
A constraint optimization framework for real-time applications

Simon de Givry, Philippe Gérard, Laurent Jeannin,
Juliette Mattioli, Nicolas Museux, Pierre Savéant

THALES Research & Technology

Domaine de Corbeville 91404 Orsay cedex France
simon.degivry@thalesgroup.com

This position paper presents the constraint technology that
has been developed 1 at THALES since 1997 for introducing
Constraint Programming (CP) in THALES operational
systems (see [Givry.et.al01a] for a longer presentation).
These systems involve combinatorial optimization problems
such as planning and scheduling problems that can be
expressed with finite-domain variables and constraints.
Typical examples of THALES systems concern supervision,
for weapon allocation, radar configuration, weapon
deployment and aircraft sequencing. All these systems are
subject to specific requirements coming from the
operational constraints of embedded real-time systems and
from the strategic context of Defense applications:
• The system involves several functions/tasks such as
situation assessment, resource management, visualization,
etc.; each task is periodical and the period can be much
shorter than a second;
• There is a memory space limit (a few megabytes);
• The system has to be supported for a long time, typically
over 20 years for Defense applications, including several
retrofitting (functional and platform evolutions);
• The system can be reused and modified for building a
specific system for a new client (product line);
• The development of the system must be made and
mastered in house for reasons of confidentiality and market
protection.

The CP paradigm partially meets these requirements. A
constraint model has modularity properties, i.e.
adding/removing a constraint is easy, which enables an
incremental development process, reducing the
development time and effort. CP solvers provide efficient
algorithms through the use of global constraints. The
declarative nature of CP enables the programmer to focus
on the application requirements rather than on debugging
low-level programming errors. Validated CP models can be
reused in a product line approach.
Unfortunately, off-the-shelf CP solvers do not provide any
guarantee on time and space usage. The classical
backtracking search algorithm used in CP does not take into
account any time contract. Recently an effort was made to
provide better search algorithms in CP solvers, for instance

1 This work is partially funded by the EOLE project [Eole01].

in [Beldiceanu.et.al98,Laburthe98,Perron99], but without
any explicit time contract. Our aim is to extend CP solver
with new search features that would keep the same nice
software engineering properties as for modeling. This led to
develop a high-level language for designing search
algorithms. This approach allows to propose a set of search
primitives on top of the real-time finite-domain constraint
solver Eclair© [Laburthe.et.al98,Platon01]. The resulting
search algorithms are based on partial search methods and
take into account the time contract explicitly. Such
algorithms can take advantage better of platform
evolutions.

Eclair offers time and space guarantees. Deadlines are
guaranteed by the operating system alarm and Eclair is able
to restore a coherent state after an interruption in order to
deliver a valid solution, or just a partial solution (when not
all variables are instantiated). The memory allocation for the
constraints is static: a global constraint model is built once
and only parts of the model are made active and used at a
given cyclical call. The memory consumed during the
search is limited by using only restricted depth-first search
or restricted best-first search.

Partial search methods are anytime algorithms
[Zilberstein96] based on tree search methods having better
quality profiles than the classical backtracking search
algorithm. The main idea is to apply some arbitrary limits on
the nodes visited in the tree search2, depending on the
behavior of the heuristics and on the remaining
computation time. We distinguish four approaches: the
iterative weakening methods (e.g. [Harvey&Ginsberg95]),
the real-time search methods (e.g. [Korf90]), the iterative
sampling methods (e.g. [Gomes.et.al98]) and the
interleaving methods (e.g. [Meseguer97]). These methods
use one or several search schemes3. The practical
complexity of the search can be increasing, self-adjusting,
or stable. In [Givry.et.al99], we propose the notion of
parameterized search applied to one search scheme. The

2 This description of partial search is compatible with the depth-
first search principle. In [Perron99], partial search methods are
based on the order of node exploration, which is memory
consuming.
3 A search scheme is a procedure which describes a search tree.
For example, a combination of choice points.

parameters of the search limits are given explicitly. We can
tune the degree of incompleteness of the search by varying
the values of the parameters. A tuning policy indicates the
relevant values of the parameters for different time
contracts. In [Givry.et.al01b], we integrate the parameterized
search approach into a hybridization scheme to express
partial search based on several search schemes. The
hybridization scheme is a sequence or an interleaving of
parameterized searches. The searches can cooperate by
exchanging solutions. A time-sharing policy specifies how
to distribute the time contract to the searches.

Our constraint optimization framework is called ToOLS©
(Templates Of On-Line Search). A search algorithm is
expressed in ToOLS as the conjunction of four distinct
components:
• A set of heuristics to rank every choice;
• A set of primitives to express a search scheme
independent of any time limit; it is composed by predefined
choice points and combinations of choice points as in the
OPL language [Hentenryck99];
• A set of primitives to express the search limits that
depend on the current node, the current path or the current
sub-tree; the resulting parameterized search algorithm
controls the size of the explored search tree defined by one
search scheme;
• A temporal strategy defined by a hybridization scheme,
i.e. a cooperation of several parameterized searches, dealing
with time allocation and selecting the tuning strategy of the
parameters (static tuning, iterative tuning or adaptive
tuning).
A template of search defines an abstract component of a
search algorithm that can be reused to speed up the
development process of customized partial search
algorithms. This framework makes it easier to try new
combinations of search limits and new temporal strategies.

Experiments on the weapon allocation problem show that
partial search algorithms significantly improve the solution
quality compared to a traditional approach [Givry.et.al99]
and also demonstrates the gain in development time of new
customized search algorithms. The code is clearer and more
concise when using the search primitives. Another
application in the Telecom domain is currently tested in our
framework [Eole01].

The hybridization scheme is a way to define specific local
search methods, such as large neighborhood search based
on a sequence of partial searches in different
neighborhoods. Pure local search methods could also be
introduced in our framework as a black-box used by the
hybridization scheme. The temporal control could be
enhanced by an on-line learning mechanism, using the fact
that similar problems are repeatedly solved in a real-time
system. [Crawford.et.al01] gives the base for this
mechanism.

References
[Beldiceanu.et.al98] Beldiceanu, N., E. Bourreau, H. Simonis, and
D. Rivreau (1998). Introduction de métaheuristiques dans CHIP.
In Proc. of MIC-98.
[Crawford.et.al01] Lara S. Crawford, Markus P.J. Fromherz,
Christophe Guettier, Yi Shang. A Framework for On-line
Adaptive Control of Problem Solving. In Proc. of CP-2001
workshop on On-Line combinatorial problem solving and
Constraint Programming, Paphos, Cyprus, December 2001.
[Givry.et.al99] Simon de Givry, Pierre Savéant, Jean Jourdan.
Optimization combinatoire en temps limité : Depth first branch
and bound adaptatif. In Proc. of JFPLC-99, pages 161-178, Lyon,
France, 1999.
[Givry.et.al01a] S. de Givry, P. Gérard, J. Jourdan, J. Mattioli, N.
Museux, P. Savéant. How does constraint technology meet
industrial constraints ? In Proc. of ESA workshop on On-Board
Autonomy, pages 189-200, Noordwijk, The Netherlands, 17-19
October 2001, 12p.
[Givry.et.al01b] S. de Givry, Y. Hamadi, J. Mattioli, M.
Lemaître, G. Verfaillie, A. Aggoun, I. Gouachi, T. Benoist, E.
Bourreau, F. Laburthe, P. David, S. Loudni, S. Bourgault.
Towards an on-line optimization framework. In Proc. of CP-2001
workshop on On-Line combinatorial problem solving and
Constraint Programming, Paphos, Cyprus, December 2001.
http://www.lcr.thomson-
csf.com/projects/www_eole/workshop/olcp01-eole.ps
[Gomes.et.al98] C. Gomes, B. Selman, H. Kautz. Boosting
Combinatorial Search Through Randomization. In Proc. of the
15th National Conference on Artificial Intelligence (AAAI-98),
pages 431--437, Madison, WI, USA, 1998.
[Eole01] RNRT EOLE project, http://www.lcr.thomson-
csf.com/projects/www_eole.
[Harvey&Ginsberg95] William D. Harvey, Matthew L. Ginsberg.
Limited discrepancy search. In Proc. of IJCAI-95, pages 607-613,
Montréal, Canada, 1995.
[Hentenryck99] P. Van Hentenryck. OPL: The Optimization
Programming Language. The MIT Press, Cambridge, Mass., 1999.
[Korf90] Richard E. Korf. Real-time heuristic search. Artificial
Intelligence, 42:189-211, 1990.
[Laburthe98] François Laburthe. SaLSA: a language for search
algorithms. In Proc. of CP-98, pages 310-324, Pisa, Italy, October
26-30 1998.
[Laburthe.et.al98] Laburthe, F., P. Savéant, S. de Givry, and J.
Jourdan. Eclair: A library of constraints over finite domains.
Technical Report ATS 98-2, Thomson-CSF LCR, Orsay, France,
1998.
[Meseguer97] Meseguer, P. (1997). Interleaved depth-first search.
In Proc. of IJCAI-97, Nagoya, Japan, pp. 1382-1387.
[Platon01] PLATON Team (2001). Eclair reference manual,
Version 6.0. Technical Report Platon-01.16, THALES Research
and Technology, Orsay, France.
[Perron99] L. Perron. Search Procedures and Parallelism in
Constraint Programming. In Proc. of CP-99, pages 346-360,
Alexandria, Virginia, 1999.
[Zilberstein96] Shlomo Zilberstein. Using Anytime Algorithms in
Intelligent Systems. AI Magazine, 17(3):73-83, 1996.

