
Decomposing Global Cost Functions

C. Bessiere1, P. Boizumault2, S. de Givry3, P. Gutierrez4, S. Loudni2,
JP. Métivier2, T. Schiex3

1 LIRMM, Université de Montpellier, France
2 GREYC, Université de Caen, France

3 UBIA, UR 875, INRA, F-31320 Castanet Tolosan, France
4 IIIA-CSIC, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain

Abstract. Similarly to what has been done with Global Constraints in
Constraint Programming, different results have been recently published
on Global Cost Functions in weighted CSPs, defining the premises of
a Cost Function Programming paradigm. In this paper, in the spirit of
Berge-acyclic decompositions of global constraints such as Regular, we
explore the possibility of decomposing Global Cost Functions in such a
way that enforcing soft local consistencies on the decomposed cost func-
tion offers guarantees on the level of consistency enforced on the original
global cost function. We show that an extension of Directional Arc Con-
sistency to arbitrary arities and Virtual Arc Consistency offer specific
guarantees. We conclude by preliminary experiments on WeightedReg-
ular decompositions that show that decompositions may be very useful
to easily integrate global cost functions in existing solvers with good
efficiency.

.

Introduction

Graphical model processing is a central problem in AI. The optimization of
the combined cost of local cost functions, central in the valued/weighted CSP
frameworks [25], captures problems such as weighted MaxSAT, Weighted CSP or
Maximum Probability Explanation in probabilistic networks. It has applications
in resource allocation, combinatorial auctions, bioinformatics. . .

The main approach to solve such problems in the most general situation relies
on Branch and Bound combined with dedicated lower bounds. Such lower bounds
can be provided by enforcing soft local consistencies [5], leading to pruning as
in Constraint Programming solvers. CP solvers are also equipped with global
constraints which are often considered as crucial for solving large difficult prob-
lems. Dedicated algorithms for filtering such constraints have been introduced.
For some classes of global constraints, among which the famous Regular con-
straint, it has been shown that using a direct decomposition of the constraint into

This work has been partially funded by the french “Agence nationale de la
Recherche”, reference ANR-10-BLA-0214.

a Berge-acyclic network of fixed arities constraints could lead to better efficiency,
with a simpler implementation and without losing effectiveness in filtering.

The notion of global constraints has been recently extended to weighted
CSP, defining Global Cost functions [26,19,18] with associated efficient filtering
algorithms. In this paper, we consider the possible decomposition of global cost
functions into Berge-acyclic networks and see if enforcing local consistency on
the decomposition can lead to a filtering which is comparable to the filtering
obtained by directly enforcing the same consistency on the original global cost
function.

To give body to this notion of Berge-acyclic decomposable cost functions,
we use the WeightedRegular cost function, which relies on a weighted finite
automaton to define a cost function on assignments, considered as a regular
language.

After some preliminaries introducing Cost Function Networks and Soft Local
Consistencies, we define Cost function decomposition and show how it can be
applied to the WeightedRegular cost function in Section 2. Section 3 then
shows that enforcing soft local consistencies such as Directional Arc Consis-
tency or Virtual Arc Consistency on Berge-acyclic decompositions is essentially
equivalent to a direct application on the original global cost function. Finally,
Section 4 reports preliminary experiments comparing the efficiency of decom-
posed vs. monolithic version of the WeightedRegular cost function used to
model SoftRegular cost functions.

1 Preliminaries

A Cost Function Network (CFN) or weighted CSP is a pair (X,W) where X =
{1, . . . , n} is a set of n variables and W is a set of cost functions. Each variable
i ∈ X has a finite domain Di of values than can be assigned to it. A value a
in Di is denoted (i, a). The maximum domain size is d. For a set of variables
S ⊆ X, DS denotes the Cartesian product of the domain of the variables in
S. For a given tuple of values t, t[S] denotes the projection of t over S. A cost
function wS ∈ W , with scope S ⊆ X, is a function wS : DS 7→ [0, k] where
k is a maximum integer cost (or ∞) used to represent forbidden assignments
(expressing hard constraints). To faithfully capture hard constraints, costs are
combined using the bounded addition defined by α⊕β = max(k, α+β). Observe
that the intolerable cost k may be either finite or infinite. A cost β may also be
subtracted from a larger cost α using the operation 	 where α	 β is (α− β) if
α 6= k and k otherwise. Without loss of generality, we assume that every network
contains one unary cost function wi per variable and a 0-arity (constant) cost
function w∅. A tuple tS is said to be valid iff ∀i ∈ S,wi(t[i]) < k.

The associated hyper-graph of a CFN (X,W) is an hypergraph with one ver-
tex per variable i ∈ X and one hyperedge per scope S such that ∃wS ∈ W . We
consider CFN with connected hypergraphs. The intersection graph of an hyper-
graph has one vertex by hyperedge and an edge connects two vertices iff their

associated hyperedges intersect. An hyper-graph is Berge acyclic iff hyperedges
intersect by at most one vertex and its intersection graph is acyclic [1].

The central problem in CFN is to find an optimal solution: a complete as-
signment t minimizing the combined cost function

⊕
wS∈W wS(t[S]), with a cost

strictly lower than k. This optimization problem has an associated NP-complete
decision problem and restrictions to boolean variables and binary constraints are
known to be APX-hard [22]. It federates a variety of famous problems including
CSP, SAT, Max-SAT but also the Maximum A posteriori Problem (MAP) in
Random Markov fields, the Maximum Probability Explanation (MPE) problem
in Bayes nets [14] and quadratic pseudo-boolean optimization [3].

General exact methods for solving this minimization problem usually rely on
branch and bound algorithms equipped with dedicated lower bounds. We focus
in this paper on the incremental lower bounds provided by maintaining soft local
consistencies at the arc level such as Directed Arc Consistency (DAC [6,17]) and
Virtual Arc Consistency (VAC [5]).

DAC has been originally introduced on binary cost functions using the no-
tion of strong support [5] and later extended to non binary cost functions in [24]
and [19] with different definitions. These two definitions coincide on binary cost
functions. In this paper, we use a simpler extension of DAC, and to avoid con-
fusion, we call this variant T-DAC (for terminal DAC). Given a total order ≺
on variables, a binary CFN is said to be Terminal Directional Arc Consistent
(T-DAC) w.r.t. ≺ iff for any cost function wS , and for any value (i, a) of the
maximum variable i ∈ S according to ≺, there exists t ∈ DS , t[i] = a such that
wi(a) = wS(t)

⊕
j∈S wj(t[j]). The tuple t is a full support of (i, a) on wS w.r.t.

≺. Note that either wi(a) = k and (i, a) does not participate in any solution or
wi(a) < k and this implies that wS(t)

⊕
j∈S,j 6=i wj(t[j]) = 0.

Virtual Arc Consistency is a more recent local consistency property that es-
tablishes a link between a Cost Function Network P = (X,W) and a Constraint
Network denoted as Bool(P) defined by the same set X of domain variables and
such that every constraint in Bool(P) is the result of the transformation of a
cost function wS ∈ W into a constraint cS with the same scope which forbids
any tuple t ∈ Ds such that wS(t) 6= 0. A CFN P is said to be Virtually Arc
Consistent iff the arc consistent closure of the constraint network Bool(P) is non
empty [5].

Enforcing soft local consistencies

Enforcing such soft local consistencies relies on so-called arc level Equivalence
Preserving Transformations (EPTs) which apply to one cost function wS [7].
Instead of just deleting domain values, EPTs may shift cost between wS and the
unary constraints wi, i ∈ S and therefore operate on a sub-network of P defined
by wS and denoted as NP (wS) = (S, {wS} ∪i∈S wi). The main EPT used by
arc level soft local consistencies is described as Algorithm 1. This EPT shifts
an amount of cost |α| between the unary cost function wi and the cost function
wS . The direction of the cost move is given by the sign of α. The precondition
guarantees that costs remain non negative in the resulting equivalent network.

Algorithm 1: The main cost shifting EPT used to enforce soft arc con-
sistencies. The ⊕,	 operations are extended to handle possibly negative
costs as follows: for non negative costs α, β, we have α	 (−β) = α⊕β and
for β ≤ α, α⊕ (−β) = α	 β.

Precondition: −wi(a) ≤ α ≤ mint∈DS ,t[{i}]=a{wS(t)};1

Procedure Project(wS , i, a, α)2

wi(a)← wi(a)⊕ α;3

foreach (t ∈ DS such that t[{i}] = a) do4

wS(t)← wS(t)	 α;5

To enforce T-DAC on a single cost function wS , it suffices to first shift the cost
of every unary cost function wi, i ∈ S inside wS by applying Project(wS , i, a,−wi(a))
for every value a ∈ Di. Let j be the maximum variable in S according to ≺, one
can then apply Project(wS , j, b, α) for every value (j, b) and α = mint∈DS ,t[j]=b wS(t).
Let t be a tuple where this minimum is reached. t is then a strong support for
(j, b): wj(b) = wS(t)

⊕
i∈S wi(t[i]). This support can only be broken if for some

unary cost functions wi, i ∈ S, i 6= j and wi(a) increases for some value (i, a).
To enforce T-DAC on a the complete CFN (X,W), one can simply sort W

according to the order of the maximum variable of every cost function according
to ≺ and apply the previous process on each cost function, successively. When
a cost function wS is processed, all the cost functions whose maximum variable
appears before the maximum variable of S have already been processed which
guarantees that none of the established full support will be broken. Enforcing
T-DAC is therefore in O(edr) in time. Using the ∆ data-structures introduced
in [5], space can be reduced to O(edr).

The most efficient algorithms for enforcing VAC [5] actually enforce an ap-
proximation of VAC called VACε with a time complexity in O(ekd

r

ε) and a space
complexity in O(edr). Alternatively, and considering the worst case where the
intolerable cost k is finite, Optimal Soft Arc Consistency can be used to enforce
VAC in O(e6.5d(3r+3.5) logM) time (where M is the maximum finite cost in the
network).

2 Decomposing Global Cost Functions

Global constraints are usually described as families of constraints with a precise
semantics parametrized by the number of variables they involve. Most of the
usually considered global constraints allow for efficient local consistency enforc-
ing (compared to the default GAC algorithm). The notion of global constraints
has been extended to define Soft Global Constraints such as SoftAllDiff or
SoftRegular [11]. These “soft” global constraints are not cost functions but
classical global constraints defined over a set of variables which includes a ded-
icated “cost” variable representing the cost of the assignment of the remaining
variables under the precise softened global constraint semantics. For several such

constraints, efficient dedicated algorithm for enforcing Generalized Arc Consis-
tency have been introduced [11].

Recently, different papers [26,19,18] have shown that it is possible to define
Global Cost Functions as cost functions with a precise semantics parametrized by
the number of variables they involve, together with efficient soft local consistency
enforcing algorithms. Compared to the previous cost variable based approach,
this new approach offers improved propagation thanks to the enhanced commu-
nication between cost functions enabled by the arc level EPTs used to enforce
Soft AC [7], DAC and FDAC [6,17], EDAC [16], OSAC and VAC [5].

2.1 Decomposing Cost Functions

Similarly to constraints, cost functions may possibly decompose into a set of cost
functions of smaller arities.

Definition 1. A cost function zT decomposes into a cost function network (T ∪
E,F) iff ∀t ∈ DT , zT (t) = mint′∈DT∪E ,t′[T]=t

⊕
wS∈F wS(t′[S]).

Clearly, if zT appears in a CFN P = (X,W) and decomposes into (T ∪
E,F), then the optimal solutions of P can be directly obtained by projecting
the optimal solutions of the CFN P ′ = (X ∪ E,W \ {zT } ∪ F) on X.

For technical reasons, we introduce the notion of extra-minimal decomposi-
tions.

Definition 2. A decomposition (T ∪E,F) of zT is said to be extra-minimal iff
all variables in E are involved in at least two cost functions in F .

This is done without loss of generality since from any decomposition, one can
easily produce an extra-minimal decomposition: for any extra variable i ∈ T
which is involved in just one cost function wS ∈ F , we can eliminate i from
E, replace wS by the cost function f = mini wS on S \ {i} and get a net-
work (T ∪ E \ {i}, F ∪ {f} \ {wS}) which is an extra-minimal decomposition.
This process removes extra variables and reduces scopes and therefore preserves
Berge-acyclicity.

Example 1. Consider the soft All-different cost function with the so-called de-
composition measure [11]: the cost of an assignment is equal to the number of
pairs of variables taking the same value. This global cost function can be de-

composed in a set of n.(n−1)2 binary soft difference cost functions, each involving
a different pair of variables. A soft difference cost function takes cost 1 iff the
two involved variables are equal and 0 otherwise. In this case, no extra variable
is required and the decomposition is therefore already extra-minimal.

As for global constraints, using decomposition may lead to more local reason-
ing which may be less effective. In all cases, it facilitates the implementation of
the global cost function in solvers without requiring the cost function to be “pro-
jection safe” (ability to perform EPTs on the internal representation of global
cost functions directly, as introduced in [19]).

2.2 From Regular to Weighted Regular

Initially introduced in [23], the RegularA(i1, . . . , in) global constraint autho-
rizes a tuple (v1, ..., vn) iff it is a string of the language defined by the Finite Au-
tomaton A. A deterministic finite automaton (DFA) is defined by (Q,Σ,θ,q0,F),
where Q is is a finite set of states, Σ is a finite set of symbols (the alphabet),
θ : Q×Σ → Q is the transition function, q0 ∈ Q is the initial state and F ⊆ Q is
a set of final (or accepting) states. A non-deterministic finite automaton (NFA)
is defined by (Q,Σ,δ,q0,F) where δ is a transition function from Σ × Q → 2Q.
The automaton starts in the initial state q0. In state q, the automaton inputs
the next symbol s ∈ Σ and moves to a state in δ(s, q). The string is accepted iff
there is a path that ends in a state q ∈ F . The whole set of strings accepted by
a N/DFA A is the language recognized by it, noted L(A). A regular language is
a language which can be recognized by a DFA or a NFA.

The SoftRegulardA(i1, . . . , in, z) global constraint can be directly softened
using any distance d between strings. This global constraint authorizes a tuple
(v1, ..., vn, c) iff the minimum distance according to d between (v1, . . . , vn) and
a string of the language of A is c. Traditional distances between strings of the
same length such as the Hamming distance (number of positions at which string
differs) or the Edit distance (minimum number of substitutions, insertions and
deletions needed to edit one string into the other) have been considered and
dedicated global constraints with cost variables proposed in [11].

More recently, [8] has been considering using weighted automata as a more
general way of expressing soft regular constraints. This has also been extended
to CFG (Context Free Grammars) in [13]. We follow the same idea and con-
sider the WeightedRegular global cost function, defined through a weighted
automaton.

Weighted Automata and Language A weighted version of a N/DFA was
introduced in [12]. A weighted finite automaton (WFA) is a FA where the transi-
tion function δ is replaced by a transition cost function σ. In our WCSP context,
this function will output cost in [0, k]: σ : Q × Σ × Q → [0, k]. An additional
“exit” cost function ρ encodes cost for exiting the automaton ρ : F → [0, k]5.

The weighted automaton starts in the initial state q0. In state q, the automa-
ton inputs the next symbol s ∈ Σ and moves to a state q′, paying a cost σ(q, s, q′).
The string is accepted iff a state q ∈ F is ultimately reached. The cost of such
an accepting path is the sum of the cost of all the transitions used (including
the final step reaching an element of F , defined by ρ). The cost associated with
a string ` is defined as the minimum cost over all possible accepting paths. If a
string cannot be derived, then its associated cost is just k (the intolerable cost).

The WeightedRegularA(i1, . . . , in) cost function is defined on a sequence
of variables T from a weighted automaton A using domain values as symbols in
the set Σ. The cost of an assignment is just the cost of the string defined by the
assignment of T according to A.

5 The usual definition of weighted automata includes also an “entry” cost function [21].
We don’t use it in this paper.

2.3 Decomposing Weighted Regular

We decompose the WeightedRegular using ternary cost functions encoding
the weighted automaton and a sequence of extra state variables. This decom-
position is similar in essence to the original decomposition of the Regular
constraint but relies on cost functions. The decomposition is defined by:

– the original domain variables i1, . . . , in ∈ T ,
– extra domain variables s0, . . . , sn representing automaton states. The domain

of s0 is just {q0}, the domain of sn is F . All other s∗ variables have a domain
equal to Q, the set of possible states.

– the set of ternary cost functions wsj−1,ij ,sj which returns σ(sj−1, ij , sj).
– a unary cost function wsn on sn directly defined by ρ.

By construction, the minimum cost that
⊕n

j=1 wsj−1,ij ,sj ⊕ wsn can take is
precisely the cost defined by WeightedRegularA(i1, . . . , in).

This construction can be seen as a WCSP representation of the ”unrolled”
automaton transition graphs over n steps where each variable sj represents the
possible states at step j. The figure below illustrates this on a simple (deter-
ministic) automaton for words a(ba)∗c with each occurrence of a having cost 1
and a sequence of 6 variables (this automaton can only emit even length words
whose cost is half the length). The unrolled automaton on the right does not
mention costs for clarity (cost 0 everywhere except for edges emitting a with
cost 1). Omitted edges represent intolerable k costs. It should be clear that one
can associate one variable with each “column” of states, from the first to the
last column. The additional variable ij capture the possible characters emitted,
and the triple has the associated emitting cost.

q0

q1

qF

a,1b,0

c,0

q0 q0 q0 q0 q0 q0

q1 q1 q1 q1 q1

qF qF qF qF qF qF

a,1 a,1 a,1 a,1 a,1

b b b b

c c c c c

Similarly to what has been shown in cost variable decomposition using con-
text free grammars [13], it is possible to encode Hamming and Edit distance
based soft constraints using a weighted automaton and therefore a Weighte-
dRegular cost function.

Considering the Hamming distance, from an original DFA A, we just derive
a weighted automata with the same alphabet and states, with a constant zero
exit function ρ and a transition cost function σ(q, s, q′) defined as:

– 0 whenever q′ ∈ δ(s, q) in A,
– 1 whenever q′ /∈ δ(s, q) in A, but ∃t ∈ Σ, t 6= s, such that q′ ∈ δ(t, q),
– the intolerable cost k otherwise.

q0 q1 qF
a

b

c q0 q1 qF
a

b|c,1

b

a|c,1

c

a|b,1

q0 q1 qF
a

b|c,1

b

a|c,1 c

a|b,1

*,1 *,1 *,1

q0 q1 qF
a

b|c|ε,1

b

a|c|ε,1
c

a|b|ε,1

*,1 *,1 *,1

Fig. 1. From top-left to bottom-right, in reading order: (tl) the DFA for the language
a(ba)∗c (tr) the WFA encoding the Hamming distance to the previous automaton,
(bl) the WFA allowing both for substitution and insertion (br) the WFA for the Edit
distance. An arc is labelled by symbols,cost pairs where 0 costs are omitted and a
’|’ separated list of symbols is used to factorize several transitions with same source,
destination and cost.

The Edit distance d(s1, s2) of two words s1 and s2 is the smallest number of
insertions, deletions, and substitutions required to change one word into another.
It captures the fact that two words that are identical except for one extra or
missing symbol should be considered close to one another. Considering the Edit
distance from an original DFA A, we derive a WFA with alphabet Σ ∪ {ε} and
states Q with four kinds of transition cost functions:

1. copy of automaton A: σ(q, s, q′)=0 for each transition q′ ∈ δ(s, q) in A,
2. substitution: transition cost function is the same as for Hamming,
3. insertion: for each q ∈ Q s.t. q /∈ δ(s, q), σ(q, s, q)=1
4. deletion: to each transition q′ ∈ δ(s, q) in A is associated an ε-transition6

q′ ∈ δ(ε, q) s.t. σ(q, ε, q′)=1

Consider the DFA for the language a(ba)∗c (Fig. 1-top-left). The WFA for
substitution is depicted Fig. 1 (top-right), for substitution/insertion Fig. 1 (bottom-
left) and for substitution/insertion/deletion Fig. 1 (bottom-right).

6 An ε-transition is a transition using an empty symbol ε which does not emit any-
thing. In practice, to derive a given word, a transition from state q to q′ emitting ε
means that we can directly go from q to q′ without considering available symbols.

Unfortunately, the decomposition we presented in the beginning of this Sec-
tion for WeightedRegular based on WFA without ε-transitions does not ex-
tend directly to WFA with ε-transitions, which are used for deletions. However,
ε-transitions can be removed by computing the ε-closure of the WFA (see [21]).
Then, the resulting WFA can be directly decomposed.

3 Local Consistency and Decompositions

Decomposing large arity constraints or cost functions into an equivalent combi-
nation of smaller arity components may sometimes be practically useful by itself:
small arity may weaken propagation but may improve efficiency. Ultimately, this
is a matter of compromise (especially in unstructured domains where there is no
dedicated propagator for the considered cost function [9]).

However, for global cost functions, which have a precise semantics, it may be
possible to define decompositions such that enforcing a given level of consistency
on the decomposition offers a guarantee on the strength of the filtering compared
to what would have been done using the original (non decomposed) cost function.

On classical constraint networks, different global constraints, such as the
Regular global constraint, can be decomposed into a Berge-acyclic set of small
arity constraints. By virtue of arc consistency, it is known that enforcing GAC
on the set of Berge-acyclic constraint enforces GAC on the global constraint
itself [1]. We show that a similar result can be obtained for cost functions and
we illustrate this on the WeightedRegular cost function.

3.1 Directional AC

In this section, we will show that enforcing T-DAC on a decomposition of a cost
function is equivalent to enforcing it on the original cost function itself, as far
as the decomposition is Berge-acyclic.

We consider a decomposable global cost function zT on the variables T =
with possible associated unary cost function wi, i ∈ T . We assume that zT can
be decomposed in an extra-minimal Berge-acyclic cost function network N =
(T ∪ E,F).

We now show that there exists a variable ordering on T∪E such that enforcing
T-DAC on the decomposition is as strong as enforcing T-DAC on the original
global cost function zT .

Theorem 1. In a CFN, if a global cost function zT decomposes into an extra-
minimal Berge-acyclic cost function network N = (T ∪ E,F) then there is an
ordering on T ∪ E such that the unary cost function win on the last variable in
produced by enforcing T-DAC on the subnetwork (T, {zT }∪i∈T wi) is identical to
the unary cost function w′in produced by enforcing T-DAC on the decomposition
N = (T ∪ E,F ∪i∈T wi).

Proof. We first show that for any ordering of the variables, and any value (in, a)
of the last variable in of T according to the ordering, enforcing T-DAC on the

subnetwork (T, {zT }∪i∈T wi) guarantees that the single value assignment (in, a)
can be extended to a complete assignment t of T with cost win(a). Let us consider
t a full support of (in, a) on zT . By definition win(a) = zT

⊕
i∈T wi(t[i]) which is

precisely the cost of the complete assignment t in the subnetwork (T, {zT } ∪i∈T
wi).

Conversely, we will now prove that the same property holds after enforcing
T-DAC on the decomposition of zT . The proof is not difficult but technical. Let
L = (F, I) be the intersection graph associated with the decomposition. L has
one vertex per cost function in F and an edge e ∈ I connects any two cost
functions sharing a variable. Because of the Berge-acyclicity of N , L is acyclic
(a forest). We can assume without loss of generality that L is connected (a tree).
Indeed, if it is not connected, we can select two connected components and link
them by adding one dummy constant zero binary cost function in F and just
repeat this until L is connected. This preserves Berge-acyclicity and does not
change the maximum arity in F .

We root L in any cost function that involves at least one original variable
in T . We then perform a topological sort on L which successively selects a cost
function with just one non selected neighbor in L (a leaf), choosing first cost
functions whose intersection with this neighbor is an extra variable from E. Let
fS1

, . . . , fSe
be the sequence of cost functions that are successively removed by

the topological sort. Note that fSi
intersects with fSi+1

by at most one variable
(Berge acyclicity). This intersecting variable will be denoted as Root(fSi).

This ordering on cost functions can be extended to an order on variables
as follows: we take each cost function fSi

in the previous order and replace it
by the sequence of all the variables in Si which have not already been ordered.
This sequence itself is ordered in such a way that the variable Root(fSi) that
intersects with fSi+1 (if any) is ordered last. This produces an order j1, . . . , jm
over variables in T ∪ E.

First note that the variable jm must be a variable of T . Indeed, since the
decomposition is network minimal, all extra variables in fSe must appear in the
intersection between scopes with previous cost functions. Because of the topo-
logical ordering chosen, if jm is en extra variable, this means that fSe

involves
only extra variables which contradicts the choice of a root with a variable from
T . Thus, jm ∈ T and jm = in.

Assume now that (T ∪E,F ∪i∈T wi) is made T-DAC consistent (which does
not change scopes). Consider a value (in, a). If win(a) = k, then clearly any
complete assignment extending this value has a cost of k and the property is
proved. Otherwise, win(a) < k. Let te be a strong support of this value. We
have win(a) = wSe(te)

⊕
i∈Se

wi(te[i]) which proves that te is an assignment of
Se with the same cost win(a) and such that ∀i ∈ Se, i 6= in), wi(te[i]) = 0. This
is specifically true for any of the variables i in Se that intersect with scopes of
children cost functions, where the value te[i] will have a zero unary cost. Since
L is a tree, we can inductively use the same argument based on T-DAC to
show that the tuple te can be extended to more variables with no increase in
cost until the leafs of the tree are reached and all variables are assigned. This

proves that the assignment (in, a) can be extended to complete assignment of
(T ∪ E,F ∪i∈T wi) with cost win(a). ut

This result shows that directional consistency has enough power to handle
Berge-acyclic decompositions in Weighted CSP without losing any propagation
strength, provided a correct order is used for cost function propagation.

In practice, a CFN may contain different Berge-acyclic decomposable cost
functions sharing variables and there may be no variable order which would
be compatible with all the Berge-acyclic structures of these decomposed cost
functions. In this case, a possibility would be to use so-called “Propagator
groups” [15] which have been recently proposed for Berge-acyclic propagation in
CN. Each propagator group is in charge of propagating one decomposition. For
CFN, proper ordering between groups will likely be needed to avoid cycling.

3.2 Virtual AC

Virtual Arc Consistency offers a simple and direct link between CNs and CFNs
which allows to directly lift classical CN’s properties to CFNs, under simple
conditions.

Consider a decomposable global cost function zT on the variables T with
possible associated unary cost functions wi, i ∈ T . We assume that zT can be
decomposed in an extra-minimal Berge-acyclic cost function network N = (T ∪
E,F).

Theorem 2. In a CFN, if a global cost function zT decomposes into a Berge-
acyclic cost function network N = (T ∪ E,F) then enforcing VAC on either
(T, {zT } ∪i∈T wi) or on (T ∪ E,F ∪i∈T wi) yields the same lower bound w∅.

Proof. Enforcing VAC on the CFN P = (T ∪ E,F ∪i∈T wi) does not modify
the set of scopes and yields an equivalent problem P ′ such that Bool(P ′) is
Berge-acyclic, a situation where arc consistency is a decision procedure. We can
directly make use of Proposition 10.5 of [5] which states that if a CFN P is
VAC and Bool(P) is in a class of CSPs for which arc consistency is a decision
procedure, then P has an optimal solution of cost w∅.

Similarly, the network Q = (T, {zT } ∪i∈T wi) contains just one cost function
with arity strictly above 1 and Bool(Q) will be decided by arc consistency.
Enforcing VAC will therefore provide a CFN which has also an optimal solution
of cost w∅. The networks P and Q having optimal solutions of the same cost by
definition of a decomposition, the result follows. ut

4 Experimental Results

In this section, we intend to probe the possible interest of global cost function
decompositions. These decompositions allow for a simple implementation, but
it is also interesting to check if they can improve filtering performances or, at
least, not degrade them too much.

We implemented the ternary encoding of the WeightedRegular cost func-
tion allowing to model a SoftRegular with Hamming distance. Since the
monolithic propagator for the global SoftRegular cost function is already im-
plemented in the WCSP solver toulbar2 with associated (weak) E/FDGAC*
filtering, this allows to compare the decomposition and monolithic versions.

Following [23], we generated random automata with |Q| states and an alpha-
bet size |Σ|. We randomly selected 30% of all possible pairs (s, qi) ∈ Σ ×Q and
randomly chose a state qj ∈ Q to form a transition δ(s, qi) = qj for each such
pair. The set of final states F is obtained by randomly selecting 50% of states
in Q. All random samples use a uniform distribution.

From each automaton, we built two CFNs: one using a monolithic SoftReg-
ular cost function using Hamming distance and another using the Berge-acyclic
decomposition of the WeightedRegular cost function encoding the same cost
function. To make the situation more realistic, we added to each of these prob-
lems the same set of random unary constraints, one per non-extra variable (with
unary costs randomly chosen between 0 and 9). These problems have been solved
using the CFN solver toulbar2 (See https://mulcyber.toulouse.inra.fr/

projects/toulbar2, version 0.9.4).

All preprocessing options of toulbar2 except filtering were turned off (option
line -o -e: -f: -dec: -h: -c: -d:) and a DAC ordering compatible with
the Berge-acyclic structure of the decomposition was used. The value ordering
used chooses the existential EAC value first. The adaptive variable ordering
heuristic is dom/wdeg. No initial upper bound is used. The same level of local
consistency (namely (weak) EDGAC*, stronger than the T-DAC consistency
considered in the paper and which therefore will also produce an optimal w∅
at the root) was used in all cases. We measured two times: (1) time for loading
the problem and filtering the root node of the search tree and (2) total time for
solving the CFN (including the previous time). The first time is informative on
the filtering complexity while the second emphasizes the incrementality of the
filtering algorithms. All the experiments were run on one 2.66 Ghz Intel Xeon
CPU core with 64Gb RAM available with a time-limit of 5’. Times were averaged
on 30 runs and samples reaching the time limit are considered as terminating in
5’. Table 1 shows the results.

Clearly, the decomposition brings an impressive progress in terms of effi-
ciency. The results of these experiments should however be considered with
care. The current implementation of the monolithic version of SoftRegular
in toulbar2 is probably far from optimized and, clearly, it has very limited in-
crementality. On the other hand, the core table filtering algorithms of toulbar2
show excellent incrementality. These results could still be improved however: the
ternary decomposition uses the same ternary cost function over and over in the
problem. This is currently ignored by the solver. Taking this into account could
considerably lower memory usage and file sizes.

It is also interesting but not trivial to compare the asymptotic complexities
of the algorithms considered here. Enforcing EDGAC* on the decomposition is
in O(max(nd, k).nd3) [24].

https://mulcyber.toulouse.inra.fr/projects/toulbar2
https://mulcyber.toulouse.inra.fr/projects/toulbar2

n |Σ| |Q| Monolithic Decomposed
filter solve filter solve

25 5 10 0.08 0.46 0.00 0.00
20 0.20 1.17 0.01 0.01
40 0.47 2.69 0.02 0.02
80 1.63 9.55 0.08 0.08

25 10 10 0.42 2.36 0.00 0.00
20 0.94 5.37 0.02 0.02
40 2.31 13.36 0.06 0.06
80 5.56 32.65 0.23 0.25

25 20 10 2.07 11.30 0.01 0.01
20 5.13 27.95 0.04 0.04
40 12.40 66.40 0.14 0.15
80 30.34 164.7 0.51 0.55

n |Σ| |Q| Monolithic Decomposed
filter solve filter solve

50 5 10 0.30 3.39 0.00 0.00
20 0.78 9.01 0.01 0.01
40 2.41 28.58 0.04 0.05
80 8.74 108.3 0.17 0.18

50 10 10 1.70 18.01 0.01 0.01
20 3.86 41.58 0.03 0.04
40 10.78 117.7 0.13 0.14
80 260.2 260.2 0.48 0.53

50 20 10 8.44 84.88 0.03 0.03
20 21.49 213.5 0.08 0.09
40 300 300 0.29 0.31
80 300 300 1.06 1.14

Table 1. Time in seconds to filter the CFN and to solve it to optimality. The CFNs
encode a SoftRegular cost function representing the Hamming distance between a
set of n variablesdefining a string and the language of a randomly generated DFA with
|Σ| = d symbols and |Q| states using either the monolitic filtering algorithm of [18]
or a ternary encoding of the equivalent WeightedRegular presented in Section 2.3,
using table cost functions.

The asymptotic complexity for enforcing (weak) E/FDGAC* on the global
SoftRegular cost function is not so simple to bound and it depends on the
nature of the string distance and automaton used. For the Hamming distance
and a deterministic automata, the underlying network has O(|Q|.(n + 1)) ver-
tices and O(n(|θ|+ |Q|d)) = O(n.|Q|d) edges. Therefore, the complexity for just
applying the successive shortest path minimum cost flow algorithm [4] on this
network will be O(|V |2.|E|) = O(n3.|Q|3d) while the search for a shortest path
using Bellman-Ford will be in O(|V |.|E|) = O(n2.|Q|2d). According to [19,18],
this means that the sole search for a full support will be in O(n3.|Q|2.d(d+ |Q|)).
Enforcing EDGAC* requires to simultaneously have simple, full and existential
supports. Just considering full supports, this means that the complexity for en-

forcing EDGAC* exceeds O(max(nd, k).n5.|Q|2.d(d + |Q|)). Assuming |Q||Σ| is in

O(1), this is in O(max(nd, k).n5.d4) compared to the O(max(nd, k).nd3) ob-
tained through decomposition. This corroborates our experimental results but
the strength of this comparison is largely conditionned by the tightness of the
bounds presented in [19,18]. Another reason for the impressive speedups we ob-
serve may also lies in the non optimality of the global filtering algorithms for
SoftRegular.

Conclusion

In this paper, we have extended the idea of constraint decomposition to cost
functions occurring in CFNs. For cost functions having a Berge-acyclic decom-
positions, we have shown that even relatively simple filtering, at the directed arc

consistency level, provide a comparable filtering when they are applied onto the
decomposition or on the global cost function itself, provided a suitable variable
ordering is used. For the stronger consistency Virtual AC filtering, the same
result is obtained, without any requirement on variable ordering.

An example of decomposable cost function that has been considered in the
paper is the WeightedRegular cost function. This cost function, based on
weighted automata, allows to directly decompose the SoftRegular constraint
using either the Hamming or the Edit distance7.

The results presented in this paper are still preliminary. There are at least
three directions that are worth exploring here. First, one should consider other
decomposable cost functions beyond just WeightedRegular. Several related
constraints, including ContextFreeGrammar, Among, . . . have Berge-acyclic
decompositions and their cost functions variants likely have related Berge-acyclic
decompositions, allowing for a simple extension of WCSP solvers to more exten-
sive Cost Function Programming tools.

Beyond this, more experiments should be performed on more complex prob-
lems such as Nurse Rostering problems [20]. Finally, the strength and the simplic-
ity of the result obtained for this local consistency plead for experiments using
Virtual AC. This was not possible at the time this paper was written as the only
implementations of VAC we know are restricted to binary cost functions.

Although restricted to Berge-acyclic decompositions, this work paves the
way for a more general form of “structural decompositions” where global cost
functions decompose into an acyclic structure of local cost functions combined
with operators that could be different from ⊕, with bounded separator sizes (but
not necessarily cardinality 1). For various operators, these global structurally
decomposed cost functions could then be propagated efficiently through non
serial dynamic programming (elimination) approaches.

References

1. Beeri, C., Fagin, R., Maier, D., M.Yannakakis: On the desirability of acyclic
database schemes. Journal of the ACM 30, 479–513 (1983)

2. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C., Walsh, T.: Refor-
mulating global constraints: the slide and regular constraints. Abstraction, Refor-
mulation, and Approximation pp. 80–92 (2007)

3. Boros, E., Hammer, P.: Pseudo-Boolean Optimization. Discrete Appl. Math. 123,
155–225 (2002)

4. Busacker, R., Gowen, P.: A procedure for determining minimal-cost network flow
patterns. In: ORO Technical Report 15 (1961)

5. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artificial Intelligence 174, 449–478 (2010)

6. Cooper, M.C.: Reduction operations in fuzzy or valued constraint satisfaction.
Fuzzy Sets and Systems 134(3), 311–342 (2003)

7 A result that could not be achieved in [2]. Note however that [13] also shows how
the WeightedCFG soft constraint can encode Edit distance using ε-transitions.

7. Cooper, M.C., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence
154(1-2), 199–227 (2004)

8. Demassey, S., Pesant, G., Rousseau, L.M.: A cost-regular based hybrid column
generation approach. Constraints 11(4), 315–333 (2006)

9. Favier, A., de Givry, S., Legarra, A., Schiex, T.: Pairwise decomposition for combi-
natorial optimization in graphical models. In: Proc. of IJCAI’11. Barcelona, Spain
(2011)

10. Gent, I.P. (ed.): Principles and Practice of Constraint Programming - CP 2009,
15th International Conference, CP 2009, Lisbon, Portugal, September 20-24, 2009,
Proceedings, Lecture Notes in Computer Science, vol. 5732. Springer (2009)

11. van Hoeve, W.J., Pesant, G., Rousseau, L.M.: On global warming: Flow-based soft
global constraints. J. Heuristics 12(4-5), 347–373 (2006)

12. II, K.C., Kari, J.: Image compression using weighted finite automata. In:
Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS. Lecture Notes in Computer
Science, vol. 711, pp. 392–402. Springer (1993)

13. Katsirelos, G., Narodytska, N., Walsh, T.: The weighted grammar constraint. An-
nals OR 184(1), 179–207 (2011)

14. Koller, D., Friedman, N.: Probabilistic graphical models. MIT press (2009)
15. Lagerkvist, M.Z., Schulte, C.: Propagator groups. In: Gent [10], pp. 524–538
16. Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: get-

ting closer to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI.
pp. 84–89. Edinburgh, Scotland (Aug 2005)

17. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif.
Intell. 159(1-2), 1–26 (2004)

18. Lee, J., Leung, K.L.: A stronger consistency for soft global constraints in weighted
constraint satisfaction. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)

19. Lee, J.H.M., Leung, K.L.: Towards efficient consistency enforcement for global
constraints in weighted constraint satisfaction. In: Boutilier, C. (ed.) IJCAI. pp.
559–565 (2009)

20. Métivier, J.P., Boizumault, P., Loudni, S.: Solving nurse rostering problems using
soft global constraints. In: Gent [10], pp. 73–87

21. Mohri, M.: Edit-distance of weighted automata: General definitions and algorithms.
International Journal of Foundations of Computer Science 14(6), 957–982 (2003)

22. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity
classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)

23. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP. Lecture Notes in Computer Science, vol. 3258, pp.
482–495. Springer (2004)

24. Sánchez, M., de Givry, S., Schiex, T.: Mendelian error detection in complex pedi-
grees using weighted constraint satisfaction techniques. Constraints 13(1-2), 130–
154 (2008)

25. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard
and easy problems. In: Proc. of the 14th IJCAI. pp. 631–637. Montréal, Canada
(Aug 1995)

26. Zytnicki, M., Gaspin, C., Schiex, T.: A new local consistency for weighted CSP ded-
icated to long domains. In: Proceedings of the 2006 ACM Symposium on Applied
Computing (SAC). pp. 394–398. Dijon, France (Apr 2007)

	Decomposing Global Cost Functions

