Multi-Paradigm Evaluation of (Exact) Solvers in Graphical Model Discrete Optimization

David Allouche¹, <u>Simon de Givry</u>¹, Barry Hurley², George Katsirelos¹, Barry O'sullivan², Thomas Schiex¹ ¹MIAT – INRA, Toulouse, France ²Insight Centre for Data Analytics, University College Cork, Irlande

Heidelberg, November 14th 2014

1

PLAN

- Combinatorial optimization languages
- Translations between formalisms
- Local consistency and dominance rules
- Benchmarks and experimental results
- Portfolio approach at UAI Competition 2014
- Conclusions

Combinatorial optimization languages

Graphical model (X,D,F)

- X, a set of *n* variables
- *D*, finite domains of maximum size *d*
- $F = \{f_{S_1}, \dots, f_{S_e}\}$, a set of **e** local functions with $S_i \subseteq X$ and maximum arity $\mathbf{a} = \max_{f_{S \in F}} |S|$, usually defined in extension

Markov Random Field (MRF)

MAP (maximum a posteriori) query

$$P(X = t) = \frac{\prod_{i=1}^{e} p_{S_i}(t[S_i])}{Z} = \frac{\exp\left(-\sum_{i=1}^{e} f_{S_i}(t[S_i])\right)}{Z}$$

NP-hard

\rightarrow solvers: daoopt, mplp2,..

Cost Function Network (CFN)

Minimum cost assignment query (aka Weighted Constraint Satisfaction Problem) $score(X = t) = \sum_{i=1}^{e} f_{S_i}(t[S_i])$

 \rightarrow solvers: toulbar2, gecode, mistral, opturion,...

Special cases:

- Boolean variables & weighted clauses (Max-SAT)
- 01 variables, linear constraints & objective (01LP)

NP-hard

 \rightarrow solvers: maxhs, cplex,..

A Simple MRF Example

- Problem (X,D,P)
 - X= {x,y}
 - $D_x = \{a,b\}, D_y = \{a,b,c\}$
 - p(x,y)
 - p(x=a,y=a)=p(a,a)=p(b,b)=1
 - p(a,b)=p(b,a)=0.5
 - p(a,c)=p(b,c)=0
 - MAP solution (x=a, y=a) with normalized probability 1/3

An Equivalent CFN Example

- Problem (X,D,F)
 - X= {x,y}
 - $D_x = \{a,b\}, D_y = \{a,b,c\}$
 - f(x,y)
 - f(x=a,y=a)=f(a,a)=f(b,b)=0
 - $f(a,b)=f(b,a)=\lfloor -100 \log(0.5) \rfloor$
 - $f(a,c)=f(b,c)=+\infty$
 - \circ Optimal solution (x=a, y=a) with minimum cost 0

Translations between formalisms

Encodings

Instances\Output	MRF	CFN	Max-SAT	01LP	СР
MRF	-	Energies scaled to non negative integers	Through CFN	Through CFN	Through CFN
CFN	Exponentiating costs	-	Direct/tuple encodings	Direct/tuple encodings	new cost variable & table constraint per cost function (no large costs)
Max-SAT	Through CFN (large arity clauses cannot be represented in extension)	Direct (large arity clauses represented in a compact way)	-	Through CFN (tuple encoding cannot be used)	new cost variable & reified logical expression per weighted clause
CP	Through CFN	Global constraints decomposed into ternary constraints, objective variables <i>decomposed</i> into a sum of cost functions (no large domains)	Through CFN	Through CFN (global constraints not decomposed into linear constraints)	-
	• CFN ->	CP: Petit, T., Regin, J., Bess	iere, C.: <i>Meta consti</i>	raints on violations for	over constrained

problems. In Proceedings of IEEE ICTAI'2000, Vancouver, Canada (2000)

• CP→CFN: Allouche, D., Bessiere, C., Boizumault, P., de Givry, S., Gutierrez, P., Loudni, S., Metivier, J., Schiex, T. *Decomposing global cost functions*. In: Proc. of AAAI-12. Toronto, Canada (2012)

Direct Encoding from CFN to 01LP

Variables and Domains

 $\forall i \in X \text{ with } |D_i| > 2, \forall r \in D_i, \text{ integer variable } 0 \le d_{ir} \le 1 \text{ with } \sum_{r \in D_i} d_{ir} = 1$

Cost Functions

 $\forall f_{S} \in F, \forall t \in D_{S} \text{ with } |S| > 1, 0 < f_{S}(t) < +\infty, \text{ variable } 0 \leq p_{St} \leq 1$ with $\sum_{i \in S} (1 - d_{it[i]}) + p_{St} \geq 1$ and linear objective $\sum f_{S}(t) p_{St}$

Tuple Encoding from CFN to 01LP

Variables and Domains

 $\forall i \in X \text{ with } | D_i | > 2, \forall r \in D_i, \text{ integer variable } 0 \le d_{ir} \le 1 \text{ with } \sum_{r \in Di} d_{ir} = 1$

• Cost Functions $\forall f_S \in F, \forall t \in D_S \text{ with } |S| > 1, 0 \leq f_S(t) < +\infty, \text{ variable } 0 \leq p_{St} \leq 1$ with $\forall i \in S, \forall r \in D_i \quad d_{ir} = \sum_{t \in DS, t[i]=r, f(t) < +\infty} p_{St}$ and linear objective $\sum f_S(t) p_{St}$

Equivalent to the local polytope in MRFs

An Equivalent CFN Example

- Problem (X,D,F)
 - X= {x,y}
 - D_x={a,b}, D_y={a,b,c}
 - f(x,y)
 - f(x=a,y=a)=f(a,a)=f(b,b)= 0

 - f(a,c)=f(b,c)= +∞
 - Optimal solution (x=a, y=a) with minimum cost 0

An Equivalent 01LP Example

Direct encoding

- Domain variables: x, ya, yb, yc (x=0⇔x=a and x=1⇔x=b)
- Tuple variables: p_{xayb}, p_{xbya}
- Min 30* p_{xayb} + 30 * p_{xbya} such that
 - ya + yb + yc = 1
 - $x yb + p_{xayb} >= 0$
 - -x ya + p_{xbya} >= -1
 - x − yc >= 0
 - -x − yc >= -1

Optimal solution (x=0, ya=1) with minimum cost 0

An Equivalent 01LP Example

Tuple encoding

- Domain variables: x, ya, yb, yc (x=0⇔x=a and x=1⇔x=b)
- Tuple variables: p_{xaya} , p_{xayb} , p_{xbya} , p_{xbyb}

• Min
$$30*p_{xayb} + 30*p_{xbya}$$

such that

- ya + yb + yc = 1
- $1 x = p_{xaya} + p_{xayb}$
- $x = p_{xbya} + p_{xbyb}$
- $ya = p_{xaya} + p_{xbya}$
- $yb = p_{xayb} + p_{xbyb}$
- yc = 0

Weighted Partial MaxSAT

- X, a set of **n** Boolean variables
- D = {true, false}ⁿ, finite domains of size 2
- *F={f_{s1},...,f_{se}}, a set of e weighted clauses* such that *f_{si}* is associated to a clause (*I*₁ or *I*₂ or ... or *I_{|si|}*)
 f_{si}: true → 0
 false → N ∪ {∞}

$$score(X = t) = \sum_{i=1}^{e} f_{S_i}(t[S_i])$$

Minimum cost assignment query (satisfying all the hard clauses)

NP-hard

An Equivalent MaxSAT Example

Direct encoding

Domain variables: x, ya, yb, yc (x=false ⇔x=a and x=true ⇔x=b)
 Hard clauses:

- (-ya or -yb), (-ya or -yc), (-yb or -yc)
- (ya or yb or yc)
- (x or -yc), (-x or -yc)

Soft clauses:

- (x or –yb, 30)
- (-x or -ya, 30)

Optimal solution (-x, ya, -yb, -yc) with minimum cost 0

An Equivalent MaxSAT Example

Tuple encoding

- Domain variables: x, ya, yb, yc
- $^{\circ}$ Tuple variables: p_{xaya}, p_{xayb} , p_{xbya}, p_{xbyb}

Hard clauses:

- (-ya or -yb), (-ya or -yc), (-yb or -yc), (ya or yb or yc)
- $(-p_{xaya} \text{ or } -x)$, $(-p_{xaya} \text{ or } ya)$, $(-p_{xayb} \text{ or } -x)$, $(-p_{xayb} \text{ or } yb)$, $(-p_{xbya} \text{ or } x)$, $(-p_{xbyb} \text{ or } yb)$
- (x or p_{xaya} or p_{xayb}), (-x or p_{xbya} or p_{xbyb}), (-ya or p_{xaya} or p_{xbya}), (-yb or p_{xayb} or p_{xbyb}), (-yc)

Soft clauses:

- (p_{xayb}, 30)
- (p_{xbya}, 30)

Constraint Programming (CP)

- X ∪ F ∪ {o}, a set of *n* + e + 1 variables
- D, finite domains of maximum size d
- $C = \{c_{S1}, ..., c_{Se}\}$, a set of **e** constraints with $S_i \subseteq X \cup F$
- Goal constraint: $o = Sum_{f \in F} f$

Score(X=x, F=f,
$$o=v$$
) = v

 Minimum cost assignment query (satisfying all the constraints)

An Equivalent CP Example

- Problem (X,D,C)
 - X= {x,y,f,o}
 - $D_x = \{a,b\}, D_y = \{a,b,c\}, D_f = [0,M], D_o = [0,M]$
 - Constraint c(x,y,f) represented by a list of allowed tuples
 - c(x=a,y=a,f=0)=c(a,a,0), c(b,b,0),
 - c(a,b,30), c(b,a,30),

• o = f

Optimal solution (x=a, y=a, f=0, o=0) with minimum cost 0

Local consistency and dominance rules

Local consistency by Equivalence Preserving Transformation

- Node consistency (NC)
 - $\forall f_x \in F, \forall a \in D_x, f_{\varnothing} + f_x(a) < k$
 - $\forall f_x \in F, \exists a \in D_x, f_x(a) = 0$
- Arc consistency (AC)
 - $\forall f_{xy} \in F, \forall a \in D_x, \exists b \in D_y, f_{xy}(a,b) = 0$
- Directional arc consistency (DAC)
 - $\forall f_{xy} \in F \text{ such that } x < y, \forall a \in D_x, \exists b \in D_y, f_{xy}(a,b) + f_y(b) = 0$
- Full directional arc consistency: FDAC = NC + AC + DAC
- Existential arc consistency (EAC) Implied by strict arc consistency
 - $\forall x \in X, \exists a \in D_x, \forall f_{xy} \in F, \exists b \in D_y, f_x(a) + f_{xy}(a, b) + f_y(b) = 0$
- Full existential directional arc consistency: EDAC = FDAC + EAC

Sequence of integer arc EPTs maximizing f_{omega} is NP-hard (Cooper & Schiex, AI 2004)

Local consistency by Equivalence Preserving Transformation using rationals

- Optimal set of simultaneously applied EPTs (OSAC)
 - Dual of the *local polytope* 01LP relaxation
- Improving sequence of EPTs (VAC)
 - Augmenting DAG (Koval, Schlesinger, 1976)
 - Dynamic VAC (Nguyen et al., ICTAI 2014)

Cohérence	. Compl	exity	Classes
locale	time 3	space	polynomiales
NC*	O(nd)	O(nd)	-
$\operatorname{BAC}^{\emptyset}$	$O(n^2 d^3)$	O(e)	-
AC^*	$O(n^2d^2 + ed^3)$	O(ed)	_
DAC	$O(ed^2)$	O(ed)	Tree
FDAC*	$O(end^3)$	O(ed)	Tree
EDAC*	$O(ed^2 \max(nd, k))$	O(ed)	
VAC_{ϵ}	$O(ed^2k/\epsilon)$	O(ed)	Tree, submodular funct.
OSAC	poly(ed+n)	$poly(ed^2 + nd)$	Tree, submodular funct. 3

Dominance rules in comb. optimization Value substitutability

AI&OR

- E Freuder. Eliminating interchangeable values in constraint satisfaction problems. In AAAI 1991
- A Koster. *Frequency assignment: Models and Algorithms*. Ph.D. thesis, 1999
- R Niedermeier, P Rossmanith. New upper bounds for maximum satisfiability. J. Algorithms 36(1), 2000
- S Bistarelli, B Faltings, N Neagu.
 Interchangeability in Soft CSPs. In CP 2002
- A Jouglet, J Carlier. *Dominance rules in combinatorial optimization problems*. EJOR 212(3), 2011
- G Chu, P Stuckey. A generic method for identifying and exploiting dominance relations. In CP 2012
- C Lecoutre, O Roussel, D Dehani. WCSP Integration of Soft Neighborhood
 Substitutability. In CP 2012

- Computational Protein Design
 - J Desmet, M Maeyer, B Hazes, I Lasters,. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356, 1992
 - R Goldstein. Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophysical Journal 66(5), 1994
 - N Pierce, J Spriet, J Desmet, S Mayo.
 Conformational splitting: A more powerful criterion for dead-end elimination. Journal of Computational Chemistry. 21(11), 2000
 - I Georgiev, R Lilien, B Donald. Improved pruning algorithms and divide-and-conquer strategies for dead-end elimination, with application to protein design. Bioinformatics 22(14), 2006
- Computer Vision and Pattern Recognition
 - A Shekhovtsov. Exact and Partial Energy Minimization in Computer Vision, PhD, 2013
 - P Swoboda, B Savchynskyy, J H. Kappes, C Schnörr. Partial Optimality by Pruning for MAP-inference with General Graphical Models. In CVPR 2014

Dead-End Elimination rules

Prune value (x,b), dominated by (x,a) if:

• Rule 1: (Desmet *et al*, Nature 1992)

$$\sum_{f_S \in \Gamma(x)} \max_{t \in l(S \setminus \{x\})} f_S(t \cup \{(x, a)\}) \le \sum_{f_S \in \Gamma(x)} \min_{t \in l(S \setminus \{x\})} f_S(t \cup \{(x, b)\})$$

• Rule 2: (Goldstein, Bio. J. 1994) (Koster, 1999)

$$\sum_{f_S \in \Gamma(x)} \max_{t \in l(S \setminus \{x\})} f_S(t \cup \{(x, a)\}) - f_S(t \cup \{(x, b)\}) \le 0$$

Rule 2 is always stronger than rule 1 and it has been improved in (Givry et al, CP 2013 ; Allouche et al., Al 2014)

Rule 1&2 enforced partially in O(ned²)

Pruning by dominance

DEE cannot improve VAC lb (only speed-up)

Pruning by dominance

Benchmarks and experimental results

MRF

- UAI Evaluation 2008-201 (genetic linkage analysis)
 - Winner 2010 (20min): • toulbar2
- Probabilistic Inference Challenge 2011
 - winner: daoopt*
- Computer Vision and **Pattern Recognition** OpenGM2 2013
 - winner: TRWS, MCA, mplp2,..

	$\mathbf{Problem}$		#inst.	n	d	e	a a
	MRF (uai)		319	I			
10	Linkage		22	1289	7	2184	5
10	DBN		108	1094	2	22793	2
s)	Grid		21	6400	2	19200	2
,	ImageAlign	ment	10	400	93	3563	2
	ObjectDete	ction	37	60	21	1830	2
	ProteinFold	ing	21	1972	503	8816	2
	Segmentatio	on	100	237	21	886	2
MRF/CV	${ m PR}~({\tt hdf5})$	1453					
ChineseC	hars	100	17856	2		553726	2
ColorSeg		3	414720	4	20	069714	2
ColorSeg-	4	9	86400	12		258600	2
ColorSeg-	8	9	86400	12	4	430202	2
GeomSurf	f-3	300	1133	3		5039	3
GeomSurf	f-7	300	1133	7		5039	3
InPainting	g-4	2	14400	4		42960	2
InPainting	g-8	2	14400	4		71282	2
Matching		4	20	20		210	2
Matching	Stereo	2	166222	20	4	497849	2
ObjectSeg	r	5	68160	8		203947	2
PhotoMo	ntage	2	514080	7	1	540689	2
SceneDeco	omp	715	208	8		769	2

WCSP

- CFNLib
- Max-CSP
 - Winner Max-CSP
 Competition 2008 : toulbar2

Problem	#inst.	n	d	e	a
CFN (wcsp)	281			·	
Auction *	170	246	2	11528	2
CELAR *	16	458	44	2335	2
Pedigree 🗱	10	10017	28	18875	3
ProteinDesign	10	18	198	171	2
SPOT5	20	1057	4	21786	3
Warehouse *	55	1100	300	101100	2

Max-CSP (xcsp)	503				
BlackHole	37	205	50	1651	2
Coloring	22	450	6	6164	2
Composed	80	83	10	785	2
EHI	200	315	7	4715	2
Geometric	100	50	20	605	2
Langford	4	33	29	517	2
QCP	60	264	9	2662	2

*: ad-hoc encoding in minizinc

Max-SAT

- Max-SAT Evaluation 2013
 - Winner crafted instances : maxhs

Problem	#inst.	n	d	e	a
WPMS $(wcnf)$	427				
MIPLib	12	24776	2	107956	93
MaxClique	62	3321	2	378247	2
Haplotyping	100	216117	2	1188223	580
PackupWeighted	99	25554	2	70677	177
PlanningWithPref	29	69409	2	771883	372
TimeTabling	25	903884	2	2912882	36
Upgradeability	100	18169	2	105097	77

CP

- CSP Competition 2009 (no instances)
 - Winner (constraints in extension): mistral
- MiniZinc Challenge 2012&2013
 - Winner free search 2012 : gecode
 - Winner free search 2013 : opturion/cpx

Problem	#inst.	n	d	e	a
$\operatorname{CP}\left(\texttt{minizinc}\right)$	35			I	
AMaze	6	1573	17	3173	4
FastFood	6(1)	2	5	3	2
Golomb	-6(3)	44	163	717	3
OnCallRostering	5(3)	2205	89	4513	4
ParityLearning	7	759	20	1440	4
VehicleRoutingProb.	5	11531	100	22999	4

Experimental settings

- 2-digit precision for MRF instances (CP solver domains on 32-bit)
- Default parameters (except daoopt, toulbar2 v0.9.6)
- 1 AMD Operon 6176 à 2.3 GHz et 8GB
- Time limit: 20 minutes (except CVPR: 1 hour)
- O1LP solver cplex version 12.4 (EP(A)GAP, EPINT set to zero)
- Benchmarks & detailed results: <u>http://genoweb.toulouse.inra.fr/~degivry/evalgm</u>

Problem	Nb.	daoopt	² qlqtt	toulours	Coler.	CD/off	the the	199-199-199-199-199-199-199-199-199-199	opturion	Secode	this the
MRF (uai)	319	144	123	219	152	205	104	72	1	0	1
Linkage	22	16	1	13	14	22	20	20	0	0	1
DBN	108	60	0	77	64	65	30	0	0	0	0
Grid	21	2	2	0	15	0	4	2	0	0	0
ImageAlignment	10	9	10	10	0	9	0	0	0	0	0
ObjectDetection	37	0	0	0	0	0	0	0	0	0	0
ProteinFolding	21	0	10	19	9	9	0	0	0	0	0
Segmentation	100	57	100	100	50	100	50	50	1	0	0
WPMS (wcnf)	427	11	0	195	269	N/A	277	N/A	27	19	15
MIPLib	12	2	0	3	3	N/A	3	N/A	2	3	2
MaxClique	62	9	0	33	38	N/A	36	N/A	10	15	13
Haplotyping	100	N/A	N/A	1	18	N/A	25	N/A	MZN	MZN	MZN
PackupWeighted	99	N/A	N/A	52	99	N/A	85	N/A	1	0	0
PlanningWPref	29	N/A	N/A	6	11	N/A	27	N/A	14	1	0
$\operatorname{TimeTabling}$	25	N/A	N/A	0	0	N/A	1	N/A	MZN	MZN	MZN
Upgradeability	100	N/A	N/A	100	100	N/A	100	N/A	N/A	N/A	N/A
CFN (wcsp)	281	188	44	247	241	235	227	195	70	130	111
Auction	170	158	0	167	170	170	170	166	61	104	108
CELAR	16	3	0	12	0	3	0	0	1	0	1
Pedigree	10	4	0	10	5	9	5	5	4	0	0
ProteinDesign	10	4	7	9	0	6	0	0	0	0	0
SPOT5	20	6	0	4	16	10	5	5	1	0	2
Warehouse	55	13	37	45	50	37	47	19	3	26	0
Max-CSP (xcsp)	503	173	0	216	199	50	238	150	118	6	96
BlackHole	37	10	0	10	30	10	10	10	10	0	10
Coloring	22	16	0	17	17	15	12	12	8	4	6
Composed	80	26	0	80	80	15	80	15	80	0	80
EHI	200	0	0	0	0	0	0	0	0	0	0
Geometric	100	91	0	93	49	0	88	77	9	0	0
Langford	4	2	0	2	2	1	2	2	1	2	0
QCP	60	28	0	14	21	9	46	34	10	0	0
CP (minizinc)	35	10	1	13	2	5	16	8	18	26	18
AMaze	6	0	0	2	0	2	6	3	5	4	2
FastFood	6	1	1	1	1	1	1	1	6	6	5
Golomb	6	0	0	3	0	0	3	1	4	6	5
OnCallRoster.	5	2	0	2	1	2	3	3	2	2	2
ParityLearning	7	7	0	5	0	0	3	0	1	7	4
VRP	5	0	0	0	0	0	0	0	0	1	0
Nb. of 1st Pos.	33	2	2	13	12	3	11	2	2	6	1

Problem	Nb.	deoolox	êqiqiq	Could are	Coler	CD/cft	the tils	the the	trus	bundle	$\psi_{c_{d}}$	Webe
$\operatorname{CVPR}(\mathtt{hdf5})$	1453	1272	1339	1301	372	1329	311	1008	728	1143	26	56
ChineseChars	100	0	0	0	0	0	0	0	0	N/A	N/A	56
ColorSeg	3	1	3	0	0	1	0	0	1	0	3	N/A
ColorSeg-4	9	0	8	0	0	3	0	0	7	7	8	N/A
ColorSeg-8	9	0	4	0	0	2	0	0	2	1	8	N/A
GeomSurf-3	300	300	300	300	300	300	236	291	N/A	277	N/A	N/A
GeomSurf-7	300	252	300	281	72	300	74	2	N/A	180	N/A	N/A
InPainting-4	2	0	1	1	0	1	0	0	1	1	1	N/A
InPainting-8	2	0	1	0	0	0	0	0	0	0	1	N/A
Matching	4	4	4	4	0	3	0	0	0	0	N/A	N/A
MatchingStereo	2	0	0	0	0	0	0	0	0	1	N/A	N/A
ObjectSeg	5	0	3	0	0	4	0	0	5	3	5	N/A
PhotoMontage	2	0	0	0	0	0	0	0	0	0	N/A	N/A
SceneDecomp	715	715	715	715	0	715	1	715	712	673	N/A	N/A
Nb. of 1st Pos.	13	3	8	4	1	4	0	1	2	2	6	1

DEE reduces ChineseChars from 17,856 variables to at most 665 unassigned variables

	toulbar2 version 0.9.7						
		1				~	
					(options –A –V –l	=1)	(option –t)
		ça	, and the	() () ()	1890-1081	(options	x xontan A.
Problem	Nb.	and	Ĩð	² O ¹	2	☆ A –V –i –l=1) 2
$\operatorname{CVPR}(\mathtt{hdf5})$	1453	1339	1329	1301	1337	1332	1323
ChineseChars	100	0	0	0	0	0	9 (256)
ColorSeg	3	3 (46.3)	1(71.9)	0	2(1447)	1(118)	0
ColorSeg-4	9	8(1202)	3(201)	0	6(1463)	4(1400)	1 (59)
ColorSeg-8	9	4(1577)	2(271)	0	5(1314)	5(1907)	0
GeomSurf-3	300	300(0.43)	300(0.33)	300 (0.03)	300(0.06)	300(0.06)	$300 \ (0.03)$
GeomSurf-7	300	300(4.06)	300(3.71)	281(77.2)	$300 \ (2.67)$	300(6.01)	293(22.9)
InPainting-4	2	1(157)	1(189)	1 (1.46)	1(12.5)	1(34.9)	1(1.90)
InPainting-8	2	1 (915)	0	0	0	1(982)	0
Matching	4	4(9.82)	3(747)	4 (7.75)	4(9.32)	4(10.1)	4(41.8)
MatchingStereo	2	0	0	0	0	0	0
ObjectSeg	5	3(1791)	4(366)	0	4(2762)	1(3454)	0
PhotoMontage	2	0	0	0	0	0	0
SceneDecomp	715	715~(0.13)	715 (0.82)	$715 \ (0.03)$	715(0.09)	715~(0.09)	$715\ (0.03)$
Nb. best sol.	1453	1337	1338	1306	1339	1401	1327

Brain0_9mm solved in 2700 seconds with tb2-vac, DEE reducing from 785,540 to 62,687 unassigned vars

GeomSurf-7 in 300 (1.08) with tb2-dynamic-vac

Limited Discrepancy Search

Limited Discrepancy Search. W. Harvey, M. Ginsberg. Proc. of IJCAI 1995

INCOP local search IDWalk

- IDWalk performs S moves and returns the best solution found during the walk.
- A move examines at most Max candidate neighbors at random (flips among variables in conflicts):
 - If the cost of a neighbor is less than or equal to the cost of the current solution, then it is selected (intensification)
 - If no neighbors are selected, then chose one at random (diversification)

ID Walk: a Candidate List Strategy with a Simple Diversification Device. B. Neveu, G. Trombettoni, F. Glover. LNCS 3258, Springer, p. 423--437, CP 2004

S= 100,000 ; Max=200 ; 3 repeats

MRF

MRF

CFN

Max-SAT

WPMS

CP

Conclusions

- 3018 instances in 5 formats (uai,wcsp,wcnf,lp,mzn) http://genoweb.toulouse.inra.fr/~degivry/evalgm
 - Largest instances solved in 20min (mplp2): CVPR/ColorSeg (n=414720, d=4)
 - Smallest instances unsolved in 20min : MRF/ObjectDetection (n=60,d=21)
- toulbar2 solver <u>https://mulcyber.toulouse.inra.fr/projects/toulbar2/</u>
- Multi-solver approach using numberjack:

http://numberjack.ucc.ie/

CP platform in python with C/C++ solvers (mistral1/2,minisat,toulbar2,clasp,glucose,..,scip,cplex,gurobi) Portfolio approach dedicated to UAI Competition 2014:

https://github.com/9thbit/uai-proteus

References

- H Nguyen, C bessiere, T Schiex, S de Givry. *Maintaining Virtual Arc Consistency Dynamically During Search*. In ICTAI 2014
- David Allouche, Jessica Davies, Simon de Givry, George Katsirelos, Thomas Schiex, Seydou Traoré, Isabelle André, Sophie Barbe, Steve Prestwich, and Barry O'Sullivan. Computational protein design as an optimization problem. *Artificial Intelligence*, 212:59–79, 2014
- M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc consistency revisited. *Artificial Intelligence*, (7–8):449–478, 2010