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This position paper presents the constraint technology that 
has been developed 1 at THALES since 1997 for introducing 
Constraint Programming (CP) in THALES operational 
systems (see [Givry.et.al01a] for a longer presentation). 
These systems involve combinatorial optimization problems 
such as planning and scheduling problems that can be 
expressed with finite-domain variables and constraints. 
Typical examples of THALES systems concern supervision, 
for weapon allocation, radar configuration, weapon 
deployment and aircraft sequencing. All these systems are 
subject to specific requirements coming from the 
operational constraints of embedded real-time systems and 
from the strategic context of Defense applications: 
• The system involves several functions/tasks such as 
situation assessment, resource management, visualization, 
etc.; each task is periodical and the period can be much 
shorter than a second; 
• There is a memory space limit (a few megabytes); 
• The system has to be supported for a long time, typically 
over 20 years for Defense applications, including several 
retrofitting (functional and platform evolutions); 
• The system can be reused and modified for building a 
specific system for a new client (product line); 
• The development of the system must be made and 
mastered in house for reasons of confidentiality and market 
protection. 
 
The CP paradigm partially meets these requirements. A 
constraint model has modularity properties, i.e. 
adding/removing a constraint is easy, which enables an 
incremental development process, reducing the 
development time and effort. CP solvers provide efficient 
algorithms through the use of global constraints. The 
declarative nature of CP enables the programmer to focus 
on the application requirements rather than on debugging 
low-level programming errors. Validated CP models can be 
reused in a product line approach. 
Unfortunately, off-the-shelf CP solvers do not provide any 
guarantee on time and space usage. The classical 
backtracking search algorithm used in CP does not take into 
account any time contract. Recently an effort was made to 
provide better search algorithms in CP solvers, for instance 
                                                 
1 This work is partially funded by the EOLE project [Eole01].  

in [Beldiceanu.et.al98,Laburthe98,Perron99], but without 
any explicit time contract. Our aim is to extend CP solver 
with new search features that would keep the same nice 
software engineering properties as for modeling. This led to 
develop a high-level language for designing search 
algorithms. This approach allows to propose a set of search 
primitives on top of the real-time finite-domain constraint 
solver Eclair© [Laburthe.et.al98,Platon01]. The resulting 
search algorithms are based on partial search methods and 
take into account the time contract explicitly. Such 
algorithms can take advantage better of platform 
evolutions.  
 
Eclair offers time and space guarantees. Deadlines are 
guaranteed by the operating system alarm and Eclair is able 
to restore a coherent state after an interruption in order to 
deliver a valid solution, or just a partial solution (when not 
all variables are instantiated). The memory allocation for the 
constraints is static: a global constraint model is built once 
and only parts of the model are made active and used at a 
given cyclical call. The memory consumed during the 
search is limited by using only restricted depth-first search 
or restricted best-first search.  
 
Partial search methods are anytime algorithms 
[Zilberstein96] based on tree search methods having better 
quality profiles than the classical backtracking search 
algorithm. The main idea is to apply some arbitrary limits on 
the nodes visited in the tree search2, depending on the 
behavior of the heuristics and on the remaining 
computation time. We distinguish four approaches: the 
iterative weakening methods (e.g. [Harvey&Ginsberg95]), 
the real-time search methods (e.g. [Korf90]), the iterative 
sampling methods (e.g. [Gomes.et.al98]) and the 
interleaving methods (e.g. [Meseguer97]). These methods 
use one or several search schemes3. The practical 
complexity of the search can be increasing, self-adjusting, 
or stable. In [Givry.et.al99], we propose the notion of 
parameterized search applied to one search scheme. The 
                                                 
2 This description of partial search is compatible with the depth-
first search principle. In [Perron99], partial search methods are 
based on the order of  node exploration, which is memory 
consuming. 
3 A search scheme is a procedure which describes a search tree. 
For example, a combination of choice points. 



parameters of the search limits are given explicitly. We can 
tune the degree of incompleteness of the search by varying 
the values of the parameters. A tuning policy indicates the 
relevant values of the parameters for different time 
contracts. In [Givry.et.al01b], we integrate the parameterized 
search approach into a hybridization scheme  to express 
partial search based on several search schemes. The 
hybridization scheme is a sequence or an interleaving of 
parameterized searches. The searches can cooperate by 
exchanging solutions. A time-sharing policy specifies how 
to distribute the time contract to the searches.  
 
Our constraint optimization framework is called ToOLS© 
(Templates Of On-Line Search). A search algorithm is 
expressed in ToOLS as the conjunction of four distinct 
components: 
• A set of heuristics to rank every choice; 
• A set of primitives to express a search scheme 
independent of any time limit; it  is composed by predefined 
choice points and combinations of choice points as in the 
OPL language [Hentenryck99]; 
• A set of primitives to express the search limits that 
depend on the current node, the current path or the current 
sub-tree; the resulting parameterized search algorithm 
controls the size of the explored search tree defined by one 
search scheme; 
• A temporal strategy defined by a hybridization scheme, 
i.e. a cooperation of several parameterized searches, dealing 
with time allocation and selecting the tuning strategy of the 
parameters (static tuning, iterative tuning or adaptive 
tuning).  
A template of search defines an abstract component of a 
search algorithm that can be reused to speed up the 
development process of customized partial search 
algorithms. This framework makes it easier to try new 
combinations of search limits and new temporal strategies.  
 
Experiments on the weapon allocation problem show that 
partial search algorithms significantly improve the solution 
quality compared to a traditional approach [Givry.et.al99] 
and also demonstrates the gain in development time of new 
customized search algorithms. The code is clearer and more 
concise when using the search primitives. Another 
application in the Telecom domain is currently tested in our 
framework [Eole01].  
 
The hybridization scheme is a way to define specific local 
search methods, such as large neighborhood search based 
on a sequence of partial searches in different 
neighborhoods. Pure local search methods could also be 
introduced in our framework as a black-box used by the 
hybridization scheme. The temporal control could be 
enhanced by an on-line learning mechanism, using the fact 
that similar problems are repeatedly solved in a real-time 
system. [Crawford.et.al01] gives the base for this  
mechanism. 
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