
Exploiting Problem Structure for Solution Counting

Aurélie Favier1, Simon de Givry1, and Philippe Jégou2

1 INRA MIA Toulouse, France {afavier,degivry}@toulouse.inra.fr
2 Université Paul Cézanne, Marseille, France philippe.jegou@univ-cezanne.fr

Abstract. This paper deals with the challenging problem of counting the number
of solutions of a CSP, denoted #CSP. Recent progress have been made using
search methods, such as BTD [15], which exploit the constraint graph structure in
order to solve CSPs. We propose to adapt BTD for solving the #CSP problem. The
resulting exact counting method has a worst-case time complexity exponential in
a specific graph parameter, called tree-width. For problems with sparse constraint
graphs but large tree-width, we propose an iterative method which approximates
the number of solutions by solving a partition of the set of constraints into a
collection of partial chordal subgraphs. Its time complexity is exponential in the
maximum clique size - the clique number - of the original problem, which can
be much smaller than its tree-width. Experiments on CSP and SAT benchmarks
shows the practical efficiency of our proposed approaches.

1 Introduction

The Constraint Satisfaction Problem (CSP) formalism offers a powerful framework for
representing and solving efficiently many problems. Finding a solution is NP-complete.
A more difficult problem consists in counting the number of solutions. This problem,
denoted #CSP, is known to be #P-complete [27]. This problem has numerous appli-
cations in computer science, particularly in AI, e.g. in approximate reasoning [23], in
diagnosis [18], in belief revision [5], etc.

In the literature, two principal classes of approaches have been proposed. The first
class, methods find exactly the number of solutions. The second class, methods propose
approximations. For the first class, a natural approach consists in extending classical
search algorithms such as FC or MAC in order to enumerate all solutions. But the more
solutions there are, the longer it takes to enumerate them.

Here, we are interested in search methods that exploit the problem structure, pro-
viding time and space complexity bounds. This is the case for the d-DNNF compiler
[6] and AND/OR graph search [8, 9] for counting. We propose to adapt Backtracking
with Tree-Decomposition (BTD) [15] to #CSP. This method was initially proposed for
solving structured CSPs. Our modifications to BTD are similar to what has been done
in the AND/OR context [8, 9], except that BTD is based on a cluster tree-decomposition
instead of a pseudo-tree, which naturally enables BTD to exploit dynamic variable or-
derings inside clusters whereas AND/OR search uses a static ordering.

Most of the recent work on counting has been realized on #SAT, the model counting
problem associated with SAT [27]. Exact methods for #SAT extend systematic SAT
solvers, adding component analysis [3] and caching [26] for efficiency. Approaches
using approximations estimate the number of solutions.

They propose poly-time or exponential time algorithms which must offer reasonably
good approximations of the number of solutions, with theoretical guarantees about the
quality of the approximation, or not. Again, most of the work has been done on #SAT by
sampling either the original OR search space [28, 12, 10, 17], or the original AND/OR
search space [11]. All these methods except that in [28] provide a lower bound on the
number of solutions with a high-confidence interval obtained by randomly assigning
variables until solutions are found. A possible drawback of these approaches is that they
might find no solution within a given time limit due to inconsistent partial assignments.
For large and complex problems, this results in zero lower bounds or it requires time-
consuming parameter (e.g sample size) tuning in order to avoid this problem. Another
approach involves reducing the search space by adding streamlining XOR constraints
[13, 14]. However, it does not guarantee that the resulting problem is easier to solve.

In this paper, we propose to relax the problem, by partitioning the set of constraints
into a collection of structured chordal subproblems. Each subproblem is then solved
using our modified BTD. This task should be relatively easy if the original instance
has a sparse graph3. Finally, an approximate number of solutions on the whole problem
is obtained by combining the results of each subproblem. The resulting approximate
method called ApproxBTD gives also a trivial upper bound on the number of solutions.
Other relaxation-based counting methods have been tried in the literature such as mini-
bucket elimination and iterative join-graph propagation [16], or in the related context of
Bayesian inference, iterative belief propagation and the edge deletion framework [4]4.
These approaches do not exploit the local structure of instances as it is done by search
methods such as BTD, thanks to local consistency and dynamic variable ordering.

In the next section, we introduce notation and tree-decomposition. Section 3 de-
scribes BTD for counting and Section 4 presents ApproxBTD for approximate count-
ing. Experimental results are given in Section 5, then we conclude.

2 Preliminaries

A CSP is a quadruplet P = (X ,D,C,R). X and D are sets of n variables and finite
domains. The domain of variable xi is denoted dxi . The maximum domain size is d. C
is a set of m constraints. Each constraint c ∈ C is a set {xc1 , . . . ,xck} of variables. A
relation rc ∈ R is associated with each constraint c such that rc represents (in intension)
the set of allowed tuples over dxc1

× ·· · × dxck
. An assignment Y = {x1, . . . ,xk} ⊆ X

is a tuple A = (v1, . . . ,vk) from dx1 ×·· ·× dxk . A constraint c is said satisfied by A if
c⊆ Y,A [c] ∈ rc, violated otherwise. A solution is a complete assignment satisfying all
the constraints. The structure of a CSP can be represented by the graph (X ,C), called
the constraint graph, whose vertices are the variables of X and with an edge between
two vertices if the corresponding variables share a constraint.

3 In fact, it depends on the tree-width of the subproblems, which is bounded by the maximum
clique size of the original instance. In the case of a sparse graph, we expect this size to be
small. This forbids using our approach for solution counting in CSPs with global constraints.

4 It starts by solving an initial polytree-structured subproblem, further augmented by progres-
sively recovering some edges, until the whole problem is solved. ApproxBTD starts directly
with a possibly larger chordal subproblem.

A tree-decomposition [22] of a CSP P is a pair (C ,T) with T = (I,F) a tree with
vertices I and edges F and C = {Ci : i ∈ I} a family of subsets of X , such that each
cluster Ci is a node of T and satisfies: (1) ∪i∈ICi = X , (2) for each constraint c∈C, there
exists i ∈ I with c⊆ Ci, (3) for all i, j,k ∈ I, if k is on a path from i to j in T , then Ci∩
C j ⊆ Ck. The width of a tree-decomposition (C ,T) is equal to maxi∈I |Ci|−1. The tree-
width of P is the minimum width over all its tree-decompositions. Finding an optimal
tree-decomposition is NP-Hard [2]. In the following, from a tree-decomposition, we
consider a rooted tree (I,F) with root C1 and we note Sons(Ci) the set of son clusters
of Ci and Desc(C j) the set of variables which belong to C j or to any descendant Ck of
C j in the subtree rooted in C j.

3 Exact solution counting with BTD

The essential property of tree decomposition is that assigning Ci∩C j (C j is a son of Ci)
separates the initial problem into two subproblems, which can then be solved indepen-
dently. The first subproblem rooted in C j is defined by the variables in Desc(C j) and
by all the constraints involving at least one variable in Desc(C j) \Ci. The remaining
constraints, together with the variables they involve, define the remaining subproblem.

A tree search algorithm can exploit this property by using a suitable variable order-
ing : the variables of any cluster Ci must be assigned before the variables that remain
in its son clusters. In this case, for any cluster C j ∈ Sons(Ci), once Ci∩C j is assigned,
the subproblem rooted in C j conditioned by the current assignment A of Ci ∩C j can
be solved independently of the rest of the problem. The exact number of solutions nb
of this subproblem may then be recorded, called a #good and represented by a pair
(A [Ci∩C j],nb), which means it will never be computed again for the same assignment
of Ci∩C j. This is why algorithms such as BTD or AND / OR graph search are able to
keep the complexity exponential in the size of the largest cluster only.

BTD is described in Algorithm 1. Given an assignment A and a cluster Ci, BTD
looks for the number of extensions B of A on Desc(Ci) such that A [Ci-VCi] = B[Ci-VCi].
VCi denotes the set of unassigned variables of Ci. The first call is to BTD(/0,C1,C1) and it
returns the number of solutions. Inside a cluster Ci, it proceeds classically by assigning
a value to a variable and by backtracking if any constraint is violated. When every
variable in Ci is assigned, BTD computes the number of solutions of the subproblem
induced by the first son of Ci, if there is one. More generally, let us consider C j, a son of
Ci. Given a current assignment A on Ci, BTD checks whether the assignment A [Ci∩C j]
corresponds to a #good. If so, BTD multiplies the recorded number of solutions with
the number of solutions of Ci with A as its assignment. Otherwise, it extends A on
Desc(Ci) in order to compute its number of consistent extensions nb. Then, it records
the #good (A [Ci ∩C j],nb). BTD computes the number of solutions of the subproblem
induced by the next son of Ci. Finally, when each son of Ci has been examined, BTD
tries to modify the current assignment of Ci. The number of solutions of Ci is the sum of
solution counts for every assignment of Ci. The time (resp. space) complexity of BTD
for #CSP is the same as for CSP: O(n.m.dw+1) (resp. O(n.s.ds)) with w + 1 the size
of the largest Ck and s the size of the largest intersection Ci ∩C j (C j is a son of Ci).
In practice, for problems with large tree-width, BTD runs out of time and memory, as
shown in Section 5. In this case, we are interested in an approximate method.

Algorithm 1: BTD(A , Ci, VCi) : integer

if VCi = /0 then
if Sons(Ci) = /0 then return 1;
else

S← Sons(Ci) ; NbSol← 1 ;
while S 6= /0 and NbSol 6= 0 do

choose C j in S ; S← S−{C j};
if (A [Ci ∩C j],nb) is a #good in P then NbSol← NbSol×nb; else

nb← BTD(A ,C j ,VC j − (Ci ∩C j));
record #good (A [Ci ∩C j],nb) of Ci/C j in P ;
NbSol← NbSol×nb;

return NbSol;
else

choose x ∈VCi ; d← dx ; NbSol← 0 ;
while d 6= /0 do

choose v in d ; d← d-{v};
if A ∪{x← v} does not violate any c ∈C then1

NbSol← NbSol+BTD(A ∪{x← v}, Ci, VCi -{x});

return NbSol;

4 Approximate solution counting with ApproxBTD

We consider here CSPs that are not necessarily structured. We can define a collection of
subproblems of a CSP by partitioning the set of constraints, that is the set of edges in the
graph. We remark that each graph (X ,C) can be partitioned into k subgraphs (X1,E1),
. . . , (Xk,Ek), such that ∪Xi = X , ∪Ei = C and ∩Ei = /0, and such that each (Xi,Ei)
is chordal5. So, each (Xi,Ei) can be associated to a structured subproblem Pi (with
corresponding sets of variables Xi and constraints Ei), which can be efficiently solved
using BTD. Assume that SPi is the number of solutions for each subproblem Pi, 1 6 i 6
k. We will estimate the number of solutions of P exploiting the following property. We

denote PP (A) the probability of “A is a solution of P ” . PP (A) =
SP

∏x∈X dx
.

Property 1 Given a CSP P = (X ,D,C,R) and a partition {P1, ...,Pk} of P induced by
a partition of C in k elements.

SP ≈

⌈(
k

∏
i=1

SPi

∏x∈Xi dx

)
×∏

x∈X
dx

⌉
Notice that the approximation returns an exact answer if all the subproblems are

independent (∩Xi = /0) or k = 1 (P is already chordal) or if there exists an inconsistent
subproblem Pi. Moreover, we can provide a trivial upper bound on the number of solu-
tions due to the fact that each subproblem Pi is a relaxation of P (the same argument is
used in [21] to construct an upper bound).

SP ≤ min
i∈[1,k]

⌈
SPi

∏x∈Xi dx
×∏

x∈X
dx

⌉
5 A graph is chordal if every cycle of length at least four has a chord, i.e. an edge joining two

non-consecutive vertices along the cycle.

Algorithm 2: ApproxBTD(P) : integer

Let G′ = (X ′,C′) be the constraint graph associated with P ;
i← 0 ;
while G′ 6= /0 do

i← i+1 ;
Compute a partial chordal subgraph (Xi,Ei) of G′ ;
Let P i be the subproblem associated with (Xi,Ei) ;
SPi ←BTD(/0,C ′1,C ′1) with C ′1 the root cluster of the tree-decomposition of P i ;
G′← (X ′,C′−Ei) with X ′ be the set of variables induced by C′-Ei ;

k← i ;

return

⌈
∏

k
i=1

SPi

∏x∈Xi
dx
×∏x∈X dx

⌉
;

Our proposed method called ApproxBTD is described in Algorithm 2. Applied to
a problem P with constraint graph (X ,C), the method builds a partition {E1, ...,Ek}
of C such that the constraint graph (Xi,Ei) is chordal for all 1 6 i 6 k. Subproblems
associated to (Xi,Ei) are solved with BTD. The method returns an approximation to the
number of solutions of P using Property 1.

The number of iterations is less than n (at least we have n− 1 edges (a tree) at
each iteration or vertices have been deleted). Each chordal subgraph and its associated
optimal tree-decomposition can be computed in O(nm) [7]6. Moreover, we guarantee
that the tree-width w (plus one) of each computed chordal subgraph is at most equal to
K, the maximum clique size (the clique number) of P . Let w∗ be the tree-width of P ,
we have w+1≤K ≤w∗+1. Finally, the time complexity of ApproxBTD is O(n2mdK).

5 Experimental results

We implemented BTD and ApproxBTD counting methods on top of toulbar2 C++
solver7. The experimentations were performed on a 2.6 GHz Intel Xeon computer with
4GB running Linux 2.6.27-11-server. Reported times are in seconds. We limit to one
hour the time spent for solving a given instance (’-’ time out, ’mem’ memory out).
In BTD (line 1), we use generalized arc consistency (only for constraints with 2 or 3
unassigned variables) instead of backward checking, for efficiency reasons. The min
domain / max degree dynamic variable ordering, modified by a conflict back-jumping
heuristic [19], is used inside clusters. Our methods exploit a binary branching scheme.
The variable is assigned to its first value or this value is removed from the domain.

We performed experiments on SAT and CSP benchmarks8. We selected academic
(random k-SAT wff, All-Interval Series ais, Towers of Hanoi hanoi) and industrial (cir-
cuit fault analysis ssa and bit, logistics planning logistics) satisfiable instances. CSP
benchmarks are graph coloring instances (counting the number of optimal solutions)
and genotype analysis in complex pedigrees [25]. This problem involves counting the
number of consistent genotype configurations satisfying genotyping partial observa-

6 It returns a maximal subgraph for binary CSP. For non-binary CSP, we do not guarantee sub-
graph maximality and add to the subproblem all constraints totally included in the subgraph.

7 http://mulcyber.toulouse.inra.fr/projects/toulbar2 version 0.8.
8 From www.satlib.org, www.satcompetition.org and mat.gsia.cmu.edu/COLOR02/.

tions and Mendelian laws of inheritance. The corresponding decision problem is NP-
complete [1]. We selected instances from [25], removing genotyping errors beforehand.

We compared BTD with state-of-the-art #SAT solvers Relsat [3] v2.02 and Cachet
[26] v1.22, and also c2d [6] v2.20 which also exploits the problem structure. Both
methods uses MinFill variable elimination ordering heuristic (except for hanoi where
we used the default file order) to construct a tree-decomposition / d-DNNF. We also
compared ApproxBTD with approximation method SampleCount [12]. With param-
eters (s = 20, t = 7,α = 1), SampleCount-LB provides an estimated lower bound on
the number of solutions with a high-confidence interval (99% confidence), after seven
runs. With parameters (s = 20, t = 1,α = 0), called SampleCount-A in the follow-
ing table, it gives only an approximation without any guarantee, after the first run of
SampleCount-LB. CSP instances are translated into SAT by using the direct encod-
ing (one Boolean variable per domain value, one clause per domain to enforce at least a
domain value is selected, and a set of binary clauses to forbid multiple value selection).

The following table summarizes our results. The columns are : instance name, num-
ber of variables, number of constraints / clauses, width of the tree-decomposition, exact
number of solutions if known, time for c2d, Cachet, Relsat, and BTD; for Ap-
proxBTD : maximum tree-width for all chordal subproblems, approximate number of
solutions, and time; and for SampleCount-A and SampleCount-LB : approxi-
mate number of solutions, corresponding upper bound, and time. We reported total
CPU times as given by c2d, cachet, relsat (precision in seconds). For BTD and Ap-
proxBTD, the total time does not include the task of finding a variable elimination
ordering. For SampleCount, we reported total CPU times with the bash command
”time”. We noticed that BTD can solve instances with relatively small tree-width (ex-
cept for le450 which has few solutions). Exact #SAT solvers generally perform better
than BTD on SAT instances (except for hanoi5) but have difficulties on translated CSP
instances. Here, BTD maintaining arc consistency performed better than #SAT solvers
using unit propagation. Our approximate method ApproxBTD exploits a partition of
the constraint graph in such a way that the resulting subproblems to solve have a small
tree-width (w ≤ 11) on these benchmarks. It has the practical effect that the method
is relatively fast whatever the original tree-width. The quality of the approximation
found by ApproxBTD is relatively good and it is comparable (except for ssa and logis-
tics benchmarks) to SampleCount, which takes more time. For graph coloring, BTD
and ApproxBTD outperform also a dedicated CSP approach (2 Insertion 3 ≥ 2.3e12,
mug100 1 ≥ 1.0e28 and games120 ≥ 4.5e42 in 1 minute each; myciel5 ≥ 4.1e17 in 12
minutes, times were measured on a 3.8GHz Xeon as reported in [14]).

6 Conclusion

In this paper, we have proposed two methods for counting solutions of CSPs. These
methods are based on a structural decomposition of CSPs. We have presented an exact
method, which is adapted to problems with small tree-width. For problems with large
tree-width and sparse constraint graph, we have presented a new approximate method
whose quality is comparable with existing methods and which is much faster than other
approaches and which requires no parameter tuning (except the choice of a tree decom-
position heuristic). Other structural parameters [20, 24] should deserve future work.

In
st

an
ce

s
V

ar
s

w
So

lu
tio

ns
c
2
d

ca
ch

et
re

ls
at

B
T

D
A

pp
ro

xB
T

D
S
a
m
p
l
e
C
o
u
n
t
-
A
S
a
m
p
l
e
C
o
u
n
t
-
L
B

(B
oo

lv
ar

s)
Ti

m
e

Ti
m

e
Ti

m
e

Ti
m

e
w

So
lu

tio
ns

Ti
m

e
So

lu
tio

ns
Ti

m
e

So
lu

tio
ns

Ti
m

e
SA

T
w

ff
.3

.1
00

.1
50

10
0

39
1.

8e
21

-
-

-
m

em
2
≈

2.
21

e2
1
≤

1.
95

e2
7

0.
02
≈

1.
37

e2
1

95
9.

8
-

-
w

ff
.3

.1
50

.5
25

15
0

92
1.

4e
14

-
-

25
09

m
em

2
≈

9.
93

e1
4
≤

7.
80

e4
0

0.
2
≈

3.
80

e1
4

0.
68
≥

2.
53

e1
2

4.
65

ss
a7

55
2-

03
8

15
01

25
2.

84
e4

0
0.

15
0.

22
67

0.
72

5
≈

2.
47

e3
7
≤

1.
51

e1
38

1.
05
≈

1.
11

e4
0

13
4.

2
≥

3.
54

e3
8

11
62

.0
6

ss
a7

55
2-

16
0

13
91

12
7.

47
e3

2
0.

12
0.

08
5

0.
29

5
≈

1.
56

e3
4
≤

2.
23

e1
13

0.
82
≈

5.
08

e3
2

14
4.

6
≥

2.
31

e3
1

12
93

2b
itc

om
p

5
12

5
36

9.
84

e1
5

0.
47

0.
15

1
11

.5
3

5
≈

9.
50

e1
6
≤

1.
75

e3
1

0.
03
≈

4.
37

e1
5

0.
18

4
≥

3.
26

e1
5

1.
23

2b
itm

ax
6

25
2

58
2.

10
e2

9
18

.7
1

1.
57

20
m

em
5
≈

2.
69

e3
0
≤

4.
27

e6
5

0.
14
≈

1.
62

e2
9

1.
67

6
≥

2.
36

e2
6

10
.3

4
ai

s1
0

18
1

11
6

29
6

17
.1

4
29

.3
1

6
39

0.
32

9
≈

1
≤

2.
86

e2
2

1.
05

≈
12

4
45

.9
3

≥
20

31
2.

74
ai

s1
2

26
5

18
1

13
28

11
62

.7
5

21
69

22
9

-
11

≈
1
≤

1.
64

e4
0

3.
78

≈
0

9.
15

6
≥

0
9.

17
lo

gi
st

ic
s.

a
82

8
11

6
3.

8e
14

-
3.

82
10

m
em

10
≈

1
≤

2.
33

e1
47

13
.3

0
≈

7.
25

e1
1

17
0.

9
≥

0
60

5.
33

lo
gi

st
ic

s.
b

84
3

10
7

2.
3e

23
-

12
.4

43
3

m
em

13
≈

1
≤

2.
28

e1
43

13
.7

2
≈

2.
13

e2
3

19
8.

7
≥

0
22

9.
86

ha
no

i4
71

8
46

1
3.

41
32

.6
9

3
1.

72
6

≈
1
≤

8.
65

e1
07

1.
57

≈
0

5.
24

≥
0

5.
25

ha
no

i5
19

31
58

1
-

-
-

25
.4

6
7

≈
1
≤

2.
62

e2
98

15
.6

9
≈

0
6.

14
≥

0
6.

16
co

lo
ri

ng
2-

In
se

rt
io

ns
3

37
(1

48
)

9
6.

84
e1

3
23

5
-

-
7.

9
1
≈

1.
91

e1
3
≤

6.
00

e1
7

0.
01
≈

4.
73

e1
2

1.
00
≥

4.
73

e1
2

7.
42

2-
In

se
rt

io
ns

4
14

9
(5

96
)

38
-

-
-

-
-

1
≈

1.
30

e2
2
≤

1.
64

e7
1

0.
07

≈
0

3.
76

≥
0

3.
78

D
SJ

C
12

5.
1

12
5

(6
25

)
65

-
-

-
-

-
3
≈

1.
23

e1
3
≤

2.
27

e7
0

0.
13

≈
0

73
.1

4
≥

0
73

.1
7

ga
m

es
12

0
12

0
(1

08
0)

41
-

-
-

-
-

8
≈

1.
12

e7
8
≤

1.
92

e9
9

9.
83

≈
0

13
.7

6
≥

1.
35

e6
1

91
.0

7
G

E
O

M
30

a
30

(1
80

)
6

4.
98

e1
4

0.
86

-
-

0.
08

5
≈

7.
29

e1
4
≤

1.
81

e1
5

0.
03
≈

1.
23

e1
3

0.
43

2
≥

3.
28

e1
2

3.
70

G
E

O
M

40
40

(2
40

)
5

4.
1e

23
1

-
-

0.
09

5
≈

4.
42

e2
3
≤

1.
10

e2
4

0.
02
≈

2.
14

e2
0

1.
55

2
≥

6.
50

e1
9

9.
31

le
45

0
5a

45
0

(2
25

0)
31

5
38

40
-

34
3.

68
32

6
95

3.
24

4
≈

1
≤

2.
41

e2
16

2.
87

≈
0

8.
56

≥
0

8.
58

le
45

0
5b

45
0

(2
25

0)
31

8
12

0
-

24
2.

30
18

7
11

67
.7

8
4

≈
1
≤

5.
71

e2
16

2.
90

≈
0

8.
59

≥
0

8.
61

le
45

0
5c

45
0

(2
25

0)
31

5
12

0
-

20
.7

9
57

43
.6

6
4

≈
1
≤

1.
49

e2
01

6.
65

≈
0

11
0.

5
≥

0
11

0.
56

le
45

0
5d

45
0

(2
25

0)
29

9
96

0
-

16
.0

7
36

85
.0

3
4

≈
1
≤

8.
58

e2
00

6.
64

≈
0

54
.5

7
≥

0
54

.5
8

m
ug

10
0

1
10

0
(4

00
)

3
1.

3e
37

0.
19

-
-

0.
02

2
≈

5.
33

e3
7
≤

7.
08

e4
1

0.
01

≈
4.

2e
34

2.
08
≥

4.
20

e3
4

15
.5

9
m

yc
ie

l5
47

(2
82

)
21

-
-

-
-

m
em

1
≈

7.
70

e1
7
≤

8.
53

e3
2

0.
02
≈

7.
29

e1
7

0.
86
≥

7.
29

e1
7

6.
37

pe
di

gr
ee

pa
rk

in
so

n
34

(3
40

)
4

3.
56

e1
0

31
.3

4
5.

33
34

4
0.

12
2
≈

2.
33

e1
0
≤

6.
3e

11
0.

02
≈

4.
08

e1
0

3.
58
≥

9.
17

e8
25

.6
2

m
oi

ss
ac

3
72

(1
35

0)
2

4.
89

e3
5

0.
98

0.
09

<
1

0.
02

2
≈

3.
40

e3
5
≤

6.
11

e3
5

0.
02
≈

1.
18

e3
4

16
.9

3
≥

6.
75

e3
1

11
8.

41
la

ng
la

de
M

7
42

7
(8

81
8)

8
6.

73
e1

96
-

-
-

31
.7

9
2
≈

3.
81

e1
93
≤

8.
07

e2
03

0.
14
≈

3.
03

e1
79

81
6.

9
-

-

References

1. L. Aceto, J. A. Hansen, A. Ingólfsdóttir, J. Johnsen, and J. Knudsen. The complexity of
checking consistency of pedigree information and related problems. Journal of Computer
Science Technology, 19(1):42–59, 2004.

2. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM Journal of Discrete Mathematics, 8:277–284, 1987.

3. R. Bayardo and J. Pehoushek. Counting models using connected components. In AAAI-00,
pages 157–162, 2000.

4. A. Choi and A. Darwiche. An edge deletion semantics for belief propagation and its practical
impact on approximation quality. In Proc. of AAAI, pages 1107–1114, 2006.

5. A. Darwiche. On the tractable counting of theory models and its applications to truth main-
tenance and belief revision. Journal of Applied Non-classical Logic, 11:11–34, 2001.

6. A. Darwiche. New advances in compiling cnf to decomposable negation normal form. In
Proc. of ECAI, pages 328–332, 2004.

7. P.M Dearing, D.R. Shier, and D.D. Warner. Maximal chordal subgraphs. Discrete Applied
Mathematics, 20(3):181–190, 1988.

8. Rina Dechter and Robert Mateescu. The impact of and/or search spaces on constraint satis-
faction and counting. In Proc. of CP, pages 731–736, Toronto, CA, 2004.

9. Rina Dechter and Robert Mateescu. And/or search spaces for graphical models. Artif. Intell.,
171(2-3):73–106, 2007.

10. Vibhav Gogate and Rina Dechter. Approximate counting by sampling the backtrack-free
search space. In Proc. of AAAI-07, pages 198–203, Vancouver, CA, 2007.

11. Vibhav Gogate and Rina Dechter. Approximate solution sampling (and counting) on and/or
search spaces. In Proc. of CP-08, pages 534–538, Sydney, AU, 2008.

12. Carla P. Gomes, Joerg Hoffmann ans Ashish Sabharwal, and Bart Selman. From sampling
to model counting. In Proc. of IJCAI, pages 2293–2299, 2007.

13. Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new strategy for
obtaining good bounds. In Proc. of AAAI-06, Boston, MA, 2006.

14. Carla P. Gomes, Willem-Jan van Hoeve, Ashish Sabharwal, and Bart Selman. Counting
CSP solutions using generalized XOR constraints. In Proc. of AAAI-07, pages 204–209,
Vancouver, BC, 2007.

15. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artificial Intelligence, 146:43–75, 2003.

16. Kalev Kask, Rina Dechter, and Vibhav Gogate. New look-ahead schemes for constraint
satisfaction. In Proc. of AI&M, 2004.

17. Lukas Kroc, Ashish Sabharwal, and Bart Selman. Leveraging belief propagation, backtrack
search, and statistics for model counting. In Proc. of CPAIOR-08, pages 127–141, Paris,
France, 2008.

18. T.K Satish Kumar. A model counting characterization of diagnoses. In Proc. of the 13th
International Workshop on Principles of Diagnosis, 2002.

19. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Last conflict based reasoning. In Proc. of
ECAI-2006, pages 133–137, Trento, Italy, 2006.

20. Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Solving #sat using vertex covers.
Acta Inf., 44(7):509–523, 2007.

21. Gilles Pesant. Counting solutions of CSPs: A structural approach. In Proc. of IJCAI, pages
260–265, 2005.

22. N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of tree-width. Algo-
rithms, 7:309–322, 1986.

23. D. Roth. On the hardness of approximate reasonning. Artificial Intelligence, 82(1-2):273–
302, 1996.

24. Marko Samer and Stefan Szeider. A fixed-parameter algorithm for #sat with parameter inci-
dence treewidth, 2006.

25. M. Sanchez, S. de Givry, and T. Schiex. Mendelian error detection in complex pedigrees
using weighted constraint satisfaction techniques. Constraints, 13(1):130–154, 2008.

26. T. Sang, F. Bacchus, P. Beame, H. Kautz, and T. Pitassi. Combining component caching and
clause learning for effective model counting. In SAT-04, Vancouver, Canada, 2004.

27. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Sciences,
8:189–201, 1979.

28. Wei Wei and Bart Selman. A new approach to model counting. In Proc. of SAT-05, pages
324–339, St. Andrews, UK, 2005.

