, c{i}, c{i,j} are denoted as ci, cij . The constraints
ci, cij , cS with |S| > 2 are respectively called unary, binary and non-binary. A value a for
variable i is denoted by (i, a) or by ia . Given a set of variables S, �(S) denotes the set of
assignments (tuples) of values for variables in S, that is, �(S) = DS = ∏

i∈S Di . Given a
tuple τS , a variable i ∈ S and a subset S′ ∈ S, τS[i] and τS[S′] denote the projection of
tuple τS on i and S′ respectively. A tuple τS is consistent if it satisfies all the constraints
whose scope is included in S. A solution is a consistent complete assignment. The problem
is consistent if it has at least one solution.

Definition 1 (Local consistencies) Given a CSP P = (X,D, C),

– P is arc consistent (AC) if ∀i ∈ X, ∀a ∈ Di , ∀cS ∈ C such that i ∈ S, there exists a
tuple τ ∈ �(S) such that τ [i] = a and τ ∈ cS . Such a tuple τ is called the support of
value (i, a) in the constraint cS .

– P is restricted path consistent (RPC, [3]) iff it is AC and ∀i ∈ X, ∀a ∈ Di , ∀cij ∈ C

on which a has only one support b ∈ Dj , ∀k linked to i and j by cik, cjk , there exists
a value c ∈ Dk such that (a, c) ∈ cik and (b, c) ∈ cjk .

– P is path inverse consistent (PIC, [14]) iff it is AC and ∀i ∈ X, ∀a ∈ Di , ∀j, k such that
i, j, k are linked one-by-one by binary constraints, there exists a value b ∈ Dj , c ∈ Dk

such that (a, b) ∈ cij , (a, c) ∈ cik and (b, c) ∈ cjk .
– P is max-restricted path consistent (maxRPC, [11]) iff it is AC and ∀i ∈ X, ∀a ∈ Di ,

∀cij ∈ C, a has a support b ∈ Dj such that ∀k linked to both i, j by cik, cjk , there
exists a value c ∈ Dk such that (a, c) ∈ cik and (b, c) ∈ cjk .

– Let Φ be a hard consistency and P a CSP. The Φ−closure of P is the CSP Φ(P ) =
(X,DΦ, C) such that DX

Φ ⊆ DX , Φ(P ) is Φ-consistent, and there does not exist D′
such that DX

Φ ⊂ D′X and (X,D′, C) is Φ-consistent.

CFNs extend CSPs by associating costs to tuples [24, 25]. A CFN is a tuple (X, D, C, m)

where X and D are respectively sets of variables and domains, as in classical CSPs. C is
a set of cost functions. Each cost function cS ∈ C assigns non negative integer costs to
tuples τS ∈ �(S) i.e. cS : �(S) → [0..m] where m ∈ {1, . . . , +∞}. The addition and
subtraction of costs are bounded operations, defined as a +m b = min(a + b,m), a −m b =
a − b if a < m and m otherwise. The combined cost of a tuple τS in a CFN P is the sum
of costs ValP (τS) = ∑

(S′⊆S)∧(cS′ ∈C) cS′(τS[S′]), where summation is done using +m. τS

is inconsistent if ValP (τS) = m, and consistent otherwise. A solution of P is a complete
consistent tuple τX . An optimal solution has minimum ValP (τX).

It is important to note that CSPs are just CFNs using m = 1. In such problems, a tuple
which receives a cost of 1 is forbidden. A cost of 0 is used for allowed tuples.

We assume the existence of a unary cost function ci for every variable i, and a nullary
cost function, noted c∅. This constant non-negative cost defines a lower bound on the cost
of every solution. A CFN P can be transformed into an equivalent CFN P ′ (i.e., ValP (τ) =
ValP ′(τ )∀τ ) by applying so-called equivalence-preserving transformations (EPTs) that shift
costs between cost functions. The EPT ShiftτS, cS′ , α (Algorithm 1) moves an amount of
cost α between a cost function cS′ and a tuple τS such that S ⊂ S′. The conditions (2) and
(3) guarantee that the operation will not create any negative cost in the problem. Shift
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allows to define the three usual EPTs [10] Project (from cS′ to τS , α > 0), Extend
(from τS to cS′ , α < 0) and UnaryProject (from i to c∅, α > 0, S′ = {i}, S = ∅).

By applying EPTs to an original CFN, it is possible to transform it in an equivalent CFN
that satisfies a given local consistency property. This may increase the lower bound c∅.
The simplest local consistency, node consistency (NC [16]), requires that ∀i ∈ X, ∀a ∈ Di

ci(a) + c∅ < m and there exists a value a ∈ Di such that ci(a) = 0.

Definition 2 (Soft arc consistencies) Given a binary CFN P = (X, D, C, m) and an order
< on variables,

– P is arc consistent (AC [24]) iff ∀i ∈ X, ∀a ∈ Di and ∀cij ∈ C, there exists b ∈ Dj

such that cij (a, b) = 0. b is called a (simple) support for (i, a) in cij .2

– P is directional arc consistent (DAC [7]) w.r.t < iff ∀i, ∀a ∈ Di , ∀cij such that i < j ,
there exists a value b ∈ Dj such that cij (a, b) + cj (b) = 0. b is called a full support
for (i, a) in cij .

– P is full directional arc consistent (FDAC [19]) w.r.t < iff it is AC and DAC.
– P is existential arc consistent (EAC [17]) iff ∀i ∈ X, there exists a value a ∈ Di such

that ci(a) = 0 and ∀cij ∈ C, there exists b ∈ Dj such that cij (a, b)+ cj (b) = 0. Value
a is called the existential arc consistent support of i.

– P is existential directional arc consistent (EDAC [17]) iff it is EAC and FDAC.
– Bool(P ) is a CSP defined as a CFN (X,D, C, 1) such that ∃cS ∈ C iff ∃cS ∈ C, S �= ∅

and τ ∈ cS ⇔ cS(τ ) > 0. P is virtual arc consistent (VAC [6]) iff the AC−closure of
Bool(P ) is non-empty.

For simplicity, we restrict ourselves to binary CFNs. A binary CFN is AC∗, DAC∗,
FDAC∗, EAC∗, EDAC∗ if it is NC and respectively AC, DAC, FDAC, EAC, EDAC [16].
Definitions of soft arc consistencies for non-binary CFNs have been given in [5, 10, 21, 22].

3 Soft triangle-based consistencies (TRICs)

In this section, we extend the hard local consistencies RPC, PIC and maxRPC, defined on
triangles of variables to CFNs. For each hard consistency, we define six soft variants, also
called softening levels: simple, directional, full directional, existential, existential direc-
tional, and virtual. This gives rise to eighteen new soft local consistencies. In addition to
soft ACs, all these soft versions guarantee the extensibility of arc supports on extra third
variables on a so-called witness.

2There exists tiny variations on the definition of AC for CFNs. This paper uses the definition in [20] which
simplifies the definition in [10] by not considering the propagation of inconsistent tuples.
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Definition 3 (Witness) Given a value (i, a), a pair of values (ia, jb) and a variable k linked
both to i and j ,

– A simple witness of (ia, jb) on k is a value c ∈ Dk such that cik(a, c) + cjk(b, c) +
cijk(a, b, c) = 0.

– A full witness of (ia, jb) on k is a value c ∈ Dk such that ck(c)+cik(a, c)+cjk(b, c)+
cijk(a, b, c) = 0.

Definition 4 (Extensibility of a pair of values on a variable) Given a pair of values (ia, jb)

and a variable k linked both to i and j ,

– (ia, jb) is simply extensible on k if there exists a simple witness on k for it.
– (ia, jb) is fully extensible on k if there exists a full witness on k for it.

Definition 5 (Extensibility of a value on a triangle) A triangle is a triple of variables (i, j, k)

that are linked one-by-one by binary cost functions. It is noted as Δijk . Given a value (i, a)

and a triangle Δijk .

– (i, a) is simply extensible on triangle Δijk if there exists a simple arc support for (i, a)

in cij that is simply extensible on k.
– (i, a) is fully extensible on triangle Δijk if there exists a full arc support for (i, a) in cij

that is fully extensible on k.

Definition 6 (Extensibility of a pair of values) For a pair of values (ia, jb) and an order <

on the variables, (ia, jb) is:

– simply extensible if it is simply extensible on every k linked to both i and j .
– fully extensible if it is fully extensible on every k linked to both i and j .
– directionally-fully extensible if it is fully extensible on every k > i linked to both i

and j .
– semi-fully extensible if it is simply extensible on every k < i linked both to i and j and

is fully extensible on every k > i linked both to i and j .

Notice that full extensibility implies semi-full extensibility. Semi-full extensibility
implies directional-full and simple extensibility. Conversely, both directional-full and sim-
ple extensibility do not imply any other extensibility. Examples in Fig. 1 illustrate the
different extensibilities of pairs of values.

3.1 Soft restricted path consistencies

The idea of soft RPC consistencies is to only check the extensibility of pairs of values
(ia, jb) that will make a value soft arc inconsistent if their binary cost becomes positive.
If a value (i, a) has only one simple support (j, b) on cij and this support (ia, jb) is not
extensible on some third variable k, every 3-values tuple over {i, j, k}, involving (ia, jb),
has a positive combined cost. Because (j, b) is the unique arc support of (i, a), every com-
plete tuple involving (i, a) has a positive cost evaluation. Thus, the unary cost ci(a) can be
increased by equivalence preserving transformations.

Definition 7 (Soft restricted path consistencies (Soft RPCs)) Given a CFN P =
(X, C, D, m) and an order < on variables,
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Fig. 1 Example of different extensibilities of the pair of values (ia, ja). k1 < i < j < k2. An edge appears
between pairs of values with a non zero cost. In CFN(a), (ia, ja) is not simply extensible on k1. In CFN(b),
(ia, ja) is simply extensible (on both k1, k2) but is not directionally-fully extensible (because it is not fully
extensible on k2). In CFN(c), (ia, ja) is directionally-fully extensible w.r.t k2 but is not semi-fully extensible
(because it is not simply extensible on k1). In CFN(d), (ia, ja) is semi-fully extensible (fully extensible on k2
and simply extensible on k1) but is not fully extensible (because it is not fully extensible on k1). In CFN(e),
(ia, ja) is fully extensible (on both k1, k2)

– P is RPC if it is AC and ∀i ∈ X,∀a ∈ Di,∀cij ∈ C on which (i, a) has only one
simple arc support b ∈ Dj , (ia, jb) is simply extensible.

– P is directional RPC (DRPC) if it is DAC and ∀i ∈ X,∀a ∈ Di, ∀cij ∈ C such that
i < j and (i, a) has only one full arc support b ∈ Dj , (ia, jb) is directionally-fully
extensible.

– P is full directional RPC (FDRPC) if it is FDAC and ∀i ∈ X,∀a ∈ Di,∀cij ∈ C such
that (1) if i > j and (i, a) has only one simple arc support b ∈ Dj then (ia, jb) is
simply extensible, or (2) if i < j and (i, a) has only one full arc support b ∈ Dj then
(ia, jb) is semi-fully extensible.

– P is existential RPC (ERPC) if ∀i ∈ X, there exists a value a ∈ Di such that (1)
ci(a) = 0, (2) ia has a full arc support in every cost function (i.e., P is EAC), and
(3) ∀cij ∈ C on which (i, a) has only one full arc support b ∈ Dj , (ia, jb) is fully
extensible. Such a value (i, a) is the ERPC support for i.

– P is existential directional RPC (EDRPC) if it is ERPC and FDRPC.
– P is virtual RPC (VRPC) if the RPC−closure of Bool(P ) is non-empty.

VRPC is defined based on the hard CSP Bool(P ) and hard RPC. The other softening
levels of RPC differ from each other by (1) the strength of supports (simple or full) (2) the
strength of witnesses (simple, full, directional-full, semi-full) and (3) the scope of applica-
tion of these properties (every domain value or one value per domain, every cost function
or some specific cost functions).

Example 1 Consider the CFNs in Fig. 1.

– CFN(a) is VRPC because the RPC−closure of Bool(P ) is not empty, containing values
(ib), (j, b), (k1, a), (k1, c), (k2, a), (k2, c). However, it is not RPC because the unique
support (ia, ja) of (i, a) on cij is not simply extensible on k1

– CFN(b) is RPC: both (ia, ja) and (ib, jb) (respectively the unique simple arc support
of (i, a), (j, a) on cij and of (i, b), (j, b) on cij ) are simply extensible on k1 and k2 at
simple witnesses (k1, b) and (k2, b) respectively. However, it is not DRPC because the
unique full arc support (ia, ja) of (i, a) in cij is not fully extensible on k2 > i.
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– CFN(c) is DRPC because both (ia, ja) and (ib, jb) (respectively the unique full arc
support of (i, a) in cij and of (i, b) in cij ) are fully extensible on k2 > i at (k2, b).
Variable k1 < i is not involved in DRPC for i. However, it is not FDRPC because the
unique full support (ia, ja) of value (i, a) on cij is not simply extensible on k1.

– CFN(d) is FDRPC where the supports (ia, ja) and (ib, jb) are fully extensible on k2 at
(k2, b) and simply extensible on k1 at (k1, b). At the same time, it is ERPC where (i, b),
(j, b), (k1, a), (k2, a) are ERPC supports for variables i, j, k1 and k2.

3.2 Soft path inverse consistencies

We now consider soft path inverse consistencies. They guarantee the extensibility of domain
values on triangles of variables. For all triangles Δijk sharing two variables i, j of a cost
function cij , PICs require that one of the arc supports of (i, a) in cij is extensible on k. The
arc supports of (i, a) that are extensible on different k can be different.

Definition 8 (Soft path inverse consistencies (Soft PICs)) Given a CFN P = (X, C, D, m)

and an order < on variables,

– P is PIC if it is AC and ∀i ∈ X,∀a ∈ Di,∀Δijk , (i, a) is simply extensible on Δijk .
– P is directional PIC (DPIC) if it is DAC and ∀i ∈ X,∀a ∈ Di, ∀Δijk such that i <

j, i < k, (i, a) is fully extensible on Δijk .
– P is full directional PIC (FDPIC) if it is FDAC and ∀i ∈ X,∀a ∈ Di, ∀Δijk , (i, a) is

fully extensible on Δijk if i < j, i < k and simply extensible on Δijk otherwise.
– P is existential PIC (EPIC) if ∀i ∈ X, there exists a value a ∈ Di such that (1) ci(a) =

0, (2) ia has a full arc support in every cost function (i.e., P is EAC) and (3) (i, a) is
fully extensible on every triangle.

– P is existential directional PIC (EDPIC) if it is EPIC and FDPIC.
– P is virtual PIC (VPIC) if the PIC−closure of Bool(P ) is non-empty.

See examples in Fig. 2. As in the case of RPC, VPIC is defined based on the hard CSP
Bool(P ) and hard PIC. The other softening levels differ from each other by the strength of
supports, the strength of witnesses, and the scope of application of these properties.

Fig. 2 Example of soft PIC consistencies. k1 < i < k2 < j and ∃Δijk1 ,Δijk2 . The CFN(a) is not PIC
because value (i, b) is not simply extensible to triangle Δijk1 . The CFN(b) is PIC but is not DPIC because
value (i, b) is not fully extensible to triangle Δijk2 with i < j, i < k2. The CFN(c) is DPIC (because every
value in Di can be fully extended to Δijk2 (the only triangle concerned by DPIC for i) but it is not FDPIC
(because value (i, b) is not simply extensible to triangle Δijk1 ). The CFN(d) is FDPIC where every variable
is simply extensible to 2 triangles and i is fully extensible to (i, j, k2). The CFN(d) is also EPIC where
(i, a), (j, a), (k1, a), (k2, a) are respectively EPIC supports of i, j, k1, k2
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3.3 Soft max-restricted path consistencies

Stronger than PICs, soft max-restricted path consistencies (soft maxRPCs) check the exis-
tence of an extensible arc support for each value on each binary cost function whatever the
number of arc supports the value has. In contrast to soft PICs, maxRPCs require the exten-
sibility of the same arc support at the same time on all third variables. If value (i, a) has no
such extensible arc support in some binary cost function cij , each support (ia, jb) of (i, a) in
cij is not extensible in some extra variable k, i.e. the combined cost of every tuple (ia, jb, kc)

is positive. Thus, the binary cost of every arc support of (i, a) in cij can be increased by
equivalence preserving transformations and then (i, a) will no longer be arc consistent.

Definition 9 (Soft max-restricted path consistencies (Soft maxRPCs)) Given a CFN P =
(X, D, C, m) and an order < on the variables,

– P is maxRPC if it is AC and ∀i ∈ X,∀a ∈ Di, ∀cij ∈ C there exists a simple arc
support b ∈ Dj such that (ia, jb) is simply extensible.

– P is directional maxRPC (DmaxRPC) if it is DAC and ∀i ∈ X,∀a ∈ Di , ∀cij ∈ C such
that i < j , there exists a full arc support b ∈ Dj such that (ia, jb) is directionally-fully
extensible.

– P is full directional maxRPC (FDmaxRPC) if it is FDAC and for ∀i ∈ D, ∀a ∈
Di, ∀cij ∈ C (1) if i > j , there exists a simple arc support b ∈ Dj such that (ia, jb) is
simply extensible. (2) otherwise, if i < j , there exists a full arc support b ∈ Dj such
that (ia, jb) is semi-fully extensible.

– P is existential maxRPC (EmaxRPC) if ∀i ∈ X, there exists a value a ∈ Di such that
(1) ci(a) = 0, (2) ia has a full arc support in every cost function (i.e., P is EAC) and
(3) ∀cij ∈ C, there exists a full arc support b ∈ Dj such that (ia, jb) is fully extensible.

– P is existential directional maxRPC (EDmaxRPC) if it is EmaxRPC and FDmaxRPC.
– P is virtual maxRPC (VmaxRPC) if the maxRPC−closure of Bool(P ) is non-empty

See examples in Fig. 3. Here again, VmaxRPC is defined based on the hard CSP Bool(P )

and hard maxRPC. The other softening levels differ from each other by the strength of
supports, the strength of witnesses, and the scope of application of these properties.

Fig. 3 Example of soft maxRPCs. k1 < i < k2 < j and ∃ Δijk1 ,Δijk2 . The CFN(a) is not maxRPC because
value (i, b) has no arc support in cij (between (ib, ja) and (ib, jc)) that is simply extensible on both k1, k2.
The CFN(b) is maxRPC but is not DmaxRPC because value (i, b) has no full arc support in cij (between
(ib, ja) and (ib, jc)) that is fully extensible to k2. The CFN(c) is DmaxRPC (because every value in Di has
full arc support in cij , cik2 that is respectively fully extensible on k2 and j . Triangle Δijk1 is not involved
in DmaxRPC for i). The CFN(c) is not FDmaxRPC because value (i, b) has no full support in cij (between
(ib, ja) and (ib, jc)) that is simply extensible on k1. The CFN(d) is both FDmaxRPC and EmaxRPC where
(i, a), (k1, a), (j, a), (k2, a) are respectively EmaxRPC supports of variables i, k1, j, k2
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4 Comparing soft local consistencies

In this section, we compare the strength of the different soft consistencies proposed in the
previous section and soft arc consistencies.

Soft consistencies rise specific difficulties when comparison of strength is considered.
Most of the consistencies we considered are domain consistencies in the sense that they
define properties that values must satisfy and enforcing them may increase unary costs that
NC may ultimately use to increase the lower bound c∅. However, virtual local consistencies
are different because they directly try to increase c∅ and do not try to increase unary costs
for NC. Thus, the strength of virtual consistencies can be directly measured by the quality of
the lower bound provided. For the other soft consistencies, this strength is better measured
by the ability to move costs to lower arities. We therefore need to introduce two different
order relations between local consistencies to capture this difference between virtual and
other consistencies. We denote by c∅[P ] the lower bound c∅ in a problem P .

Furthermore, soft local consistencies are not confluent. A single problem P may have
different equivalent problems satisfying a given local consistency property A. For a given
CFN P and a soft local consistency A, A(P ) is therefore defined as the set of problems
that can be obtained after enforcing A in P . When P already satisfies A, we assume that
A(P ) = {P } i.e., that enforcing A on a problem satisfying A does not change P (which
is effectively the case for all enforcing algorithms). Similarly, focusing on lower bounds,
enforcing a weaker consistency will not change the lower bound.

Definition 10 (Stronger relation) Given two soft consistencies A and B,
– A is stronger than B, noted by A ≥ B, iff for every CFN P that satisfies A, P also

satisfies B, i.e. B(P ) = {P }.
– A is stronger than B in terms of lower bound, noted by A ≥c∅ B, iff for every CFN P

that satisfies A and any P ′ ∈ B(P ), then c∅[P ′] = c∅[P ].
– A is strictly stronger than B, noted A > B, iff A ≥ B and ∃ a CFN P such that P

satisfies B and A(P ) �= {P }.
– A is strictly stronger than B in terms of lower bound, noted A >c∅ B, iff A ≥c∅ B

and ∃ a CFN P such that P satisfies B and ∀P ′ ∈ A(P ), c∅[P ′] > c∅[P ].

We first show that ≥ entails ≥c∅ .

Proposition 1 Given two soft consistencies A and B, if A ≥ B then A ≥c∅ B.

Proof Because A ≥ B, B(P ) = {P } for every P that satisfies A. So we have ∀P ′ ∈
B(P ), c∅[P ′] ≥ c∅[P ] and thus A ≥c∅ B.

Similarly to the stronger and strictly stronger relations for hard consistencies, our
relations for soft consistencies are transitive.

Proposition 2 (Transitivity) Given three soft consistencies A, B, and C,

a. If A ≥ B and B ≥ C then A ≥ C.
b. If A > B and B > C then A > C.
c. If A > B and B ≥c∅ C then A ≥c∅ C.
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Proof a. Let P be a CFN that satisfies A. Because A ≥ B and P satisfies A, B(P ) =
{P }, i.e. P also satisfies B. Because B ≥ C and P satisfies B, C(P ) = {P }. Thus, if
P satisfies A, C(P ) = {P }, i.e. A ≥ C.

b. (1) Because > implies ≥, we have A ≥ B and B ≥ C. So A ≥ C from the property
(a). (2) Because A > B, there exists a CFN P satisfying B and A(P ) �= {P }. Because
P satisfies B and B ≥ C, P also satisfies C. Thus there exists P that satisfies C and
A(P ) �= {P }. So A > C.

c. Because > implies ≥, we have A ≥ B. Let P be a CFN that satisfies A, P also satisfies
B. Because B ≥c∅ C and P satisfies B, ∀P ′ ∈ C(P ), c∅[P ′] = c∅[P ]. Thus, for
every CFN which satisfies A, ∀P ′ ∈ C(P ), c∅[P ′] = c∅[P ]. i.e. A ≥c∅ C.

To show that a soft consistency A is not stronger (resp. not stronger in terms of lower
bound than B), it is enough to show that there exists a CFN P in which A holds and B does
better than A: B(P ) �= {P } (resp. ∃P ′ ∈ B(P ), c∅[P ′] �= c∅[P ]).

Two consistencies A and B are incomparable iff A is not stronger than B and B is not
stronger than A.

Definition 11 (Incomparable relation) Given two soft consistencies A and B,

– A and B are incomparable, noted A �� B, iff A �≥ B and B �≥ A

– A and B are incomparable in terms of lower bound, noted A ��c∅ B, if A �≥c∅ B and
A �≥c∅ B

Figure 4 is the Hasse diagram that summarizes the relations among soft ACs, RPCs,
PICs and maxRPCs. A row of the graph corresponds to six soft consistencies associated
with a same hard consistency and a column corresponds to the soft consistencies at a
same softening level. A directed path from a consistency A to B, without or with dashed

Fig. 4 Hasse diagram of relations between soft consistencies
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arrow, respectively means that A > B or A >c∅ B. If there does not exist any directed
path between A and B, they are incomparable. First, we consider the relation between vir-
tual consistencies and domain consistencies. Then, domain consistencies are considered
according to the rows and the columns of the graph.

Theorem 1 Given two hard local consistencies A, B ∈ {AC,RPC,PIC,maxRPC}, if we
denote by V A, V B their corresponding virtual consistencies and A, B any other softening
level of A and B,

a. VA >c∅ A.
b. If A > B then

b1 VA > VB
b2 VA >c∅ B.

Proof a. We first prove that VA ≥c∅ A by contradiction. Suppose that there exists a CFN
P satisfying VA and enforcing A can still increase c∅ from a variable x∅. All values
and tuples whose costs have been necessary for increasing c∅ by A are also forbidden
when enforcing A in the classic CSP Bool(P ). So, if we eliminate these values and
tuples in the same order that costs are moved by A in P , x∅ will be wiped-out in
Bool(P ). Thus P is not VA and the assumption is false. This means that VA ≥c∅ A.
Secondly, Fig. 12 shows a problem that satisfies every non-virtual variant of AC, RPC,
PIC, maxRPC but not the virtual ones. Enforcing the virtual one will lead to a strictly
stronger c∅.

b. Consider first the case of V B. First, we prove that VA ≥ V B. Let P be a CFN which
is VA. The A−closure of Bool(P ) is not empty. Because A ≥ B, the B−closure of
Bool(P ) will be not empty. Thus, P also satisfies VB, i.e. VB(P ) = {P }. Now we
prove that VA �= V B, i.e. VmaxRPC > VPIC > VRPC > VAC. Figures 5, 6 and 7
respectively show a CFN which is VAC but not VRPC, VRPC but not VPIC, VPIC but
not VmaxRPC and c∅ can be increased by the unsatisfied consistencies.

We now consider the case of any other soft consistency B associated with B. From
VA > VB (just above) and from V B >c∅ B (Theorem 1(a)), by Proposition 2(c), we
deduce that VA ≥c∅ B. Now, we will prove that VA >c∅ B. Because V B >c∅ B,

Fig. 5 A CFN that satisfies all arc consistencies but does not satisfy any soft RPC (hence does not satisfy
any soft PIC, maxRPC). j < k < i < l. The table on the right indicates which consistencies are satisfied
or not (strikethrough). maxRPC is briefly written as max, and the same for other variants of maxRPCs. The
problem does not satisfy any soft RPC because of variable j (the unique support (ja, ka) of (j, a) in cjk is
not simply extensible on i and the unique support (jb, kb) of (j, b) is not simply extensible on l)
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Fig. 6 A CFN that satisfies all RPC consistencies but does not satisfy any PIC consistency. i < j < k < l <

m. Every value of i satisfies RPC consistencies because it has more than 2 full (hence simple) arc supports in
cik, cij , cil , cim. The problem does not satisfy any PIC consistency because of variable i (value (i, a) is not
simply (hence not fully) extensible to triangle Δilm while (i, b) is not simply (hence not fully) extensible to
triangle Δijk)

there exists a CFN P such that P is B and V B can still increase the lower bound
c∅[P ]. This means that the B−closure of Bool(P ) is empty. Because A > B, the
A−closure of Bool(P ) is also empty. Thus, enforcing VA on P will increase c∅ while
P satisfies B.

The following theorem shows that given a softening level, the corresponding soft
maxRPC is strictly stronger than the corresponding soft PIC, which is strictly stronger than
the corresponding soft RPC, which itself is strictly stronger than the corresponding soft AC.

Theorem 2 (Vertical comparison) a. maxRPC > PIC > RPC > AC.
b. DmaxRPC > DPIC > DRPC > DAC.
c. FDmaxRPC > FDPIC > FDRPC > FDAC.
d. EmaxRPC > EPIC > ERPC > EAC.
e. EDmaxRPC > EDPIC > EDRPC > EDAC.

Proof First, we can note that the “stronger than” relation ≥ holds between the considered
pairs of consistencies, based on their definition: at each softening level, the soft variant of
maxRPC implies the soft variant of PIC. The same applies for PIC and RPC, as well as RPC
and AC. Second, we prove the “strictly stronger than” relation between them by showing
CFNs in which the weaker consistencies hold while the stronger ones do not.

Fig. 7 A CFN that satisfies all PIC consistencies but does not satisfy any maxRPC consistency. i < j1 <

j2 < j3 < j4 < j5 < j6. There are only zero unary costs in this problem, thus simple and full supports (or
witnesses) are identical. The problem is EDPIC since both (i, a), (i, b) can be fully extended to all 4 triangles.
However, the problem does not satisfy any maxRPC consistency because of variable i (no arc support of
value (i, a) in cij1 can simultaneously be extended on Δij1j2 and Δij1j3 , the same for value (i, b) in cij4 )
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a. Fig. 5 shows a CFN that satisfies AC but does not satisfy RPC. Figure 6 shows a
CFN that satisfies RPC but does not satisfy PIC. Figure 7 shows a CFN that satisfies
PIC but does not satisfy maxRPC. Thus maxRPC > PIC > RPC > AC.

b-e. The proof is similar to that for (a) by using Figs. 5, 6 and 7.

The following theorem will show that for any hard consistency: (1) the associated exis-
tential directional consistency is strictly stronger than both the existential and the full
directional ones, (2) the associated full directional consistency is strictly stronger than
both the non-directional and the directional ones, (3) other pairs of soft consistencies are
incomparable.

Theorem 3 (Horizontal comparison) Given two different hard consistencies A and B in
{AC, RPC, P IC, maxRPC}, given A,DA, FDA, EA,EDA the simple, directional, full
directional, existential, existential directional variant of A and B,DB, FDB the simple,
directional, full directional variant of B,

a. (column 2-1): A �� DB

b. (column 3-1,2): FDA > A, DA

c. (column 4-1,2,3): EA �� B,DB, FDB

d. (column 5-3,4): EDA > FDA, EA

Proof a. A �� DB: using Figs. 8 and 9.
b. FDA > A,DA. The “stronger than” relation ≥ is implied by the definition of the

consistencies. FDA > A: Fig. 8 shows a problem which is maxRPC, PIC, RPC, AC
but is not FDmaxRPC, FDPIC, FDRPC, FDAC. FDA > DA: Fig. 9 shows a prob-
lem which is DmaxRPC, DPIC, DRPC, DAC but is not FDmaxRPC, FDPIC, FDRPC,
FDAC.

c. EA �� B,DB, FDB: using Figs. 10 and 11.
d. EDA > FDA, EA. The proof directly follows from the definitions.

Theorem 4 (Incomparability) For any pair of consistencies which is not covered by the
three previous theorems, the consistencies are incomparable.

Fig. 8 A CFN which is non-directional consistent but is directional inconsistent for order i < j < k. The
problem is not DAC because value (i, a) has no full arc support in cik . Therefore, it does not satisfy FDAC,
EDAC, FDRPC, EDRPC, FDPIC, EDPIC, FDmaxRPC, EDmaxRPC. However, the problem is maxRPC
(hence PIC, RPC) because it is AC and every domain value is simply extensible to the triangle
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Fig. 9 A CFN which is directional consistent (i > j > k) but is non-directional inconsistent. The problem
is not AC because (i, a) has no arc support in cij . However, the problem is DAC because every value of j and
k has full arc support in cji , cki . Moreover, the problem is DmaxRPC (hence DPIC, DRPC) because every
value of j and k can be fully extended on the triangle (in the triangle Δijk , only the smallest variable k and
cki , ckj are concerned by triangle-based directional consistencies)

Proof – FDAC �� RPC,PIC,maxRPC, DRPC,DPIC,DmaxRPC: using Figs. 5, 8 and 9.
– FDRPC �� PIC,maxRPC, DPIC,DmaxRPC: using Figs. 6, 8 and 9.
– FDPIC �� maxRPC, DmaxRPC: using Figs. 7, 8 and 9.
– EDAC �� (E/FD/D/-)(RPC/PIC/maxRPC): using Figs. 5, 10 and 11.
– EDRPC �� EPIC, EmaxRPC, FDPIC, FDmaxRPC, DPIC, DmaxRPC, PIC, maxRPC:

using Figs. 6, 10 and 11.
– EDPIC �� EmaxRPC, FDmaxRPC, DmaxRPC, maxRPC: using Figs. 7, 10 and 11.
– VAC ��c∅ (ED/E/FD/D/-)(RPC/PIC/maxRPC): using Figs. 5 and 12.
– VRPC ��c∅ (ED/E/FD/D/-)(PIC/maxRPC): using Figs. 6 and 12.
– VPIC ��c∅ (ED/E/FD/D/-)maxRPC: using Figs. 7 and 12.

5 Algorithms

In this section, we present algorithms for enforcing soft PIC, DPIC, FDPIC, EPIC, EDPIC,
maxRPC, DmaxRPC, FDmaxRPC, EmaxRPC, and EDmaxRPC. Soft RPCs have not been
implemented because they are weaker than their PIC and maxRPC counterparts and because
it is costly to maintain the uniqueness of arc supports per value in each cost function –arc
supports can be iteratively created and broken when EPTs are applied.

For a value (i, a) that does not satisfy a given TRIC (triangle consistency), the common
idea is to create a support for a value (i, a) on cij that is also extensible on variables k by
shifting costs in triangles Δijk (consisting of binary, ternary and possibly unary costs) to ci .

Fig. 10 A CFN which is full directional consistent but is existential inconsistent for l < j < k < i. The
problem is not EAC (hence not ERPC, EPIC, EmaxRPC) because of value i (ia has no full support in cij

while ib has no full support in cil). However, the problem is FDmaxRPC (hence FDPIC, FDRPC) because it
is FDAC and every value of i, k can be simply extended to both triangles and every value of j, l can be fully
extended to Δjik and Δlik respectively
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Fig. 11 A CFN which is existential consistent but not full directional consistent for i > j > k. The prob-
lem is not AC (hence is not RPC, PIC, maxRPC) because of value (i, a) (no arc support in cij ) and is not
DAC (hence is not DRPC, DPIC, DmaxRPC) because of value (j, b) (no full arc support in cij ). However,
the problem is EmaxRPC (hence EPIC, ERPC, EAC) where (i, b), (j, a), (k, a) are respectively EmaxRPC
supports of i, j, k

We denote by Δijk(a, b, c) = cij (a, b) + cjk(b, c) + cik(a, c) + cijk(a, b, c) the combined
cost defined by the sum of binary and ternary costs involved in tuple (ia, jb, kc), where
cijk(a, b, c) = 0 if cijk does not exist. Algorithm 2 presents all the basic operations for
shifting costs inside triangles and pruning values.

– Extend2To3 i, a, j, b, cijk, α extends a cost of α from a pair of values (ia, jb) to a
ternary cost function cijk .

– Project3To2 cijk, i, a, j, b, α projects a cost of α from cijk on (ia, jb).
– Project3To1 cijk, i, a, α projects a cost of α from cijk on a value (i, a).
– Extend1To2 i, a, cij , α extends a cost of α from a value (i, a) to cij .
– Project2To1 cij , i, a, α projects a cost of α from cij on a value (i, a)

– PruneVars() removes all inconsistent values having unary cost equal to m.

The queues Q, P, S, T store variables or cost functions which had some change in
domain or in cost. They will be used for the propagation of changes in our algorithm.

– Q stores variables i such that some value of Di has been deleted (Procedure
PruneVars(), line 24).

– P stores variables i such that some value of Di has increased its cost from 0 (Procedure
Project3To1 at line 13 and Project2To1 at line 17

– S is an auxiliary queue with the same contents as P (Procedure Project3To1 at
line 13 and Procedure Project2To1 at line 17). It is used to efficiently build the
propagation queue R which contains variables that need to be checked for the existential
consistency. These are all variables of S (those that have values which cost increased
from 0) and their neighbors because: (1) for i ∈ S, the value in Di that has increased its

Fig. 12 A CFN which is existential directional but is not virtual consistent l < i < j < k < m. The
problem is not VAC (hence not VRPC, VPIC, VmaxRPC) because AC makes Bool(P) wiped-out at j or k.
Conversely, the problem is EDmaxRPC where variables j,m, l are FDmaxRPC in Δijm and ib, ja, ka, lb,mb

are EmaxRPC supports of variables
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unary cost may be the existential support of i and (2) the existential support of neighbor
variables j may be fully supported by this value.

– T contains binary cost functions cij that have been modified (because of a unary
cost extension in Procedure Extend1To2, line 4) for which i, j and their common
neighbors may have lost simple support/witness and need to be revised.

5.1 Enforcing PICs

5.1.1 Enforcing PIC supports

Simple PIC supports are enforced by Procedure findPICSupport in Algorithm 3. To
create a simple PIC support for a value ia on Δijk , binary and ternary costs involved in Δijk

are moved to ia in such a way that there is a tuple (ia, jb, kc) whose ternary and binary
costs decrease to 0. The order for moving costs is presented in Fig. 13. First, binary costs
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Fig. 13 The order of cost movements for enforcing simple or full PIC supports on variable i, where unary
cost extensions are not included in the enforcement of simple PIC supports. The arcs indicate the direc-
tion of cost movements and the numbers under the arcs indicate the order in which the corresponding cost
movements are performed

cij , cik, cjk are extended on ternary cost function cijk by Procedure Extend2To3 (lines
10–12). Then, ternary costs cijk are projected on ia by Procedure Project3To1 (line 13).
The maximum cost that can be projected on each value a ∈ Di is stored in Pi[a]. It is
computed based on the available binary and ternary costs (line 3). Binary cost extensions
Eij , Eik, Ejk are then computed based on Pi[a] and the ternary and binary costs (on the
two other sides of the triangle, see lines 4–9). The extensions should be sufficiently large so
that later projections of Pi[a] will not create negative costs and sufficiently small so that a
zero triangle cost remains after projection: there should exist values kc, jb and ia such that
the final resulting ternary cost cijk(a, b, c)+Eij (a, b)+Eik(a, c)+Ejk(b, c)−Pi[a] = 0.
Each computed pairwise extended cost E··(·, ·) is sufficient to satisfy the maximum cost
requirements on the third variable. Since these extensions are supposed to be done sequen-
tially, line 7 subtracts Eij (a, b), which will be included in the ternary cost, and does not
require cij (a, b). The same reasoning applies for line 9, for both previous extensions.

In the end, binary cost extensions on ternary functions do not lead to the loss of ternary
AC supports. Moreover, binary cost extensions do not lead to the loss of PIC supports
because PIC supports involve only zero binary costs which cannot be used for extension.

Full PIC supports are similarly enforced by Procedure findFullPICSupport in
Algorithm 3. The difference is that unary costs on j , k are extended on binary functions cij

and cik by Procedure Extend1To2, in order to create full PIC supports with zero unary
costs (lines 23, 24 respectively). Then binary and ternary costs are moved to ia as for sim-
ple PIC supports (line 25). The order in which costs are moved to enforce full PIC supports
is also visible in Fig. 13. The unary costs of j, k are taken into account for the computation
of Pi[a] as well as for the computation of unary cost extensions Ej , Ek (lines 18,20,22). As
for binary extensions, unary cost extensions should be sufficiently large to avoid the cre-
ation of negative costs by later projections of Pi[a] and small enough so that the the final
binary costs cij (a, b) + Ej (b) − Eij (a, b) and cik(a, c) + Ek(c) − Eik(a, c) are equal to 0.

Therefore, unary cost extensions on binary functions cannot lead to the loss of binary AC
supports. However, unary cost extensions on binary functions can lead to the loss of simple
PIC supports, thus modified binary functions are stored in the list T in order to later enforce
PIC supports for related values.
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Example 2 Consider the CFN(a) in Fig. 14. It has 4 variables i < j < k < l

and 5 binary cost functions cij , cik, cil , cjk, cjl . Binary costs are represented by edges
(continuous line) and ternary costs are represented by hyper-edges (dashed lines for
cijk and dotted lines for cij l). The absence of (hyper)edges indicates a zero cost. The
initial problem is FDAC but not FDPIC because value (i, a) is not fully extensible
on Δijk . Now, consider enforcing full PIC supports for the values of i. Procedure
findFullPICSupporti, j, k computes the amounts of cost for projections/extensions:
Pi[a] = Ej [b] = 1. Other shifted costs are zero. After extending a cost of 1 from (j, b) on
cij , it will call Procedure findPICSupporti, j, k, compute the amounts of shifted cost as
follows:

Pi[a] = Eij [a, b] = Eik[a, a] = Ejk[a, b] = 1.
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and perform the cost shifts. The resulting problem, presented in Fig. 14d is still not
FDPIC because value (i, b) cannot be fully extended on triangle Δijl . Then Procedure
findFullPICSupporti, j, l computes and performs the following cost shifting:

Pi[b] = Eij [b, b] = Eil[b, a] = Ejl[a, b] = 1.

The final problem, presented in Fig. 14g is FDPIC. Contrarily to hard PIC, enforcing
simple and full PIC supports can create new ternary functions, e.g., cijk, cij l . When-
ever a binary cost need to be extended to a ternary cost function that does not exist, the
ternary cost function needs to be created and initialized with an empty cost for every
tuple.

5.1.2 Soft PIC algorithms

Enforcing EDPIC requires enforcing PIC, DPIC, and EPIC simultaneously. We thus only
present an algorithm for EDPIC. PIC, DPIC, FDPIC, and EPIC algorithms can be derived
by removing blocks of code.

EDPIC is enforced by Procedure enforceEDPIC in Algorithm 4. This procedure
consists of four inner-while loops that respectively enforce EPIC, DPIC and PIC. It also
enforces NC by calling PruneVars at line 20.

The first while-loop (lines 5-7) enforces EPIC. It first puts in R all variables that need to
be checked for EPIC based on the auxiliary queue S (line 4). EPIC supports of variables i ∈

(a) (b) (c)

(d) (e) (f)

Fig. 14 Cost evolution in a CFN during the enforcement of full PIC supports a original problem with 5
binary cost functions cij , cik, cil , cjk, cjl , i < j < k < l. It is FDAC but not FDPIC because of variable
i where (i, a) and (i, b) cannot be fully extended on Δijk and Δijl respectively. b extending a cost of 1
from jb on cij with Ej [b] = 1. c extending a cost of 1 from (ia, jb), (ia, ka) and (ja, kb) on cijk with
Eij [a, b] = Eik[a, a] = Ejk[a, b] = 1. d projecting a cost of 1 from cijk on ia with Pi [a] = 1. e extending
a cost of 1 from (ib, jb), (ib, la) and (ja, lb) on cijk with Eij [b, b] = Eil [b, a] = Ejl [a, b] = 1. f projecting
a cost of 1 from cijk on ib with Pi [b] = 1 and then enforcing NC by projecting a cost of 1 from ci on c∅.
The resulting problem is FDPIC
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R are enforced by Procedure findEPICSupport (line 7). When enforcing the existential
support for i, EPIC is only responsible for triangles on which i is not the smallest variable
because DPIC will take care of the remaining ones (Algorithm 3, line 27). If i has no fully
supported value (i.e., α > 0) such a value can be created by enforcing full PIC supports for
every value of i on every triangle in which i is not the smallest variable (Algorithm 3, line
30). The EPIC supports of neighbor variables of i can also be destroyed (due to new values
of non-zero cost made by the enforcement of full PIC supports on i) and thus are pushed
back to R to be later checked for EPIC (Algorithm 3, line 31).

DPIC is enforced by the second while-loop at line 8. For a variable j ∈ P , only variables
that are linked to j by a triangle (line 10) and are the smallest variable of the triangle (lines
11, 12) are considered for checking for DPIC.

PIC is enforced by two while-loops at lines 13 and 18. For a variable j ∈ Q, every neigh-
bor variable of i is checked for PIC. For each cij ∈ T , i, j and all variables connected to
both i and j are checked for PIC. Simple PIC supports are enforced in the reverse direc-
tion of the DAC order, i.e. in triangles in which the considered variables are not the smallest
(lines 15-15, 19-19).

From Algorithm 4, algorithms for enforcing other levels of PICs can be obtained by
appropriately keeping the right inner while-loops: the first loop (lines 4-7) for EPIC, the
second one at line 8 for DPIC, the third one at line 13 for PIC, and three loops at lines 8,
13, 18 for FDPIC.
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5.2 Enforcing maxRPCs

In contrast to PICs that are enforced on triangles sharing a variable, maxRPCs are enforced
on triangles sharing two variables of a binary cost function. The extensible arc support
of a value (i, a) in a binary cost function cij is stored in maxRPCSupport[i, a, j ] and
the witness for this support on a variable k is stored in maxRPCWitness[i, a, j, k]. In
our algorithms for enforcing soft maxRPCs, we will use a parameter named fullLevel,
where fullLevel = false indicates that semi-fully extensible arc supports are used
(FDmaxRPC) and fullLevel = true indicates that fully extensible supports are used
(EmaxRPC). We will use the following functions:

– denotes the incompletely com-
bined cost of tuple (a, b, c) (excluding cij (a, b) from Δijk(a, b, c)).

– denotes the minimum incompletely combined cost
of tuples involving two values (ia, jb). This is the maximum cost that can be projected
on the pair of values (ia, jb) from two sides cik, cjk of the triangle Δijk without creating
negative costs.

is used to denote a value c ∈ Dk for which this minimum is
reached. It is a simple witness for the pair (a, b) on the variable k.

–

is similar to but it takes into account the unary cost ck of witnesses in the
case of (1) fully extensible (fullLevel=true) or (2) semi-fully extensible arc
supports on triangles w.r.t DAC order (i < k).

is used to denote the value c ∈ Dk for which this minimum is

reached. It is a (full) witness for the pair (a, b) on the variable k.

– is the maximum sum of costs that can be projected on the
pair of values (ia, jb) from all triangles Δijk sharing i, j .

– is similar to but
takes into account the unary costs of witnesses ck according to fullLevel and the

order between i and k as in the definition of .

5.2.1 Enforcing maxRPC supports and witnesses

Simple maxRPC support for a value (i, a) on cij is enforced by Procedure
findmaxRPCSupport in Algorithm 5. The main idea is to move costs from two sides
cik, cjk of all triangles Δijk to cij via cijk (lines 18-20) and finally project costs from cij

to (i, a) (line 21) in such a way that, for each triangle Δijk , there exists a value b ∈ Dj

and a value c ∈ Dk such that the binary and ternary costs involved in the tuple (ia, jb, kc)

decrease to 0. The maximum cost Pi that can be projected to (i, a) without creating negative
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costs is the minimum over all b ∈ Dj of the binary cost of (ia, jb) that can be obtained by
combining the original cost cij (a, b) and the cost that can be shifted to it from all triangles

(computed by function , line 8). From this, it becomes possible to compute the actual
cost Pij [a, b] that each triangle Δijk provides to (ia, jb) for this amount of projection to
(i, a). It is the minimum of what is needed for this pair of values (Pi − cij (a, b)) and of
what can be provided for it by Δijk (line 13). This condition guarantees that cij has enough
costs to make a unary cost projection Pi on (i, a) without creating negative costs. Moreover,
if more cost is projected on cij , this cannot lead to a unary cost projection greater than Pi .
In order to project a cost of Pij [a, b] from cijk to (ia, jb) (line 20), each side (ia, kc) and
(jb, kc) has to extend an amount of cost Eik[a, c] and Ejk[b, c] to cijk (lines 19 and 18).
These binary cost extensions Eik[a, c], Ejk[b, c] are also the minimum of the available cost
cik(a, c), cjk(b, c) that (ia, kc), (jb, kc) have and the cost that they need to provide to cijk

(lines 15, 17).
Full maxRPC supports (covering both fully extensible supports for EmaxRPC and

semi-fully extensible for FDmaxRPC) are enforced by findFullmaxRPCSupport in
Algorithm 5. The idea for enforcing a full maxRPC support for value (i, a) on cij is to
extend unary costs from j to cij (line 28) and from third variables k to cik (line 32).
Then, costs are moved in the same way as for simple maxRPC support in Procedure
findmaxRPCSupport (line 33). The maximum cost Pi that can be projected on (i, a)

is recomputed by taking into account the unary cost cj of supporting values and the unary

costs ck of witnesses via (line 25). In order to achieve this unary projection, each value
(j, b), (k, c) needs to extend respectively on cij and cik an amount of cost Ej , Ek (lines
27 and 31). The order in which costs are moved when enforcing full maxRPC supports is
described ink h Fig. 15.

An EmaxRPC support for a variable i is enforced thanks to Procedure
findEmaxRPCSupporti in Algorithm 5. It first checks the EmaxRPC property at
line 36. If there does not exist any EmaxRPC support (line 37), the procedure will
search for a full maxRPC support for any value of i in any cost function cij by calling
findFullmaxRPCSupport with the option fullLevel=true. It only has to take care
of the triangles Δijk in which i is the smallest variable, because DmaxRPC takes care of
the remaining cases (the condition at line 29 of Procedure findFullmaxRPCSupport).

Fig. 15 The order of cost movements for enforcing simple full maxRPC supports where unary cost
extensions are not included in the enforcement of simple PIC supports
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Example 3 Consider the CFN(a) in Fig. 16. It is FDPIC but not FDmaxRPC because
ia has no full AC support in cij which can be can be extended on both Δijk and
Δijl : (ia, ja) can be extended on Δijl but not on Δijk while (ia, jc) can be extended
on Δijk but Δijl . The positive projection/extension costs computed by Procedure
findFullmaxRPCSupporti, a, j,false are: Pi = 2, Ej [b] = 1. The procedure
extends a cost of 1 from jb on cij and then calls f indmaxRPC(i, a, j) which computes the
following positive projections/extension costs: Pi = Ejk[a, b] = Pij [a, a] = Ejl[c, b] =
Ejl[c, b] = Pij [a, a] = 2. The final problem presented in Fig. 16g is FDmaxRPC.

Let j be a variable that had a change in the domain Dj or in unary cost cj (increasing
from 0). The former case can break the witness for simple or semi-full supports of variable
i neighbor to j in some cij , while the last case can break the witness for semi-full and full
supports. The check and search for new witnesses is performed by Algorithm 6.

Procedure findWitnessRemove(i, k, j) handles the case of domain reduction in Dj .
For any value (i, a), it checks the availability of its current (simple or semi-full) support in
cik (line 5, algorithm 6), as well as the availability of the current witness for this support on
Dj (line 7, algorithm 6). When the current support has been lost, another support needs to
be created for (i, a) (line 11). Similarly, if the current witness is no longer available (line
10), another witness will be searched (line 8). If no witness exists (line 10), another simple
or full support needs to be searched for (i, a) according to i > k (line 13) or i < k (line 14)
respectively.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 16 Cost evolution during enforcing full maxRPC supports in a CFN (a) original problem with 5
binary cost functions cij , cik, cil , cjk, cjl and 2 ternary functions cijk, cij l , i < {j, k, l}. It is FDPIC but not
FDmaxRPC due to ia (no full maxRPC support in cij ) (b) extending a cost of 1 from jb on cij with Ej [b] = 1
(c) extending a cost of 2 from (ja, kb) on cijk with Ejk[a, b] = 2 (d) projecting a cost of 2 from cijk on
(ia, ja) with Pij [a, a] = 2 (e) extending a cost of 2 from (jc, lb) on cijk with Ejl [c, b] = 2 (f) projecting a
cost of 2 from cijk on (ia, jc) with Pij [a, a] = 2 (g) projecting a cost of 2 from cij on ia with Pi = 2 and
then making NC by projecting a cost of 2 from i to c∅. The resulting problem is FDmaxRPC
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Procedure findWitnessProject(i, k, j) handles the case where unary costs cj

become positive. This procedure is responsible for semi-full supports as it is only
called in the while-loop enforcing DmaxRPC at line 7 of Algorithm 7. It differs from
findWitnessRemove() by the fact that unary costs are taken into account when check-
ing the availability of the current supports and witnesses (line 19, 21) and when looking for

another witness ( instead of , line 22).

5.2.2 Soft maxRPC algorithms

Like PIC, EDmaxRPC includes all softening levels. We thus only present an algo-
rithm for EDmaxRPC. maxRPC, DmaxRPC, FDmaxRPC, and EmaxRPC algorithms can
be derived by keeping suitable blocks of code. EDmaxRPC is enforced by Procedure
enforceEDmaxRPC() in Algorithm 7. It consists of four inner-while loops that handle
the same propagation queues S, P,Q, T as in the EDPIC algorithm.
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The loop in line 12 enforces maxRPC by propagating domain reductions of j stored in
the queue Q. For any neighbor value (i, a) of j , the deleted values in Dj could have been:
(1) the simple maxRPC support for (i, a) when i > j ; (2) the simple witness for the simple
maxRPC supports of (i, a) in some cik when i > k; and (3) the simple witness for semi-full
maxRPC supports of (i, a) in cik (of course i < k) when i > j . The deleted values in Dj

could not have been the full supports and witnesses because they must have a cost of m to
be removed. The loop must check and search for (1) a simple maxRPC (line 15-16) and (2)
a simple witness (line 17).

The loop at line 7 enforces DmaxRPC by propagating the increase from 0 of a unary cost
cj stored in P . The predecessors i of j (such that cij exists with i < j , line 9) may have
lost full supports in cij and thus new full supports need to be searched for values of i (line
10). Moreover, the full supports in cik, i < k (line 11) can have lost full witnesses on j if
i < j (line 9) and thus need to be searched for new witnesses (line 11).

The loop at line 4 enforces EmaxRPC by processing variables in the propagation
queue R. The construction of R from the auxiliary queue S (line 3) is the same as
in EDPIC. The search for a EmaxRPC support for a variable i is done by Procedure
findEmaxRPCSupport (i) in Algorithm 5.
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The loop at line 18 enforces maxRPC by propagating changes in binary costs cij (caused
by unary cost extensions from the greater variable between i and j on cij ) stored in queue
T . Let i∗ and j∗ be respectively the greater and the smaller variable between i and j . The
modified cij :

– cannot break the full or semi-full maxRPC supports of the smaller variable j∗ because
its values have been supported by values of zero cost.

– can break the simple maxRPC supports for the values of the greater variable i∗ and thus
new supports need to be searched for such values (line 21).

– can break the witnesses for maxRPC supports in cik (line 23, 24) or in cjk (line 25, 26).

From Algorithm 7 enforcing EDmaxRPC, we can obtain algorithms for enforcing other
levels of maxRPCs by keeping the first while-loop at line 4 for EmaxRPC, the loop at line
7 for DmaxRPC, the loop at line 12 for maxRPC, and the three loops at lines 7, 12, 18 for
FDmaxRPC.

6 Experimentation

In this section we provide an experimental evaluation of our soft consistencies. During
experimentation, it quickly appeared that maintaining such strong consistencies during
search was too time consuming. We therefore decided to relax them in three different ways,
denoted as our three use cases.

The three use cases we have considered for our TRICs (triangle-based consistencies) are
denoted as:

– TRICp: uses some TRIC for pre-processing and EDAC during search.
– TRICrp: uses a restriction of some TRIC, a resTRIC (that will be explained later) for

pre-processing, and EDAC during search.
– TRICrs : uses some resTRIC for both pre-processing and during search.

Restricted TRICs (resTRICs) are defined by limiting the number of triangles to be
checked by the consistencies to some maximum. Defining the triangle density of a problem
as the ratio of its number of triangles over the number of triangles in a complete graph, we
observed that our soft consistencies are often too expensive when used for pre-processing
problems having a triangle density larger than 10−4. We have therefore chosen to bound
the number of triangles that are processed in our restricted TRICs to a maximum number
(n(n − 1)(n − 2)/6)/104 denoted as c∗. If c∗ < 10, we do not enforce resTRICs and use
EDAC only. Otherwise, we bound the number of processed triangles to c∗. When needed,
the triangles chosen to be processed are selected as follows: for each binary cost function
cij we compute its mean cost as (

∑
a∈Di,b∈Dj

cij (a, b))/(|Di | × |Dj |). Triangles are then
ranked by decreasing sum of the mean cost of the three involved binary cost functions and
the first c∗ are selected.

In order to evaluate the practical interest of establishing TRICs and their variants, we
compared them to the default local consistency enforced in toulbar2:3 EDAC. Indeed,

3http://mulcyber.toulouse.inra.fr/projects/toulbar2/ version 0.9.6 branch maxrpc.

http://mulcyber.toulouse.inra.fr/projects/toulbar2/
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Table 1 The set of benchmarks where each line corresponds to a category of benchmarks (#inst: number
of instances, n: mean number of variables, d: mean domain size, e: mean number of cost functions, r: mean
arity of cost functions, c: mean number of triangles, c′: mean number of triangles used by TRICsrp , and
Δdens: mean triangle density)

Categories #inst n d e r c c′ Δdens

CVPR 1453
ChineseChars 100 9147 2 276677 2 86557 86557 1.14E-06
ColorSeg 21 108910 9 474745 2 131805 32998 2.73E-09
GeomSurf-3 300 505 3 2140 3 8 8 4.46E-07
GeomSurf-7 300 505 7 2140 3 1366 1265 0.00018
InPainting 4 14400 4 57121 2 17732 17732 3.56E-08
Matching 4 19 19 166 2 701 0 0.679
MatchingSte 2 138407 18 414477 2 8 8 2.70E-14
ObjectSeg 5 68160 6 203947 2 31 31 5.91E-13
PhotoMont 2 469856 6 1408134 2 521 521 4.03E-14
SceneDecp 715 183 8 672 2 48 42 4.80E-05

MaxCSP 503
BlackHole 37 114 27 657 2 5375 38 0.01
Coloring 22 120 4 1323 2 1227 277 0.024
Composed 80 58 10 517 2 791 0 0.079
EHI 200 306 7 4549 2 13604 475 0.0029
Geometric 100 50 20 471 2 1694 0 0.086
Langford 4 25 22 352 2 2722 0 0.736
QCP 60 159 7 1384 2 2671 108 0.0057

MaxSAT 427

Haplotyping 100 150428 2 534105 483 61646 61646 2.39E-10
MaxClique 62 484 2 50093 2 1070886 2019 0.079
MIPLib 12 10523 2 45991 20 104 104 5.92E-07
PackupWei 99 9492 2 23731 61 9236 9236 6.87E-07
PlanWithPre 29 14991 2 111259 64 8026 8026 1.76E-06
TimeTabling 25 128243 2 785222 21 40052 40052 1.58E-09
Upgrad 100 18169 2 105097 77 1884 1884 1.88E-09

UAI 211
Grid 21 3143 2 9379 2 2 2 3.74E-08
ImageAlign 10 191 70 1819 2 6218 37 0.0058
Linkage 22 917 5 1560 4 13 13 2.23E-07
ObjDetect 37 60 17 1830 2 34220 0 1
ProteinFold 21 486 267 2291 2 4698 273 0.52
Segment 100 229 12 851 2 315 185 0.00016

CFN 226
Auction 170 140 2 3593 2 47707 57 0.0869

CELAR 16 126 44 641 2 837 46 0.228

Pedigree 10 1758 11 3247 3 70 70 3.96E-06

ProteinDsn 10 13 123 97 2 311 0 0.966
SPOT5 20 385 4 6603 3 35976 2900 0.0055
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EDAC is still the preferred local consistency for Depth First Branch-and-Bound search. We
used a large set of benchmarks, as described in Table 1, which has recently been used in
[15] for comparing the performance of the toulbar2 solver with other solvers.4 This set
consists of the following groups of benchmarks:5

– WCSP: contains cost function networks extracted from the Cost Function Library,6

including Combinatorial Auctions [18], Radio Link Frequency Assignment problems
[4], Mendelian error correction problems on complex pedigree [23], Computational
Protein Design problems [1] and SPOT5 satellite scheduling problems [2].

– MaxCSP:7 contains unsatisfiable binary CSP instances with constraints defined in
extension, including BlackHole, Langford, Quasi-group completion problem,graph
coloring, random composed, and random Geometric.

– UAI: consists of Markov Random Field problems that are collected from the Proba-
bilistic Inference Challenge 20118 and Genetic Linkage Analysis problems[13].

– MaxSAT: contains Max-SAT instances that are collected from the Max-SAT Evalua-
tion.9

– CVPR: contains MRF instances from the Computer Vision and Pattern Recognition
(CVPR) OpenGM2 benchmark.10

Our algorithms were all implemented with a time-limit after which we consider the
instance as not solved by this algorithm. For all categories of instances except ChineseChars
and GeomSurf7, the time-limit was set to 1200 seconds. For ChineseChars and GeomSurf7
we set the time-limit to 3600 seconds as the instances in these categories were significantly
harder.

Number of solved instances Table 2 reports the number of instances per category of
benchmarks that are solved by a Depth-First Branch&Bound algorithm using each con-
sistency (EDAC and TRICs implemented in the three use cases). The first block of three
lines reports the total number of instances solved by each algorithm in all categories. The
remaining lines focus on selected categories where a difference in behavior was observed.
These results show that in general TRICrp is the best choice, independently of the chosen
triangle consistency. It however works best in combination with the strongest EDmaxRPC
consistency. Then EDAC, TRICrs , and finally TRICp follow. One can observe that for the
three use cases, TRICs (especially EDmaxRPC) are very efficient on the ChineseChars and
GeomSurf7 problems, which are defined on grid graphs. While EDAC cannot solve any
ChineseChars instance (this is also the case for all the other solvers reported in [15], includ-
ing ILP and toulbar2 using VAC), TRICs can solve a certain number of instances (8 for
PIC and 16 EDmaxRPC). Similarly, TRICs can solve up to 5 % instances more than EDAC
on GeomSurf-7. The advantage of TRICs on these problems are more clearly shown in

4We only excluded from the set all 35 Minizinc instances as well as two subcategories (UAI/DBN, 108
instances and CSP/warehouse, 55 instances) that contain no triangle of binary cost functions. Over the
original 3,018 original instances, 2,820 remain.
5All the instances are available at http://genoweb.toulouse.inra.fr/degivry/evalgm.
6https://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/?root=costfunctionlib
7http://www.cril.univ-artois.fr/CPAI08/, ../lecoutre/benchmarks.html
8http://www.cs.huji.ac.il/project/PASCAL/realBoard.php
9http://maxsat.ia.udl.cat:81/13/benchmarks/
10http://hci.iwr.uni-heidelberg.de/opengm2

http://genoweb.toulouse.inra.fr/ degivry/evalgm
https://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/?root=costfunctionlib
http://www.cril.univ-artois.fr/CPAI08/
../ lecoutre/benchmarks.html
http://www.cs.huji.ac.il/project/PASCAL/realBoard.php
http://maxsat.ia.udl.cat:81/13/benchmarks/
http://hci.iwr.uni-heidelberg.de/opengm2
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Table 2 The number of instances per category solved in less than 1200 seconds (1 hour for the CVPR group).
Each block corresponds to a category of benchmarks whose name and size are given in the two first columns

Problems inst EDAC PIC DPIC FDPIC EDPIC maxRPC DmaxRPC FDmaxRPC EDmaxRPC

Summary 2820 p 2053 1972 1980 1979 1979 1967 1982 1980 1981

rp 2051 2055 2060 2058 2059 2069 2072 2074

rs 2013 2031 2030 2018 1993 2010 1992 1998

ChineseChars 100 p 0 8 8 10 10 10 9 10 16

rp 9 7 9 10 14 10 13 15

rs 9 9 10 10 11 10 12 11

GeomSurf-7 300 p 281 280 287 285 288 281 292 292 295

rp 280 284 288 290 280 292 292 294

rs 278 283 289 287 273 285 281 282

Coloring 22 p 17 18 18 17 17 18 18 18 18

rp 17 17 17 17 17 17 17 17

rs 17 17 16 16 17 16 16 16

Geometric 100 p 91 88 87 87 86 87 87 86 86

rp 92 91 92 92 92 93 91 92

rs 90 90 90 86 87 87 88 86

QCP 60 p 14 14 14 14 14 14 14 14 14

rp 14 14 14 14 14 14 14 14

rs 14 14 14 14 13 13 13 14

Haplotyping 100 p 1 1 1 1 1 1 2 2 1

rp 1 1 1 1 2 2 2 2

rs 1 1 1 1 1 1 1 1

MaxClique 62 p 33 15 14 15 14 13 12 14 13

rp 28 29 30 29 29 29 30 30

rs 24 27 24 26 23 23 22 22

MIPLib 12 p 3 3 3 3 3 3 3 3 3

rp 3 3 3 3 3 3 3 3

rs 2 2 2 2 2 2 2 2

PackupWei 99 p 52 48 47 47 47 47 46 47 47

rp 48 46 48 47 48 47 47 47

rs 41 39 42 40 41 39 40 40

Upgrad 100 p 100 100 100 100 98 100 100 99 98

rp 96 100 96 92 97 99 98 97

rs 92 100 94 92 89 96 93 91

ImageAlign 10 p 10 7 9 7 7 6 7 5 5

rp 10 10 10 10 10 10 10 10

rs 10 10 10 10 10 10 10 10

Linkage 22 p 13 13 13 13 14 14 13 15 15

rp 14 13 14 14 14 14 15 15

rs 11 10 11 10 9 10 10 9

ProteinFold 21 p 19 10 10 10 10 10 10 10 10

rp 20 20 20 20 20 20 20 20

rs 20 20 20 20 20 20 19 20
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Table 2 (continued)

Problems inst EDAC PIC DPIC FDPIC EDPIC maxRPC DmaxRPC FDmaxRPC EDmaxRPC

Segment 100 p 100 100 100 100 100 100 100 100 100

rp 99 100 100 100 99 99 100 100

rs 98 100 99 98 98 100 98 98

Auction 170 p 166 126 128 130 129 125 129 129 125

rp 167 167 166 167 167 167 167 165

rs 154 156 156 154 147 146 146 144

CELAR 16 p 12 4 4 3 3 3 3 3 3

rp 12 12 11 11 12 12 12 12

rs 11 12 11 11 11 11 11 11

Matching 4 p 4 4 4 4 4 2 4 0 0

rp 4 4 4 4 4 4 4 4

rs 4 4 4 4 4 4 4 4

ProteinDsn 10 p 9 5 5 5 5 5 5 5 4

rp 9 9 9 9 9 9 9 9

rs 9 9 9 9 9 9 9 9

The number of instances per category solved by EDAC and TRICs are respectively given in the 3rd and the
8 last columns. Three lines of the combined blocks correspond respectively to the three use cases: TRICsp ,
TRICsrp and TRICsrs . For the categories absent from the table, TRICsp , TRICsrp and TRICsrs give the
same result as EDAC. Best results are in bold

Table 3: many instances cannot be solved in 1 hour by maintaining EDAC but can be solved
by TRICs in less than 100 seconds.

On the rest of the benchmarks, especially on categories having a very large mean triangle
density such as Geometric, MaxClique, ProteinFold, Auction and CELAR (respectively
0.086, 0.079, 0.52, 0.0869 and 0.228), TRICp becomes worse than EDAC and solves 5,5 %,
64 %, 47 %, 25 % and 75 % less instances respectively. The same behavior is observed on
PackupWei (decrease by 11,5 %). For these problems, the restricted versions TRICrp can
significantly improve the efficiency of TRICp and give results comparable to EDAC, thanks
to the reduction in the number of triangles processed. In all cases, TRICrs are less efficient
than TRICrp .

In Fig. 17 we present a cactus plot over all instances of all categories. This gives us
an overall view on the performance of our 18 TRICs and EDAC. This cactus plot makes
obvious that TRICsrp are consistently the best while TRICsp are the worst, not only in
terms of the number of solved instances, as shown in Table 2, but also in terms of running
time. EDAC is ranked somewhere among the worst of the TRICsrp use case. EDmaxRPCrp ,
FDmaxRPCrp , and DmaxRPCrp are the three algorithms that seem to be the more reliable,
being among the best whatever the time allowed. Surprisingly, there is no consistency that
clearly outperforms the others on all use cases.

The apparent dominance of TRICSrp over TRICSp is also the direct consequence of the
presence of a number of relatively easy instances in our set of benchmark problems. As we
have seen, on families of hard instances, TRICSp can be more efficient than TRICSrp .

Number of backtracks Figure 18 presents the mean number of backtracks, computed
over all instances that could be solved by all approaches, for EDAC and the three use cases
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Table 3 Solving time (in seconds) for maintaining EDAC and using TRICsp for a subset of benchmarks

Problem EDAC PIC DPIC FDPIC EDPIC maxRPC DmaxRPC FDmaxRPC EDmaxRPC

ChineseChars (TST )

0012 88 103 − 195 575 34 41 21 119 27 44

0020 96 94 − − 2647 249 260 363 1709 158 158

0024 88 126 − − − − − − − − 662

0027 88 109 − − − − − − − − 865

0041 88 96 − − − 3149 1569 269 − 760 114

0047 112 121 − 215 83 23 49 18 26 28 64

0052 96 107 − 1230 3564 1842 154 77 690 183 46

0059 104 73 − 130 93 37 32 11 28 20 33

0067 96 121 − 201 590 117 143 47 151 41 76

0070 88 96 − 460 2194 392 158 56 210 99 73

0084 120 115 − − − − − − − − 416

0087 88 124 − − − − − − − − 1910

0089 72 92 − − − − − − − − 1148

0099 72 105 − 502 2012 112 101 30 347 65 75

0100 80 102 − 1199 − 591 532 227 1577 402 78

GeomSurf−7

gm113 1487 − 349 254 486 678 166 95 138

gm125 − − 1877 2938 − − 344 274 2516

gm126 − − 2135 − − − 1196 119 201

gm144 − − − − 2806 − 2770 1461 1481

gm157 − − 1914 2173 − − 403 438 262

gm169 − − − − 3146 − 2108 2971 962

gm179 − 1431 366 806 137 − 74 72 67

gm186 − − − − 1674 − 951 842 223

gm187 − − 2206 365 281 − 685 600 182

gm189 − − − − − − − − 2961

gm223 − − 2383 − 922 − 477 426 1473

gm246 − − − − − − − − 1744

gm256 − − − − − − − − 2291

gm25 1490 − 1387 − 653 2880 279 171 395

gm269 − − − 1656 452 − 1046 2948 1182

gm275 − − − − − − 1180 2664 568

This subset contains only ChineseChars and GeomSurf-7 instances that respectively can and cannot be
solved by one of the consistencies in 1 hour. “−” means that the problem cannot be solved. Best results are
in bold

of TRICs. It shows that the number of backtracks is consistent with the strength of the con-
sistencies. In almost all use cases, TRICs use less backtracks than EDAC, TRICsp being
the best. Compared to EDAC, (1) TRICsp reduce the number of backtracks by 35 % (2)
TRICsrp only slightly decrease the number of backtracks because of their reduced strength,
and on many categories of benchmarks with a significantly reduced number of triangles
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Fig. 17 Cactus plot on the full set of benchmarks. A point (x, y) for a method m on this diagram means that
method m is able to solve x problems if a deadline of y seconds is used for each problem independently

they become almost equivalent to EDAC (3) TRICsrs produce a smaller number of back-
tracks than TRICsrp (thanks to the strengthened filtering during search) but still larger than
TRICsp (because of their significant reduced strength).

To summarize these experiments, it appears that some problems, as illustrated by the
ChineseChars and GeomSurf7 cases, require the tightened lower bounds offered by TRICs
to be solved. On these problems, when using TRICs for pre-processing, we can actually
solve more instances in less time than EDAC. On these problems, restricted versions slightly
reduce the advantage of TRICs. However, on problems having large triangle density, TRICs
becomes significantly slower and thus solve less instances than EDAC. In these cases, using
the restricted versions for pre-processing allows to improve the results. Finally, when the

Fig. 18 The mean number of backtracks, computed on the overall set of benchmarks, that are used by EDAC
and TRICs in the three use cases
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restricted TRICs are applied during both pre-processing and search, they always behave
worse than when used for pre-processing only.

7 Conclusion

In this paper, we have proposed six softening levels for strong triangle-based consistencies.
This gives rise to eighteen soft extensions of hard RPC, PIC and maxRPC to CFNs. We
have done a pairwise comparison of all these consistencies, among themselves and against
their AC counterparts. We have shown that the new consistencies are strictly stronger than
their AC counterparts in the sense that they provide tighter lower bounds than ACs. This
improvement in lower bound is important for reducing the number of backtracks and for
accelerating search. We have proposed algorithms for enforcing the soft consistencies of
the PIC and maxRPC families. The experimentation shows that our soft consistencies are
efficient when applied as a pre-processing on graphs with a relatively low triangle density
such as ChineseChars and GeomSurf-7, defined on grid graphs. However, their performance
decreases on graphs having a large triangle density. To make these soft consistencies prac-
ticable on problems where the number of triangles is large, we designed a restricted version
by limiting the number of triangles to be processed. The best choice overall seems to be to
use this restricted version for pre-processing and to switch to EDAC during search.
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of JFPC-13.

13. Favier, A., de Givry, S., Legarra, A., & Schiex, T. (2011). Pairwise decomposition for combinatorial
optimization in graphical models. In Proc. of IJCAI’11. Barcelona, Spain.



264 Constraints (2017) 22:230–264

14. Freuder, E.C., & Elfe, C.D. (1996). Neighborhood inverse consistency preprocessing. In Proc. of
AAAI’96. Portland, OR.

15. Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M., & de Givry, S. (2016).
Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization. In Proc. of
CP-AI-OR’2016. Banff, Canada.

16. Larrosa, J. (2002). On arc and node consistency in weighted CSP. In Proc. AAAI’02, pp. 48–53.
Edmondton, CA.

17. Larrosa, J., de Givry, S., Heras, F., & Zytnicki, M. (2005). Existential arc consistency: getting closer to
full arc consistency in weighted CSPs. In Proc. of the 19th IJCAI, pp. 84–89. Edinburgh, Scotland.

18. Larrosa, J., Heras, F., & de Givry, S. (2008). A logical approach to efficient max-sat solving. Artificial
Intelligence, 172(2-3), 204–233.

19. Larrosa, J., & Schiex, T. (2003). In the quest of the best form of local consistency for weighted CSP. In
Proc. of the 18th IJCAI, pp. 239–244. Acapulco, Mexico.

20. Larrosa, J., & Schiex, T. (2004). Solving weighted CSP by maintaining arc consistency. Artificial
Intelligence, 159(1-2), 1–26.

21. Lee, J., & Leung, K. (2009). Towards efficient consistency enforcement for global constraints in
weighted constraint satisfaction. In Proc. of the 21rd IJCAI, pp. 559–565. Pasadena (CA), USA.

22. Lee, J., & Leung, K. (2012). Consistency techniques for flow-based projection-safe global cost functions
in weighted constraint satisfaction. Artificial Intelligence, 43, 257–292.

23. Sánchez, M., de Givry, S., & Schiex, T. (2008). Mendelian error detection in complex pedigrees using
weighted constraint satisfaction techniques. Constraints, 13(1-2), 130–154.

24. Schiex, T. (2000). Arc consistency for soft constraints. In Principles and Practice of Constraint
Programming - CP 2000, LNCS, vol. 1894, pp. 411–424. Singapore.

25. Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: hard and easy
problems. In Proc. of the 14th IJCAI, pp. 631–637. Montréal, Canada.
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