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Abstract. In genomic selection, when candidate animals for reproduc-
tion are selected on an estimate of their breeding value from genomic
information (using Single Nucleotide Polymorphims (SNP) chips), it is
needed to build a reference population whose members are both geno-
typed on the SNPs and phenotyped for the economical trait(s) to be im-
proved. We studied, with numerical simulations of such genomic selection
plan, how to optimize the design of this reference population. The prob-
lem is summarized as minimizing a quadratic function on Boolean vari-
ables with a cardinality constraint. Integer linear/quadratic/constraint
programming and weighted Max-SAT and CSP solvers are compared on
a few examples.

1 Introduction

Thanks to the discovery of very abundant Single Nucleotide Polymorphisms
(SNP) and availability of high throughput genotyping technologies, genomic se-
lection, as described by [8] more than ten years ago, became realistic and rapidly
turned to be the new standard in Dairy cattle breeding schemes [16]. Its appli-
cation to other species is still a matter of discussion, as described for instance by
[18] in pig or [17] in sheep. Genomic selection schemes comprise two steps. The
estimation step, performed from phenotypes and genotypes recorded in a refer-
ence population, provides estimations of SNPs effects on the quantitative trait
of interest. Different models were proposed for these estimations, the simplest,
Genomic Best Linear Unbiased Prediction (GBLUP), modeling the performance
as the sum of fixed nuisance effects and all SNPs random effects with a prior in a
Gaussian distribution of known variance [8]. The selection step comprises an es-
timation of Genomic Breeding Values (GBV) merging the genotypic information
about each candidate and the SNP effects previously estimated.

Amongst other factors, the efficiency of genomic selection largely depends on
the design of the reference population [1, 11]. There are increasing evidence that
closer the reference population to the selected population is, more precise the
genomic evaluation will be. As an example, between breeds designs with SNPs
estimated in a breed and selection candidates belonging to another breed (e.g.
Jersey and Holstein breeds in dairy cattle) are efficient only with very dense
SNP chips [14].



The present work aims at providing a tool for optimizing the reference pop-
ulation design. Populations displaying realistic linkage disequilibrium structures
were simulated. Efficiency of different reference population designs were evalu-
ated from the mean correlation between true and GBLUP estimated breeding
values. As in [13], this criterion was used as an objective function to be maxi-
mized given a constraint of the reference population size. This paper describes
a new approach to perform this optimization using a Taylor approximation in
the framework of integer linear/quadratic/constraint programming and weighted
Max-SAT/CSP.

2 The genomic selection design problem

The phenotyped population has np individuals. Among them, we want to select
nr individuals, forming the reference population, to be genotyped on m markers.
The candidate population has nc individuals, different of those in the phenotyped
population. These candidate individuals are assumed to be already genotyped.

We assume a GBLUP linear mixed model [19] for the observed phenotypes
of the reference population with the genetic effects modeled as random effects
(and no fixed effects for the purpose of this study). In matrix notation, we have:

y = Xq + e

where y = (y1, . . . , ynr
) is the column vector of observed (single value) phe-

notypes for the reference population, X = (∀l ∈ [1, nr],∀i ∈ [1,m] xli) the
matrix of recentered genotypes for the reference population with nr rows and m
columns, q = (q1, . . . , qm) is the column vector of m random genetic effects, and e
is a vector of independent and identically distributed random error terms repre-
senting an environmental deviation. For each genotype, we have xli = ali − 2fi,
where ali ∈ {0, 1, 2} is the number of alleles Ai possessed by individual l at
marker i (having two possible alleles Ai, Bi), and fi is the frequency of Ai in the
population.

q and e follow a normal distribution with zero mean and different variances:

∀i ∈ [1,m], qi ∼ N (0, σ2
q ) and e ∼ N (0, σ2

e). We denote λ =
σ2
e

σ2
q
, a known

parameter value in our simulation. It can be shown that λ is related to heritability

h2 of the observed phenotypes: λ =
(1−h2)2

∑m
i fi(1−fi)
h2 .

The estimation of the random genetic effects q̂ = (q̂1, . . . , q̂m) is obtained by
the following formula [19]:

q̂ = (XTX + λI)−1XT y

We define the quality of this estimation on the candidate population by
the mean square Pearson correlation r2g,ĝ = 1

nc

∑nc

k r2gk,ĝk , by marginalizing the
phenotypes, where gk = wkq is the genotypic value of individual k and ĝk = wkq̂
its estimate, with wk = (wk1, . . . , wkm) is the row vector of recentered genotypes
of individual k in the candidate population.



Using standard calculus we get:

r2gk,ĝk =
cov2(gk, ĝk)

var(gk)var(ĝk)
=
var(ĝk)

var(gk)
= 1− λwk(XTX + λI)−1wTk

wkwkT

Our goal is to maximize the quality of the estimation, that is to minimize:

D(X) = λ

nc∑
k

wk(XTX + λI)−1wTk
wkwkT

= λ

nc∑
k

w̃k(XTX + λI)−1w̃Tk

with ∀k ∈ [1, nc],∀i ∈ [1,m] w̃ki = wki√∑m
j w2

kj

, the normalized genotypes in the

candidate population.

For m = 2, we have:

D(X) = λ

nc∑
k

(w̃k1, w̃k2)(XTX + λI)−1(w̃k1, w̃k2)T

= λ

nc∑
k

w̃2
k1(v2 + λ) + w̃2

k2(v1 + λ)− 2w̃k1w̃k2c

(w̃2
k1 + w̃2

k2)((v1 + λ)(v2 + λ)− c2)

with v1 =
∑nr

l x2l1, v2 =
∑nr

l x2l2, and c =
∑nr

l xl1xl2.

For the general case, we will approximate the matrix inversion by using a
Taylor approximation. In the case of a Taylor approximation of order 1, we
have:

D(X) = λ

nc∑
k

w̃k(XTX + λI)−1w̃Tk

=

nc∑
k

w̃k(
XTX

λ
+ I)−1w̃Tk

≈
nc∑
k

w̃k(I − XTX

λ
)w̃Tk

≈
nc∑
k

m∑
i

w̃2
ki −

1

λ

nc∑
k

m∑
i

w̃ki

m∑
j

w̃kj

nr∑
l

xlixlj

We can rewrite this objective function by introducing Boolean variables δl ∈
{0, 1} for all individuals in the phenotyped population (l ∈ [1, np]). We denote zli
the recentered genotype of individual l at marker i in this population (whereas
xli is on the reference population).



We have:

D(X) ≈
nc∑
k

m∑
i

w̃2
ki −

1

λ

nc∑
k

m∑
i

w̃ki

m∑
j

w̃kj

np∑
l

δlzlizlj

D(X) ≈ D1(X) =

nc∑
k

m∑
i

w̃2
ki︸ ︷︷ ︸

a

− 1

λ

np∑
l

nc∑
k

(
m∑
i

w̃kizli

)2

︸ ︷︷ ︸
bll

δl

In the case of a Taylor approximation of order 2, we have:

D(X) ≈ D2(X) =

nc∑
k

w̃k(I − XTX

λ
+

(XTX)2

λ2
)w̃Tk

=

nc∑
k

m∑
i

w̃2
ki −

1

λ

nc∑
k

m∑
i

w̃ki

m∑
j

w̃kj

nr∑
l

xlixlj

+
1

λ2

nc∑
k

m∑
i

w̃ki

m∑
j

w̃kj

m∑
h

(

nr∑
l

xlixlh)(

nr∑
l

xlhxlj)

=

nc∑
k

m∑
i

w̃2
ki −

1

λ

nc∑
k

m∑
i

w̃ki

m∑
j

w̃kj

np∑
l

δlzlizlj

+
1

λ2

nc∑
k

m∑
i

w̃ki

m∑
j

w̃kj

m∑
h

(

np∑
l

δlzlizlh)(

np∑
o

δozohzoj)

Finally we reorganize the terms depending on the different combinations of
δl variables.

D2(X) = a− 1

λ

np∑
l

bllδl +
1

λ2

np∑
l

np∑
o

(
m∑
h

zlhzoh

) nc∑
k

(
m∑
i

w̃kizli

) m∑
j

w̃kjzoj


︸ ︷︷ ︸

blo

δlδo

= a− 1

λ

np∑
l

bllδl +
1

λ2

np∑
l

np∑
o

(
m∑
h

zlhzoh

)
blo︸ ︷︷ ︸

clo

δlδo

To conclude we are going to minimize a quadratic objective function with
np(1 + np) terms, np Boolean variables (δl ∀l ∈ {1, . . . , np}), and an additional
linear cardinality constraint

∑np

l δl = nr. Note that the time for computing
the objective function coefficients is already O(n2pncm). Depending on the size
of this minimization problem, it can be solved by complete search methods
(e.g., best-first or depth-first Branch and Bound) or by local search methods
(e.g., simulated annealing or Tabu search) in the framework of integer lin-
ear/quadratic/constraint programming and weighted Max-SAT/CSP.



3 Integer linear/quadratic/constraint programming
models

We add n2p extra variables γlo in order to linearize the quadratic objective func-
tion. For every pair of Boolean variables (δl, δo), there is a Boolean variable γlo
that is equal to 1 iff δl = δo = 1. We have the following 0/1 linear programming
(01LP) formulation:

min

np∑
l

np∑
o

cloγlo − λ
np∑
l

bllδl

s.t.

np∑
l

δl = nr

δl + δo ≤ 1 + γlo (∀l ∈ {1, . . . , np}, o ∈ {1, . . . , np})
γlo ≤ δl (∀l ∈ {1, . . . , np}, o ∈ {1, . . . , np})
γlo ≤ δo (∀l ∈ {1, . . . , np}, o ∈ {1, . . . , np})

By removing the last three inequations and replacing γlo by δl ∗ δo, we get
a 0/1 quadratic programming (01QP) formulation. The same 01QP formulation
can be used by constraint programming (CP) languages such as MiniZinc [6].
By removing the cardinality constraint, we get a pure boolean quadratic opti-
mization (BQO) formulation.

4 Weighted CSP and weighted Max-SAT models

A Weighted Constraint Satisfaction Problem (WCSP) [7] P is a triplet P =
(X,F, k) where X is a set of variables and F a set of cost functions. Each variable
x ∈ X has a finite domain of values that can be assigned to it. A cost function
f(S) ∈ F , with scope S a sequence of distinct variables of X, is a function which
associates to every assignment t of its variables a positive integer in [0, k] where
k is a maximum integer cost used for representing forbidden assignments.

The Weighted Constraint Satisfaction Problem is to find a complete assign-
ment t minimizing the total cost W =

∑
f(S)∈F f(t[S]) where t[S] denotes the

projection of t over variables S. This optimization problem has an associated
NP-complete decision problem.

The genomic selection cost minimization problem hasX = {δ1, . . . , δnp
, x1, . . . , xnp+1},

all δl (resp. xl) domains are equal to {0,1} (resp. [0, nr]), F = {f(δl)∀l ∈
{1, . . . , np}} ∪ {f(δl, δo)∀l × o ∈ {1, . . . , np}2, l 6= o} ∪ {f(x1), f(xnp+1)} ∪
{f(xl, δl, xl+1)∀l ∈ {1, . . . , np}}, and k = +∞.

We define:

∀l ∈ {1, . . . , np} f(δl) = b0.5 +M(λbll(1− δl) + cllδl)c if cll ≥ 0



= b0.5 +M(λbll − cll)(1− δl)c if cll < 0

∀l × o ∈ {1, . . . , np}2, l 6= o f(δl, δo) = b0.5 +Mcloδlδoc if clo ≥ 0

= b0.5 +Mclo(δlδo − 1)c if clo < 0

f(x1) = 0 if x1 = 0

f(x1) = k if x1 6= 0

f(xnp+1) = 0 if xnp+1 = nr

f(xnp+1) = k if xnp+1 6= nr

∀l ∈ {1, . . . , np} f(xl, δl, xl+1) = 0 if xl + δl = xl+1

= k if xl + δl 6= xl+1

with M a large value used to convert real numbers into integers (rounding to
the nearest integer). We have W ' D2(X) + C, where C is a positive con-
stant shift value used in order to keep all cost functions positive. Cost functions
f(xl, δl, xl+1) are used to decompose the cardinality constraint

∑np

l δl = nr
into an equivalent set of low arity cost functions, by introducing extra counting
variables {x1, . . . , xnp+1}.

By removing the part for encoding the cardinality constraint, we get a for-
mulation ready for Max-SAT solvers.

5 Preliminary results

5.1 Simulation of genomic data

A population with a linkage disequilibrium (LD) extent comparable to one found
in a real sheep population (Manech Tête Rousse breed) was simulated with the
QMSim software [15]. For that, a historical population of 20, 000 individuals was
simulated for 1, 050 generations by considering an equal number of individuals
from both sexes, discrete generations, random matings, no selection and no mi-
gration to create an initial LD, and establish a mutation-drift equilibrium state.
For the first 1, 000 generations, the population size was decreased to 2, 000 indi-
viduals and then increased to 16, 000 individuals within the last 50 generations
to create a bottleneck and eventual decrease in effective population size as known
in domestic animals. Furthermore, 15, 000 females and 350 males from the last
historical generation were used as founders of the selected population. From the
founder population, 10 overlapping generations of selection (with 20% and 30%
replacement rate for females and males, respectively) and random mating were
simulated as contemporary born animals. For the purpose of this study, females
from generations 8 and 9 served as the phenotyped population, i.e., np ≤ 20, 928,
where to select the reference population, and males from generation 10 were used
as the candidate population, i.e., nc ≤ 10, 453. The simulated genome consisted
of m = 10, 000 SNP markers, equally spaced across 5 chromosomes of 100 cM
each and 2.5 ∗ 10−5 mutation rate per marker.



5.2 Comparison of 01LP, 01QP, 01BQO, CP, Max-SAT, WCSP
solvers

We compare the models described in Section 3 and 4, in terms of CPU-time, for
solving the Taylor approximation of order 2. We vary the problem size np from 20
to 200, and experiment with different ratios nr

np
from 0.25 to 0.5. We also compare

with an unconstrained model where the cardinality constraint
∑np

l δl = nr has
been discarded.

We compare the 01LP solver SCIP (version 1.2.0), the 01LP and 01QP solver
IBM ILOG cplex (version 12.4.0.0), the semidefinite programming based BQO
tool BiqMac [12], the pseudo-Boolean solvers clasp (version 2.0.4) and SAT4J

(version 2.3.4), the CP solver mistral (version 1.3.40), the Max-SAT solvers
minimaxsat [5] and maxhs [3] (both using the tuple encoding as described in [2]),
all solvers using default options, and the WCSP solver toulbar2 (version 0.9.63)
using default options except an initial limited discrepancy search phase [4] with
a maximum discrepancy of 2 (option -l=2 and no initial upper bound). SCIP,
toulbar2, and mistral are accessed via the Python multi-solver modeling in-
terface offered by NumberJack4. All real value coefficients in the models are
multiplied by M = 0.01 and rounded to the nearest integer, ensuring complete-
ness of the solvers. We measured the search effort for finding the optimum and
proving optimality as reported in Table 1.

For the smallest instances (np ∈ [20, 100]), the quadratic programming solver
QP/cplex and the semidefinite programming based boolean quadratic optimiza-
tion tool BiqMac, used in the unconstrained case only, clearly dominate the other
solvers. For the largest instances (np ∈ {200}), all the approaches failed to solve
the problem in less than 10 hours.

In order to solve large problems (up to np = 200), we use a two-step proce-
dure. First, we apply a local search method, called ID Walk for Intensification /
Diversification Walk [10], available as a library [9]5 integrated in toulbar2. Due
to its neighborhood structure (changing only one variable assignment per move),
ID Walk can only be applied to the unconstrained problem. We perform 1 run
of ID Walk with 10,000 iterations, selecting at random among 200 candidate
neighbors. The best solution found by the local search method is then used as a
pre-selection of the individuals6 such that the second step is done by a complete
search method (using SCIP) to satisfy the cardinality constraint. The resulting
two-step procedure is called ID Walk&SCIP.

For the smallest instances solved optimally by complete search methods
(np ∈ [20, 100]), ID Walk&SCIP always found the optimum for the unconstrained

3 http://mulcyber.toulouse.inra.fr/projects/toulbar2
4 http://numberjack.ucc.ie/ and http://github.com/eomahony/Numberjack/

tree/fzn.
5 INCOP version 1.1 http://www-sop.inria.fr/coprin/neveu/incop/

presentation-incop.html
6 Either by discarding the remaining unselected individuals if too many individuals

have been selected by the local search method, or by fixing the selected individuals
if they are less than the required number nr.



problems. The distance to the optimum increases slightly when the required
number nr is (very) different than the one found for the unconstrained case,
e.g., being up to 34% for np = 100, nr = 50 as reported in Table 2. The over-
all time of the two-step procedure is clearly dominated by its second step, e.g.,
unfinished after 10 hours for np = 200, nr = 100, which means that the pro-
posed approach should scale to larger problems only if nr is close to the optimal
unconstrained number of selected individuals.

Table 1. Time in seconds of complete search methods (−: unsolved after 10 hours,
N/A: non applicable for BiqMac,minimaxsat, and maxhs, which were applied only in the
unconstrained case). For unconstrained instances, the number of selected individuals
(nr) in the optimal solution is given in parentheses.

SCIP cplex QP/cplex BiqMac clasp SAT4J mistral minimaxsat maxhs toulbar2

np nr = 25%

20 0.7 0.3 0.02 N/A 0.01 0.7 1.3 N/A N/A 0.16
40 15.8 6.7 0.51 N/A 8, 680 − − N/A N/A 48.7
60 942.8 1, 089 12.3 N/A − − − N/A N/A −
100 − − 223.2 N/A − − − N/A N/A −
200 − − − N/A − − − N/A N/A −
np nr = 50%

20 2.5 1.0 0.02 N/A 0.8 3.4 19.3 N/A N/A 0.14
40 101.1 22.7 0.65 N/A − − − N/A N/A 77.2
60 − 26, 853 9.3 N/A − − − N/A N/A −
100 − − 1, 031 N/A − − − N/A N/A −
200 − − − N/A − − − N/A N/A −
np nr unconstrained (found nr = (9, 15, 21, 25) resp. for np = (20, 40, 60, 100))

20 1.9 1.1 0.02 0.86 1.1 5.3 19.8 2.1 14.7 0.04
40 94.5 68.3 1.1 13.7 − − − 4, 781 − 5.0
60 − 20, 249 22.4 29.8 − − − − − 11, 062
100 − − 348.1 87.8 − − − − − −
200 − − − − − − − − − −

6 Conclusion

We have presented an optimization problem occuring in the context of genomic
selection design. Finding the optimal reference population can be approximated
by a quadratic minimization problem on Boolean variables with a cardinality
constraint. Preliminary results showed that only quadratic programming solvers
such as cplex and the semidefinite programming based boolean quadratic op-
timization tool BiqMac, in the unconstrained case, are able to solve optimally



Table 2. Relative distances between the best solutions found by the local search
method ID Walk followed by SCIP post-processing and by a complete search method
(QP/cplex). CPU-times in seconds for ID Walk and SCIP are given in parentheses
when appropriate.

ID Walk&SCIP

nr/np

np 25% 50% Unconstr.

20 0.17%(0.3 + 0.1) 0%(0.3 + 0.03) 0%(nr = 9)
40 0.32%(0.6 + 0.39) 4.17%(0.6 + 1.17) 0%(nr = 15)
60 0.59%(0.9 + 0.64) 4.56%(0.9 + 9.17) 0%(nr = 21)
100 0%(1.4 + 2.47) 34.2%(1.4 + 18, 684) 0%(nr = 25)
200 14.32%(2.8 + 22, 746) 55.16%(2.8 + 36, 000) 0%(nr = 35)

the Taylor approximation of order 2 for a phenotyped population up to 100 in-
dividuals. Also, performances of all the solvers vary based on the tightness of
the cardinality constraint. These results are useful to assess the quality of local
search methods, which are able to tackle much larger problems. Moreover, we
have shown how to combine a local search and a complete method in a sim-
ple two-step procedure, while degrading the solution quality when the desired
number of selected individuals differs significantly from the local search solution.
More experiments remain to be done to better distinguish the quality of the two
Taylor approximations, and to analyze the performance of local search methods
on realistic datasets (np ≈ 10, 000) and the properties of the resulting reference
population structures.
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