
Soft arc consistency revisited

M. C. Cooper

IRIT, University of Toulouse III, 31062 Toulouse, France

S. de Givry, M. Sanchez, T. Schiex∗, M. Zytnicki

UBIA, UR-875, INRA, F-31320 Castanet Tolosan, France

T. Werner

Center for Machine Perception, Czech Technical University, 12135 Praha 2, Czech Republic

Abstract

The Valued Constraint Satisfaction Problem (VCSP) is a generic optimization problem
defined by a network of local cost functions defined over discrete variables. It has appli-
cations in Artificial Intelligence, Operations Research, Bioinformatics and has been used
to tackle optimization problems in other graphical models (including discrete Markov
Random Fields and Bayesian Networks). The incremental lower bounds produced by
local consistency filtering are used for pruning inside Branch and Bound search.

In this paper, we extend the notion of arc consistency by allowing fractional weights
and by allowing several arc consistency operations to be applied simultaneously. Over
the rationals and allowing simultaneous operations, we show that an optimal arc consis-
tency closure can theoretically be determined in polynomial time by reduction to linear
programming. This defines Optimal Soft Arc Consistency (OSAC).

To reach a more practical algorithm, we show that the existence of a sequence of arc
consistency operations which increases the lower bound can be detected by establish-
ing arc consistency in a classical Constraint Satisfaction Problem (CSP) derived from
the original cost function network. This leads to a new soft arc consistency method,
called,Virtual Arc Consistency which produces improved lower bounds compared with
previous techniques and which can solve submodular cost functions.

These algorithms have been implemented and evaluated on a variety of problems,
including two difficult frequency assignment problems which are solved to optimality for
the first time. Our implementation is available in the open source toulbar2 platform.

Keywords: valued constraint satisfaction problem, weighted constraint satisfaction
problem, soft constraints, constraint optimization, local consistency, soft arc
consistency, graphical model, submodularity

∗Corresponding author
Email addresses: cooper@irit.fr (M. C. Cooper), simon.degivry@toulouse.inra.fr (S. de

Givry), marti.sanchez@toulouse.inra.fr (M. Sanchez), thomas.schiex@toulouse.inra.fr (T.
Schiex), matthias.zytnicki@toulouse.inra.fr (M. Zytnicki), werner@cmp.felk.cvut.cz (T. Werner)

Preprint submitted to Elsevier January 25, 2010

1. Introduction

Graphical model processing is a central problem in AI. The optimization of the com-
bined cost of local cost functions, central in the valued CSP framework [52], captures
problems such as weighted Max-SAT, Weighted CSP or Maximum Probability Expla-
nation in probabilistic networks. It also has applications in areas such as resource al-
location [9], combinatorial auctions, optimal planning, and bioinformatics [50]. Valued
constraints can be used to code both classical crisp constraints and cost functions.

Since valued constraint satisfaction is NP-hard, heuristics are required to speed up
brute-force exhaustive search. By shifting weights between cost functions, soft arc con-
sistency allows us to transform a problem in an equivalent problem. This problem refor-
mulation can provide strong, incrementally maintainable lower bounds which are crucial
for Branch and Bound search [44].

Similarly to classical arc consistency in CSPs (constraint satisfaction problems),
previously-defined soft arc consistency properties are enforced by the chaotic application
of local soft arc consistency operations shifting integer costs between different scopes,
until a fixpoint is reached [19, 3]. Unlike the arc consistency closure in CSPs, this fix-
point is often not unique and may lead to different lower bounds. In this paper, we
instead consider local consistencies enforced by carefully planned sequences of soft arc
consistency operations which necessarily increase the lower bound. Since costs may need
to be divided into several parts in order to be shifted in several directions, the result-
ing transformed problem may contain fractional costs. By allowing the introduction of
rational multiples of costs, we both avoid the intractability of finding an optimal soft
arc consistency closure involving only integer costs [19] and produce a strictly stronger
notion of soft arc consistency.

The two new techniques presented in this paper aim at finding a reformulation of
the original problem P with an optimized constant cost term c∅. This constant cost
provides an explicit lower bound provided that all costs are non-negative. Optimal soft
arc consistency (OSAC) identifies a sequence of soft arc consistency operations (shifting
of costs between cost functions, of which at most one has arity greater than 1) which
yields an optimal reformulation. Intermediate reformulations may contain negative costs
provided all costs in the final version are non-negative. Such operations can be found in
polynomial time by solving a linear program [54]. We considerably extend this result by
showing that a polynomial-time algorithm exists even in the presence of crisp constraints
coded by infinite costs and an upper bound coded by using an addition-with-ceiling
aggregation operator.

Alternatively, we show that when a problem is not Virtual Arc Consistent (VAC), it
is possible to find a sequence of soft arc consistency operations which improve the lower
bound and are such that all intermediate problems have non-negative costs. Our iterative
VAC algorithm is based on applying arc consistency in a classical CSP which has a
solution if and only if P has a solution of cost c∅. We show that OSAC is strictly stronger
than VAC. However, finding a lower bound using our VAC algorithm is much faster than
establishing OSAC, and hence has potentially many more practical applications.

The idea of using classical local consistency to build lower bounds in Max-CSP or
Max-SAT is not new. On Max-CSP problems, [48] used independent arc inconsistent
subproblems to build a lower bound. For Max-SAT, [45] used minimal Unit Propagation
inconsistent subproblems to build a lower bound. These approaches do not use problem

2

transformations but rely on the fact that the inconsistent subproblems identified are
independent and costs can simply be summed. They lack the incrementality of soft
consistency operations. In Max-SAT again, [31] used Unit Propagation inconsistency
to build sequences of integer problem transformations but possibly strictly above the
arc level, generating higher-arity weighted clauses (cost functions). OSAC and VAC
remain at the arc level by allowing rational costs. It should be pointed out that our VAC
algorithm is similar to the “Augmenting DAG” algorithm independently proposed by [39]
for preprocessing 2-dimensional grammars, recently reviewed in [56]. Our approach is
more general, in that we can treat cost functions of arbitrary arity, infinite costs and a
finite upper bound.

Note that the special case of real-valued binary VCSPs over Boolean domains has been
extensively studied under the name of quadratic pseudo-Boolean function optimization
[7]. In the case of Boolean domains, it is well known that finding an equivalent quadratic
posiform representation (i.e. an equivalent binary VCSP) with an optimal value of c∅ can
be formulated as a linear programming problem [30] and can even be solved by finding
a maximum flow in an appropriately defined network [7]. It is also worth noting that in
this special case of Boolean binary VCSPs, determining whether there exists a zero-cost
solution is an instance of 2SAT and hence can be completely solved in polynomial time.

The two new notions presented in this paper (optimal soft arc consistency and virtual
arc consistency) can be applied to optimization problems over finite domains of arbitrary
size, involving local cost functions of arbitrary arity. Crisp constraints can be coded by
infinite costs and an upper bound can be coded by using an addition-with-ceiling aggre-
gation operator. We show that the resulting arc consistency properties have attractive
theoretical properties, being capable of solving different polynomial classes of weighted
CSP without detecting them a priori. We also show their strengths and limitations on
various random and real problem instances. Some of the problems considered are solved
for the first time to optimality using these local consistencies.

We begin in Section 2 with the definition of a valued constraint satisfaction problem.
Section 3 introduces the notion of an equivalence-preserving transformation and gives
the three basic equivalence-preserving transformations that are required to establish all
forms of soft arc consistency considered in this paper. In Section 4 we review previously
defined notions of soft arc consistency. These definitions are necessary to define the soft
arc consistency EDAC [43], with which we compare both theoretically and experimentally
the new notions of soft arc consistency defined in this paper. Section 5 defines OSAC
(Optimal Soft Arc Consistency) and Section 6 reports the results of experimental trials
which demonstrate the potential utility of OSAC during preprocessing. The rest of the
paper is devoted to Virtual Arc Consistency (VAC) which provides a practical alternative
to OSAC which can be applied during search. Section 7 introduces VAC and shows
formally the connection between this definition and the existence of a sequence of soft
arc consistency operations which increase the lower bound. Section 8 introduces our
VAC algorithm through examples while Section 9 gives the necessary subroutines in
detail. Section 10 shows that certain tractable classes, including permuted submodular
functions, can be directly solved by VAC. As the detailed example in Appendix A shows,
our VAC algorithm may enter an infinite loop. This justifies the use of a heuristic
version called VACε. Section 11 reports the results of our experimental trials on VACε.
Finally, an alternative algorithm converging towards VAC and techniques for finding
better bounds are discussed in Section 12.

3

2. Valued constraint satisfaction

The Constraint Satisfaction Problem (CSP) consists in finding an assignment to n
finite-domain variables such that a set of constraints are satisfied. Crisp yes/no con-
straints in the CSP are replaced by cost functions in the Valued Constraint Satisfaction
Problem (VCSP) [52]. A cost function returns a valuation (a cost, a weight or a penalty)
for each combination of values for the variables in the scope of the function. Crisp con-
straints can still be expressed by, for example, assigning an infinite cost to inconsistent
tuples. In the most general definition of a VCSP, costs lie in a valuation structure (a pos-
itive totally-ordered monoid) 〈E,⊕, <〉 where E is the set of valuations totally ordered
by < and combined using the aggregation operator ⊕. In this paper we only consider
integer or rational costs.

A Valued Constraint Satisfaction Problem can be seen as a set of valued constraints,
which are simply cost functions placed on particular variables. Formally,

Definition 2.1 (Schiex [51]). A Valued Constraint Satisfaction Problem (VCSP) is a
tuple 〈X, D, C, Σ〉 where X is a set of n variables X = {1, . . . , n}, each variable i ∈ X
has a domain of possible values di ∈ D, C is a set of cost functions and Σ = 〈E,⊕, <〉 is
a valuation structure. Each cost function 〈S, cS〉 ∈ C is defined over a tuple of variables
S ⊆ X (its scope) as a function cS from the Cartesian product of the domains di(i ∈ S)
to E.

Purely for notational convenience, we suppose that no two cost functions have the
same scope. This allows us to identify C with the set of scopes S of cost functions cS in
the VCSP. We write ci as a shorthand for c{i} and cij as a shorthand for c{i,j}. Without
loss of generality, we assume that C contains a cost function ci for every variable i ∈ X
as well as a zero-arity constant cost function c∅.

Notation: For S ⊆ X we denote the Cartesian product of the domains di(i ∈ S) (i.e.
the set of possible labellings for the variables in S) by ℓ(S).

Let Z ⊆ Y ⊆ X with Y = {y1, . . . , yq} and Z = {z1, . . . zp}. Then, given an
assignment t = (ty1 , . . . tyq

) ∈ ℓ(Y), t[Z] denotes the sub-assignment of t to the variables
in Z, i.e. (tz1 , . . . , tzp

). If Z is a singleton {z1} then t[Z] will also be denoted as tz1 for
simplicity.

The usual query on a VCSP is to find an assignment t whose valuation (i.e. total
cost) is minimal.

Definition 2.2. In a VCSP V = 〈X, D, C, Σ〉, the valuation of an assignment t ∈ ℓ(X)
is defined by

V alV (t) =
⊕

S∈C

[

cS(t[S])
]

To solve a VCSP we have to find an assignment t ∈ ℓ(X) with a minimum valuation.

2.1. Weighted CSP

In the VCSPs studied in this paper, the aggregation operator ⊕ is either the usual
addition operator or the addition-with-ceiling operator +m defined as follows:

∀a, b ∈ {0, 1, . . . , m} a +m b = min{a + b, m}
4

A Weighted Constraint Satisfaction Problem (WCSP) [44] is a VCSP over the valu-
ation structure Sm = 〈{0, 1, . . . , m}, +m,≥〉 where m is a positive integer or infinity. It
has been shown that the WCSP framework is sufficient to model all VCSPs over discrete
valuation structures in which ⊕ has a partial inverse (a necessary condition for soft arc
consistency operations to be applicable) [14].

When m is finite, all solutions with a cumulated cost reaching m are considered as
equally and absolutely bad. This is a situation which applies at a node of a branch and
bound search tree on a WCSP problem whenever the best known solution has cost m.

The Boolean valuation structure S1 = 〈{0, 1}, +1,≥〉 allows us to express only crisp
constraints, with the valuation 0 representing consistency and 1 representing inconsis-
tency. In this paper, in order to express VCSPs and CSPs in a common framework, we
will often represent CSPs as VCSPs over the valuation structure S1.

The valuation structure S∞ = 〈N ∪ {∞}, +,≥〉, where N is the set of non-negative

integers, can be embedded in the valuation structure Q
+

= 〈Q+ ∪ {∞}, +,≥〉 where Q+

represents the set of non-negative rational numbers. Similarly, the valuation structure
Sm can be embedded in the valuation structure Qm = 〈Qm ∪ {∞}, +m,≥〉 where Qm is
the set of rational numbers α satisfying 0 ≤ α < m. For clarity of presentation, we use
∞ as a synonym of m in Qm, since this valuation represents complete inconsistency. We

use ⊕ to represent the aggregation operator (which is + in Q
+

and +m in Qm). The

partial inverse of the aggregation operator ⊕ is denoted by ⊖ and is defined in both Q
+

and Qm by α⊖β = α−β (for all valuations α, β such that∞ > α ≥ β) and∞⊖β =∞
(for all valuations β).

In the remainder of the paper, we assume, unless stated otherwise, that the valuation

structure Σ of the VCSP to be solved is either Q
+

or Qm. These rational valuation struc-
tures enrich the set of available operations on costs, compared to the integer valuation
structures S∞ and Sm, by allowing for the circulation of fractional weights.

3. Soft arc consistency operations

In this section we introduce the basic operations which allows us to reformulate a
VCSP by shifting costs.

Definition 3.1. Two VCSPs V1 = 〈X, D, C1, Σ〉, V2 = 〈X, D, C2, Σ〉 are equivalent if
∀t ∈ ℓ(X), V alV1(t) = V alV2(t).

Definition 3.2. The subproblem of a VCSP 〈X, D, C, Σ〉 induced by F ⊆ C is the
problem VCSP(F) = 〈XF , DF , F, Σ〉, where XF = ∪cS∈F S and DF = {di : i ∈ XF }.

Definition 3.3. For a VCSP 〈X, D, C, Σ〉, an equivalence preserving transformation on
F ⊆ C is an operation which transforms the subproblem VCSP(F) into an equivalent
VCSP.

When F contains at most one cost function cS such that |S| > 1, such an equivalence-
preserving transformation is called a Soft Arc Consistency (SAC) operation.

Algorithm 1 gives three basic equivalence-preserving transformations which are also
SAC operations [19]. Project projects weights from a cost function (on two or more
variables) to a unary cost function. Extend performs the inverse operation, sending

5

weights from a unary cost function to a higher-order cost function. Finally UnaryProject
projects weights from a unary cost function to the nullary cost function c∅ which is a
lower bound on the value of any solution. For example, if ∀a ∈ di, ci(a) ≥ α, then a call
UnaryProject(i, α) increases the constant term c∅ by α while decreasing by α each ci(a)
(a ∈ di). For each of the SAC operations given in Algorithm 1, a precondition is given
which guarantees that the resulting costs are non-negative.

The addition and then subtraction of the same weight β in line 10 of Extend allows
us to detect certain inconsistent tuples, since this sets cS(t) to ∞ when cS(t) ⊕ β =∞.
Similarly, the addition and then subtraction of the weight c∅ in line 15 of UnaryProject
sets ci(a) to ∞ when ci(a) + c∅ = ∞. Extend and UnaryProject can thus modify cost
functions even when the argument α = 0. This happens, for example, for UnaryProject
in the valuation structure Q10 if ci(a) = c∅ = 5 since ci(a) becomes ((5 ⊕ 5) ⊖ 5) ⊖ 0
which is equal to 10 =∞ in Q10.

Of course, if ⊕ is the addition of real numbers and all costs are finite, then Extend
and UnaryProject cannot modify cost functions when α = 0. Indeed, in the case of finite
costs, Extend and UnaryProject can be considerably simplified by canceling β and c∅

respectively.

4. Soft arc consistency techniques

In this section we briefly review previously-defined notions of soft arc consistency
and, in particular, Existential Directional Arc Consistency (EDAC) [43]. EDAC was
the strongest known polynomial-time achievable form of soft arc consistency before the

Algorithm 1: The basic equivalence-preserving transformations required to estab-
lish different forms of soft arc consistency.

(* Precondition: α ≤ min{cS(t) : t ∈ ℓ(S) and ti = a} *);1

Procedure Project(S, i, a, α)2

ci(a)← ci(a)⊕ α;3

foreach (t ∈ ℓ(S) such that ti = a) do4

cS(t)← cS(t)⊖ α;5

(* Precondition: α ≤ ci(a) and |S| > 1 *);6

Procedure Extend(i, a, S, α)7

foreach (t ∈ ℓ(S) such that ti = a) do8

β ← c∅ ⊕ (
⊕

j∈S cj(tj)) ;9

cS(t)← ((cS(t)⊕ β)⊖ β)⊕ α;10

ci(a)← ci(a)⊖ α;11

(* Precondition: α ≤ min{ci(a) : a ∈ di} *);12

Procedure UnaryProject(i, α)13

foreach (a ∈ di) do14

ci(a)← ((ci(a)⊕ c∅)⊖ c∅)⊖ α;15

c∅ ← c∅ ⊕ α;16

6

introduction of the two notions (OSAC and VAC) presented in this paper. Note that
EDAC has only been defined in the special case of binary [43] and ternary [50] VCSPs.

Recall that we assume that the valuation structure of the VCSP is either Q
+

or Qm.

Definition 4.1 (Larrosa and Schiex [44]). A VCSP is node consistent if for any
variable i ∈ {1, . . . , n},

1. ∀a ∈ di, ci(a)⊕ c∅ <∞

2. ∃a ∈ di such that ci(a) = 0

Node consistency can be established by repeated calls to UnaryProject until conver-
gence. We assume, for simplicity of presentation, that values a such that ci(a) =∞ are
automatically deleted from di. Node consistency determines the maximum lower bound
that can be deduced from the unary and nullary constraints; it transforms the VCSP
accordingly so that this lower bound is stored explicitly in the nullary constraint c∅.

A VCSP is generalized arc consistent if all infinite weights have been propagated and
no weights can be projected down to unary constraints. Formally,

Definition 4.2 (Cooper and Schiex [19]). A VCSP 〈X, D, C, Σ〉 is generalized arc
consistent if for all S ∈ C such that |S| > 1 we have:

1. ∀t ∈ ℓ(S), cS(t) =∞ if c∅ ⊕ (
⊕

i∈S ci(ti))⊕ cS(t) = ∞

2. ∀i ∈ S, ∀a ∈ di, ∃t ∈ ℓ(S) such that ti = a and cS(t) = 0

If the VCSP is binary, then generalized arc consistency is known as (soft) arc con-
sistency. Generalized arc consistency can be established by repeated calls to Project,
together with extensions of zero weights (i.e. calls of the form Extend(, , ,0)) to propa-
gate inconsistencies, until convergence.

Consider a VCSP which is node consistent and generalized arc consistent. Extending
non-zero weights and re-establishing generalized arc consistency and node consistency
may lead to an increase in c∅ [51]. One way to guarantee the convergence of such a
process is to restrict the direction in which non-zero weights can be extended by placing
a total ordering on the variables.

Definition 4.3 (Cooper [12]). A binary VCSP is directional arc consistent (DAC)
with respect to an order < on the variables if for all cij such that i < j, ∀a ∈ di, ∃b ∈ dj

such that cij(a, b) = cj(b) = 0

If for all b ∈ dj either cij(a, b) or cj(b) is non-zero, then it is possible to increase ci(a)
by transferring the non-zero costs cj(b) to cij by calls to Extend and then projecting
costs from cij to ci(a). Hence establishing Directional Arc Consistency not only projects
weights down to unary constraints, but also shifts weights towards variables which occur
earlier in the order <. This tends to concentrate weights on the same variables which,
after applying node consistency, tends to lead to an increase in the lower bound c∅.

Consider a binary VCSP with e binary cost functions and maximum domain size
d. Then directional arc consistency can be established in O(ed2) time [19, 44]. As in
classical CSP, DAC solves tree-structured VCSP if the variable order used is built from
a topological ordering of the tree.

7

(a)

•

•

•

•

•

•1

2

3

F F

F

T T

T
-

•

•

•

•

•

•1

2

3

c∅ = 1

(b)

•

•

•

•

•

•

1

11

2

3

F F

F

T T

T
-

•

•

•

•

•

•1

2

3

c∅ = 1

Figure 1: Examples of (a) full directional arc consistency (b) existential arc consistency.

Definition 4.4 (Cooper [12]). A binary VCSP is full directional arc consistent (FDAC)
with respect to an order < on the variables if it is arc consistent and directional arc con-
sistent with respect to <.

Full directional arc consistency can be established in O(ed2) time if the valuation

structure is Q
+

[12] and in O(end3) time if the valuation structure is Sm [44].
Existential arc consistency (EAC) is independent of a variable order. For each variable

i in turn, EAC shifts costs to ci if this can lead to an immediate increase in c∅ via
UnaryProject.

Definition 4.5 (Larrosa et al. [43]). A binary VCSP is existential arc consistent (EAC)
if it is node consistent and if ∀i, ∃a ∈ di such that ci(a) = 0 and for all cost functions
cij , ∃b ∈ dj such that cij(a, b) = cj(b) = 0. Value a is called the EAC support value of
variable i.

Definition 4.6 (Larrosa et al. [43]). A binary VCSP is existential directional arc
consistent (EDAC) with respect to an order < on the variables if it is existential arc
consistent and full directional arc consistent with respect to <.

Over the valuation structure Sm, existential directional arc consistency can be estab-
lished in O(ed2 max{nd, m}) time [43].

An important difference between local consistency in CSPs and local consistency in
VCSPs is that the closure under the corresponding local consistency operations is unique
in CSPs but this is not, in general, the case for VCSPs [51]. For example, even for a 2-
variable VCSP with domains of size 2, the arc consistency and existential arc consistency
closures are not necessarily unique. Similarly, for problems with more than two variables,
in general, the FDAC closure is not unique.

Figure 1(a),(b) illustrates separately the two techniques FDAC and EAC (which
together form the stronger notion EDAC). In both cases, the VCSP on the left (over the

8

valuation structure Q
+
) can be transformed into the equivalent VCSP on the right by

establishing, respectively, FDAC and EAC. In both cases, the lower bound c∅ is increased
from 0 to 1. Each oval represents a domain and each • a value. Names of values and the
variable number are written outside the oval (names of values on the side and the variable
number underneath). A line joining (i, a) and (j, b) represents a weight cij(a, b) = 1 and
a value α written next to a ∈ di (and inside the oval) represents ci(a) = α. The absence
of a line or the absence of a cost next to a domain value indicates a zero cost. In Figure
1(a) the VCSP on the right is obtained by establishing FDAC with a lexicographic DAC
ordering, via the following SAC operations:

1. Project({1, 2},1,F,1), Project({2, 3},3,F,1): this moves unit costs from the binary
cost functions c12 and c23 down to c1(F) and c3(F) (which establishes arc consis-
tency).

2. Extend(3,F,{1, 3},1): we send a unit cost from c3(F) up to the binary cost function
c13, so that c13(T,F)= c13(F,F)= 1.

3. Project({1, 3},1,T,1): this moves a unit cost from c13 to c1(T) (which establishes
directional arc consistency).

4. UnaryProject(1,1): we increase the lower bound c∅ by replacing c1(T)= c1(F)= 1
by c∅ = 1 (which establishes node consistency).

In order to establish EAC, weights are shifted towards the same variable whenever this
can lead to an immediate increase in c∅. In Figure 1(b) the existential arc consistent
VCSP on the right is obtained by shifting weights towards variable 3, via the following
SAC operations:

1. Extend(2,T,{2, 3},1), Project({2, 3},3,F,1): we send a unit cost from c2(T) up to c23

which allows us to project a unit cost from c23 down to c3(F).

2. Extend(1,F,{1, 3},1), Project({1, 3},3,T,1): in an entirely similar manner, we send
a unit cost from c1(F) to c3(T).

3. UnaryProject(3,1): we increase the lower bound by replacing c3(F) = c3(T)= 1 by
c∅ = 1.

The VCSP on the left of Figure 1(a) is EAC and the problem on the left of Figure 1(b)
is FDAC, which proves that these two properties are complementary. EDAC [43], which
is simply the combination of FDAC and EAC, represents the state-of-the-art soft arc
consistency technique against which we must compare the new techniques defined in this
paper.

EDAC tries to find a set of SAC operations which increases c∅, but does not perform
an exhaustive search over all such sets. This is because FDAC can only extend non-zero
weights in one direction, while EAC can only extend weights in the neighborhood of each
variable. In the next section we will show, somewhat surprisingly, that it is possible to
perform an exhaustive search over all sets of SAC operations in polynomial time.

5. Optimal soft arc consistency

An arc consistency closure of a VCSP P is any VCSP obtained from P by repeated
calls to Project and UnaryProject until convergence. After each call of Project or UnaryPro-
ject, the resulting VCSP must be valid in the sense that the cost functions take values
lying in the valuation structure.

9

Definition 5.1. An arc consistency closure of a VCSP P is optimal if it has the maxi-
mum lower bound c∅ among all arc consistency closures of P .

In a previous paper we proved that over a discrete valuation structure such as the non-
negative integers together with infinity, the problem of finding the optimal arc consistency
closure is NP-hard [19]. However, we will show in this section that extending the valuation
structure to include all rationals and extending our notion of arc consistency closure
allows us to determine an optimal arc consistency closure in polynomial time by a simple
reduction to linear programming. This is not so much a practical proposition as a
theoretical result to demonstrate that extending the valuation structure not only allows
us to produce better lower bounds but also avoids intractability.

We now relax the preconditions of the soft arc consistency (SAC) operations Extend,
Project and UnaryProject so that these operations can introduce negative finite costs. Over
the rationals, the only restriction on costs after application of a relaxed SAC operation
is that they are not −∞.

Definition 5.2. Over the valuation structure Q
+

(respectively Qm), a relaxed SAC op-
eration is a call to Extend, Project or UnaryProject such that the resulting cost functions
take values in Q ∪ {∞} (respectively {α ∈ Q : α < m} ∪ {∞}).

If we apply a sequence of relaxed SAC operations to produce a VCSP P , then in
order to be able to use c∅ as a lower bound, we must ensure that the costs in P are all
non-negative (although intermediate problems may contain negative finite costs).

Definition 5.3. Given a VCSP P over the valuation structure Q
+

or Qm, a SAC trans-
formation is a sequence of relaxed SAC operations which transforms P into a valid VCSP
(i.e. such that all cost functions take values in the valuation structure).

Definition 5.4. A VCSP P over the valuation structure Q
+

or Qm is optimal soft arc
consistent (OSAC) if no SAC transformation applied to P increases c∅.

Over the valuation structure Q
+
, a SAC transformation involving the shifting of only

finite costs can be considered as a set of relaxed SAC operations: the order in which
operations are applied is of no importance since, in this case, the operations Extend,
Project and UnaryProject all commute.

Affane & Bennaceur [1] split integer costs by propagating a fraction wij of the binary
cost function cij towards variable i and a fraction 1 − wij towards variable j (where
0 ≤ wij ≤ 1) and suggested determining the optimal values of the weights wij . In a more
recent paper, Bennaceur & Osmani [4] suggested introducing different weights wiajb for
each pair of domain values (a, b) ∈ di × dj . As we show in this paper, it turns out that
assigning a different weight to each triple (i, j, a), where a ∈ di, allows us to find optimal
weights in polynomial time.

Theorem 5.5. Let P be a VCSP over the valuation structure Q
+

such that the arity of
cost functions in P is bounded by a constant. It is possible to find in polynomial time
a SAC transformation of P which maximizes the lower bound c∅ and hence establishes
optimal soft arc consistency.

10

Maximize

n
∑

i=1

ui subject to

∀i ∈ {1, . . . , n}, ∀a ∈ di, ci(a)− ui +
∑

(S∈C)∧(i∈S)

pS
i (a) ≥ 0

∀S ∈ C such that |S| > 1, ∀t ∈ ℓ(S), cS(t)−
∑

i∈S

pS
i (ti) ≥ 0

Figure 2: The linear program to establish optimal soft arc consistency (after propagation of infinite
weights).

Proof: Firstly, as in [12], we can assume that all infinite costs have been propagated
using a standard generalized arc consistency algorithm [46]. Note that we assume that
cS(t) has been set to∞ if ci(ti) =∞ for some i ∈ S. At this point no more infinite costs
can be propagated in the VCSP by the operations Extend, Project or UnaryProject.

We then want to determine the set of finite SAC operations which when applied
simultaneously maximizes the increase in c∅. For each S ∈ C such that |S| > 1 and for
each i ∈ S, let pS

i (a) be the sum of the weights projected from cS to ci(a) minus the sum
of the weights extended from ci(a) to cS . Let ui be the sum of the weights projected
(by UnaryProject) from ci to c∅. Thus the problem is to maximize

∑

i ui such that the
resulting cost functions take on non-negative values. This is equivalent to the linear
program given in Figure 2. We can simply ignore the inequalities for which ci(a) = ∞
or cS(t) = ∞ since they are necessarily satisfied. The remaining inequalities define a
standard linear programming problem with O(ed + n) variables (if e is the number of
cost functions, n the number of variables and d the maximum domain size) which can
be solved in polynomial time [33]. Since no infinite weights can be propagated and no
further propagation of finite weights can increase c∅, the resulting VCSP is optimal soft
arc consistent.

Karmarkar’s interior-point algorithm for linear programming hasO(N3.5L) time com-
plexity, where N is the number of variables and L the number of bits required to encode
the problem [33]. Under the reasonable assumption that e ≥ n, the number of variables
N in the linear program in Figure 2 is O(ed) and the number of bits L required to code
it is O(edr log M), where r is the maximum arity of cost functions and M the maximum
finite cost. Therefore this linear program can be solved in O(e4.5d(r+3.5) log M) time.

A weaker version of Theorem 5.5, limited to 3-variable subproblems, is the basis of the
algorithm to establish 3-cyclic consistency [13]. Note that the linear program in Figure
2 is the dual of the linear relaxation of the 01-integer program defined in thesis [38, 36].
Both the primal and dual linear programs were first studied in [54].

It is important to note that there is a difference between SAC transformations (which
are sequences of relaxed SAC operations) and sequences of SAC operations: the former
are stronger due to the fact that intermediate problems can contain negative costs. When

only finite costs are shifted in Q
+
, a SAC transformation is equivalent to a set of SAC

operations. Several SAC operations applied simultaneously can produce a valid VCSP
even when no individual SAC operation can be applied. As an example, consider the

11

c

b

a

c

b

a c

b

a

c a

1

a c a c

1

c a

c

b

a

2

3

4 4

2

3

c∅ = 1

Figure 3: No sequence of SAC operations can be applied to the VCSP in (a), but a set of simultaneous
SAC operations transforms it into the VCSP in (b).

binary VCSP P over domains d1 = d3 = {a, b, c}, d2 = d4 = {a, b} and valuation

structure Q
+

illustrated in Figure 3(a). All unary costs are equal to zero. All edges
represent a unit cost. c∅ is assumed to be zero. P is node consistent and arc consistent,
and hence no cost α > 0 can be projected (or unary-projected) without introducing a
negative cost. Also, since all unary costs are equal to zero, no cost α > 0 can be extended
without introducing a negative cost. It follows that no SAC operation (Extend, Project
or UnaryProject) can transform P into a valid VCSP. This implies that no sequence of
SAC operations can modify P , and, in particular, that P is EDAC.

However, we may perform the following relaxed SAC operations:

1. Extend(2, c, {2, 3}, 1): we move a (virtual) cost of 1 from c2(c) to three pairs inside
c23, namely c23(c, a), c23(c, b) and c23(c, c). This introduces a negative cost c2(c) =
−1.

2. Project({2, 3}, 3, a, 1)), Project({2, 3}, 3, b, 1): this moves two unit costs to c3(a) and
c3(b).

3. Extend(3, a, {3, 4}, 1), Extend(3, b, {3, 1}, 1): these two unit costs are moved inside
c34 and c31 respectively.

4. Project({3, 4}, 4, c, 1): this moves a unit cost of 1 to c4(c).

5. Project({3, 1}, 1, a, 1), Project({3, 1}, 1, c, 1): this moves two unit costs of 1 to c1(c)
and c1(a).

6. Extend(1, a, {1, 2}, 1), Project({1, 2}, 2, c, 1): we reimburse our initial loan on value
c2(c).

7. Extend(1, c, {1, 4}, 1), Project({1, 4}, 4, a, 1): we send a unit cost to value c4(a).

8. Finally, the application of UnaryProject(4, 1) yields the problem on the right of
Figure 3 with a lower bound c∅ = 1.

12

If the relaxed SAC operations are applied in the above order, then the intermediate
problems between steps 1 and 6 have the invalid negative weight c2(c) = −1, but in
the final problem all weights are non-negative. Since all costs movements are finite this
sequence of relaxed SAC operations is equivalent to a set of simultaneous relaxed SAC
operations. This set of operations corresponds to a solution of the linear programming
problem given in Figure 2 in which p23

2c = p34
3a = p31

3b = p12
1a = p14

1c = −1 and p23
3a = p23

3b =
p34
4c = p31

1a = p31
1c = p12

2c = p14
4a = u4 = 1 (all other variables being equal to zero).

We have seen that applying a set of SAC operations simultaneously leads to a stronger
notion of consistency than applying a set of SAC operations sequentially. An obvious
question is whether another even stronger form of consistency exists which transforms a
VCSP into an equivalent VCSP.

Definition 5.6. A VCSP P is in-scope c∅-irreducible if there is no equivalent VCSP Q
with the same set of cost function scopes as P and such that cQ

∅
> cP

∅
(where cP

∅
, cQ

∅
are

the nullary cost functions in P , Q).

The following theorem is a direct consequence of Lemma 5.2 in [13] (in which it was
proved for any finitely-bounded strictly monotonic valuation structure, hence in Q+).

Theorem 5.7. Let P be a binary VCSP with all unary and binary cost functions and
in which cost functions take values in Q+ (and hence all costs are finite). If no SAC

transformation applied to P produces a VCSP Q with cQ
∅

> cP
∅
, then P is in-scope c∅-

irreducible.

Thus, when all costs are finite rational numbers, the linear programming approach
can be used to establish in-scope c∅-irreducibility in binary VCSPs. This is unfortunately
not the case if infinite costs can occur. Consider, for example, the graph-coloring problem
on a triangle with two colors, expressed as a VCSP with costs in {0,∞}. The problem is
clearly inconsistent and hence equivalent to a VCSP with a single cost function c∅ =∞,
but no SAC transformation can be applied to this VCSP to increase c∅.

We conclude this section by showing that optimal soft arc consistency can also be
established in polynomial time over the valuation structure Qm. In this case, however,
we may have to solve many linear programs.

Theorem 5.8. Let P = 〈X, D, C, Qm〉 be a VCSP such that the arity of cost functions
in P is bounded by a constant r. Then it is possible to find in polynomial time an optimal
soft arc consistent VCSP equivalent to P .

Proof: In the following, we use S to represent any constraint scope such that |S| ≥ 1.
For each 〈S, cS〉 ∈ C and for each t ∈ ℓ(S), let PS,t denote the VCSP which is identical
to P except that the domain of each variable i ∈ S has been reduced to a singleton
consisting of the value ti assigned by the tuple t to variable i and the valuation structure

of PS,t is Q
+
. By performing operations in the valuation structure Q

+
, the upper bound

m is temporarily ignored. If establishing OSAC in PS,t produces a lower bound c∅ ≥ m,
then in the original valuation structure Qm this represents an inconsistency. This means
that setting cS(t) =∞ in P produces a VCSP which is equivalent to the original VCSP
P . Denote by OSACm(S, t) the establishment of OSAC in PS,t and the setting of cS(t) to
∞ in P if the resulting lower bound in the transformed PS,t is greater than or equal to m.

13

Now consider the algorithm OSACm which simply repeatedly applies OSACm(S, t) for all
constraint scopes S and all tuples t ∈ ℓ(S) until convergence. Denote by P∞ the VCSP
which results when OSACm is applied to P . The complexity of OSACm is bounded by
the time complexity of (edr)2 times the time complexity of the linear program in Figure
2, where r is the maximum arity of cost functions in P .

We now only need to establish OSAC one more time in P∞, considered as a VCSP

over the valuation structure Q
+
. Let σ denote the corresponding sequence of relaxed SAC

operations which establish OSAC in P∞, and let P ∗ denote the VCSP which results when
this sequence of operations σ is applied to P∞. Clearly P ∗ is equivalent to P .

It remains to show that P ∗ is optimal soft arc consistent over Qm. To prove this, it is
sufficient to show that establishing OSAC over Qm cannot introduce new infinite costs.
Suppose, for a contradiction, that there exists a sequence σ′ of relaxed SAC operations
in Qm which when applied to P ∗ sets some cost cS(t) to ∞. Without loss of generality,
we can assume that σ′ is minimal, so that cS(t) is the first cost set to ∞ by σ′. Then
the combined sequence σ, σ′ applied to P∞

S,t sets cS(t) to a value ρ ≥ m. P∞
S,t represents

the VCSP which is identical to P∞ except that the domain of each variable i ∈ S has

been reduced to a singleton and the valuation structure is Q
+

. By adding at most one
Project and one UnaryProject (to transfer this cost ρ from cS(t) to c∅), the sequence σ, σ′

can be expanded so that it sets c∅ to ρ ≥ m in P∞
S,t. But, by the definition of P∞ no

such sequence can exist. Hence no sequence of relaxed SAC operations can introduce
infinite costs in P ∗, and therefore, by the definition of P ∗, no sequence of relaxed SAC
operations can increase c∅ in P ∗.

6. Experimental trials of OSAC

In this section, the linear programming problem defined by OSAC was solved using
ILOG CPLEX version 9.1.3 (using the barrier algorithm). We first evaluate the strength
and the computational cost of the lower bounds produced after a direct application of
OSAC on different problems.

6.1. Evaluation of OSAC lower bounds

Random MaxCSP. The first set of instances processed are random Max-CSP instances
created by the random vcsp generator1 using the usual four parameter model (n: number
of variables, d: size of domains, e: number of randomly-chosen binary constraints, and
t: percentage of randomly-chosen forbidden tuples inside each constraint). The aim is
to find an assignment that minimizes the number of violated constraints. Four different
categories of problems with domain size 10 were generated following the same protocol as
in [44]: sparse loose (SL, 40 variables), sparse tight (ST, 25 variables), dense loose (DL,
30 variables) and dense tight (DT, 25 variables). These instances are available in the Cost
Function Library archive at https://mulcyber.toulouse.inra.fr/projects/costfunctionlib.

Samples have 50 instances. Table 1 shows respectively the average optimum value,
the average values of the EDAC lower bound and the average value of the OSAC lower

1http://www.inra.fr/mia/ftp/T/VCSP/src/random vcsp.c

14

SL ST DL DT
Optimum 2.84 19.68 2.22 29.62
EDAC lb. 0 4.26 0 9.96
OSAC lb. 0 12.30 0 19.80

Table 1: Results of preprocessing random WCSPs by OSAC and EDAC. For each category of problems

(S: Sparse (e = 2.5n), D: Dense (e = n(n−1)
8

), L: Loose, T: Tight), the average cost of an optimal
solution and the average lower bound c∅ produced by EDAC and OSAC is reported.

bound. On loose problems, OSAC and EDAC leave the lower bound unchanged. This
shows that higher level local consistencies are required here. However for tight problems,
OSAC is extremely powerful, providing lower bounds which are sometime three times
better than EDAC bounds.

Frequency assignment. The second set of benchmarks is defined by instances of the
Radio Link Frequency Assignment Problem of the CELAR [9]2. This problem consists
in assigning frequencies to a set of radio links in such a way that all the links may operate
together without noticeable interference. Some RLFAP instances can be naturally cast
as binary WCSPs.

These problems have been extensively studied and their current state is reported on
the FAP web site at http://www.zib.de/fap/problems/CALMA. Despite extensive studies,
the gap between the best upper bound (computed by local search methods) and the best
lower bound (computed by exponential time algorithms) is not closed except for instance
scen06, and more recently instance scen07 [49]. The problems considered here are the
scen0{6,7,8}reduc.wcsp and the graph1{1,3}reducmore.wcsp instances which have
already been through different strong preprocessing (see the Benchmarks section in [22]).
In order to differenciate these from the equivalent full unprocessed instances, a subscript

r is used to identify them in the following tables.
As Table 2 shows, OSAC offers substantial improvements over EDAC, especially on

the graph11 and graph13 instances. For these instances, OSAC reduces the optimality
gap ub−lb

ub
to 4% and 3% respectively. The polynomial time lower bounds obtained by

OSAC are actually close to the best known (exponential time) lower bounds.

6.2. OSAC preprocessing before tree search

To actually assess the practical interest of OSAC we tried to solve problems using a
tree-search algorithm maintaining EDAC after OSAC preprocessing.

Tight random MaxCSP. The first experiment was performed on problems where OSAC
preprocessing seems effective: random tight MaxCSPs. The difficulty here lies in the fact
that CPLEX is a floating point solver while the open source WCSP solver used (toolbar
version 3.0 in C language, section Algorithms in [22], extended with OSAC) deals with
integer costs. To address this issue, we use “fixed point” costs: for all WCSPs considered,
we first multiply all costs by a large integer constant λ = 1000, and then solve the linear

2We would like to thank the french Centre Electronique de l’Armement for making these instances
available.

15

scen06r scen07r scen08r graph11r graph13r

Total # of values 3196 4824 14194 5747 13153
Best known ub 3389 343592 262 3080 10110
Best known lb 3389 343592 216 3016 9925
Best lb cpu-time 221” 386035” 13452” 74113” 23211”
EDAC lb 0 10000 6 2710 8722
OSAC lb 3.5 31453.1 48 2957 9797.5
EDAC cpu-time <1” <1” <1” <1” <1”
OSAC cpu-time 621” 3530” 6718” 492” 6254”

Table 2: Radio link frequency assignment problems: for each problem, the problem size (number of
values), the best known upper bound, the best known lower bound and the corresponding cpu-time
needed to produce it. These cpu-times are taken from [49] using a 2.66 GHz Intel Xeon with 32 GB
(scen06r ,scen07r), from [21] on a SUN UltraSparc 10 300MHz workstation (scen08), and from [37] on
a DEC 2100 A500MP workstation (graph11r ,graph13r). These are followed by the lower bounds (c∅)
produced by EDAC and OSAC, as well as the cpu-time needed to enforce EDAC and OSAC using
CPLEX on a 3 GHz Intel Xeon with 2 GB.

programming problem defined by OSAC using integer variables (instead of floating point).
The first integer solution found is used. The resulting problem has integer costs and can
be tackled by toolbar3. This means that we shift from a polynomial problem to an
NP-hard one. In practice, we found that the problems obtained have a very good linear
continuous relaxation and are not too expensive to solve as integer problems (up to 3.5
slower than LP relaxation in the following experiments). Using a polytime rational LP
solver would allow to recover a polynomial time bound.

Figure 4 reports cpu-time (top) and size of the tree search (bottom) for dense tight
problems of increasing size. The time limit was set to 1800 seconds.

Clearly, for small problems (with less than 29 variables), OSAC is more expensive
than the resolution itself. As the problem size increases, OSAC becomes effective and for
33 variables, it divides the total cpu-time by roughly 2. The number of nodes explored
in both cases shows the strength of OSAC used as a preprocessing technique (remember
that EDAC is maintained during search).

OSAC and DAC ordering. The strength of OSAC compared to local consistencies such as
directional arc consistency (DAC) is that is does not require an initial variable ordering.
Indeed, DAC directly solves tree-structured problems but only if the variable ordering
used for DAC enforcing is a topological ordering of the tree. To evaluate to what extent
OSAC can overcome these limitations, we used random problems structured as binary
clique trees as in [23]. Each clique contains 6 variables with domain size 5, each sharing
2 variables with its parent clique. The overall tree height is 4, leading to a total number
of 62 variables, with a graph density of 11%.

On these clique-tree problems, two DAC orderings were used. One is compatible
with a topological ordering of the binary tree (and should give good lower bounds),

3The code of toolbar has been modified accordingly: if a solution of cost 2λ is known for example
and if the current lower bound is 1.1λ then backtrack occurs since all global costs in the original problem
are integer and the first integer above 1.1 is 2, the upper bound.

16

Figure 4: Experimental evaluation of OSAC as a preprocessing technique on random dense tight prob-
lems. Three cpu-times are reported: (1) OSAC MIP: time taken to get the first integer solution, (2)
MEDAC: time taken to solve the original problem by maintaining EDAC [43] in toolbar with default
parameters and a good initial upper bound, (3) OSAC+MEDAC is the sum of OSAC MIP with the time
needed by MEDAC to solve the OSAC problem (with the same default parameters and upper bound).

the inverse order can be considered as pathological. The cpu-times for MEDAC alone
(default toolbar parameters and a good initial upper bound) and OSAC+MEDAC (as
previously) are shown in each case in Figure 5. Clearly, OSAC leads to drastic (up
to 20 fold) improvements when a bad DAC ordering is used. Being used just during
preprocessing, it does not totally compensate for the bad ordering. But, even when a
good DAC ordering is used, OSAC gives impressive (up to 4 fold) speedups, especially
on tight problems.

17

Figure 5: Experimental evaluation of OSAC as a preprocessing technique on random problems with a
binary clique tree structure. The figure uses a logarithmic scale for cpu-time for different constraint
tightnesses (below 40%, problems are satisfiable).

Finally, we tried to solve the challenging open CELAR instances after OSAC prepro-
cessing. Despite the strength of OSAC, all problems remained unsolvable.

7. Virtual arc consistency

Although OSAC is optimal in terms of strength of the induced lower bound, the
associated linear program is often too large for OSAC to be beneficial in terms of reso-
lution speed. However, OSAC showed that instead of the chaotic application of integer
equivalence-preserving transformations, the planning of a set of rational SAC operations
may be extremely beneficial. In this section, we introduce Virtual Arc Consistency (VAC)
which plans sequences of rational SAC operations which increase the lower bound c∅.
These sequences are found by means of classical (generalized) arc consistency in a CSP

Bool(P) derived from the VCSP P . Over the valuation structures Q
+

or Qm (and under
the reasonable assumption that c∅ 6=∞), the relations in Bool(P) contain exactly those
tuples which have zero cost in P . Bool(P) is a CSP whose solutions are exactly those
n-tuples x such that V alP (x) = c∅.

Definition 7.1. If P = 〈X, D, C, Σ〉 is a VCSP over the valuation structure Q
+

or Qm,
then Bool(P) is the classical CSP 〈X, D, C〉 where, for all scopes S 6= ∅, 〈S, RS〉 ∈ C
if and only if ∃〈S, cS〉 ∈ C, where RS is the relation defined by ∀x ∈ ℓ(S) (t ∈ RS ⇔
cS(t) = 0).

We say that a CSP is empty if at least one of its domains is the empty set.

18

Definition 7.2. A VCSP P is virtual arc consistent if the (generalized) arc consistency
closure of the CSP Bool(P) is non-empty.

The following theorem shows that if establishing arc consistency in Bool(P) detects
an inconsistency, then it is possible to increase c∅ by a sequence of soft arc consistency
operations.

Theorem 7.3. Let P be a VCSP over the valuation structure Q
+

or Qm such that
c∅ < ∞. Then there exists a sequence of soft arc consistency operations which when
applied to P leads to an increase in c∅ if and only if the arc consistency closure of
Bool(P) is empty.

Proof: Throughout this proof we consider Bool(P) as a VCSP over the Boolean valu-
ation structure S1 = 〈{0, 1}, +1,≥〉. To differentiate the cost functions in Bool(P) from
those in P , we denote the cost functions of scope S in P and Bool(P) by cS and cS ,
respectively.
⇒: Let O1, . . . , Ok be a sequence of soft arc consistency operations (Project, Extend

or UnaryProject) in P which produce an equivalent VCSP in which c∅ has increased. We
assume, without loss of generality, that Ok is the UnaryProject operation which increases
c∅. For each i = 1, . . . , k, if Oi projects or extends a weight α, let O′

i be the corresponding
operation in Bool(P) except that α is replaced by α where

α =

{

1 if α > 0
0 if α = 0

For example, if Oi is Project (S, j, a, 0.5) in P , then O′
i is Project (S, j, a, 1) in Bool(P);

if Oi is Extend (j, a, S, 0), then O′
i is Extend (j, a, S, 0). Let Bool(P)i represent the result

of applying O′
1, . . . , O

′
i to Bool(P) and Pi represent the result of applying O1, . . . , Oi to

P . The sequence O′
1, . . . , O

′
k never decreases a cost function cS (since 1 ⊖ 1 = 1 in S1).

By a simple inductive argument we can see that, for |S| ≥ 1 and i < k, cS(t) = 1 in
Bool(P)i whenever cS(t) > 0 in Pi (and hence the preconditions of O′

i+1 are satisfied). If
Oi is a projection which assigns a non-zero weight to cj(a), then cj(a) = 1 after applying
O′

i. If Oi is an extension which assigns a non-zero weight to cS(t), then cS(t) = 1 after
applying O′

i. Finally, since Ot is a unary projection which increases c∅ by some weight
α > 0, it follows that O′

k sets c∅ to α = 1.
⇐: Suppose that there exists a sequence of arc consistency operations which lead

to a domain wipe-out in Bool(P). We can assume, without loss of generality, that no
two of these operations are identical since applying the same arc consistency operation
twice is redundant in CSPs. There is a corresponding sequence O1, . . . , Ok of soft arc
consistency operations (Project, Extend or UnaryProject) in Bool(P), viewed as a VCSP
over the Boolean valuation structure S1, which set c∅ to 1 in Bool(P). We assume,
without loss of generality, that Ok is the UnaryProject operation which sets c∅ to 1 in
Bool(P).

Let δ be the minimum non-zero weight occurring in P , i.e. δ = min{cS(t) : (〈S, cS〉 ∈
C)∧(t ∈ ℓ(S))∧(cS(t) > 0)}. For i = 1, . . . , k, let O′

i be the soft arc consistency operation
in P which is identical to Oi except that the weight being projected or extended is δ/2i.
For example, if Oi is Project (S, i, a, 1) in Bool(P), then O′

i is Project (S, i, a, δ/2i) in P .
We divide by two each time to ensure that strictly positive costs remain strictly positive.

19

Let Bool(P)i represent the result of applying O1, . . . , Oi to Bool(P) and Pi represent the
result of applying O′

1, . . . , O
′
i to P . By a simple inductive argument, the minimum non-

zero cost in Pi is at least δ/2i. Since the operations Oi and O′
i are identical except for

the weight being projected or extended, Bool(Pi) is identical to Bool(P)i for i < k (and
hence the preconditions of O′

i+1 are satisfied). It follows that O′
k necessarily increases c∅

by δ/2k > 0 in P since Ok sets c∅ to 1 in Bool(P).

It may not seem that increasing c∅ by a very small amount (such as the increase of
δ/2k demonstrated in the proof of Theorem 7.3) is worthwhile. However, if the original
weights in P were all integers, then c∅ > 0 actually implies that V alP (x) ≥ 1, for all x,
thus allowing us to increase the lower bound used by branch and bound by 1. In this
case the lower bound is strictly greater than c∅.

VAC is easily shown to be stronger than Existential Arc Consistency [43]. Indeed,
EAC can be seen as applying virtual arc consistency but limited to a single iteration of
arc consistency in Bool(P). In EAC, weights are transferred virtually to each variable
from all its neighbors; if a unary projection with a non-zero weight is possible, then
we trace back and actually perform the necessary soft arc consistency operations. Thus
EAC avoids the problem of fractional weights by applying only a weak form of virtual
arc consistency.

Corollary 7.4. If a VCSP P over the valuation structure Q
+

or Qm is virtual arc
consistent, then establishing EDAC cannot increase the lower bound c∅ in P .

Proof: EDAC is established by applying a sequence of SAC operations [43], but by
Theorem 7.3, no sequence of SAC operations can increase c∅ in P .

Corollary 7.5. If a VCSP P over the valuation structure Q
+

or Qm is optimal arc
consistent, then P is also virtual arc consistent.

Proof: Since P is optimal soft arc consistency, no sequence of relaxed SAC opera-
tions increases c∅. Hence no sequence of SAC operations increases c∅ and therefore, by
Theorem 7.3, P is virtual arc consistent.

8. Increasing the lower bound using VAC

We know by Theorem 5.5 and Theorem 5.8 that we can establish OSAC (and hence
VAC) in polynomial time. Unfortunately, the time complexity of OSAC limits its use
to preprocessing. In this section we introduce a low-order polynomial-time algorithm
which determines a sequence of SAC operations which necessarily increases c∅ if such a
sequence exists. By Theorem 7.3, a VCSP is virtual arc consistent if and only if no such
sequence exists. VAC is strictly weaker than OSAC due to the fact that, in the case of
VAC, intermediate problems must have non-negative cost functions.

In soft arc consistency [19] we often have a choice as to which direction we project
or extend weights. Note that the name virtual arc consistency comes from the fact
that instead of making such choices, we effectively project or extend simultaneously
virtual weights in all possible directions, by establishing arc consistency in Bool(P). One
iteration of our VAC algorithm consists of three phases:

20

•

•

•

•

•

•

•

•

1

1

1

2

3

4

F

F

F

F

T

T

T

T
-

•

•

•

•

•

•

•

•

1

1

1

1

1

2

3

4
-

•

•

•

•

•

•

•

•

1

1

1

1

1

1

2

3

4

Figure 6: A VCSP P (leftmost box) which is EDAC but not virtual arc consistent, as shown by estab-
lishing arc consistency in Bool(P).

1. Establish arc consistency in Bool(P), stopping if domain wipe-out occurs (i.e. as
soon as the domain of some variable i becomes empty). If Bool(P) is arc consistent,
then quit, since P is virtual arc consistent.

2. Suppose that domain wipe-out occurred at variable i in Bool(P), and that σ is the
sequence of arc consistency operations which led to this domain wipe-out. Find
a minimal subsequence of σ which provokes this domain wipe-out by tracing back
from variable i only retaining those arc consistency operations which are strictly
necessary.
Convert the this minimal sequence of arc consistency operations in Bool(P) into a
corresponding sequence σ′ of soft arc consistency operations in P which produces
the maximum increase λ in c∅ while keeping all costs non-negative.

3. Apply the sequence σ′ of operations to P .

Consider the following instance P of Max-SAT: ¬X1; X1 ∨ ¬X4; ¬X3 ∨ X4; X2;
¬X2 ∨ X3. This VCSP is illustrated in the leftmost box of Figure 6. A line joining
(i, a) and (j, b) represents a cost cij(a, b) = 1. Unary costs ci(a) = 1 are noted next to
the domain element (i, a). Note that P is existential directional arc consistent (EDAC).
However, it is not virtual arc consistent, since establishing arc consistency in Bool(P)
leads to an inconsistency. The leftmost box in Figure 6 also represents Bool(P) where
now weights are interpreted as being Boolean values. For ease of comparison with the
corresponding VCSP P , in figures we will always represent the CSP Bool(P) as a VCSP
over the Boolean valuation structure S1 = 〈{0, 1}, +1,≥〉 in which 0 < 1 and 1 +1 1 = 1
(i.e. 0 represents consistency, 1 inconsistency and +1 is the idempotent plus operator
in the classical 2-element Boolean algebra). In other words, in Bool(P) a line between
(i, a) and (j, b) represents the fact that (a, b) is not a consistent assignment to variables
(i, j) and a unary cost of 1 next to (i, a) represents the fact that a is not a consistent
assignment to variable i. In this representation of Bool(P), propagating inconsistencies,
as illustrated in the middle and right-hand boxes of Figure 6, means adding lines and
setting unary costs to 1. For example, the inconsistency c1(T)= 1 is propagated to the
binary cost function c12 (c12(T,T) = c12(T,F)= 1) and then to value T in d4 (c4(T)= 1),
as shown in the middle box in Figure 6. A domain wipe-out occurs at variable 4 in
the right-hand box of Figure 6: c4(T)= c4(F)= 1 meaning that both elements of d4 are
inconsistent.

During establishment of arc consistency in Bool(P), the reason for each inconsistency

21

(a)

•

•

•

•

•

•

•

•

λ

λ

1

2

3

4

T

F

T

F

T

F

T

F

-

•

•

•

•

•

•

•

•

λ

λ λ

λ
1

2

3

4
-

•

•

•

•

•

•

•

•

λ

λ

λλ

1

2

3

4

-

•

•

•

•

•

•

•

•

λ

λλ

λ

λ

1

2

3

4
-

•

•

•

•

•

•

•

•

λ

λλ

λ

λ

1

2

3

4

(b)

•

•

•

•

•

•

•

•

1

1

1

2

3

4
-

•

•

•

•

•

•

•

•

1

1

1

2

3

4
-

•

•

•

•

•

•

•

•

1

2

3

4

c∅ = 1

Figure 7: (a) Tracing back weights of λ from variable 4 until we arrive at non-zero weights in the original
VCSP P of Figure 6; (b) applying the corresponding soft arc consistency operations to P (in the reverse
order to which they were found in (a)).

(i.e. a cost which changes from 0 to 1 in the valuation structure S1) is recorded. In this
example, inconsistency in Bool(P) is first detected at variable 4. By Theorem 7.3 this
means that by soft arc consistency operations in P we can transform P into an equivalent
VCSP in which ∀x ∈ d4, c4(x) ≥ λ for some λ > 0. We can associate λ with each x ∈ d4

and trace back these weights by, at each step, using the reason for inconsistency as
recorded during the establishment of arc consistency in Bool(P). This is illustrated in
Figure 7(a). The weights of λ in each c4(x) (x ∈ d4) shown in the top left box can be
obtained by projection from cost functions c14 and c34 (as illustrated in the second box).
If the corresponding cost in the original problem P is non-zero, which is the case for
c14(F,T) and c34(T,F), then these weights do not need to be traced back further. The
remaining weights, namely c14(T,T) and c34(T,F), can be obtained by projections from
c1(T) and c3(F) as illustrated in the third box. The algorithm halts when all weights
have been traced back to a non-zero costs in the original VCSP P . All the weights
of λ shown in the final box of Figure 7(a) correspond to non-zero costs in the original
problem P . The value of λ must not exceed any of these original costs. In this example,
the maximal value we can assign to λ is clearly 1. Tracing back is equivalent to finding in

22

(a)
•

•

•

•

•

•

1

1

2

3

F F

F

T T

T
-

•

•

•

•

•

•

1

1

11

2

3
-

•

•

•

•

•

•

1

1

1

1

1

2

3

(b)

•

•

•

•

•

•

λ

λ

1

2

3
-

•

•

•

•

•

•

λ λ
λ

λ1

2

3
-

•

•

•

•

•

•

λ

λ

λ

λ1

2

3

-

•

•

•

•

•

•

λ

λ

λ
λ

λ1

2

3
-

•

•

•

•

•

•

λ

λ

λ + λ

λ1

2

3

(c)

•

•

•

•

•

•

1

1

2

3
-

•

•

•

•

•

•

1
2

1
2

1
2

1
2

1
2 1

2

11

2

3
-

•

•

•

•

•

•

1
2

1
2

1
2 1

2
1
2

1
2

c∅ = 1
2

1

2

3

Figure 8: An example of a VCSP where virtual arc consistency produces a better lower bound than
EDAC by allowing fractional weights.

reverse order a sequence of soft arc consistency operations which would produce a VCSP
with ∀x ∈ d4, c4(x) ≥ λ. The soft arc consistency operations can now be applied in the
right order. This is illustrated in Figure 7(b). In the resulting VCSP we have c∅ = 1.
This VCSP P ′, shown in the final box of Figure 7(b) is virtual arc consistent since the
corresponding CSP Bool(P ′) is arc consistent.

Unfortunately, establishing virtual arc consistency may require the introduction of
fractional weights, as the following example illustrates. Consider the instance P of Max-
SAT given by: ¬X1; X1 ∨ ¬X2; X1 ∨X3; X2 ∨ ¬X3. This problem is illustrated in the
leftmost box of Figure 8(a). As usual, each line represents a cost of 1 and unary costs are
noted next to the corresponding domain element. Bool(P) can also be represented by
the same figure, where now the value 1 is understood to be the element of the Boolean
valuation structure S1 = 〈{0, 1}, +1,≥〉 in which 0 < 1 and 1 +1 1 = 1 since 1 represents

23

complete inconsistency. Figure 8(a) illustrates the process of establishing arc consistency
in Bool(P), where the detection of an inconsistency means the addition of a line or a
unary cost of 1 in the figure: arc consistency operations are performed on the pairs of
variables (1, 2), (1, 3) and then on the pair (2, 3), which leads to a domain wipe-out at
variable 3. We can therefore already deduce a lower bound of the integer value 1 for the
original problem P . However, in this example, no set of soft arc consistency operations
with integer weights produces a non-zero lower bound.

In order to determine a sequence of soft arc consistency operations in P which lead
to an increase λ > 0 in c∅, we have to retrace the steps made while establishing arc
consistency in Bool(P). We place a value of λ at each element of d3, as illustrated by
the leftmost box in Figure 8(b). Retracing our steps, we know that these weights can
be obtained by projection from the binary cost functions c13 and c23 (as illustrated in
the next box in Figure 8(b)). If the corresponding weight in the original problem P was
non-zero, such as c13(F,F) and c23(F,T), then such weights do not need to be traced back
any further. We know that the other weights can be obtained by extension from c1 and
c2. A weight of λ has to be traced back further via c12 to c1. The algorithm halts when
all remaining weights were non-zero in the original VCSP P (as shown in the last box in
Figure 8(b)). We have traced a combined weight of 2λ back to c1(T). Since c1(T)=1 in
P , the maximum value we can assign to λ is 1

2 .
To concretely collect this cost of 1

2 in c∅, we apply these soft arc consistency opera-
tions, found in reverse order in Figure 8(b), to the original VCSP P with λ = 1

2 . This is
shown in Figure 8(c): a weight of λ = 1

2 is extended from c1(T) to c12 and then projected
onto c2(T). We now have c2(T) = 1

2 , which matches the virtual deletion of value (2, T) in
Figure 8(a). The same amount of cost λ = 1

2 is extended from c1(T) to c13 and projected
onto c3(F). We now have c3(F) = 1

2 , which matches the virtual deletion of (1, F) in
Figure 8(a). In the last step of Figure 8(c), c2(T) = 1

2 is extended to c23 and projected
onto c3(T). The situation matches the virtual wipe-out previously obtained on the right
of Figure 8(a). We finally project c3 onto c∅ and get an equivalent VCSP with c∅ = 1

2 .
The example of Figure 8 shows that applying a sequence of SAC operations found by

our virtual arc consistency algorithm may lead to the introduction of fractional weights
in the VCSP. We have to ensure that we avoid an infinite loop in which we make smaller
and smaller increases to c∅ each time. We give a concrete example of such an infinite
loop in Appendix A. A pragmatic solution to this problem is presented in Section 11.

9. Virtual Arc Consistency subroutines

In this section we give algorithms to trace back the value of λ from c∅ until we reach
non-zero weights in P and to propagate forward in order to actually increase c∅. We

assume that the valuation structure used is either Q
+

or Qm.
We give these algorithms for non-binary cost functions. This means that we in fact

apply generalized arc consistency [46] rather than arc consistency in Bool(P). We assume
that the generalized arc consistency algorithm applied in the first phase to Bool(P) is
instrumented as follows: each time a value a ∈ di is eliminated from di in Bool(P) because
it has no support in the constraint relation RS , this is recorded by setting killer[i, a]← S
and by pushing the value (i, a) itself onto a dedicated queue denoted by Q. A similar
instrumentation is used in dynamic CSP algorithms such as [5]. For simplicity, we give

24

a formal description of this modification in the framework of an AC3-based algorithm.
A time-optimal GAC algorithm is used to compute space and time complexities in our
implementation.

Algorithm 2: VAC iteration - Phase 1: Instrumented AC

(* Revise variable i w.r.t. constraint RS *);1

Function Revise(i, S)2

change← false;3

foreach a ∈ di do4

if ∄t ∈ (ℓ(S) ∩RS) s.t. ti = a then5

delete a from di;6

killer[i, a]← S;7

Q.Push(i, a);8

change← true;9

return change;10

Function Instrumented-AC()11

P ← {(i, S) | cS ∈ C, i ∈ S};12

while P 6= ∅ do13

(i, S)← P.Pop();14

if Revise(i, S) then15

if di = ∅ then return i;16

else P ← P ∪ {(j, S′) | cS′ ∈ C, S′ 6= S, {i, j} ⊂ S′, j 6= i};17

return 0;18

Compared to the traditional Revise() procedure, lines 7 and 8 have been added.
The same modifications can be applied to an AC6 or AC2001 based algorithm. If no
wipe-out occurs when AC is enforced on Bool(P), the problem is already VAC and our
Instrumented-AC algorithm returns 0. Otherwise, the wiped-out variable is returned. The
stack Q has a space complexity in O(n.d) as each value can be deleted at most once. Im-
plemented as pointers to cost functions, the killer data-structure is also of O(nd). These
complexities do not change the asymptotic space complexity of any GAC algorithms.

The second phase is described in Algorithm 3. It exploits the queue Q and the killer
data structure to rewind the propagation history and collect an inclusion-minimal subset
of value deletions that is sufficient to explain the domain wipe-out observed. For this,
a Boolean M(i, a) is set to true whenever the deletion of (i, a) is needed to explain the
wipe-out and needs to be traced back. This phase also computes the quantum of cost
λ that we will ultimately add to c∅. Using the previous killer structure, it is always
possible to trace back the cause of deletions until a non zero cost is reached: this will
be the source from which the cost of λ must be taken. However, in classical CSP, the
same forbidden labeling or value may be used multiple times, as has been shown in the
example of Figure 8. In order to compute the value of λ, we must know how many quanta
of costs are requested for each solicited source of cost in the original VCSP, at the unary
or r-ary level. For a labeling tS of scope S, such that cS(tS) 6= 0, we use an integer

25

k(S, tS) to store the number of requests of the quantum λ on cS(tS). Using the queue
Q guarantees that the deleted values are explored in anti-causal order: a deleted value
is always explored before any of the deletions that caused its deletion. Thus, when the
cost request for a given tuple is computed, it is based on already computed counts and

it is correct. Ultimately, we will be able to compute λ as the minimum of cS(tS)
k(S,tS) for all

tS such that k(S, tS) 6= 0. This ratio represents the cost the constraint cS can provide
divided by the number of requests for this cost.

Algorithm 3: VAC iteration - Phase 2: Computing λ

Initialize all k, kS to 0, λ←∞ ;1

i0 ← Instrumented-AC() ;2

if (i0 = 0) then return;3

foreach a ∈ Di0 do4

k(i0, a)← 1, M(i0, a)← true;5

if (ci0(a) 6= 0) then M(i0, a)← false, λ← min(λ, ci0(a)) ;6

while (Q 6= ∅) do7

(i, a)← Q.Pop() ;8

if (M(i, a)) then9

S ← killer[i, a];10

R.Push(i, a) ;11

foreach t ∈ ℓ(S) s.t. ti = a do12

if (cS(t) 6= 0) then13

k(S, t)← k(S, t) + k(i, a);14

λ← min(λ, cS(t)
k(S,t));15

else16

Let j ∈ S, j 6= i be a variable that invalidates t in Bool(P);17

if (k(i, a) > kS(j, tj)) then18

k(j, tj)← k(j, tj) + k(i, a)− kS(j, tj);19

kS(j, tj)← k(i, a) ;20

if (cj(tj) = 0) then M(j, tj)← true;21

else λ← min(λ,
cj(tj)
k(j,tj));22

Initially, all k are equal to 0 except at the variable i0 that has been wiped-out where
one quantum is needed for each value (line 5). In the simplest case, some cost is already
available for some values of the wiped out variable: no backtracing is required and the
value of λ is updated accordingly (line 6). Otherwise, a value (i, a) extracted from Q
(line 8) was deleted during arc consistency in Bool(P) by lack of support in the constraint
relation RS associated with cS of scope killer[i, a] = S. If cost is needed at (i, a) (line 9),
this lack of support on each tuple t ∈ ℓ(S) extending (i, a) can be due to the fact that:

1. t is forbidden by RS in Bool(P) which means that cS(t) 6= 0 (line 13). The traceback
can stop as the number of quanta requested can directly be taken from cS(t).
The counter k associated with labeling t (line 14) and λ (line 15) are updated
accordingly.

26

2. otherwise, t is not valid because for one of the variables j ∈ S, j 6= i, the value (j, tj)
was deleted and k(i, a) quanta of costs are needed from it. Note that if different
values of other variables in S request different numbers of quanta from value (j, tj)
through cS , just the maximum amount is needed since one extension from (j, tj) to
cS provides cost to all cS(t) for t extending (j, tj). To maintain this maximum, we
use another data structure, kS(j, tj) to store the number of quanta requested on
(j, tj) through cS . We therefore have k(j, b) =

∑

kS(j, b), where we sum over all
S ∈ C such that j ∈ S. Here, if the new request is higher than the known request
(line 18), k(j, tj) (line 19) and kS(j, tj) (line 20) must be increased accordingly.
If there is no unary cost cj(tj) explaining the deletion, this means that the value
(j, tj) has been deleted by GAC enforcing and we need to trace back the deletion
of (j, tj) inductively (line 21). Otherwise, the traceback can stop at (j, tj) and λ is
updated (line 22).

The last phase is described in Algorithm 4 and actually modifies the original VCSP by
applying the sequence of equivalence-preserving transformations identified in the previous
phase in reverse order, thanks to the queue R. For each value (j, b) which has been
deleted in Bool(P) and which is needed to explain the wipe-out, we identify the cost
function cS that enabled this deletion in Bool(P). We then move all the unary costs
required in the scope S using Extend() (line 4) and move it to the deleted value (j, b)
using Project() (line 4). The amounts of cost extended and projected are always equal to
the cost quantum λ multiplied by the number of requests given by the k data-structure.
Ultimately, we reach the wipe-out variable i0 and move the quantum cost to c∅. The
new VCSP will have an improved c∅, as Theorem 7.3 shows.

Algorithm 4: VAC iteration - Phase 3: Applying equivalence-preserving transfor-
mations

while (R 6= ∅) do1

(j, b)← R.Pop() ;2

S ← killer[j, b] ;3

foreach i ∈ S, i 6= j, a ∈ Di s.t. kS(i, a) 6= 0 do4

Extend(i, a, S, λ× kS(i, a));5

kS(i, a)← 0 ;6

Project(S, j, b, λ× k(j, b)) ;7

UnaryProject(i0, λ) ;8

Because of the k(S, t) data structure, the algorithm has a O(edr) space complexity
where r is the maximum arity of cost functions in P . It is possible to get round this
exponential number of counters by observing that quanta requests on cS(t) for |S| > 1
can come only from some variables i ∈ S. For every variable i ∈ S, k(i, ti) quanta are
requested by i if killer[i, ti] = S and M(i, ti) is true. Thus, the k(S, t) need not to be
maintained (removing line 14 of Alg. 3). When the value of a k(S, t) is needed (line 15),
it can be computed on the fly as:

k(S, t) =
∑

(i∈S)
(killer[i,ti]=S)∧(M(i,ti))

kS(i, ti)

27

By implementing killer as pointers to cost functions, we get a time complexity ofO(|S|)
instead of constant time. Because of the kS counters, we ultimately get an O(erd) space
complexity. As for time complexity, one iteration of the algorithm has time complexity
of O(edr). This is true for the first phase as long as an optimal GAC algorithm is used
since the instrumentation itself is O(nd). The 2nd phase is O(ndr) since there are at
most nd values in P and the loop at line 12 takes O(dr−1). An O(edr) complexity applies
to the last phase.

10. Problems solved by virtual arc consistency

When a problem P is virtual arc consistent, it is known that the problem Bool(P) has
a non-empty (generalized) arc-consistency closure. This allows VAC to inherit various
tractable problem classes which are solved by (generalized) arc-consistency in CSP. For
example, VAC can solve submodular minimization problems, a non-trivial polynomial

language of VCSP over the valuation structure Q
+

[11]. It is already known that OSAC
solves VCSPs with submodular cost functions [15]. In this section, we give a simpler
proof that the weaker notion of VAC is sufficient to solve such problems.

Definition 10.1. In the valuation structure Q
+

or Qm, assuming a given total ordering
on every domain, a cost function cS is submodular if ∀t, t′ ∈ ℓ(S), cS(max(t, t′)) ⊕
cS(min(t, t′)) ≤ cS(t)⊕ cS(t′) where max and min represent component-wise applications
of max (resp. min) on the tuples t, t′.

Over the valuation structure Q
+
, the class of submodular cost functions includes

functions such as
√

x2 + y2 or φr (for r ≥ 1) [11] where

φr(x, y) =

{

(x − y)r if x ≥ y
∞ otherwise

useful in bioinformatics [57] and captures simple temporal CSP with linear preferences [34].
Other well-known examples of submodular functions are the cut function of a graph [20]
or of a hypergraph [28], and the rank function of a matroid. The complexity of the
fastest known fully-combinatorial algorithm for submodular function minimization in

Q
+

is O(N5γ + N6) where N is the number of boolean variables and γ is the time
to calculate the submodular function to be minimized [47]. The standard coding of a
VCSP with submodular cost functions and n variables of domains-size d as a submodular
function minimization problem requires N = n(d− 1) Boolean variables [11].

Theorem 10.2. Over the valuation structure Q
+

or Qm, let P be a VCSP whose cost
functions are all of arity bounded by a constant and are all submodular for a given domain
ordering. If P is VAC, then an optimal solution to P can be found in polynomial time
and its cost is given by c∅.

Proof: If c∅ = ∞, then any assignment is trivially an optimal solution of cost c∅.
Suppose now that c∅ is finite. It follows directly from Definition 10.1 that if cS is
submodular then ∀t, t′ ∈ ℓ(S) such that cS(t) = cS(t′) = 0, we have cS(max(t, t′)) =

28

cS(min(t, t′)) = 0. Thus cost function submodularity implies the following property on
relations in Bool(P): if RS is a relation with scope S, then ∀t, t′ ∈ ℓ(S),

(t ∈ RS) ∧ (t′ ∈ RS) ⇒ (max(t, t′) ∈ RS) ∧ (min(t, t′) ∈ RS)

where the operations max and min are applied component-wise.
This means that all the relations of Bool(P) are both min-closed and max-closed [32].

Since the VCSP P is VAC, Bool(P) has a non-empty (generalized) arc consistency clo-
sure. It follows that a solution x to Bool(P) exists and can be found in polynomial time
by establishing (generalized) arc consistency and then taking maximum values in each
domain [32]. The cost of x in the VCSP P is equal to c∅ by definition of Bool(P) and
therefore optimal.

The previous proof suggests a very useful and simple value ordering heuristic to use
while maintaining VAC inside a branch and bound algorithm: after making Bool(P)
arc consistent, the first value which has not been deleted in the arc consistent closure of
Bool(P) should be tried first (as submodular cost functions are both max-closed and min-
closed). This specific value ordering heuristic will be denoted as Hval in the experimental
section.

Submodularity is defined based on an order on each domain. It may be the case that
all the cost functions of a VCSP are submodular but the orders on each domain that make
all these cost functions explicitly submodular is unknown. Finding the suitable domain
orders for so-called permuted submodular cost functions is a polynomial problem that
can be directly reduced to 2-SAT [53]. Interestingly, VAC can directly solve VCSPs with
permuted submodular cost functions, without determining the permutations.

Theorem 10.3. Over the valuation structure Q
+

or Qm, let P be a VCSP whose cost
functions are all of arity bounded by a constant and are all submodular for unknown
domain orders. If P is VAC, then an optimal solution to P can be found in polynomial
time and its cost is given by c∅.

Proof: The VCSP P can be transformed, by some unknown domain permutations, into
a VCSP P ′ with submodular cost functions. The (generalized) arc consistency closure of
a CSP being independent of domain orderings, the (generalized) arc consistency closure
of Bool(P ′) is also non-empty and hence P ′ is also VAC. The existence of a solution of
cost c∅ follows directly from Theorem 10.2.

Although a solution cannot be directly identified in this case (by taking maximum val-
ues in each domain), a solution can nevertheless be identified without backtrack by main-
taining (generalized) arc consistency in Bool(P) during search. This search is backtrack-
free provided we only accept an assignment if making this assignment and establishing
(generalized) arc consistency in Bool(P) leads to a non-empty closure. Assigning a value
to a variable preserves the max-closed nature of the constraints, and a (generalized) arc
consistent CSP with max-closed constraints necessarily has a solution [32].

Corollary 10.4. Over the valuation structure Q
+
, let P be a VCSP whose cost functions

are all submodular for some (known or unknown) domain orders. Then after establishing
virtual arc consistency, the cost of an optimal solution to P is given by c∅.

29

Proof: Because Project, Extend and UnaryProject preserve submodularity over Q
+

[15],
establishing VAC on the submodular problem P produces an equivalent submodular
VCSP which is virtual arc consistent. Hence, by Theorem 10.2 or Theorem 10.3, estab-
lishing VAC solves P .

The simplicity of these proofs highlights the fact that VAC solves all polynomial
classes such that the corresponding CSP Bool(P) is solved by arc consistency, provided
that the property defining the tractable class is preserved under establishing VAC. Very
simple cases can become significant in the VCSP case. For example, tree-structured
VCSP can be solved by DAC (directional arc consistency) but this requires the tree
structure to be detected and a specific variable order to be specified for DAC enforcing.
A VAC tree-structured problem will be solved automatically, as arc consistency does in
classical CSP. We can even give a more general result.

Proposition 10.5. Over the valuation structure Q
+

or Qm, if P is VAC and Bool(P)
is in a class of CSPs for which arc consistency is a decision procedure, then P has an
optimal solution of cost c∅.

Proof: By the definition of VAC, the arc-consistency closure of Bool(P) is non-empty.
Since arc consistency is a decision procedure for Bool(P), this implies that Bool(P) has
a solution and hence, by definition of Bool(P), that P has a solution of cost c∅. This
solution is necessarily optimal since c∅ is a lower bound on the cost of any solution.

Tractable classes of CSP solved by arc consistency include max-closed CSPs [32]
and CSP instances satisfying the broken-triangle property (a hybrid class which strictly
generalizes tree-structured CSPs [18]). By Proposition 10.5, if after establishing VAC,
Bool(P) falls into one of these tractable classes, then the VCSP P is also solved. As an
example of a very simple case, one can observe that any VCSP problem P which is VAC
and such that Bool(P) has all domains reduced to singletons is also solved. Note that
for the VCSP P , this just means that there is no variable which has two (or more) values
with unary cost 0. Note, however, that in general, these properties of Bool(P) may be
destroyed under soft arc consistency operations and hence may not define a tractable
class that can be recognized before establishing VAC.

11. Experimental trials of our VAC algorithm

11.1. Heuristic Implementation of our VAC algorithm

To study the actual quality of the VAC bound for solving VCSP, we restricted our-
selves to binary cost functions for simplicity. Since the number of iterations of our VAC
algorithm described in Section 9 can be unbounded (as shown on an example in Ap-
pendix A), we enforce an approximation of VAC using a threshold ε. If more than a
given number of iterations never improve c∅ by more than ε then VAC enforcing stops
prematurely. This is called VACε. In Qm, the number of iterations is thus O(m

ε
) and

hence the total complexity of VACε is O(ed2m/ε). When one iteration does not increase
the lower bound by more than ε, one bottleneck (a cost that fixed the value of λ) is iden-
tified and the unary and binary costs corresponding to one of the variables concerned by
the bottleneck are ignored in Bool(P) at following iterations.

30

In order to rapidly collect large cost contributions, and similarly to what has previ-
ously been done in maximum flow algorithms [2], we replaced Bool(P) by a relaxed but
increasingly strict variant Boolθ(P). A tuple t is forbidden in Boolθ(P) iff its cost in P
is larger than θ. After sorting the list of non zero binary costs cij(a, b) in a fixed number
k of buckets, the decreasing minimum costs observed in each bucket define a sequence
of thresholds (θ1, . . . , θk). Starting from θ1, iterations are performed at a fixed thresh-
old until no wipe-out occurs. Then the next value θi+1 is used. After θk, a geometric
schedule defined by θi+1 = θi

2 is used and stopped when θi ≤ ε.

11.2. Value ordering heuristic

When P is virtual arc consistent, values which have been deleted in the arc consistent
closure of Bool(P) imply a cost larger than c∅. This information can be used to direct
search towards good solutions. Quickly finding a good (but not necessarily optimal)
solution is an essential ingredient of branch and bound, since it provides a tighter upper
bound on the optimal cost. Since the valuation structure used during branch and bound
is Sm where m is the current upper bound, a tighter upper bound will lead to more
effective pruning during search.

In this experimental section, we therefore consider a new value ordering heuristic
which selects the minimum domain value which has not been deleted in Bool(P). This
value ordering heuristic is more informed than the value ordering heuristic that selects
the EAC support values (see Definition 4.5) used in the toulbar2 solver. It also has the
nice property (see section 10) that it will guide the solver towards an optimal solution for
non-permuted submodular problems. The combination of this value ordering heuristic
with VACε maintenance in a branch and bound procedure is known as VAC+Hval in the
following experimental results.

11.3. Experiment setup

In this section we present experimental results on VACε using toulbar2 version
0.8 written in C++ (section Algorithms in [22]). Our implementation uses fixed point
representation of costs. To achieve this, all initial costs in the problem are multiplied by
1
ε

which is assumed to be an integer. To exploit the knowledge that the original problem

had integer costs, branch and bound pruning occurs as soon as ⌈c∅×ε⌉
ε
≥ m where m is

the global upper bound (the cost of the best known solution). As VACε is incapable of
producing unary costs, VACε is always enforced together with FDAC.

Experiments were performed on a 3 GHz (2.66 GHz for submodular benchmarks) Intel
Xeon with 16 GB. Our solver includes a last conflict driven variable selection heuristic [8],
elimination of variable with degree lower than two during search [42] and binary branch-
ing4. The default value of ε used in VACε was ε = 1

10,000 .
Because of the overhead of each iteration of VACε, which implies a reconstruction

of Boolθ(P), the convergence of VACε is stopped prematurely during search (except for
the random benchmark problems), using a final θ larger than during preprocessing. This
enforces VACε only when it is capable of providing large improvements in the lower
bound. No non-trivial initial upper bound was used on the random instances.

4For small domains (d ≤ 10) ,a value is assigned or removed. Larger domains are split in two halves

31

ST DT CT
lb time lb time lb time

EDAC 16 <.01s 18 <.01s 40 <.01s
VACε 25 .06s 28 .09s 49 .25s

p
re

p
ro

ce
ss

in
g

OSAC 27 10.5s 32 2.1s 74 631s

Table 3: A comparison of EDAC, VACε and OSAC for preprocessing random MaxCSP.

11.4. Evaluation of VACε lower bounds

In this first set of experiments, we analyse the strength of the lower bounds provided
by VACε compared to other lower bounds, including OSAC.

Random MaxCSP. We report results on the problems described in Section 6.1. These are
Sparse Tight, Dense Tight, Complete Tight (ST, DT, CT with 32 variables, 10 values, 50
instances per class) where VACε and OSAC preprocessing yield non-trivial lower bounds.
Table 3 shows the time and the quality of the lower bound (lb) after preprocessing by
EDAC, VACε and OSAC (ILP formulation solved by CPLEX 11.0).

As expected, OSAC always provides the strongest lower bound. VACε computes
a lower bound which is 8% (ST) to 33% (CT) weaker than OSAC and is one to three
orders of magnitude faster. These considerable speedups thus have only a fairly moderate
impact on the strengths of the lower bounds.

Frequency assignment problems. The problems considered here were already described
in section 6.1. Considering just the lower bounds produced, Table 4 shows that VACε is
again one to two orders of magnitude faster than OSAC and gives almost the same lower
bounds on the graph11r and graph13r instances.

scen07r scen08r graph11r graph13r

EDAC 10000 6 2710 8722
VACε 29498 35 2955 9798

lb

OSAC 31454 48 2957 9798
VACε 211s 86s 3.5s 29s

p
re

p
ro

ce
ss

in
g

ti
m

e

OSAC 3530s 6718s 492s 6254s

Table 4: A comparison of the lower bounds produced by OSAC and VACε on different RLFAP instances.

Overall, our unoptimized version of VACε seems capable of producing significantly
stronger lower bounds than EDAC alone and is also one to three orders of magnitude
faster than a highly optimized linear programming solver which does not always produce
a better lower bound. VACε is therefore an attractive component for a branch and bound
search.

11.5. Submodularity

In this section, we try to evaluate the efficiency of VACε on submodular problems (or
on problems with a large part of submodular cost functions).

32

Random binary submodular problems. The following procedure was used to generate
random binary submodular problems: at the unary level, every value receives a 0/1/2/3
cost with identical probability. Binary submodular cost functions can be decomposed
into a sum of so-called generalized interval functions [10]. A generalized interval function
ηa,b(x, y) is defined by a fixed cost (we used 3) and bounds a and b for the variables x
and y:

ηa,b(x, y) =

{

0 if (x < a) ∨ (y > b)
3 otherwise

We summed together p (with p a randomly-chosen integer value in [0, d[, where d is
the size of each domain) such generalized interval functions ηa,b(x, y), using uniformly-
sampled random values a and b, to generate each submodular binary cost function. The
domains of all variables were then randomly permuted to “hide” submodularity.

Problems have from n = 100 to n = 450 variables, 20 domain values, and (n− 1)n/8
binary constraints, and 50 instances per class. The cpu-time to solve these problems,
including the proof of optimality, is reported in Figure 9 (with a time limit of 1 hour).
Figure 9 shows that maintaining VACε rapidly outperforms EDAC on these problems.
Although OSAC can solve permuted submodular problems in polynomial time [15], the
degree of this polynomial is such that OSAC could not be applied to problems of this
size. Thus, even though VACε only establishes an approximation of virtual arc consis-
tency, maintaining VACε proved to be much faster than OSAC on these submodular
problems. Similarly, the state-of-the-art fully combinatorial polynomial-time algorithm
for submodular function minimization [47] could not be applied to problems of this size
since its complexity is O((nd)5e).

Notice the speed-up offered by the enhanced value ordering (VAC+Hval in Figure 9)
compared to the default value ordering heuristic (VAC in Figure 9).

Partly-submodular random problems. To evaluate the influence of the existence of a lim-
ited number of submodular cost functions, we started from random dense tight problems
as generated in [16], replacing a given percentage of cost functions by permuted binary
submodular cost functions (100% means a fully submodular instance). Problems have
100 variables, 10 values, 1, 237 binary constraints, and 50 instances per class. The results
are reported in Figure 10 where a logarithmic scale is used for the cpu-time axis. We set
a time limit of 1 hour (the average being calculated assigning 1 hour to problems that
were unsolved within this time limit). When 90% of the cost functions are submodular,
VACε (VAC or VAC+Hval) is two orders of magnitude faster than EDAC. For less than 75%
submodular cost functions, both EDAC and VACε did not solve the instances within the
1-hour time limit. As the percentage of submodular cost functions decreases, VAC+Hval
becomes less efficient than VAC although it develops slightly less search nodes. This is
due to the overhead in maintaining a more complex value ordering heuristic. In the rest
of the experiments, we therefore used the enhanced VAC+Hval value ordering heuristic
for submodular benchmarks only.

Feedback arc set. Given a directed graph, the feedback arc set problem consists in remov-
ing a minimum subset of the arcs in order to obtain an acyclic subgraph. An alternative
formulation is to find a total order < on the vertices such that there is a minimum number
of feedback arcs (i.e. an arc from i to j with i > j). This problems is NP-hard [25]. In
order to experiment with submodular problems, we modified the penalty function so that

33

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 150 200 250 300 350 400 450

C
pu

 ti
m

e
in

 s
ec

on
ds

Number of variables

Random permutated binary submodular problems

EDAC
VAC

VAC+Hval

Figure 9: A comparison of the efficiency of algorithms maintaining EDAC and VACε (with or without
the enhanced value ordering heuristic described in Section 11.2) on random permuted binary submodular
problems.

if there is a feedback arc (i, j), instead of having a cost of 1 we have a cost proportional to
the difference between the ordering positions of i and j. The resulting problem is similar
to a simple temporal CSP with linear preferences [34]. We took instances with n = 50
vertices and from 100 to 900 arcs from Resende’s home page5. In our WCSP model
there is a variable xi with domain [1, n] corresponding to each vertex i. For each arc
(i, j), there is a cost function max(0, xi − xj + 1). The results are reported in Figure 11.
The time limit was almost 2 days. When the number of arcs is less than 150, OSAC
preprocessing solves the problem without search. However, it is much more expensive
than EDAC or VACε. As the problem is submodular, VACε is quite efficient compared
to EDAC. However, despite this submodularity, VACε was slower than EDAC on the
densest instances. When the graph density is high, VACε tends to more frequently find
cyclic arc-inconsistency proofs in Bool(P), resulting in small rational cost increments
that may cause the premature termination of VACε, with a loose lower bound c∅. As
shown in Figure 11, lowering the value of ε effectively improves the lower bound c∅ and
reduces the search effort especially when the constraint graph density increases. Using a
smaller threshold ε = 1

1,000,000 , VACε was always significantly faster than EDAC.

Minimum cut problems. Our last submodular problem example is the (s, t) minimum
cut problem which consists in finding a partition of the vertices of a weighted undirected

5 http://www.research.att.com/˜mgcr/data/index.html

34

 0.1

 1

 10

 100

 1000

 70 75 80 85 90 95 100

C
pu

 ti
m

e
in

 s
ec

on
ds

Percentage of submodular cost functions

Random dense tight problems (n=100,d=10,e=1237,t=75%)

EDAC
VAC

VAC+Hval

Figure 10: A comparison of the efficiency of algorithms maintaining EDAC and VACε on random dense
tight problems with a percentage of permuted binary submodular cost functions.

graph G = (V, E, w) into two disjoint subsets, one containing the source node and the
other the terminal node, such that the weighted sum of edges whose end points are in
different subsets of the partition is minimum. Our WCSP formulation associates one 0/1
variable with each vertex in V . For each edge e = (i, j) ∈ E, there is a soft equality cost
function which returns a cost of w(e) if xi 6= xj (and 0 otherwise). We fix x1 = 0 and
xn = 1 (since they correspond, respectively, to the source and terminal nodes). Instances
were produced by the genrmf generator6 [29] used in the First DIMACS Challenge. The
graph is a succession of b grids each of size a × a in which each vertex is connected
to its neighbours and to a randomly chosen vertex in the next grid. Capacities are
selected uniformly at random in [c1..c2] for inter-grid arcs and are fixed to c2 × a2 for
intra-grid arcs. Problems have from 16 (genrmf long coefficients a = 2, b = a2 = 4
and c1 = 1, c2 = 100) to 20, 736 variables (a = 12, b = 144), from 46 to 96, 626 binary
constraints, and 50 instances per class. The results are reported in Figure 12 where a
logarithmic scale is used for the cpu-time axis.

We compared EDAC and VACε (ε = 1) with a dedicated maximum flow algorithm
(Goldberg-Tarjan push-relabel method H PRF, cpu-time interpolated from [27] by taking
cpu clock frequency ratio 1.8/2.66) and a general submodular (not restricted to binary
cost functions) minimum-norm point algorithm [26] (cpu-times from [26] with the same
cpu ratio applied and for a = 10 from [41] who have a faster implementation). The
algorithms compared have widely different capabilities. The Goldberg-Tarjan algorithm

6www.informatik.uni-trier.de/˜naeher/Professur/research/generators/maxflow/genrmf/index.html

35

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 100 200 300 400 500 600 700 800 900

C
pu

 ti
m

e
in

 s
ec

on
ds

Number of edges

Random feedback arc submodular problems

OSAC
EDAC

VAC+Hval Eps=1/10,000
VAC+Hval Eps=1/1,000,000

Figure 11: A comparison of the efficiency of algorithms maintaining EDAC and VACε for different ε

values and OSAC on submodular feedback arc set problems.

is capable of solving Maxflow/Mincut problems and therefore arbitrary finite binary
submodular WCSPs [7]. The general submodular algorithm is limited to submodular
functions of arbitrary arities while the EDAC/VAC-based algorithms are not restricted
to submodular functions or to boolean domains (although our present implementation is
only designed for binary cost functions).

Not surprisingly, VACε is faster than a general submodular solver (7.6 times faster for
a = 10, n = 10, 000) and much slower than the dedicated and finely tuned maximum flow
algorithm. Although it develops two times less nodes than EDAC, it is up to 30 times
slower than EDAC due to its overhead during search. Interestingly, the arc inconsistency
proofs found by arc consistency on Bool(P) were always acyclic, meaning that VACε

(whatever the value of ε) solved this specific problem in preprocessing. It is rather
surprising that a relatively simple generic WCSP solver such as EDAC solves minimum
cut problems with n ≈ 15, 000 vertices in only 5.5 seconds (even if this is considerably
slower than the 0.04 seconds required by a specialized and optimized maximum flow
algorithm).

11.6. Solving general problems

Our final tests are dedicated to solving non-submodular problems using branch and
bound search maintaining VACε+EDAC during search. Since it includes FDAC, EDAC
can remove values that would not be deleted by VACε. It therefore provides addditional
information for variable and value ordering heuristics. In the experiments, the toulbar2

solver selects the variable with the smallest ratio of current domain size divided by current
36

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12

C
pu

-t
im

e
in

 s
ec

on
ds

Coefficient a (number of variables n= a^4)

Random minimum cut problems (genrmf-long generator)

Minimum-norm point algorithm
VAC+Hval Eps=1

EDAC
Maximum flow algorithm

Figure 12: A comparison of the efficiency of algorithms maintaining EDAC and VACε on random
minimum cut problems, compared to state-of-the-art maximum flow and general submodular algorithms.

number of constraints involving the variable. Ties are broken by choosing a variable with
maximum unary cost.

Frequency assignment. Experiments were performed on the same CELAR instances as
mentioned in Section 11.4. During search, VACε was stopped at θ = 1000ε. Table 5 re-
ports the results on the open instances graph11 and graph13 (see fap.zib.de/problems/CALMA)
which are solved to optimality for the first time both in their reduced and original formu-
lation, given the best known upper bound. Table 5 also gives the results on the instance
scen06. The table gives for each problem the number of variables, total number of values,
number of cost functions, cpu-time for EDAC alone (a dash for > 104 seconds), number
of nodes explored with VACε, cpu-time with VACε, mean increase of the lower bound
observed after one VACε iteration (lb/iter) and total number of VACε iterations (nb.
iter). We observed that the value k (number of cost requests) at each VACε iteration
can be high, reaching a mean value of 16 in some resolutions of graph instances.

This shows that the stronger lower bound provided by VACε clearly pays off on
sufficiently difficult problems where a good lower bound is essential to prune a large search
tree. VACε is also capable of solving simpler problems, but because of the associated
overheads, less computationally expensive techniques such as EDAC may outperform it.

Uncapacitated Warehouse Location Problem (UWLP). In the UWLP, the aim is to decide
which facilities should be opened to provide goods to all customers with maximum profit
or, equivalently, minimum cost. The cost minimization variant of the UWLP is known to

37

nb. nb. nb. EDAC VACε VACε lb/ nb.
var. val c.f cpu nodes cpu iter iter

gr11r 232 5747 792 - 1536 18.2s 2.5 973
gr11 340 12820 1425 - 2 · 105 217min. 6.63 2.6 · 105

gr13r 454 13153 2314 - 32 62s 4.8 1893
gr13 458 17588 4815 - 114 254s 0.4 9486
sc06 82 3274 327 39min. 2 · 106 155min. 96 3 · 106

Table 5: Maintaining VACε on hard RLFAP instances.

be supermodular (the opposite of a submodular cost function). Minimizing supermodular
functions is known to be NP-hard. The precise problem description and WCSP model
are given in [40] and [24] respectively.

We tested both EDAC and VACε preprocessing followed, in both cases, by main-
taining EDAC during search on instances capmq1-5 (600 variables, up to 300 values per
variable and 90, 000 cost functions) and instances capa, capb and capc (1, 100 variables,
around 90 values per variable and 101, 100 cost functions). We report solving time to
prove optimality (initial upper bound equal to optimum) in seconds in Table 6 (a dash
for > 104 seconds). VACε outperforms EDAC on 6 out of the 8 problems.

mq1 mq2 mq3 mq4 mq5 a b c
EDAC 2508 3050 2953 7052 7323 6179 - -
VACε 2279 3312 2883 4024 8124 3243 4343 2751
CPLEX 622 1022 415 1266 2357 3 4.5 13

Table 6: Comparison of EDAC, VACε and CPLEX 11.0 on different uncapacitated warehouse location
problems.

Instances were also solved using the ILP solver CPLEX 11.0 and a direct formulation
of the problem. On these problems, CPLEX is more efficient than VACε. Note, however,
that given the floating point representation of CPLEX and the large range of costs in
these problems, the proof of optimality of CPLEX is questionable here. OSAC results
are not given because LP generation overflows on these instances.

11.7. Conclusion

The lower bounds produced by VACε are stronger than those produced by EDAC
but weaker than those produced by OSAC. Our experiments have conclusively demon-
strated that there are some problems for which maintaining VACε during search is the
best strategy. This is particularly true of difficult problems (such as the two frequency
assignment benchmark problems closed for the first time using VACε). Clearly EDAC
will outperform VACε whenever the time devoted by VACε to finding a better lower
bound is not compensated by sufficient pruning of the branch and bound search tree.
This may occur for various reasons: this phenomenon has been observed in (s, t)-mincut
problems reported here, but also in the extraction of an optimal plan from a planning
graph [17]. It is worth pointing out that our current implementation of VACε leaves
room for considerable optimization.

38

Our experiments have confirmed the theoretical relationship between VAC and sub-
modularity. Although VACε is only an approximation to VAC, it is nevertheless capable
of taking advantage of the submodular nature of cost functions to provide a good lower
bound. It is also no doubt because EDAC can be considered as an approximation to VAC,
that explains the rapidity of EDAC on certain submodular problems. An interesting out-
come of our experiments was that VACε performs well on problems containing a high
proportion of submodular cost functions (to which specialized submodular algorithms
are inapplicable).

12. Discussion

12.1. Virtual arc consistency by diffusion
A much simpler (but slower) algorithm, known as MIN-SUM diffusion, can also be

used as an alternative to our VAC algorithm described in Section 9. MIN-SUM diffusion
consists in iterating until convergence the following operation: for each S ∈ C, i ∈ S and
a ∈ di, call Project (i, a, S, α) where

α =
1

2
min{cS(t) : t ∈ ℓ(S) such that ti = a} − ci(a)

Rather than sending as much cost as possible towards the unary constraint ci, MIN-SUM
diffusion equalizes costs between unary and higher-arity constraints, in the sense that
after the above call of Project,

ci(a) = min{cS(t) : t ∈ ℓ(S) such that ti = a}

If after each iteration we establish node consistency, it is easy to see that whenever MIN-
SUM diffusion converges, the resulting VCSP is VAC. MIN-SUM diffusion has been
generalized to the tree-reweighting (TRW) algorithm which performs exact equalizations
on trees rather than on single edges [55, 35]. In trials on binary problems from low-level
computer vision, MIN-SUM diffusion was found to converge several times slower than
both the TRW algorithm (where the trees corresponded to the rows and columns of the
image) and the “Augmenting DAG” algorithm which is similar to our VAC algorithm
described in Section 9 [39, 56].

12.2. Beyond arc consistency
It should be mentioned that forms of higher-order consistency have been proposed for

VCSPs [14] which can find a better lower bound than any SAC transformation. This is
at the cost of introducing higher-order cost functions. Consider the optimization version
of the graph coloring problem on a triangle with two colors, equivalent to the VCSP
in Figure 13, where a line represents a cost of 1. The aim is to assign a color to each
node so as to minimize the number of pairs of nodes joined by an edge and assigned the
same color. No SAC transformation applied to this VCSP increases c∅, whereas soft
3-consistency produces a lower bound c∅ = 1 [14]. One disadvantage of establishing soft
3-consistency is that some weights are now stored in ternary cost functions.

Bool(P) is a classical CSP which has a solution if and only if the VCSP P has
a solution of cost c∅. In the same way that virtual arc consistency uses inconsistencies
detected when establishing arc consistency in Bool(P) to determine a sequence of soft arc
consistency operations which increase the lower bound c∅ in P , other virtual consistency
techniques could be defined based on other notions of consistency in Bool(P).

39

•

•

•

•

•

•1

2

3

Figure 13: A VCSP corresponding to the 2-color graph-coloring optimization problem on a triangle.

13. Conclusion

We have presented new techniques for finding improved lower bounds in the finite-
domain optimization problem VCSP, based on the notions of optimal and virtual arc
consistency.

In order to establish optimal soft arc consistency (OSAC), after the propagation
of infinite costs, a linear program is solved to determine a set of soft arc consistency
operations (shifting of costs between unary and non-unary cost functions) which produces
an equivalent instance with a maximum value of the constant cost term. This constant
cost term represents a natural lower bound and plays an essential role in branch and
bound search. When all costs are finite, the resulting constant cost term is optimal among
all equivalent instances with the same set of constraint scopes. Experimental trials have
demonstrated the potential utility of establishing OSAC during preprocessing.

Virtual arc consistency (VAC) can be seen as an approximation to OSAC that can be
applied either during preprocessing or at every node of a search tree. If a VCSP is virtual
arc consistent, then this means that no sequence of soft arc consistency operations could
increase the lower bound c∅. In particular, the previous state-of-the-art soft consistency
technique EDAC (Existential Directional Arc Consistency) [43] cannot increase c∅ for
any variable order.

Virtual arc consistency can be tested in O(ed2) time in the case of a binary VCSP
using an optimal arc consistency algorithm, such as AC-2001 [6] in the CSP Bool(P). It
can also be established in polynomial time by simply establishing OSAC. The main aim
of soft consistency techniques is to rapidly find a good (but not necessarily optimal) lower
bound. Therefore, in our experimental trials we used an algorithm with guaranteed low-
order polynomial time complexity which established a relaxed version VACε of virtual arc
consistency, in order to avoid problems of convergence generated by the introduction of
smaller and smaller fractional weights. Applying VACε during branch and bound search
allowed us to close two longstanding open frequency assignment problems.

Acknowledgments. We would like to thank Arie Koster and Achemi Bennaceur for dis-
cussions on the OSAC lower bound and its relation, by duality, to the linear relaxation
of the ILP formulation of weighted CSP given in [37]. The presentation of the paper was
greatly improved thanks to the remarks of the anonymous reviewers. This research was
partly funded by the Agence Nationale de la Recherche (STALDECOPT project).

40

References

[1] Affane, M. S., Bennaceur, H., 1998. A weighted arc consistency technique for Max-CSP. In: Proc.
of the 13th ECAI. Brighton, United Kingdom, pp. 209–213.

[2] Ahuja, R. K., Magnanti, T., Orlin, J., 1993. Network Flows: Theory, Algorithms, and Applications.
Prentice Hall.

[3] Apt, K., 1999. The essence of constraint propagation. Theoretical computer science 221 (1-2), 179–
210.

[4] Bennaceur, H., Osmani, A., 2003. Computing lower bounds for Max-CSP problems. In: Develop-
ments in Applied Artificial Intelligence. 22718. Springer, pp. 217–240.

[5] Bessière, C., 1991. Arc-consistency in dynamic constraint satisfaction problems. In: Proc. of
AAAI’91. Anaheim, CA, pp. 221–226.

[6] Bessière, C., Régin, J.-C., 2001. Refining the basic constraint propagation algorithm. In: Proc.
IJCAI’2001. pp. 309–315.

[7] Boros, E., Hammer, P., 2002. Pseudo-Boolean Optimization. Discrete Appl. Math. 123, 155–225.
[8] C. Lecoutre, L. Säıs, S. Tabary, V. Vidal, 2009. Reasoning from last conflict(s) in constraint pro-

gramming. Artificial Intelligence 173 (18), 1592–1614.
[9] Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J., 1999. Radio link frequency assignment.

Constraints 4, 79–89.
[10] Cohen, D. A., Cooper, M. C., Jeavons, P. G., Krokhin, A. A., 2004. A Maximal Tractable Class of

Soft Constraints. Journal of Artificial Intelligence Research 22, 1–22.
[11] Cohen, D. A., Cooper, M. C., Jeavons, P. G., Krokhin, A. A., Aug. 2006. The complexity of soft

constraint satisfaction. Artificial Intelligence 170 (11), 983 – 1016.
[12] Cooper, M. C., 2003. Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy Sets

and Systems 134 (3), 311–342.
[13] Cooper, M. C., 2004. Cyclic consistency: a local reduction operation for binary valued constraints.

Artificial Intelligence 155 (1-2), 69–92.
[14] Cooper, M. C., 2005. High-order consistency in Valued Constraint Satisfaction. Constraints 10,

283–305.
[15] Cooper, M. C., 2008. Minimization of locally-defined submodular functions by Optimal Soft Arc

Consistency. Constraints 13 (4).
[16] Cooper, M. C., de Givry, S., Schiex, T., Jan. 2007. Optimal soft arc consistency. In: Proc. of

IJCAI’2007. Hyderabad, India, pp. 68–73.
[17] Cooper, M. C., de Roquemaurel, M., Régnier, P., 2009. A weighted CSPapproach to cost-optimal

planning. Tech. Rep. RR-2009-28-FR, IRIT, Toulouse, France.
[18] Cooper, M. C., Jeavons P., Salamon A., 2008. Hybrid tractable CSPs which generalise tree structure.

In: Proc. ECAI’08. pp. 530–534.
[19] Cooper, M. C., Schiex, T., 2004. Arc consistency for soft constraints. Artificial Intelligence 154 (1-2),

199–227.
[20] Cunningham, W., 1985. Minimum cuts, modular functions, and matroid polyhedra. Networks 15 (2),

205–215.
[21] de Givry, S., 1999. Minorants de problèmes de minimisation de violation de contraintes : recherche

de bonnes relaxations à l’aide de méthodes incomplètes. In: Proc. of JNPC-99. Lyon, France.
[22] de Givry, S., Heras, F., Jarrosa, J., Rollon, E., Schiex, T., 2003. The SoftCSP and Max-SAT

benchmarks and algorithms web site. carlit.toulouse.inra.fr/cgi-bin/awki.cgi/softcsp.
[23] de Givry, S., Schiex, T., Verfaillie, G., 2006. Exploiting Tree Decomposition and Soft Local Consis-

tency in Weighted CSP. In: Proc. of the National Conference on Artificial Intelligence, AAAI-2006.
pp. 22–27.

[24] de Givry, S., Zytnicki, M., Heras, F., Larrosa, J., 2005. Existential arc consistency: getting closer
to full arc consistency in weighted CSPs. In: Proc. of IJCAI-05. Edinburgh, Scotland, pp. 84–89.

[25] Festa, P., Pardalos, P., Resende, M., 1999. Feedback set problems. In: Handbook of Combinatorial
Optimization. Kluwer Academic Publishers, pp. 209–258.

[26] Fujishige, S., Hayashi, T., Isotani, S., 2006. The minimum-norm-point algorithm applied to submod-
ular function minimization and linear programming. Tech. rep., Research Institute for Mathematical
Sciences, Kyoto, Japan.

[27] Fujishige, S., Isotani, S., 2003. New maximum flow algorithms by ma orderings and scaling. Journal
of the Operations Research Society of Japan 46, 243–250.

[28] Fujishige, S., Patkar, S. B., 2001. Realization of set functions as cut functions of graphs and hyper-
graphs. Discrete Math. 226, 199–210.

41

[29] Goldfarb, D., Grigoriadis, M. D., 1988. A computational comparison of the dinic and network
simplex methods for maximum flow. Annals of Oper. Res. 13, 83–123.

[30] Hammer, P., Hansen, P., Simeone, B., 1984. Roof duality, complementation and persistency in
quadratic 0-1 optimization. Math. Programming 28, 121–155.

[31] Heras, F., Larrosa, J., Oliveras, A., May 2007. MiniMaxSat: A New Weighted Max-SAT Solver.
In: Proc. of SAT’2007. No. 4501 in LNCS. Lisbon, Portugal, pp. 41–55.

[32] Jeavons, P., Cooper, M., Dec. 1995. Tractable constraints on ordered domains. Artificial Intelligence
79 (2), 327–339.

[33] Karmarkar, N., 1984. A new polynomial time algorithm for linear programming. Combinatorica
4 (4), 373–395.

[34] Khatib, L., Morris, P., Morris, R., Rossi, F., 2001. Temporal constraint reasoning with preferences.
In: Proc. of the 17th IJCAI. Seattle, WA, pp. 322–327.

[35] Kolmogorov, V., 2006. Convergent tree-reweighted message passing for energy minimization. IEEE
Trans. on Pattern Analysis and Machine Intelligence 28 (10), 1568–1583.

[36] Koster, A., van Hoesel, S., Kolen, A., 1998. The partial constraint satisfaction problem: facets and
lifting theorems. Oper. Res. Lett. 23 (3-5), 89–97.

[37] Koster, A., van Hoesel, S., Kolen, A., 1999. Solving frequency assignment problems via tree-
decomposition. Tech. Rep. RM/99/011, Universiteit Maastricht, Maastricht, The Netherlands.

[38] Koster, A. M. C. A., Nov. 1999. Frequency assignment: Models and algorithms. Ph.D. thesis,
University of Maastricht, The Netherlands, available at www.zib.de/koster/thesis.html.

[39] Koval, V. K., Schlesinger, M. I., 1976. Dvumernoe programmirovanie v zadachakh analiza izo-
brazheniy (Two-dimensional programming in image analysis problems). USSR Academy of Science,
Automatics and Telemechanics 8, 149–168, in Russian.

[40] Kratica, J., Tosic, D., Filipovic, V., Ljubic, I., 2001. Solving the Simple Plant Location Problems
by Genetic Algorithm. RAIRO Operations Research 35, 127–142.

[41] Krause, A., Guestrin, C., 2009. Ijcai tutorial on intelligent information gathering and submodular
function optimization. Tech. rep., Caltech/CMU, Pasadena, www.submodularity.org.

[42] Larrosa, J., Sep. 2000. Boosting search with variable elimination. In: Principles and Practice of
Constraint Programming - CP 2000. Vol. 1894 of LNCS. Singapore, pp. 291–305.

[43] Larrosa, J., de Givry, S., Heras, F., Zytnicki, M., Aug. 2005. Existential arc consistency: getting
closer to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI. Edinburgh, Scotland,
pp. 84–89.

[44] Larrosa, J., Schiex, T., Aug. 2003. In the quest of the best form of local consistency for weighted
CSP. In: Proc. of the 18th IJCAI. Acapulco, Mexico, pp. 239–244.

[45] Li, C. M., Manyà, F., Planes, J., 2005. Exploiting Unit Propagation to Compute Lower Bounds in
Branch and Bound Max-SAT Solvers. In: Proc of CP’2005. No. 3709 in LNCS. Sitges, Spain, pp.
403–414.

[46] Mohr, R., Masini, G., 1988. Good old discrete relaxation. In: Proc. of the 8th ECAI. Munchen
FRG, pp. 651–656.

[47] Orlin, J. B., 2009. A faster strongly polynomial time algorithm for submodular function minimiza-
tion. Mathematical Programming Ser. A 118 (2), 237 – 251.

[48] Régin, J.-C., Petit, T., Bessière, C., Puget, J.-F., Dec. 2001. New Lower Bounds of Constraint
Violations for Over-Constrained Problems. In: Proc. of CP-01. No. 2239 in LNCS. Paphos, Cyprus,
pp. 332–345.

[49] Sanchez, M., Allouche, D., de Givry, S., Schiex, T., 2009. Russian doll search with tree decomposi-
tion. In: Proc. of IJCAI’09. Pasadena (CA), USA.

[50] Sanchez, M., de Givry, S., Schiex, T., 2008. Mendelian error detection in complex pedigrees using
weighted constraint satisfaction techniques. Constraints 13 (1), 130–154.

[51] Schiex, T., Sep. 2000. Arc consistency for soft constraints. In: Principles and Practice of Constraint
Programming - CP 2000. Vol. 1894 of LNCS. Singapore, pp. 411–424.

[52] Schiex, T., Fargier, H., Verfaillie, G., Aug. 1995. Valued constraint satisfaction problems: hard and
easy problems. In: Proc. of the 14th IJCAI. Montréal, Canada, pp. 631–637.

[53] Schlesinger, D., Aug. 2007. Exact Solution of Permuted Submodular MinSum Problems. In: Energy
Minimization Methods in Computer Vision and Pattern Recognition. No. 4679/2007 in LNCS. pp.
28–38.

[54] Schlesinger, M., 1976. Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh
(Syntactic analysis of two-dimensional visual signals in noisy conditions). Kibernetika 4, 113–130.

[55] Wainwright, M., Jaakkola, T., Willsky, A., 2005. MAP estimation via agreement on (hyper)trees:
message passing and linear programming approaches. IEEE Trans. on Information Theory 51 (11),

42

3697–3717.
[56] Werner, T., Jul. 2007. A Linear Programming Approach to Max-sum Problem: A Review. IEEE

Trans. on Pattern Recognition and Machine Intelligence 29 (7), 1165–1179.
[57] Zytnicki, M., Gaspin, C., de Givry, S., Schiex, T., 2009. Bounds Arc Consistency for Weighted

CSPs. Journal of Artificial Intelligence Research 35, 593–621.

43

Appendix A. Infinite loops while trying to enforce VAC

In this section we give an example of a VCSP instance over the valuation structure Q
+

for which our VAC algorithm can enter an infinite loop, increasing c∅ by a smaller and
smaller amount at each iteration. We present this example to justify our use of heuristics,
described in section 11, in our experimental trials. These heuristics guarantee a low-order
polynomial time complexity at the cost of not necessarily completely establishing VAC.

•
•

•
•

•
•

•
•

• •

• •

• •

• •

•
•
•

•
•
•

1

23

4

5

6

7

89

10

a b

a b

b a

b a

b
a

a

b

b
a

a

b

c

b
a

a

b
c

α

β

α

β

2α

2−2α

1 ε
ε

1−ε

c1(a) = 2ε

c10(a) = ε

c∅ = 1− ε

β
α

α

β
α

α
β

α

α

α

β

α

γ

δ

δ

γ

γ

δ
γ

γ
δ

γ

γ

γ

δ

γ

Figure A.14: Example of a VCSP instance for which our VAC algorithm can enter an infinite loop.

Denote by Pi (for all integers i ≥ 0) the 10-variable VCSP instance shown in Fig-
ure A.14 in which the values of α, β, γ, δ, ε are given by

α = 2
3 (1− 4−i) β = 1− α = 1

3 (1 + 2(4−i))

γ = 1
2α = 1

3 (1− 4−i) δ = 1− γ = 1
3 (2 + 4−i)

ε = 4−i

A non-zero binary cost cij(u, v) = ρ is represented by a line labelled ρ joining (i, u) and
(j, v). Non-zero unary costs are given explicitly. The original problem P0 is somewhat
simpler than the problem Pi shown in Figure A.14 since, when i = 0, α = γ = 0 and hence

44

many edges have zero weight. We will show that two iterations of our VAC algorithm
can transform Pi into Pi+1 (for i ≥ 0). Hence, it is possible that our algorithm enters an
infinite loop producing the sequence P0, P1, P2 . . ., and hence never actually establishes
virtual arc consistency.

There are different sequences of SAC operations that can be applied to Pi which
would allow us to increase c∅. In particular, it is possible to increase c∅ by ε by shifting
a weight of ε from c10(a) to variable 1 via variable 9, using the following sequence of
SAC operations:

Extend(10,a,{10, 9},ε), Project({10, 9},9,b,ε),
Extend(9,b,{9, 1},ε), Project({9, 1},1,b,ε),
UnaryProject(1,ε)

This sequence of SAC operations immediately produces a VCSP in which c∅ = 1. But
our VAC algorithm can equally well successively transform Pi into Pi+1, Pi+2, . . .; in this
case c∅ never actually attains the value 1.

Imagine that among the different c∅-increasing sequences of SAC operations that can
be applied to Pi, our algorithm determines that we can increase c∅ by an amount ε/2
by shifting weights through the cycle of variables 1,2,3,4,5,8,9,1. In this sequence σ1 of
SAC operations a weight of ε which is extended from c1(a) towards variable 2 effectively
comes back to c1(b) as a weight of ε/2 since it has to be split into two at variable 3,
half being sent towards variable 4 and half towards variable 5. Weights are sent along
these two paths (via variables 4 and 5) to variable 8 in order to increase both c8(a) and
c8(b), which allows the propagation to continue to variable 9 and then variable 1. The
sequence σ1 of SAC operations applied to Pi is given below:

σ1: Extend(1,a,{1, 2},ε), Project({1, 2},2,b,ε),
Extend(2,b,{2, 3},ε), Project({2, 3},3,a,ε), Project({2, 3},3,b,ε),
Extend(3,a,{3, 4},ε/2), Extend(3,b,{3, 4},ε/2), Project({3, 4},4,a,ε/2),
Extend(3,a,{3, 5},ε/2), Extend(3,b,{3, 5},ε/2), Project({3, 5},5,a,ε/2),
Extend(4,a,{4, 8},ε/2), Project({4, 8},8,a,ε/2),
Extend(5,a,{5, 8},ε/2), Project({5, 8},8,b,ε/2),
Extend(8,b,{8, 9},ε/2), Extend(8,a,{8, 9},ε/2), Project({8, 9},9,b,ε/2),
Extend(9,b,{9, 1},ε/2), Project({9, 1},1,b,ε/2),
UnaryProject(1,ε/2)

Since the values of α, β and ε (defined above) satisfy the following inequalities

2− 2α ≥ ε

β ≥ ε/2

1 ≥ ε

2− 3α ≥ 3ε/2

the above sequence σ1 of SAC operations produces a VCSP with non-negative costs.
Furthermore, ε/2 is the largest increase in c∅ which we can produce by such a sequence
due to the fact that c2,3(a, a) = c2,3(a, b) = ε in the instance Pi. This shows that σ1 may
be the operations actually carried out in one iteration of our VAC algorithm.

45

Let P ′
i denote the VCSP instance which results when the sequence σ1 of SAC op-

erations is applied to Pi. A sequence of SAC operations can then be applied to P ′
i to

increase c∅ by ε/4 by shifting weights through the cycle of variables 10,9,8,7,6,3,2,10.
This is the rotational symmetry equivalent of the sequence σ1 of SAC operations with
all weights divided by two (and, by rotational symmetry, variable j replaced by variable
11 − j). For completeness, we list the sequence σ2 of operations below. Again, ε/4 is
the largest increase in c∅ which we can produce by such a sequence due to the fact that
c9,8(b, a) = c9,8(b, b) = ε in the instance P ′

i and hence σ2 may be the operations actually
carried out by our VAC algorithm.

σ2: Extend(10,a,{10, 9},ε/2), Project({10, 9},9,b,ε/2),
Extend(9,b,{9, 8},ε/2), Project({9, 8},8,a,ε/2), Project({9, 8},8,b,ε/2),
Extend(8,a,{8, 7},ε/4), Extend(8,b,{8, 7},ε/4), Project({8, 7},7,a,ε/4),
Extend(8,a,{8, 6},ε/4), Extend(8,b,{8, 6},ε/4), Project({8, 6},6,a,ε/4),
Extend(7,a,{7, 3},ε/4), Project({7, 3},3,a,ε/4),
Extend(6,a,{6, 3},ε/4), Project({6, 3},3,b,ε/4),
Extend(3,b,{3, 2},ε/4), Extend(3,a,{3, 2},ε/4), Project({3, 2},2,b,ε/4),
Extend(2,b,{2, 10},ε/4), Project({2, 10},10,b,ε/4),
UnaryProject(10,ε/4)

We denote the resulting VCSP instance by P ′′
i and its cost functions by c′′

∅
, c′′j , c′′jk, with

c∅, cj , cjk denoting the cost functions in Pi. After the two sequences of SAC operations
σ1, σ2, the new values of the cost functions are given by the following equations.

c′′
∅

= c∅ + ε/2 + ε/4

c′′1 (a) = c1(a) − ε − ε/2

c′′1,2(a, a) = c1,2(a, a) + ε

c′′1,2(b, b) = c1,2(b, b) − ε

c′′2,3(a, a) = c2,3(a, a) − ε + ε/4

c′′2,3(b, c) = c2,3(b, c) + ε − ε/4

c′′3,4(a, b) = c3,4(a, b) + ε/2

c′′3,4(c, a) = c3,4(c, a) − ε/2

c′′10(a) = c10(a) − ε/2 − ε/4

c′′8,7(a, b) = c8,7(a, b) + ε/4

c′′8,7(c, a) = c8,7(c, a) − ε/4

c′′8,9(c, b) = c8,9(c, b) − ε/2 + ε/2

For example, c∅ is increased by ε/2 + ε/4 due to the combined effect of the operations
UnaryProject(1,ε/2) and UnaryProject(10,ε/4), and c1(a) is decreased by ε + ε/2 as a
result of the operations Extend(1,a,{1, 2},ε) and UnaryProject(1,ε/2). Reading off the
cost function values from Figure A.14 (that is c∅ = 1 − ε, c1(a) = 2ε, c1,2(a, a) = 2α,
c1,2(b, b) = 2 − 2α, c2,3(a, a) = ε, c2,3(b, c) = 1 − ε, c3,4(a, b) = α, c3,4(c, a) = β,
c10(a) = ε, c8,7(a, b) = γ, c8,7(c, a) = δ, c8,9(c, b) = 1) and given that α = 2

3 (1 − 4−i),

46

β = 1
3 (1 + 2(4−i)), γ = 1

3 (1− 4−i), δ = 1
3 (2 + 4−i) and ε = 4−i, we can deduce that

c′′
∅

= 1− 4−i + 4−i/2 + 4−i/4 = 1− 4−(i+1)

c′′1(a) = 2(4−i) − 4−i − 4−i/2 = 2(4−(i+1))

c′′1,2(a, a) =
4

3
(1− 4−i) + 4−i =

4

3
(1− 4−(i+1))

c′′1,2(b, b) = 2−
4

3
(1− 4−i) − 4−i = 2−

4

3
(1− 4−(i+1))

c′′2,3(a, a) = 4−i − 4−i + 4−i/4 = 4−(i+1)

c′′2,3(b, c) = 1− 4−i + 4−i − 4−i/4 = 1− 4−(i+1)

c′′3,4(a, b) =
2

3
(1− 4−i) + 4−i/2 =

2

3
(1− 4−(i+1))

c′′3,4(c, a) = 1−
2

3
(1− 4−i) − 4−i/2 =

1

3
(1 + 2(4−(i+1)))

c′′10(a) = 4−i − 4−i/2 − 4−i/4 = 4−(i+1)

c′′8,7(a, b) =
1

3
(1− 4−i) + 4−i/4 =

1

3
(1− 4−(i+1))

c′′8,7(c, a) =
1

3
(2 + 4−i) − 4−i/4 =

1

3
(2 + 4−(i+1))

c′′8,9(c, b) = 1 − ε/2 + ε/2 = 1

The remaining cost function values can be deduced from these values, since those edges
which have identical labels in Figure A.14 are also identical in P ′′

i . In other words
c′′2,3(a, b) = c′′2,3(a, a) (edges labeled ε in Figure A.14), c′′9,10(a, a) = c′′9,1(b, a) = c′′4,8(a, c)
= c′′4,8(a, b) = c′′5,8(a, c) = c′′5,8(a, a) = c′′3,5(b, b) = c′′3,5(a, b) = c′′3,4(b, b) = c′′3,4(a, b) (edges
labeled α), c′′9,10(b, b) = c′′9,1(a, b) = c′′4,8(b, a) = c′′5,8(b, b) = c′′3,5(c, a) = c′′3,4(c, a) (edges la-
beled β), c′′2,10(b, a) = c′′7,3(a, c) = c′′7,3(a, b) = c′′6,3(a, c) = c′′6,3(a, a) = c′′8,6(b, b) = c′′8,6(a, b)
= c′′8,7(b, b) = c′′8,7(a, b) (edges labeled γ) and c′′2,10(a, b) = c′′7,3(b, a) = c′′6,3(b, b) = c′′8,6(c, a)
= c′′8,7(c, a) (edges labeled δ). Furthermore, all cost function values which were 0 (repre-
sented by the absence of an edge in Figure A.14) are also 0 in P ′′

i .
The above calculations of the cost functions c′′

∅
, c′′j , c′′jk show that P ′′

i is, in fact,
exactly the VCSP instance Pi+1. It follows that, starting from P0, our algorithm may
find the non-ending sequence of VCSP instances P0, P1, P2, . . . and hence never halt.

47

