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Abstract: The increased number of genomes being sequenced offers new opportunities
for the mapping of closely related organisms. We propose an algorithmic formalization
of a genome comparison approach to marker ordering. In order to integrate a compar-
ative mapping approach in the algorithmic process of map construction and selection,
we extend the usual statistical model describing the experimental data, here radiation
hybrids (RH) data, in a statistical framework that models additionally the evolutionary
relationships between a proposed map and a reference map: an existing map of the cor-
responding orthologous genes or markers in a closely related organism. This has con-
cretely the effect of exploiting, in the process of map selection, the information of marker
adjacencies in the related genome when the information provided by the experimental
data is not conclusive for the purpose of ordering. In order to compute efficiently the
map, we proceed to a reduction of the maximum likelihood estimation to the Traveling
Salesman Problem. Experiments on simulated RH data sets as well as on a real RH data
set from the canine RH project show that maps produced using the likelihood defined by
the new model are significantly better than maps built using the traditional RH model.

Keywords: Comparative mapping, Comparative genomics, RH mapping.

1 Introduction

Since the discovery of the molecular basis of genes, the time devoted to mapping has dramatically
increased, reaching its apogee with the advent of whole genome sequence projects. Although the
complete sequence provides the ultimate map of a genome, the problem of constructing a map from
experimental data remains an active area of research [5,8,15,19]. Maps are key to the study of organ-
isms that are not planned to be sequenced in the near future. In addition, the availability of detailed
maps offers great advantage in the process of whole genome sequencing [10]. The production of
whole genome sequences therefore doesn’t dismiss the need for gene mapping. It suggests however
alternative mapping strategies. Having in hand the exhaustive gene catalog of a completely sequenced
genome makes it possible to take advantage of the conservation of chromosome segments with a re-
lated genome of interest. This approach, also called comparative mapping, has been extensively used



for many years as a guideline for the construction of maps in animals as well as in plants [7,17].
The comparative mapping strategy is also of great value in the context of whole genome sequence
assembly [10,18].

We propose here a novel approach to gene mapping, in the context of radiation hybrid (RH)
mapping, provided that a closely related completely sequenced genome is available. Unlike previous
approaches, the map of a reference organism is used at the very first step of marker ordering for the
construction and evaluation of the candidate maps. Although devised in the context of RH mapping,
we believe that the proposed method applies equally to other mapping strategies such as genetic map-
ping. Sections 2 and 3 describe a new statistical model that takes into account both the experimental
RH data and the order in a related organism. Section 4 deals with the algorithmic aspects of search-
ing the space of all possible maps, trying to find the best one according to the predefined criterion,
without evaluating then!

2 possible marker orders. Finally, the interest of this approach is evaluated on
both simulated and real data, showing a significant improvement in map quality over the traditional
approach.

2 The statistical model

Our presentation is restricted to the case of radiation hybrid mapping which can be described by a
simple statistical model [6]. In addition, we implicitly develop our comparative approach principle
in the particular case of haploid error-free data due to our approximation of likelihood using 2-point
likelihoods (see below). The comparative principle is however not closely interlinked to the 2-point
approach and could be extended to other approaches of RH mapping (see discussion).

We noteA the reference organism andB the organism of interest. ForB an RH data setX for
n markers is available. We make the assumption that there is a one-to-one correspondence between
the markers inB and their orthologs inA. The complete genome sequence ofA provides a mapπA

of these markers inA. Our aim is to build a map, identified by a marker permutationπ, for then
markers of organismB. Let P (X|π, θ) denote the likelihood of the data for a given orderπ and a
set of parameters (nuisance parameters such as the retention fraction and breakage frequencies for
radiation hybrids). In the traditional maximum likelihood approach, the likelihood associated with
each order is the maximum over all possible values ofθ:

L(π|X) = max
θ

P (X|π, θ) (1)

and the candidate map is the orderπ that maximizes this likelihood. Although the situation is generally
complicated by the fact that the estimation ofθ depends on the particular choice ofπ, we will con-
sider an approximation of this likelihood, using the product of 2-point maximum likelihoods, strictly
equivalent to the likelihood only for haploid error-free data, which breaks this dependencies between
θ andπ (see appendix and [1] for a detailed description of 2-point likelihoods and a discussion of the
relevance of such an approximation).

Using this approximation, we can consider the likelihood of the data as depending solely onπ:

L(π|X) = Pθ(X|π) (2)

and proceed to the Bayesian inversion

Pθ(π|X) =
Pθ(X|π)P (π)∑
π Pθ(X|π)P (π)

∝ Pθ(X|π)P (π) (3)



In this framework, the information provided by the existing mapπA for the corresponding orthol-
ogous genes inA can be incorporated by defining a non-uniform prior distribution on the possible
orders for the map inB. We suppose that the probability of an order is a function of its evolutionary
distance to the reference map, measured with the number ofbreakpointsbetween the proposed order
π and the reference orderπA. This distance, denoted ask, is the number of adjacent markers inπ
which are not adjacent inπA.

As the choice of a particular orderπ implies a unique breakpoint distance with the reference map,
the previous equation can be written as

Pθ(π|X) ∝ Pθ(X|π)P (π|k)P (k) (4)

wherek is the number of breakpoints. Assuming a Poisson prior for the law of breakpointsP (k) =
Pλ(k), the only expression which is not yet determined isP (π|k), the likelihood of a given order
for a fixed number of breakpoints. For a given breakpoint distance, we assume that all the orders are
equally probable and hence follow a uniform distribution. The likelihood takes the following form:

P (π|k) =
1

On(k)
(5)

whereOn(k) denotes the number of different orders having exactlyk breakpoints with the identity
permutation of sizen. We show in the next section how to compute this number. Forn = 100 markers
for example, we haveOn(k) = 1, 293, 79349, 19071365, · · · for k = 0, 1, 2, 3, · · ·. Intuitively, this
new objective function states that the risk of making an additional breakpoint to the reference order
is taken if the gain in likelihood of the data balances the risk of jumping from a search space of size
On(k) to a search space of sizeOn(k + 1) (and fromk to k + 1 in the Poisson law). In the sequel,
finding the map maximizing (2) will be termed simple 2-point RH approach while searching for the
one maximizing (4) will be termed comparative 2-point approach.

3 Number of orders at a given breakpoint distance

We describe first the case of single chromosome genomes and then extend our results to the case of
multiple chromosomes. Since complete map reversals define the same order, a permutation and its
complete reversal will be considered equivalent.

3.1 Single chromosome genomes

We assume that the reference orderπA is the identity permutation. Consider an arbitrary permutation
π. We define asegmentin this permutation as a maximal set of markers in the permutation that
contains no breakpoint withπA. The single order exempt of breakpoints withπA is πA itself. In
the general case we proceed by induction onn, the size of the permutations andk the number of
breakpoints. When a segment is reduced to a single marker, the marker is said to be isolated. When
adding the new markern in an existing configuration, 3 possible outcomes must be considered

(0) 0 breakpoint is created whenn is inserted before or after markern−1, at the border of a segment;
(1) 1 breakpoint is created whenn is inserted (i) inside a segment next to markern − 1, (ii) at the

position of an existing breakpoint or (iii) at one of the two ends (borders) of the permutation
except next ton− 1;

(2) 2 breakpoints are created whenn is inserted anywhere inside in a segment, except next ton− 1.



1 2 · · · j | n−3 · · · j+1 | n−1 n−2 ∈ Sc
n−1(2)

n | 1 2 · · · j | n−3 · · · j+1 | n−1 n−2 ∈ Ib
n(3)

1 2 · · · j | n | n−3 · · · j+1 | n−1 n−2 ∈ Ic
n(3)

1 | n | 2 · · · j | n−3 · · · j+1 | n−1 n−2 ∈ Ic
n(4)

1 2 · · · j | n−3 · · · j+1 | n−1 n | n−2 ∈ Sc
n(3)

1 2 · · · j | n−3 · · · j+1 | n n−1 n−2 ∈ Sc
n(2)

Figure 1.An example of initial permutation withn−1 elements followed by 5 different possibilities of inserting
markern illustrating the setsIb

n(k), Ic
n(k) andSc

n(k). The only set not shown,Sb
n(k), can be illustrated by

simply reverting the rightmost segment of the last permutation. Breakpoints are represented as vertical bars.

Note that the knwoledge of the position ofn− 1, isolated or not, in a central position or at one of
the two extremities, is the only relevant information needed prior to the introduction ofn. Consider the
set of all permutations withk breakpoints with the reference order. In order to compute the cardinality
of this set, we define a partition into four components according to the position of markern (see figure
1):

– Ib
n(k): permutations withn isolated at one of the two extremities of the permutation

– Ic
n(k): permutations withn isolated but in a central position (anywhere except at the extremities)

– Sb
n(k): permutations withn at one of the extremities of the permutation and at the border of a

segment
– Sc

n(k): permutations withn on the border of a segment but in a central position

Using the same notation for a set and its cardinality, letOb
n(k) = Ib

n(k) + Sb
n(k) andOc

n(k) =
Ic
n(k) + Sc

n(k). We haveOn(k) = Ob
n(k) + Oc

n(k). The following induction relations enable to com-
pute the number of permutations sharing a fixed number of breakpoints with the identity permutation:

Ib
n(k) = Ob

n−1(k − 1) + 2Oc
n−1(k − 1)

Ic
n(k) = (k − 1)On−1(k − 1) + (n− k)On−1(k − 2)− Sc

n(k − 1)
Sb

n(k) = Ob
n−1(k)

Sc
n(k) = Ib

n−1(k) + 2Ic
n−1(k) + Sc

n−1(k) + Sb
n−1(k − 1) + Sc

n−1(k − 1)

A configuration withn isolated at one border can only be obtained through the operation described
in (1)(iii) leading to the induction relation forIb

n(k). The other relations can be derived by a similar
analysis. Setting all quantities to 0 fork < 0 and using initial values ofIb

2(0) = Ic
2(0) = Sc

2(0) = 0,
Sb

2(0) = 1, a simple dynamic programming procedure can compute allOn(k) values forn ≤ N and
k ≤ N − 1 in quadratic time.

3.2 Multiple chromosome genomes

Generalization to multiple chromosomes implies to distinguish obligate breakpoints created by the
concatenation of markers from different chromosomes from other breakpoints. If the chromosome
maps of the reference organism are arbitrarily concatenated before the numbering process, some
adjacencies in this new reference map must be considered as breakpoints. Letn1, . . . , nr denote the
number of markers on the chromosomes1, . . . , r of the reference organismA involved in a single
linkage group of the genome of interestB. In the induction process, when incorporating the first
marker from a new chromosome in the permutation, i.e of the type

∑j
i=1 ni + 1 for j = 1, . . . , r− 1,

one has to ensure that an additional breakpoint is always created. The number of permutations at a
given breakpoint distancek whenn spans then1 + · · ·+nr markers uses the same induction relations



as defined in 3.1 with the following modifications for the particular cases wheren =
∑j

i=1 ni + 1
(j = 1, . . . , r − 1): 

Ib
n(k) = 2On−1(k − 1)

Ic
n(k) = (k − 1)On−1(k − 1) + (n− k)On−1(k − 2)

Sb
n(k) = Sc

n(k) = 0

4 Maximum likelihood computation reduced to solving a TSP

In order to compute efficiently the maximum likelihood estimation ofπ under the model defined by
(4) we reduce the corresponding optimization problem to the Traveling Salesman Problem (TSP).
The principle of this reduction is to write the likelihood of an order as a weighted path visiting all the
markers in that order. Practically, this entails constructing a distance measure on the set of markers.
We consider the log-likelihood

log Pθ(π|X) = log Pθ(X|π) + log [P (π|k)Pλ(k)] + C

and follow the approach of [1] for the first term:

log Pθ(X|π) = log[tx1 × tx1,x2 × · · · × txn−1,xn × txn ]

wheretxi,xi+1 is the contribution of the radiation hybrid data associated with marker interval[xi, xi+1]
to the likelihood of the map defined byπ (see appendix and [1]). Due to the exponential nature of
On(k), the additive contribution of each interval for the breakpoint counterpart of the likelihood is
obtained by a linear regressiony = a + bk on the datay = log [P (π|k)Pλ(k)] (k = 0, . . . , n − 1)
using the exact computation ofP (π|k) given by the recurrence formula4 of section 3 and a predefined
parameterλ for the Poisson law. Setting

wx,y = log tx,y + b× 1x|y (6)

with

1x|y =

{
0 if x andy are adjacent in the reference order
1 otherwise

fully defines the TSP reduction

log P (π|X) =
n∑

i=0

wxi,xi+1

with wx0,x1 = log tx1 + a andwxn,xn+1 = log txn .

Solving the resulting TSP instances can be done in several ways using either complete methods
such as branch and cut or heuristic methods. We have tried both state-of-the-art complete and/or
heuristic methods available in CONCORDE [2] and LKH [11]. The likelihood computation has been
implemented above the CARTHAGÈNE [9] C++ and LKH [11] C libraries.

5 Simulated radiation hybrid data sets

The following protocol is used to generate RH data sets and reference orders.N markers are ran-
domly distributed according to the uniform distribution on a chromosome of sizeS Ray giving rise

4 This computation can be easily precomputed once for different number of markers and the results made available as a
table.



 0

 20

 40

 60

 80

 100

 5  10  15  20  25  30  35  40

%
a
g
e
 
t
r
u
e
 
o
r
d
e
r
 
f
o
u
n
d

Chromosome size (Ray)

Simulation with 100 markers and 100% orthology

comparative 2-point (2 rearrangements)
comparative 2-point (4 rearrangements)
comparative 2-point (8 rearrangements)

simple 2-point RH model

 0

 20

 40

 60

 80

 100

 5  10  15  20  25  30  35  40

L
I
S
 
c
r
i
t
e
r
i
o
n

Chromosome size (Ray)

Simulation with 100 markers and 100% orthology

comparative 2-point (2 rearrangements)
comparative 2-point (4 rearrangements)
comparative 2-point (8 rearrangements)

simple 2-point RH model

Figure 2. (Left) Effect of marker density (chromosome size) and evolutionary distance on the percentage of
true order found. Simulated radiation hybrid data sets with 100 markers randomly distributed on a single chro-
mosome, the size of which varies from 4 Ray to 40 Ray. For the comparative approach, the reference order of
100 orthologous markers is at an evolutionnary ditance of respectively 2, 4 and 6 (see text). (Right) Effect of
marker density (chromosome size) in terms of the longest increasing subsequence (LIS) criterion.

to the target map or true order. The inter-marker expected breakage frequenciesθi,i+1 = 1− e−δi,i+1

corresponding to the inter-marker distanceδi,i+1 are subsequently used to generate random RH data
sets forI individuals according to the haploid equal retention model [6] with the retention frac-
tion r, a false positive/negative error rateperror and a proportion of missing datapmiss. Finally, a
reference order is generated by applying a sequence of rearrangement events (reversal, transposi-
tion, inverted transposition) on the true order with an expected number of events, orevolutionary
distance, set toE [16]. Note that an inversion creates 2 breakpoints while the two other rearrange-
ments produce 3 breakpoints so that the expected number of breakpoints is8

3 × E if we assume
no breakpoint reuse and the 3 rearrangements equiprobable. In addition, a parameterH controls the
proportion of known orthologous relationships which are randomly selected among theN possi-
ble ones. Whenever a markerx has no identified ortholog,1x|y is set to 1 in (6) mimicking there-
fore a breakpoint. In the experiments, we tried the following values for the generator parameters:
N = 100, S ∈ [4, 40], I = 40, r = 37%, pmiss = 3%, perror = 3%, E ∈ {2, 4, 8},H ∈ [0, 100].
Each reported experimental result is a mean over 100 randomly generated RH data sets and reference
orders by following the previous protocol with a fixed value of the parameters.

In order to assess the effectiveness of our comparative mapping approach, two performance met-
rics were used to evaluate the accuracy of the proposed maps: (a) proportion of the correctly re-
constructed maps, (b) the longest increasing subsequence (LIS). Since, in our simulations, the true
order is represented by the identity permutation, the longest increasing subsequence of a candidate
order indeed measures how accurate the candidate map is. Letπ = (π1 . . . πn), the longest increas-
ing subsequence is the largest subset(πi1 , . . . πir) such thatπi1 < · · · < πir . Because an order and
its complete reversal define the same map, we take the maximum LIS of these two orders and note
LIS(π) = r this maximum. LIS computation is folklore in algorithmic and has already been used
for the evaluation of mapping strategies [1,5].

6 Simulation Results

The robustness of our approach was studied with respect to 3 different factors: the influence of the
evolutionary distance with the reference genome, the influence of chromosome size (or marker den-
sity), and the proportion of known orthology relationships within the dataset.
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Figure 3. Effect of the number of orthologous relationships in terms of the LIS criterion. The horizontal line
correspond to the simple 2-point RH model.

As expected, the availability of a complete map for a closely related organism significantly im-
proves mapping efficiency, the improvement being dependent on the evolutionary distance between
the two maps (figure 2). In these experiments, for S=15 Ray for example, the true order was never
found by the simple 2-point RH mapping approach while the comparative 2-point RH mapping re-
covered the true order from 16 up to 65 times depending on the evolutionary distance. The proportion
of correctly reconstructed order is however too crude for a metric: as the number of marker increases,
the probability of recovering the true order decreases rapidly (see [3] for a formal analysis of this
behavior). The LIS criterion in contrast, by measuring the size of the largest subset correctly ordered
in the proposed map, enables to quantify the distance to the true map. Comparison using this criteria,
shown in figure 2, confirms the benefit of the comparative mapping approach. Less than 10% of the
markers were wrongly positioned when the chromosome size belongs to the interval[5, 15] Ray in the
case of comparative 2-point RH mapping with a medium-size evolutionary distanceE = 4. On the
contrary, simple 2-point RH approach got 33% of incorrectly positioned markers at its best (S = 10
Ray).

As shown in both figures, there is a clear influence of marker density on the mapping accuracy.
Indeed, the linkage between markers is respectively loose and tight for large and small chromosomes.
In both extreme cases, the RH data set is not very informative for the purpose of ordering and the ref-
erence order provides therefore a valuable information. The robustness of the comparative approach
to marker densities, due to the fact that the evolutionary breakpoints are independent from the number
of markers, is of great value when the objective is to produce dense maps.

In our experiments, the expected number of breakpoints between the true order and the reference
order, orλ, was set to1 in the Poisson priorPλ(k). This value is generally unknown for the mapping
process. However, no clear improvement in terms of both criteria was observed when using for each
instance the exact number of breakpoints, available in the context of simulation (results not shown).

Finally, we studied the impact of diminishing the proportion of known orthologous relationships.
Figure 3 shows the results for the LIS criterion on a10 Ray chromosome withH ∈ [0, 100]. When
H = 0, the method reduces to a simple 2-point RH mapping approach. WhenH was greater than
40 − 50%, we observed a clear improvement in terms of map quality for the comparative 2-point



mapping approach compared to the simple 2-point RH model. Below this threshold, the knowledge
of a partial reference order can be counterproductive, especially if the evolutionary distance is high.
An explanation for this negative result, in the case ofE = 8 andH = 30, is the fact that the number
of breakpoints was close to the number of orthologous relationships (in the experiments,E = 8
corresponds to18.74 breakpoints for 100 markers and still11.27 breakpoints forH = 30 orthologous
markers) and the TSP reduction provided a coarse approximation because of the arbitrary weightwx,y

assigned in the absence of orthologs (see section 5).
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Figure 4.Consensus maps of 426 markers for Dog Chromosome 02 found by (from left to right) simple 2-point
RH mapping (A), sequence assembly (B), comparative 2-point RH mapping (C), and following the Human
genome (4 segments,100% orthology) order (D). Only marker orders are represented and not the relative
distance between markers. LIS criteria are:LIS(A) = 212 andLIS(C) = 317. The horizontal bars on the
right delineate the 4 human segments (from chromosome 16, 10, 5 and 1) contributing to dog chromosome 2.
The human mapD shares 27 breakpoints withC and 145 withB. Computing maps A and C took less than 10
seconds each on a Pentium IV 2 GHz.



7 Experiments with a dog radiation hybrid data set

In order to test the efficiency of our method on a real example, we applied this comparative approach
to the construction of a RH map of a whole canine chromosome (CFA2 - figure 4) using a set of
426 markers typed on the RHDF9000 dog radiation hybrid panel [12]. The human genome sequence
was used as a reference map. As the RH markers consisted essentially in gene-based fragments, the
corresponding orthologous position was determined for all 426 markers using a simple reciprocal best
hit principle with the human gene catalog [13]. The 426 markers cover the entire canine chromosome
2 (87 Mb) corresponding to a marker every 200kb on average. We constructed RH maps of CFA2
using both the simple 2-point RH method and the comparative 2-point approach. The comparative
mapping approach showed a clear improvement over the simple 2-point method in that the proposed
map was in better agreement with the dog genome sequence [14] than the map built using the simple
2-point RH mapping approach. An illustration of this improvement is given in figure 4.

8 Discussion

As frequently pointed out [1,3,4], and illustrated in the previous sections, the major impediments
to producing dense high-quality RH maps are the adequation of the panel resolution power to the
number of markers to be mapped and experimental data quality and not computation. The traditional
avenue to overcome this problem is the construction of framework maps: only a subset of markers
is ordered with the counterpart that the proposed order is significantly better (usually in a ratio of
1000:1 of the likelihood) than all other orders with the same markers. Unfortunately this has a cost as
the remaining unplaced markers (typically 50 to 80% of initial dataset) are then positioned into bins of
confindence leading to a placement map which may encounter many discrepancies with the true order.
We propose here a novel approach that defines a new objective function which takes into account the
information provided by a closely related completely sequenced genome: a genome for which an
exhaustive map is available. The efficiency of the method is clearly dependent on the evolutionary
distance between the reference genome and the genome one wishes to map but also on the quality
of orthologous relationships. The proposed objective function performs significantly better than the
simple 2-point approach, or traditional approach as opposed to comparative, on both simulated and
real data for the range of parameters typically observed for the mammalian species (relative low
number of breakpoints and ability to detect orthology relationships). While the experiments are here
restricted to the comparison with the simple 2-point approach of RH mapping, our purpose was to
demonstrate the benefits of incorporating comparative mapping information in an existing statistical
framework, principle which should be applicable to other RH mapping strategies.

Appendix

A radiation hybrid experiment can be rapidly sketched as follows: cells from the organism under study are irradiated.
The radiation breaks the chromosomes at random locations into separate fragments. A random subset of the fragments is
then rescued by fusing the irradiated cells with normal rodent cells, a process that produces a collection of hybrid cells. The
resulting clone may contain none, one or many chromosome fragments. This clone is then tested for the presence or absence
of each of the markers. This process is performed a large number of times producing a radiated hybrid panel, previously
called RH data set in Section 2.

More formally, givenN markers andI hybrid cells, a panel is a collection ofI vectors of identical sizeN , containing
boolean values0 for the absence of a marker and1 for its presence.

The radiation breakage frequencies between two markers, estimated from their co-occurrence pattern in a panel of
radiated hybrid cells (possible configuration patterns are(11), (10), (01), or (00) in vectors) , provide, in a similar manner



to the recombination fraction in genetic mapping, a measure of the distance separating the markers. Letr denote the
retention fraction andθ the breakage probability between markersy andz. The conditional probabilities of the status Z of
marker z, knowing the status Y of marker y, is given by the following formulas [6]:

P (Z = 1 |Y = 1) = p1|1 = (1− θ) + θr
P (Z = 1 |Y = 0) = p1|0 = θr
P (Z = 0 |Y = 1) = p0|1 = θ(1− r)
P (Z = 0 |Y = 0) = p0|0 = (1− θ) + θ(1− r)

Let p1 = r andp0 = 1 − r. The probability of observing a hybrid with markery present and markerz absent is for
examplep1p0|1 and, by a simple refactorization, the likelihood for the dataY andZ associated to a panel of hybrids takes
the following form

L(Y, Z|θ) = L(Y |θ)L(Z|Y, θ) (1)

with L(Y |θ) = pn0.
0 pn1.

1 and the 2-point likelihood

L(Z|Y, θ) = pn11
1|1 pn10

1|0 pn01
0|1 pn00

0|0

whereθ is the extended set of parameters(θ, r) andnij the cardinality of the different configurations outlined above with
ni. the marginal cardinalityni0 + ni1.

The maximum likelihood estimate ofr is simply the ratio of the total number of 1s to the total number of 1s and 0s (the
number of1 in the panel divided byI × N ). The maximum likelihood estimate of the breakage frequency can be derived
analitically from (1) (see for example [1] for a detailed description).

The natural mathematical framework for radiation hybrid mapping depicts the succession of loci on a chromosome
as successive steps of a Markov chain. The likelihood of a hybrid for a given orderπ = (x1 · · ·xn) is the probability to
observe the dataX under the associated Markov model

L(X|θ, π) = P (X1|θ1)
∏

P (Xi|Xi−1, θi) (2)

Considering simultaneously all the hybrids, the likelihood can be rewritten in the following form

L(X|θ, π) = L(X1|θ1)
∏

L(Xi|Xi−1, θi) (3)

whereθi is the set of parameters restricted to the interval between two consecutive markers. In particular, the maximization
over the parametersθ on one side and the order parameterπ can be conducted independently. We callLθ(Xi|Xi−1) the
2-point maximum likelihoods :

Lθ(Xi|Xi−1) = max
θi

L(Xi|Xi−1, θi)

This value can be computed using the maximum likelihood estimation ofr andθ described above. The likelihood of an
orderπ can be computed directly from these maximum likelihood:

Lθ(X|π) = Lθ(X1)
∏

Lθ(Xi|Xi−1) (4)

A reduction to a symmetric TSP implies a symmetric treatment of the different loci, dropping the reference toθ for
simplicity, we note

tx =
√

L(X) and tx,y =
L(X, Y )

txty

In a straightforward manner

tx1

(∏
txi,xi−1

)
txn = tx1

(∏ L(Xi|Xi−1)txi−1

txi

)
txn

= L(X1)
∏

L(Xi|Xi−1)

therefore
L(X|π) = tx1 × tx1,x2 × · · · × txn−1,xn × txn (5)

and the TSP reduction is completed (see [4,1] for analytical formulas).

In general however, the correct Markov formalization implies some hidden properties (model including the diploid

nature of the genome or typing errors) and equality (4) no longer holds. It has been argued that the product of 2-point

maximum likelihoods provides however a good approximation of the likelihood [4,1].
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