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Abstract

We present a library called ToOLS for the design of customized tree search algo-
rithms in a Constraint Programming (CP) framework. We separate the description
of search algorithms into three parts: a refinement-based search scheme which de-
fines a complete search tree, a set of conditions for visiting nodes which specifies
a parameterized partial exploration, and a temporal strategy for combining sev-
eral partial explorations. This library allows to express most of the partial, i.e.
non systematic backtracking, search methods and also, a specific class of hybrid
local/global search methods called Large Neighborhood Search, which is very nat-
urally suited to CP technology. Variants of those methods are easy to implement
with the ToOLS primitives. We demonstrate the expressiveness and efficiency of the
library by solving a mission management problem which is a mix between a travel-
ing salesman problem with time windows and a knapsack problem. Several partial
and hybrid search methods are compared. The best results we get are close to the
ones obtained by a dedicated algorithm and drastically outperform CP approaches
based on classical depth-first search methods.

Introduction

The purpose of ToOLS 1 (Templates of On-Line Search) is twofold: (i) to help a constraint
programmer to build complex customized search algorithms and (ii) to offer ready-made
search components for engineers, improving algorithm reuse and capitalization. This
paper concerns the first point. ToOLS is part of a finite-domain constraint solver library

1This work was partially funded by the RNRT EOLE project [10].



called Eclair [29] developed in the high-level language Claire 2 [7]. Our main contribution
is to propose a global approach for the design of partial and hybrid search algorithms.
This approach allows to propose a set of search primitives.

Due to the exponential complexity of many combinatorial optimization problems,
the size of a complete search tree is often intractable. In practice, in a limited amount
of time, a search algorithm explores a subpart of its complete tree only. Depth-first
search explores the bottom-left part only. Partial search methods, as introduced in [4],
explore other parts of the tree, by diversifying their exploration. In most cases, partial
search methods provide better results than depth-first search for a given time limit. We
distinguish four approaches:

• Iterative weakening methods solve the same problem repeatedly with some search
restrictions progressively relaxed at each iteration. See, for instances, iterative
broadening (IB) [11] which uses an artificial breadth cutoff, limited discrepancy
search (LDS) [17] which uses a maximum number of discrepancies along all the
search paths and depth-bounded discrepancy search (DDS) [32] which allows dis-
crepancies high in the tree by means of an iteratively increasing depth bound.

• Real-time heuristic search methods adapt some cutoff parameters depending on a
given time limit. For instance, [9] dynamically adjust the approximation degree of
an approximate branch and bound algorithm.

• Iterative sampling methods perform a sequence of greedy searches by randomizing
their value heuristic [6] or their variable heuristic [14]. In order to improve the
quality of the solutions, [14] uses a limited amount of backtrack in every search.

• Interleaving methods solve simultaneously different parts of a single search tree,
as in interleaved depth-first search [25], or different search trees, as in algorithm
portfolios [13].

Most partial search methods apply conditions for visiting nodes, they change the explo-
ration order and they perform several explorations. A very interesting research direction
is the establishment of links between partial search methods and local search methods
to eventually hybridize both methods. In particular, a promising hybrid approach is
called large neighborhood search (LNS) [30]. It consists in a local search method whose
neighborhood is explored by a partial search method. Large neighborhoods diminish the
risk of being stuck in local minima. The authors of [28] were the first to show the interest
of performing a large neighborhood search in a constraint programming framework. The
neighborhood space is explored in an efficient way thanks to constraint propagation, cost
pruning and partial exploration techniques. LNS applies the branch and bound principle
during the neighborhood search. It implies a local descent strategy allowing only bet-
ter solutions to be found from one neighborhood search to another. A technique called
variable neighborhood search [15] is used to escape from local minima produced by this
descent strategy. The main observation is that partial and hybrid search methods can
be characterized by the way they generate search trees and by the way they explore them.

Constraint programming is well known for its declarative nature in problem modeling
but it has lacked until recently the same feature for the design of search procedures. First

2Claire is copyright of Yves Caseau. ToOLS and Eclair are copyright of Thales.



Localizer [26] was proposed for local search algorithms. It is based on invariants instead
of constraints, and does not use constraint propagation. SaLSA [21] was a first attempt
to provide a language that unifies global and local search methods extending the concept
of choice point. A first implementation was made at Thales. The complexity of the
language and its lack of operators for building iterative or LNS methods induced us to
restrict the scope of the search functionalities and to focus this scope on a specific class
of local/global hybridization. OPL [20] is a major step towards the proposal of a high-
level language for global search. The readability of the language, due to its imperative
programming approach, which is very important from a software engineering point of
view, convinced us to follow the same approach. The expressiveness of OPL is very high
but it is a “closed” language (the interface with other general-purpose languages such as
C/C++ is at the compiled level) difficult to extend. ToOLS is an object-oriented library
part of Eclair . Adding new primitives and new templates (encapsulating parts of search
algorithms) is easy. ToOLS and Eclair are written in the Claire [7] programming language
which offers most of the programming facilities given by OPL: objects (classes are objects
also), efficient set operators, associative arrays (for sparse arrays), garbage collecting and
support for backtracking. [27] introduced a unified approach for the design of partial
search methods based on a priority queue used to store the current set of open search
nodes (as in best-first search). This approach has a potential risk of memory explosion
that becomes problematic in case of large scale combinatorial optimization problems.
ToOLS keeps the depth-first search principle always. Only the current search path is
stored, avoiding any memory problems. For iterative weakening methods, ToOLS will
revisit search nodes while [27] will perform state recomputation.

Compared to the previously cited approaches, the main advantages of ToOLS are:

• Expressiveness. A unified approach for the design of partial and hybrid search
methods based on the notion of partial exploration.

• Adaptability. A single search scheme can perform a variety of different searches
from a greedy search to a complete search depending on an explicit tuning strategy
of cutoff parameters.

• Readability. A set of primitives to express complex partial explorations in a
declarative way.

The rest of this paper is organized as follows. Section 1 presents the way of designing
partial and hybrid search algorithms in ToOLS . Section 2 describes the experiments we
made on a benchmark in order to validate our approach.

1 Designing complex tree search algorithms in ToOLS

The novelty of this library is to separate the design of a search algorithm into three
distinct components. The first one defines a complete search tree. The second one ex-
plores the tree partially. The third one defines a temporal strategy for making several
partial explorations. Each component can be reused separately. A search algorithm is
a Claire object created by a functional composition of constructors called “ToOLS prim-
itives”. This form of nested constructors defines a simple functional language which is
easy to parse and interpret. A special function (solve, solveAll or minimize) specifies



the goal of the search (satisfaction or optimization) and is applied to a single algorithm
object. The complete syntax is given in the annex.

1.1 Primitives for defining a complete search tree based on re-
finements

Tree search methods decompose a problem into some simpler problems until a solution
is reached. The simplification, called a refinement, consists in reducing the number of
solutions by adding some constraints. For this, we use only primitive constraints [5] of
Eclair , which have a direct impact on the constraint store maintained by Eclair . For
instance, the primitive constraint x ≤ v reduces the domain of a variable x to the values
lower than v. The primitive constraint settle(c1 or c2, left) replaces in the constraint store
the logical disjunctive constraint [18] c1 or c2 by its left part, i.e. the constraint c1. In
order to get a complete search tree, we restrict the problem decomposition process to a set
of predefined complete choice points. The availability of user-defined choice points, like in
OPL, would not ensure the property of search completeness. For instance, splitleq(x, v)
decomposes a problem into two subproblems: the first one having the constraint x <= v
and the other one having the constraint x > v. enum(x) enumerates all the values in
the current domain of x (with n = |dom(x)|). See the following semantic description for
the other choice points:

splitleq(x, v) : x <= v | x > v

splitlt(x, v) : x < v | x >= v

setval(x, v) : x == v | x! = v

enum(x) : x == dom(x)[1] | x == dom(x)[2] | · · · | x == dom(x)[n]
setdisj(c1 or c2) : settle(c1 or c2, left) | settle(c1 or c2, right)

All the choice points are binary choice points, except for enum which is nary. In every
choice point, a specific heuristic can be used to order choices. Heuristics are Claire func-
tions that can easily access to the constraint store. We combine choice points using an
imperative programming approach. For instance, the term while(x, l, enum(x)) defines
a classical search tree by enumeration. It repeatedly performs the choice point enum(x)
(which could be another combination of choice points also) until all the variables in the
list l are assigned. Here x is a local variable that is used by the choice point. By default,
x is assigned to the first unassigned variable in l before each exploration of enum(x).
The correct value of x is restored upon backtracking. The leaves of the tree are the
solutions. In optimization, a basic branch and bound method is used, an improvement
on the best solution cost found so far is enforced at each node. In real-life applications,
classical variable enumeration can be very inefficient. Other search schemes are needed.
We show this on two famous examples. The bridge scheduling problem [18] is solved by
the following search algorithm:

do(
while(d, Disjunctions,

setdisj(d)),
while(x, Variables,

enum(x)))



The primitive do(term1, term2) connects the subtree term2 at every leaf of the subtree
term1. In this example, all the disjunctive constraints are simplified first, then a classical
enumeration is performed on the variables. Dealing with disjunctive constraints in an
explicit way is a specificity of Eclair , which is useful for scheduling problems, but also for
managing complex choice points. It avoids to create new constraints, such as tx ≥ ty+dy,
during the search.

A more complex combinatorial problem, the perfect square placement problem [19], is
solved by the following search algorithm:

do(
while(x, list{s.xorigin | s in Squares}, smallestVar,

let(xinf, delay(inf, x),
splitleq(x, xinf))),

while(y, list{s.yorigin | s in Squares}, smallestVar,
let(yinf, delay(inf, y),

splitleq(y, yinf))))

smallestV ar is a heuristic that returns the first unassigned variable with the smallest
value in its domain. The let primitive defines a local variable and computes its value
once only, before entering into the subtree (defined by splitleq in this example). The
delay primitive is used to perform a function call with optional parameters during the
search. Here local variable xinf is equal to the smallest value in the current domain of x,
produced by calling the function inf applied to x. Remember that a ToOLS term is an
object that will be interpreted during the search. Any call to a Claire function has to be
encapsulated into an object, this is what the primitive delay does. The primitive while
interacts with the constraint store in an elegant way: the number of iterations depends
on the list of variables and the propagations. At the leaves of the first while, all the
x-axis coordinates of the packed squares are assigned. The second while assigns all the
y-axis coordinates. A complete search using this search algorithm finds a first solution in
a second and ends in one minute on a modern computer, finding 8 symmetrical solutions
for the 21-square problem. The same search algorithm written in Claire takes about the
same time. The ToOLS terms, which are interpreted during the search, induce a small
overhead. The implementation of ToOLS relies on polymorphic mechanisms: every search
primitive has an associated class constructor and an associated search function. All the
search functions have the same interface: a global context (to store the best solution
and some printing information), a list of pending search terms (used by the primitive do)
where the search will continue after having explored the leaves of the current search term,
and a list of active search limits (see section 1.2). The interpretor overhead is mainly
due to the management of these lists, the polymorphic function calls and the indirection
toward Claire functions and variables (primitive delay). However in many applications,
the time taken by the search part is negligible compared to the time taken by constraint
propagation.

1.2 Primitives for partial exploration

We define some primitives to control the size of the explored part of a given search
tree. The primitives specify some conditions for visiting nodes. A condition is a for-
mula, expression ≤ threshold, that must hold at any node (before posting a primitive



constraint). expression defines a way to evaluate a node (primitive nodelimit), a path
(primitive pathlimit), or a subtree (primitives treelimit and globallimit) during the
search. When a search algorithm exceeds the threshold of a treelimit, the exploration
of the subtree is stopped and the search backtracks towards the last choice point outside
the subtree. In case of a globallimit, the search ends definitively (globallimit has the
same effect as a conditional breakpoint). We found the following useful expressions:

• order: rank of a node (nodelimit). The alternative choices (child nodes) of a choice
point (parent node) are sorted according to a given heuristic, and each alternative
is assigned a rank based on this sort. The first choice starts at rank zero.

• distance: distance of a node to the preferred node (nodelimit). A special heuristic
is used to mark each alternative of a choice point. All the alternatives are evaluated
by the heuristic before a choice is made. The preferred alternative corresponds to
the one having the highest mark value, and it has a distance equal to zero. See
figure 1.

• sum(order): sum of all the node ranks in a search path (pathlimit)

• sum(distance): sum of all the node distances in a search path (pathlimit)

• nbbacktracks: number of backtracks in a subtree (treelimit and globallimit)

• nbnodes: number of nodes in a subtree (treelimit and globallimit)

• nbleaves: number of leaves in a subtree (treelimit and globallimit)
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Figure 1: A search tree with 5 leaves/solutions, 4 backtracks and 8
nodes corresponding to the maximization of 2X + 3Y where the vari-
ables X and Y belong to [0, 2], using the following search algorithm:
do(enum(X, increasing,markX), enum(Y, increasing,markY )). At each node, the
exploration order, the evaluation of sum(order) and the evaluation of sum(distance)
are given. The domain values of X and Y are explored in the initial order, expressed
by the heuristic increasing. Let markX(v) 7→ 2v and markY (v) 7→ 3v be two heuristic
functions that return a mark for any assignment of X and Y . For instance, the third
explored node corresponds to the assignment X == 0 and Y == 1. Here, sum(order)
evaluates to 0 + 1 = 1 and sum(distance) evaluates to (2 ∗ 2− 2 ∗ 0) + (3 ∗ 2− 3 ∗ 1) = 7.

Every condition applies to a given subtree. Let st be any subtree produced by a
ToOLS term as defined in the previous section. Then nodelimit(0, order, st) implements



a greedy search. Each visited node correspond to the first alternative choice, and has a
rank equal to zero. The search algorithm pathlimit(1, sum(order), st) explores all the
paths with zero or one discrepancy. Note that best alternative choices and second best
alternatives are visited only, other alternatives having a discrepancy greater than one.

Let while1 and while2 correspond to both while terms in the perfect square example.
Then,

do(
pathlimit(3, sum(order), while_1),
pathlimit(1, sum(order), while_2))

applies two different discrepancy limits for each subtree.
treelimit(100, nbnodes, pathlimit(1, sum(order), st)) explores at most 100 nodes of a

partial search tree. The order of condition primitives applied on the same subtree does
not matter. When several limits occur at the same time, the search backtracks to the
closest choice point from the root. In case of nodelimit and pathlimit, the scope of these
conditions can be restricted by an additional argument (relDepth), specifying that the
conditions are only active inside a depth interval of a given subtree. The bounds of this
interval are tunable thresholds. A positive bound means the depth is relative to the
root of the subtree. A negative bound means the depth is relative to the current deep-
est leave. For instance nodelimit(0, order, relDepth(3,−1), st) will explore the first two
choice points completely, the best alternative of the other choice points is visited only,
except for the last choice point which is completely explored. Negative depth bounds im-
plement Bounded Backtrack Search (BBS) [16, 32]. The distance keyword is used when
“it is not the number of discrepancies that matter, but rather the quality of the discrep-
ancies” [3]. A mark heuristic is a function that returns a signal representing the value of
expanding a node. For instance, it can be the expected cost value in optimization. In the
example of figure 1, we project the linear objective function 2X+ 3Y on each variable X
and Y . [3] shows that “signal strength plays a more significant role than discrepancies
in determining where the search effort should be spent”. Further investigations need to
be done in this direction.

In condition formulae, threshold is a cutoff value that tunes the degree of incom-
pleteness of the exploration. Decreasing values imply decreasing sizes of the explored
part of a given search tree. We call the cutoff values the incompleteness parameters.
These parameters are clearly exhibited in ToOLS . A static value for these parameters
can be used as in the previous examples. But a more general approach consists in defin-
ing a tuning policy. A tuning policy restricts the space of the possible combinations
of parameter values to the “relevant” combinations and sorts these combinations by an
order of increasing complexity3. The first combination should correspond to a greedy
search and the last one to a complete search. A well-known tuning strategy consists in
performing a sequence of partial explorations based on the same search tree following
the ordered tuning policy from the first greedy combination to the last complete one.
The primitive increasedScope implements this strategy. We describe several iterative
weakening methods using this primitive:

• IB: iterative broadening [11]
3In practice, the increasing property is verified if the policy contains monotonically increasing param-

eter values.



increasedScope(p, list(0, 1, 2, . . .), nodelimit(p, order, st))

• LDS: limited discrepancy search [17]

increasedScope(p, list(0, 1, 2, . . .), pathlimit(p, sum(order), st))

• LDS-BBSk: LDS & bounded backtrack search [16]

increasedScope(p, list(0, 1, 2, . . .), pathlimit(p, sum(order), relDepth(1,−k), st))

• DDS: depth-bounded discrepancy search [32]

increasedScope(p, list(1, 2, . . .), nodelimit(0, order, relDepth(p,∞), st))4

• DDS-BBSk: DDS & bounded backtrack search[32]

increasedScope(p, list(1, 2, . . .), nodelimit(0, order, relDepth(p,−k), st))

• DBDFSk: discrepancy-bounded depth first search [2]

increasedScope(p, list(k − 1, 2k − 1, 3k − 1, . . .), pathlimit(p, sum(order), st))

The relevant combinations are easy to be found when there is a single integer parameter.
This is not the case with float parameters, when mark heuristics are normalized, or
combinations of parameters. In that case, the number of possible parameter values may
be huge. It is impossible to test all the combinations. Some different combinations may
imply the same search tree. Moreover, some combinations may be better than others,
because the resulting search algorithm produces on average better solutions for a set
of problem instances. Thus, we propose to establish a list of relevant combinations by
doing experiments. [3] learns the optimal cutoff policy for a single float parameter of the
weighted discrepancy search method from a model of the value heuristic. When the time
limit is known, one should take maximum advantage of this information. This is the
purpose of real-time heuristic search methods that use a dynamic tuning strategy [12].

1.3 Primitives for combining several partial explorations

The temporal combination is described by two common primitives which are the basis
of several algorithms given as examples:

• sequence(hs1, hs2, . . .): a sequence of several search algorithms (hsi can be any
ToOLS term). hsi+1 is performed when the search hsi is finished5. Examples
are iterative sampling methods [6, 14] and large neighborhood search methods
[30, 8, 24].

• interleave(hs1, hs2, . . .): an interleaving of several search algorithms. All the hsi
are performed at the same time. Examples are interleaved depth-first search [25]
and algorithm portfolios [13] .

All the searches are completely independent (interleaved searches use distinct copies of
the constraint store), except for the solutions which are stored in a common pool and
the best cost bound in optimization which is shared. The search process stops before

4Without the improvement which consists in not re-visiting any nodes at the depth bound p.
5Note the difference with the primitive do(s1, s2, . . .) of section 1.1, where si+1 is explored at every

leave of si.



the end of all its searches if a solution is found in satisfaction or the optimum has been
proved in optimization (a partial search is complete if no threshold has been overcome
during its search). A simple sequence example is to perform a greedy search, a partial
search and a complete search sequentially, each search using a different search scheme.
Iterative weakening methods follow this approach but use only one scheme of problem
decomposition based on the same heuristics. The sequence primitive overcomes this
limitation. ToOLS lets the user define its own generator function in Claire that will
generate a sequence of partial search algorithms dynamically. This feature is used to
implement large neighborhood search methods, see section 2.2 for a concrete example.
In addition, we can specify how to distribute a global time limit to all the searches by
the notion of a time-sharing policy [12].

2 Experiments

2.1 A mission management benchmark for agile satellites

The benchmark6 consists in solving a simplified version of a problem of selecting and
scheduling observations for agile satellites. See [31, 23] for a complete description. The
satellite has a pool of candidate photographs to take, and must select and schedule a
subset of them, at each pass above a strip of the earth territory. The satellite can only
take one photograph at a time (disjunctive scheduling). A photograph can only be taken
during a given time window, depending on its coordinates on the earth surface. Minimal
time manoeuvers are required between two consecutive photographs. All physical con-
straints (time windows and time manoeuvres) must be met, and the sum of the revenues
of the selected photographs must be maximized (linear objective criterion). This prob-
lem is a mix between a Traveling Salesman Problem with time windows, and a Knapsack
problem. The decision variables are grouped in two sets: the first one for the selection
(binary variables) and the second one for the acquisition starting times of the selected
photographs. The refinement-based search scheme we used corresponds to a general
search procedure for scheduling problems as described in [1]:

ST :: while(t, StartTimes, mostUrgent,
let(tinf, delay(inf, t),

do( splitleq(t, tinf, bestChoice),
if(delay(?>?, t, tinf),

tell(t, >=, delay(postponeRule, StartTimes, t))))))

The while loop iterates until all the photographs have their start times fixed (selected
photographs) or postponed outside their time windows (rejected photographs). Let
StartT imes be the list of start time variables ti sorted by their associated revenue (high-
est first). The Claire function mostUrgent returns the first unassigned start time variable
with the smallest value in its domain which is compatible with the time window con-
straint, or returns a special value indicating the end of the while loop. The splitleq choice
point implements a schedule or postpone strategy. We use the value heuristic proposed
in [31] to decide whether the start time is fixed to its minimum value or postponed first.
This heuristic approximates the future gain by making the first alternative compared to
the one by selecting and fixing another available photograph. The available photographs

6This benchmark is available in the free constraint solver choco [22].



are restricted to the ones whose starting time is reduced if the first alternative is chosen.
Last a redundant constraint is added, using the primitive tell, when a start time ti is
postponed (test performed by the primitive if , with ? >?(t, tinf) = inf(t) > tinf):

ti ≥ min
j 6=i

(inf(tj) +Dj +Mj,i)

This redundant constraint, called a delaying constraint in [1], avoids the search algorithm
to enumerate the possible start time values.

We solved to optimality problem instances with less than thirty candidate pho-
tographs. For larger instances, we developed a specific hybrid search algorithm.

2.2 Design of a hybrid search algorithm

The algorithm implements a large neighborhood search method [30]. Its main core is a
local descent search method. Limited Discrepancy Search [17] with Bounded Backtrack
Search [16, 32] is applied to perform an efficient partial exploration of a large neighbor-
hood in a constraint programming framework. The neighborhood is built by keeping a
subset of the selected photographs in the best solution found so far (selection variables
are assigned to one) and by enforcing the previous sequencing order of the selected pho-
tographs (disjunctive scheduling constraints are settled). We use a Variable Neighborhood
Descent (VND) method [15] to escape from local minima. The method starts with re-
jecting only one photograph. And a partial search is done for all the neighborhoods
with one photograph rejected. If no improving solution is found, the number of rejected
photographs is increased by one, and so on. If a better solution is found, this number is
reset to one. The rejected photographs are chosen in a deterministic way using a sliding
window of consecutive photographs. An analog search strategy is used in VNS/LDS+CP
[24]. The corresponding ToOLS code is:

VND/LDSk-BBSl :: sequence(
globallimit(1, nbleaves, ST),
sequence(delay(GenerateNeighborhood,

pathlimit(k,
sum(order),
relDepth(1, -l),
ST))))

GenerateNeighborhood(Choice st)
do( let(list(selectedPhotoSelections, selectedDisjunctions), delay(vndStrategy),

do( forall(x, selectedPhotoSelections,
tell(x, ==, delay(getLastSolution, x))),

forall(d, selectedDisjunctions,
tell(d, delay(getLastOrder, d))))),

st)

2.3 A comparative analysis of partial and hybrid search algo-
rithms

We generated several random instances of the above described problem for different num-
bers of candidate photographs. We compared different versions of partial search methods



as described in sections 1.2 and 1.3, and our hybrid search algorithm. All the algorithms
are based on the same refinement-based search scheme ST using the same heuristics
(except for the iterative sampling methods). We also implemented the sequence-based
greedy algorithm (Greedy) and the dynamic programming algorithm (DPA) described
in [31, 23]. DPA provides the best (non optimal) results and is very fast (less than a
second for 200 photographs). But it corresponds to a very specialized algorithm which
cannot cope with new constraints. In fact the benchmark corresponds to the simpliest
problem defined in [31] (with a linear criterion) and the dynamic programming approach
is not applicable to the more complex problem (with non linear criterion and stereoscopic
constraints). The constraint programming approach is applicable to both versions. Our
goal is to assess and compare the quality of the results obtained by search methods which
use constraint programming. DPA results are used as reference values.

The results are presented in table 1.

Problem size 50 100 200
Cpu time 30 sec. 1 min. 5 min.

Mean % Mean % Mean %
Greedy 3600 0 % 4205 0 % 4732 0 %
DFBB 3718 51 % 4271 28 % 4788 20 %
DDS 3609 3 % 4211 2 % 4733 0 %
DDS-BBS1 3709 47 % 4280 31 % 4784 19 %
DDS-BBS2 3711 48 % 4283 33 % 4785 19 %
DDS-BBS4 3715 50 % 4290 36 % 4789 21 %
LDS 3772 74 % 4331 53 % 4837 39 %
LDS-BBS1 3774 75 % 4333 54 % 4840 40 %
LDS-BBS2 3774 75 % 4332 54 % 4841 40 %
LDS-BBS4 3772 74 % 4330 53 % 4838 39 %
DBDFS2 3766 72 % 4321 49 % 4826 35 %
DBDFS4 3765 71 % 4314 46 % 4815 30 %
ISamp 3733 57 % 4339 57 % 4860 47 %
ISamp/BBS4 3746 63 % 4344 59 % 4865 49 %
ISamp/BBS8 3753 66 % 4347 60 % 4866 50 %
ISamp/BBS16 3760 69 % 4345 59 % 4859 47 %
ISamp/LDS1-BBS1 3779 77 % 4353 62 % 4858 47 %
VND/LDS1-BBS1 3813 92 % 4396 81 % 4929 73 %
VND/LDS2-BBS2 3815 93 % 4399 82 % 4929 73 %
VND/LDS4-BBS4 3811 91 % 4393 80 % 4923 71 %
VND/LDS8-BBS8 3809 90 % 4395 80 % 4916 68 %
VND/DFBB 3809 90 % 4394 80 % 4911 66 %
VND/DFBB1000 3812 92 % 4396 81 % 4913 67 %
VND/DFBB100 3806 89 % 4398 82 % 4929 73 %
DPA 3830 100 % 4440 100 % 5000 100 %

Table 1: A comparative analysis of partial and hybrid search algorithms. Mean is the
mean value of the best solution found after a given cpu time for 100 randomly-generated
instances. The percentage is equal to 100× mean(Algorithm)−mean(Greedy)

mean(DPA)−mean(Greedy) .



The analysis of experimentation results shows:

• The hybrid search algorithms obtain the best CP results, close to the DPA re-
sults. We compared different partial search methods for the neighborhood search.
A complete neighborhood search (V ND/DFBB) saturates when the size of the
problem increases. LDS provides us slightly better results than using a restricted
number of backtracks (V ND/DFBB1000 and V ND/DFBB100).

• The iterative sampling approach (ISamp) reaches the second position. The dif-
ficulty is how to add randomness. We replaced the value heuristic by a biased
one which performs a random choice if the current selected photograph is close to
the best unselected available photograph. We tried different partial exploration
methods instead of the greedy search used by ISamp. Surprisingly, LDS1−BBS1
provides us the best combination for 50 and 100 photographs. This shows the
interest of building customized search algorithms.

• The iterative weakening approach comes in the third position. LDS outperforms
DDS. Our explanation is that the quality of the value heuristic does not depend
on the search depth. Adding a limited amount of backtrack at the leaves improves
the results for LDS.

[31] gave the results obtained by a constraint programming algorithm (CPA) using
classical depth-first search. For two problems with 106 and 147 photographs respectively,
they report a relative distance from CPA to DPA (100× (DPA−CPA)

DPA ) of 26.7% and 13.3%.
We drastically reduce the mean relative distance (100× (mean(DPA)−mean(V ND/LDS2−BBS2))

mean(DPA) )
to respectively 0.9% and 1.4% for 100 and 200 photographs by using a hybrid search
method.

Conclusion

Complex tree search algorithms are separated into three parts: the definition of a com-
plete search tree, a set of conditions for visiting nodes and a temporal strategy for
combining several partial explorations. In a few number of lines of code, ToOLS allows
to experiment a large variety of partial and hybrid search methods. An interesting re-
sult is the good performance of a large neighborhood search method based on limited
discrepancy search and bounded backtrack search. ToOLS makes the design of such new
mixtures easier. Recently, a more complex version of the satellite benchmark was used
for a challenge in the French Operations Research community. We obtained competitive
results by reusing the same large neighborhood search algorithm. The main conclusion
is that partial search methods integrate easily in a constraint programming framework
and are the basis of powerful hybrid search methods.

Other experiments on a military application showed that partial search methods
significantly improve the solution quality compared to an existing customized greedy al-
gorithm and also demonstrated the gain in development time of new customized search
algorithms. The code is clearer and more concise when using the search primitives. Effi-
ciency issues were taken into account during all the design process and implementation
of ToOLS (search limits are computed incrementally, the code to interpret predefined
choice points is optimized, etc.). The whole framework, Claire + Eclair + ToOLS , has



been integrated with success in an operational on-board hard real-time system of Thales.

We thank Michel Lemâıtre for providing the benchmark on agile satellites. Thanks
also to the anonymous reviewers for their useful comments.

References

[1] P. Baptiste and C. Le Pape. Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Con-
straints, 5(1-2):119–139, 2000.

[2] J.C. Beck and L. Perron. Discrepancy-bounded depth first search. In Proc. of
CP-AI-OR’2000, Paderborn, Germany, March 8-10 2000.

[3] T. Bedrax-Weiss. Optimal Search Protocols. PhD thesis, University of Oregon, 1999.

[4] N. Beldiceanu, E. Bourreau, P. Chan, and D. Rivreau. Partial search strategy in
chip. In Proc. of 2nd Int. Conf. on Meta-Heuristics, Sophia-Antipolis, France, 1997.

[5] A. Bockmayr and T. Kasper. Branch-and-infer: A unifying framework for integer
and finite domain constraint programming. INFORMS J. Computing, 10(3):287 –
300, 1998.

[6] J.L. Bresina. Heuristic-Biased Stochastic Sampling. In Proc. of AAAI-96, pages
271–278, Portland, OR, 1996.

[7] Y. Caseau, F.X. Josset, and F. Laburthe. Claire: Combining sets, search and rules
to better express algorithms. In Proc. of ICLP’99, pages 245–259, Las Cruces, New
Mexico, 1999.

[8] Y. Caseau and F. Laburthe. Effective forget-and-extend heuristics for scheduling
problems. In Proc. of CP-AI-OR’1999, Ferrara, Italy, February 1999.

[9] Lon-Chan Chu and Benjamin W. Wah. Optimization in real time. In Proc. of the
Twelfth Real Time Systems Symposium, pages 150–159, Washington, D.C., 1991.

[10] EOLE consortium. EOLE project: On-line optimization framework for telecom.
http://www.lcr.thomson-csf.com/projects/www eole (in french), 2000.

[11] M.L. Ginsberg and W.D. Harvey. Iterative broadening. Artificial Intelligence,
55:367–383, 1992.

[12] S. de Givry, Y. Hamadi, J. Mattioli, P. Gérard, M. Lemâıtre, G. Verfaillie, A. Ag-
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[23] M. Lemâıtre, G. Verfaillie, F. Jouhaud, J-M. Lachiver, and N. Bataille. Selecting
and scheduling observations of agile satellites. Aerospace Sciences and Technology,
6:367–381, 2002.

[24] S. Loudni and P. Boizumault. Vns/lds+cp: A hybrid method for constraint opti-
mization in anytime contexts. In Proc. of 4th Metaheuristics International Confer-
ence, pages 761–765, Porto, Portugal, 2001.

[25] P. Meseguer. Interleaved depth-first search. In Proc. of IJCAI-97, pages 1382–1387,
Nagoya, Japan, 1997.

[26] L. Michel and P. Van Hentenryck. Localizer. Constraints, 5(1-2):43–84, 2000.

[27] L. Perron. Search procedures and parallelism in constraint programming. In Proc.
of CP-99, pages 346–360, Alexandria, Virginia, October 11-14 1999.

[28] G. Pesant and M. Gendreau. A constraint programming framework for local search
methods. Journal of Heuristics, 5:255–279, 1999.

[29] PLATON Team. Eclair reference manual. PLATON, THALES Research & Tech-
nology, Orsay, France, version 6.0 edition, 2001.

[30] P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Proc. of CP-98, pages 417–431, Pisa, Italy, 1998.
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ToOLS syntax chart

<Run> -> solve( <HybridSearch> [, time] )

-> solveAll( <HybridSearch> [, time] )

-> minimize( variable, <HybridSearch> [, time] )

-> maximize( variable, <HybridSearch> [, time] )

<HybridSearch> -> sequence( [timeSharingPolicy,] {<HybridSearch>}+ )

-> sequence( [timeSharingPolicy,] generator )

-> interleave( [timeSharingPolicy,] {<HybridSearch>}+ )

-> interleave( [timeSharingPolicy,] generator )

-> <PartialSearch>

<PartialSearch> -> increasedScope( thresholds, tuningPolicy, <Choice> )

-> decreasedScope( thresholds, tuningPolicy, <Choice> )

-> fixedScope( thresholds, tuningPolicy[i], <Choice> )

-> <Choice>

<Choice> -> do( {<Choice>}+ )

-> while( variable, <Choice> )

-> while( identifier, variables [, heuristic], <Choice> )

-> while( identifiers, tuplesOfVariables [, heuristic], <Choice> )

-> while( identifier, disjunctions [, heuristic], <Choice> )

-> case( identifier, expression, {setOfAny, <Choice>}+ [, <Choice>] )

-> if( expression, <Choice> [, <Choice>] )

-> let( identifier, expression, <Choice> )

-> splitleq( variable, integer [, heuristic [, markheuristic]] )

-> splitlt( variable, integer [, heuristic [, markheuristic]] )

-> setval( variable, integer [, heuristic [, markheuristic]] )

-> enum( variable [, heuristic [, markheuristic]] )

-> setdisj( disjunction [, heuristic [, markheuristic]] )

-> tell( variable, {<= | < | >= | > | == | !=}, integer )

-> tell( disjunction, { left | right } )

-> <Limit>

<Limit> -> nodelimit( threshold, { order | distance }, [<Scope>,] <Choice> )

-> pathlimit( threshold, sum( order [, weights]), [<Scope>,] <Choice> )

-> pathlimit( threshold, sum( distance [, weights]), [<Scope>,] <Choice> )

-> treelimit( threshold, { nbbacktracks | nbnodes | nbleaves }, <Choice> )

-> globallimit( threshold, { nbbacktracks | nbnodes | nbleaves }, <Choice> )

<Scope> -> relDepth( threshold, threshold )


