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◦ X, a set of n variables 

◦ D, finite domains of maximum size d 

◦ F={fS1,…,fSe}, a set of e local functions  

with Si  X and maximum arity a = maxfsF |S|, 

usually defined in extension 



 MAP (maximum a posteriori) query 
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 solvers: daoopt, mplp2,.. 

NP-hard 



 Minimum cost assignment query 
(aka Weighted Constraint Satisfaction Problem) 
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Special cases: 

• Boolean variables &  weighted clauses (Max-SAT) 

• 01 variables, linear constraints & objective (01LP) 

solvers: toulbar2, gecode, mistral, opturion,.. 

 solvers:  maxhs, cplex,.. 

NP-hard 



 Problem (X,D,P) 
◦ X= {x,y} 

◦ Dx={a,b}, Dy={a,b,c}  

◦ p(x,y) 

 p(x=a,y=a)=p(a,a)=p(b,b)=1 

 p(a,b)=p(b,a)=0.5 

 p(a,c)=p(b,c)=0 

 

◦ MAP solution (x=a, y=a) with normalized 
probability 1/3 



 Problem (X,D,F) 
◦ X= {x,y} 

◦ Dx={a,b}, Dy={a,b,c}  

◦ f(x,y) 

 f(x=a,y=a)=f(a,a)=f(b,b)= 0 

 f(a,b)=f(b,a)=  -100 log(0.5)  

 f(a,c)=f(b,c)= +∞ 

 

◦ Optimal solution (x=a, y=a) with minimum cost 0 
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Instances\Output MRF CFN Max-SAT 01LP CP 

MRF - Energies scaled to 
non negative integers 

Through CFN Through CFN 
 

Through CFN 
 

CFN Exponentiating 
costs 

- Direct/tuple 
encodings 

Direct/tuple 
encodings 

new cost variable 
& table constraint 
per cost function 
(no large costs)  

Max-SAT Through CFN 
(large arity 
clauses cannot 
be represented in 
extension) 

Direct 
(large arity clauses 
represented in a 
compact way) 

-  
 

Through CFN 
(tuple encoding 
cannot be used) 

new cost variable 
& reified logical 
expression per 
weighted clause 

CP Through CFN Global constraints 
decomposed into 
ternary constraints, 
objective variables 
decomposed into a 
sum of cost functions 
(no large domains) 

Through CFN Through CFN 
(global constraints 
not decomposed 
into linear 
constraints) 

- 
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• CFNCP: Petit, T., Regin, J., Bessiere, C.: Meta constraints on violations for over constrained 
problems. In Proceedings of IEEE ICTAI'2000, Vancouver, Canada (2000)  
• CPCFN: Allouche, D., Bessiere, C., Boizumault, P., de Givry, S., Gutierrez, P., Loudni, S., Metivier, 
J., Schiex, T. Decomposing global cost functions. In: Proc. of AAAI-12. Toronto, Canada (2012) 



◦ Variables and Domains 

iX with|Di|>2, rDi, integer variable 0 ≤ dir  ≤ 1 with rDi dir = 1 

 

◦ Cost Functions 

fSF, tDS with|S|>1, 0 < fS(t) < +∞, variable 0 ≤ pSt ≤ 1  

with iS (1 – dit[i] )  + pSt ≥ 1 and linear objective  fS (t) pSt  
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◦ Variables and Domains 

iX with|Di|>2, rDi, integer variable 0 ≤ dir  ≤ 1 with rDi dir = 1 

 

◦ Cost Functions 

fSF, tDS with|S|>1, 0 ≤ fS(t) < +∞, variable 0 ≤ pSt ≤ 1  

with   iS,rDi  dir = tDs, t[i]=r, f(t)<+  pSt   

and linear objective  fS (t) pSt  
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Equivalent to the local polytope in MRFs 



 Problem (X,D,F) 
◦ X= {x,y} 

◦ Dx={a,b}, Dy={a,b,c}  

◦ f(x,y) 

 f(x=a,y=a)=f(a,a)=f(b,b)= 0 

 f(a,b)=f(b,a)=  -100 log(0.5)  = 30 

 f(a,c)=f(b,c)= +∞ 

 

◦ Optimal solution (x=a, y=a) with minimum cost 0 



 Direct encoding 
◦ Domain variables: x, ya, yb, yc  (x=0x=a and x=1x=b) 

◦ Tuple  variables: pxayb, pxbya 

 

◦ Min 30*pxayb + 30 * pxbya 

such that 

 ya + yb + yc = 1 

 x – yb + pxayb  >= 0 

 -x – ya + pxbya  >= -1 

 x – yc >= 0 

 -x – yc >= -1 

 

    Optimal solution (x=0, ya=1) with minimum cost 0 



 Tuple encoding 
◦ Domain variables: x, ya, yb, yc  (x=0x=a and x=1x=b) 

◦ Tuple variables: pxaya,pxayb , pxbya,pxbyb 

 

◦ Min 30*pxayb + 30 * pxbya 

such that 

 ya + yb + yc = 1 

 1 – x =  pxaya  + pxayb  

 x =  pxbya  + pxbyb  

 ya =  pxaya  + pxbya  

 yb =  pxayb  + pxbyb  

 yc =  0 
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◦ X, a set of n Boolean variables 

◦ D = {true, false}n, finite domains of size 2 

◦ F={fS1,…,fSe}, a set of e weighted clauses such that  fSi  is 
associated to a clause (l1 or l2 or … or l|Si|) 
fSi : true  0 
      false  N  {∞} 

 

   

 Minimum cost assignment query 
(satisfying all the hard clauses) 
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NP-hard 



 Direct encoding 
◦ Domain variables: x, ya, yb, yc  (x=falsex=a and x=truex=b) 

Hard clauses: 

 (–ya or –yb), (–ya or –yc), (–yb or –yc) 

 (ya or yb or yc) 

 (x or –yc), (–x or –yc) 

Soft clauses: 

 (x or –yb, 30) 

 (–x or –ya, 30) 

 

   Optimal solution (–x, ya, –yb, –yc) with minimum cost 0 



 Tuple encoding 
◦ Domain variables: x, ya, yb, yc 

◦ Tuple variables: pxaya,pxayb , pxbya,pxbyb 

Hard clauses: 

 (–ya or –yb), (–ya or –yc), (–yb or –yc), (ya or yb or yc) 

 (–pxaya  or –x), (–pxaya  or ya), (–pxayb or –x), (–pxayb  or yb), (–pxbya  or 
x), (–pxbya  or ya), (–pxbyb  or x), (–pxbyb  or yb)  

 (x or pxaya  or pxayb ), (–x or pxbya  or pxbyb ), (–ya or pxaya  or pxbya ),  
(–yb or  pxayb  or pxbyb), (–yc) 

Soft clauses: 

 (pxayb , 30) 

 (pxbya, 30) 
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◦ X  F {o}, a set of n + e + 1 variables 

◦ D, finite domains of maximum size d 

◦ C={cS1,…,cSe}, a set of e constraints with Si  X  F 

◦ Goal constraint:  o = SumfF f 

   

 Minimum cost assignment query 
(satisfying all the constraints) 

NP-hard 

Score(X=x, F=f, o=v) = v 



 Problem (X,D,C) 
◦ X= {x,y,f,o} 

◦ Dx={a,b}, Dy={a,b,c} , Df= [0,M], Do= [0,M]  

◦ Constraint  c(x,y,f) represented by a list of allowed tuples 

 c(x=a,y=a,f=0)=c(a,a,0), c(b,b,0), 

 c(a,b,30), c(b,a,30), 

◦ o = f 

 

◦ Optimal solution (x=a, y=a, f=0, o=0) with minimum cost 0 
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◦ Node consistency  (NC) 

 fx F, a  Dx, f + fx(a) < k 

 fx F,  a Dx, fx (a) = 0 

◦Arc consistency (AC) 

 fxy F, a  Dx ,  b  Dy , fxy(a,b) = 0 

◦ Directional arc consistency (DAC) 

 fxy F such that x < y, a  Dx ,  b  Dy , fxy(a,b) + fy(b) = 0 

◦ Full directional arc consistency: FDAC = NC + AC + DAC 

◦ Existential arc consistency (EAC) 

  x X,  a  Dx , fxy F, b  Dy , fx(a) + fxy (a, b) + fy(b) = 0 

◦ Full existential directional arc consistency: EDAC = FDAC + EAC 
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Sequence of integer arc EPTs maximizing f  is NP-hard 
(Cooper & Schiex, AI 2004) 

Implied by strict arc consistency 



 Optimal set of simultaneously applied EPTs (OSAC) 
◦ Dual of the local polytope 01LP relaxation 

 Improving sequence of EPTs (VAC) 
◦ Augmenting DAG (Koval, Schlesinger, 1976) 

◦ Dynamic VAC (Nguyen et al., ICTAI 2014) 
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Tree 

Tree 

Tree, submodular funct. 

Tree, submodular funct. 

 time    space  Complexity 



 AI & OR 

◦ E Freuder. Eliminating interchangeable 
values in constraint satisfaction problems. In 
AAAI 1991 

◦ A Koster. Frequency assignment: Models and 
Algorithms. Ph.D. thesis, 1999 

◦ R Niedermeier, P Rossmanith. New upper 
bounds for maximum satisfiability. J. 
Algorithms 36(1), 2000 

◦ S Bistarelli, B Faltings, N Neagu. 
Interchangeability in Soft CSPs. In CP 2002 

◦ A Jouglet, J Carlier. Dominance rules in 
combinatorial optimization problems. EJOR 
212(3), 2011 

◦ G Chu, P Stuckey. A generic method for 
identifying and exploiting dominance 
relations. In CP 2012 

◦ C Lecoutre, O Roussel, D Dehani. WCSP 
Integration of Soft Neighborhood 
Substitutability. In CP 2012 

 Computational Protein Design 
◦ J Desmet, M Maeyer, B Hazes, I Lasters,. The 

dead-end elimination theorem and its use in 
protein side-chain positioning. Nature 356, 
1992 

◦ R Goldstein. Efficient rotamer elimination 
applied to protein side-chains and related 
spin glasses. Biophysical Journal 66(5), 1994 

◦ N Pierce, J Spriet, J Desmet, S Mayo. 
Conformational splitting: A more powerful 
criterion for dead-end elimination. Journal of 
Computational Chemistry. 21(11), 2000 

◦ I Georgiev, R Lilien, B Donald. Improved 
pruning algorithms and divide-and-conquer 
strategies for dead-end elimination, with 
application to protein design. Bioinformatics 
22(14), 2006 

 Computer Vision and Pattern 
Recognition 
◦ A Shekhovtsov. Exact and Partial Energy 

Minimization in Computer Vision, PhD, 2013 
◦ P Swoboda, B Savchynskyy, J H. Kappes, C 

Schnörr. Partial Optimality by Pruning for 
MAP-inference with General Graphical 
Models. In CVPR 2014 

24 



Prune value (x,b), dominated by (x,a) if: 

 Rule 1: (Desmet et al, Nature 1992) 

 

 

 

 Rule 2:  (Goldstein, Bio. J. 1994) (Koster, 1999) 

 

 

 

 

Rule 2 is always stronger than rule 1 and it has been improved in (Givry et al, 
CP 2013 ; Allouche et al., AI 2014) 
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Rule 1&2 enforced partially in O(ned2) 
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Rule 1 and Rule 2(+) find 

(C,red) is dominated by (C,green) 

Problem is EDAC  

DEE cannot improve VAC lb (only speed-up) 
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 MRF 
◦ UAI Evaluation 2008-2010 

(genetic linkage analysis) 
 Winner 2010 (20min): 

toulbar2 

◦ Probabilistic Inference 
Challenge 2011 
 winner: daoopt*  

◦ Computer Vision and 
Pattern Recognition 
OpenGM2 2013 
 winner: TRWS, MCA, 

mplp2,.. 
 



 WCSP 
◦ CFNLib 

◦ Max-CSP 

 Winner Max-CSP 
Competition 2008 : 
toulbar2 
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 
 

 

 

: ad-hoc encoding in minizinc 



 Max-SAT 
◦ Max-SAT Evaluation 2013  

 Winner crafted instances : maxhs 
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 CP 
◦ CSP Competition 2009 (no instances) 

 Winner (constraints in extension): mistral 

◦ MiniZinc Challenge 2012&2013 

 Winner free search 2012 : gecode 

 Winner free search 2013 : opturion/cpx 
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 2-digit precision for MRF instances  
(CP solver domains on 32-bit) 

 Default parameters (except daoopt, toulbar2 v0.9.6) 
 1 AMD Operon 6176 à 2.3 GHz et 8GB 
 Time limit: 20 minutes (except CVPR: 1 hour) 

 
 01LP solver cplex version 12.4 (EP(A)GAP,EPINT set to zero) 

 

 Benchmarks & detailed results: 
 http://genoweb.toulouse.inra.fr/~degivry/evalgm 
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http://genoweb.toulouse.inra.fr/~degivry/evalgm
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DEE reduces ChineseChars from 17,856 variables  

to at most 665 unassigned variables 
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Brain0_9mm solved in 2700 seconds with tb2-vac,  

DEE reducing from 785,540 to 62,687 unassigned vars 

GeomSurf-7 in 300 (1.08) with tb2-dynamic-vac  

(options –A –V –l=1) 

(options 
–A –V –i –l=1) 

(option –t) 

toulbar2 version 0.9.7 
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Limited Discrepancy Search. W. Harvey, M. Ginsberg. Proc. of IJCAI 1995 



 IDWalk performs S moves and returns the best solution 
found during the walk.  

 A move examines at most Max candidate neighbors at 
random (flips among variables in conflicts): 
◦ If the cost of a neighbor is less than or equal to the cost of the 

current solution, then it is selected (intensification)  

◦ If no neighbors are selected, then chose one  at random 
(diversification) 
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ID Walk: a Candidate List Strategy with a Simple Diversification Device. 
B. Neveu, G. Trombettoni, F. Glover. LNCS 3258, Springer, p. 423--437, CP 2004 

S= 100,000 ; Max=200 ; 3 repeats 
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 3018 instances in 5 formats (uai,wcsp,wcnf,lp,mzn) 
http://genoweb.toulouse.inra.fr/~degivry/evalgm  
◦ Largest instances solved  in 20min (mplp2): CVPR/ColorSeg  (n=414720, d=4) 

◦ Smallest instances unsolved in 20min : MRF/ObjectDetection (n=60,d=21) 

 toulbar2 solver https://mulcyber.toulouse.inra.fr/projects/toulbar2/ 

 Multi-solver approach using numberjack: 
 http://numberjack.ucc.ie/ 

 CP platform in python with C/C++ solvers 
(mistral1/2,minisat,toulbar2,clasp,glucose,..,scip,cplex,gurobi) 

Portfolio approach dedicated to UAI Competition 2014: 
 https://github.com/9thbit/uai-proteus 

http://genoweb.toulouse.inra.fr/~degivry/evalgm
http://genoweb.toulouse.inra.fr/~degivry/evalgm
https://mulcyber.toulouse.inra.fr/projects/toulbar2/
http://numberjack.ucc.ie/
https://github.com/9thbit/uai-proteus
https://github.com/9thbit/uai-proteus
https://github.com/9thbit/uai-proteus
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