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ABSTRACT

Structure-based computational protein design (CPD) refers to the problem of finding

a sequence of amino acids which folds into a specific desired protein structure, and

possibly fulfills some targeted biochemical properties. Recent studies point out the

particularly rugged CPD energy landscape, suggesting that local search optimization

methods should be designed and tuned to easily escape local minima attraction

basins. In this article, we analyze the performance and search dynamics of an iterated

local search (ILS) algorithm enhanced with partition crossover. Our algorithm, PILS,

quickly finds local minima and escapes their basins of attraction by solution perturba-

tion. Additionally, the partition crossover operator exploits the structure of the resi-

due interaction graph in order to efficiently mix solutions and find new unexplored

basins. Our results on a benchmark of 30 proteins of various topology and size show

that PILS consistently finds lower energy solutions compared to Rosetta fixbb and

a classic ILS, and that the corresponding sequences are mostly closer to the native.
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1 | INTRODUCTION

Proteins are responsible for a wide range of vital functions in all living

organisms, such as cell signaling, transport, regulation, defense against

pathogens and catalysis of various chemical reactions. By exploiting

the relationship between the sequence of amino acids of a protein, its

three-dimensional structure, and its function, it is possible to engineer

new proteins for various applications in health, environment, and bio-

nanotechnologies.1-5 The need for efficient computational protein

design (CPD) methods emerged from the fact that it is impossible to

experimentally test all possible protein sequences corresponding to a

target protein structure. CPD, therefore, aims at finding a sequence of

amino acids that fold into a target three-dimensional protein structure

using purely in silico methods. It can be formalized as a combinatorial

optimization problem where variables are amino acid conformations

at each sequence position and where an energy function capturing

interactions between amino acids within a target three-dimensional

structure is to be minimized.6 In the most common representation,

the energy function is pairwise decomposable, the variables take their

values in a discrete set of preferred amino acid side chain nature and

orientations, and the backbone of the target structure is fixed. Under

these assumptions, the CPD problem has been proven to be NP-

hard.7 For this reason, most CPD methods rely on stochastic optimiza-

tion. For example, the widely used molecular modeling suite Rosetta

relies on a simulated annealing algorithm.8 Other existing methods

rely on evolutionary algorithms such as genetic algorithms9 or estima-

tion of distribution algorithms.10 Along with local search methods,

exact and deterministic methods that can provably identify the global

minimum of the energy function (global minimum energy conforma-

tion, GMEC) also exist.11 The state-of-the-art here relies on Cost

Function Networks algorithms,12,13 and has recently been extended

to optimize sequences for one or several protein states at the same

time.14 It is available as open source software under the name of

“POMPd.” In addition to providing access to the protein sequence of
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lowest energy, POMPd, which relies on the constraint programming

solver ToulBar2,15 is able to exhaustively enumerate all protein

sequences within a threshold to the global minimum. Using this ability,

a recent fitness landscape analysis around the optimum of CPD prob-

lems showed that the structure of CPD problems can prevent simu-

lated annealing from approaching the GMEC.16 Indeed, the number

and depth of local minima on CPD problems requires simulated

annealing methods to accept several unfavorable local moves in a row

in order to escape local minima. As a result, the search often gets

stuck with infinitesimal chances of finding the GMEC. Besides this, it

has also been shown that the gap between the best solutions found

with simulated annealing and the GMEC increases with the length of

the target proteins. It is thus crucial to develop new local search

methods that could shrink this gap once POMPd hits the complexity

barrier of NP-hardness and cannot provide the GMEC anymore. A

careful analysis of CPD fitness landscapes put in evidence that local

search methods with high exploration abilities would be more suitable.

Here, we study the performance of iterated local search algorithms

(ILS).17 ILS is an iterated process of steepest descent and random

solution perturbations. The steepest descent ensures to reach a local

minimum, and the perturbation is used to jump off its attraction basin

with the hope of reaching a lower local minimum after the next

steepest descent. ILS algorithms can be augmented with a so-called

partition crossover, which can mix two solutions together by taking

advantage of the problem structure, in order to reach better local min-

ima. This kind of algorithms, mixing iterated local search and partition

crossover, has already demonstrated good performance for pseudo-

Boolean optimization.18

In this article, we show the benefits of using explorative local sea-

rch methods on CPD problems. We generalize partition crossover to

combinatorial optimization, combine it with an ILS in a new algorithm

that we named PILS, and compare the performances with Rosetta's

simulated annealing algorithm as implemented in the fixbb protocol

and a classical ILS on a benchmark of 30 protein targets.

2 | MATERIALS AND METHODS

2.1 | Energy function

2.1.1 | Definition

Under the assumption that the protein backbone is fixed, the CPD

problem can be modeled by only taking into account the effects of

the side chain orientation and nature at each residue position. Using

this representation, the energy of the system can be decomposed as a

sum of unary and binary terms capturing respectively interactions

between one residue and the environment and interactions between

pairs of residues. The total energy depends on the side chain nature

and orientation of each residue in the protein. The continuous space

of side chain orientations is discretized by using libraries of statisti-

cally preferred orientations called rotamers19 for every possible amino

acid. One solution to the CPD problem is thus represented as a

rotamer assignment for all residues in the protein. The energy

function is expressed in Equation (1), where x�X represents a solu-

tion of length ℓ from the sequence/conformation space X (which con-

tains all possible rotamer assignments for a given protein structure),

and where Ei and Eij are, respectively, unary and binary energy terms

whose values are function of rotamer assignments at position xi (for

Ei) and at positions xi , xj (for Eij). G is the undirected interaction graph,

whose edges represent all interactions between pairs of residues.

E xð Þ¼
Xℓ

i¼1
Ei xið Þþ

X
i, jð Þ � G

Eij xi,xj
� � ð1Þ

In our experiments, we minimize the energy function beta_nov16,

as provided by the Rosetta modeling software.20

2.1.2 | Neighborhood

Local search algorithms rely on the notion of neighborhood. In CPD,

we define a neighbor of a solution as an assignment that differs at

one position. The neighborhood relation N is defined as:

N xð Þ¼ x0 �X : dhamming x,x0ð Þ ¼1
� �

where dhamming is the Hamming distance defined over residues: the

distance is 1 if only one rotamer differs between the two solutions.

Let opi,v xð Þ¼ x0 be such that 8j �¼ i,x0j ¼ xj , and x0i ¼ v. We have:

N xð Þ¼ opi,v xð Þ : i� 1,…,ℓf g,v� 1,…,nif g ∖ xif g
� �

The size of the neighborhood is then

jN j¼Pℓ
i¼1 ni�1ð Þ¼Pℓ

i¼1ni�ℓ, where i is a variable index, ni is the

domain size of variable i (the number of available rotamers) and ℓ

the number of variables.

2.1.3 | Local update

The time complexity to evaluate E xð Þ can be reduced using incremen-

tal evaluation. Let li¼ j j i, jð Þ�G be the set of variables interacting with

i.

Let δ i,vð Þ xð Þ be the difference of energy between the neighbors x

and opi,v xð Þ:

δ i,vð Þ xð Þ¼ E opi,v xð Þ� ��E xð Þ

Only a few terms from Equation (1) are modified in order to com-

pute δ i,vð Þ xð Þ:

δ i,vð Þ xð Þ¼ Ei vð Þ�Ei xið Þþ
X
j � li

Ei,j v,xj
� ��Ei,j xi ,xj

� �� �

The time complexity of the incremental evaluation is then j li j þ1
which is bounded by ℓ. This time complexity is linear instead of

quadratic using Equation (1).
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The time complexity can be further reduced using double incre-

mental evaluation. Similar to second derivative computation, let be

δ2i,vð Þ, k,wð Þ xð Þ the variation of δ i,vð Þ xð Þ when x move to opk,w xð Þ.

δ2i,vð Þ, k,wð Þ xð Þ¼ δi,v opk,w xð Þ� ��δi,v xð Þ

By definition, with x0 ¼ opk,w xð Þ,

δ2i,vð Þ, k,wð Þ xð Þ¼ Ei vð Þ�Ei x
0
i

� �� Ei vð Þ�Ei xið Þð Þ
þ
X
j � li

Ei,j v,x0j
� �

�Ei,j x0i ,x
0
j

� �
� Ei,j v,xj

� ��Ei,j xi,xj
� �� �h i

δ2i,vð Þ, k,wð Þ xð Þ can be rewritten as:

δ2i,vð Þ, k,wð Þ xð Þ¼ Ei xið Þ�Ei x
0
i

� �

þ
X
j � li

Ei,j xi,xj
� ��Ei,j x0i ,x

0
j

� �
þEi,j v,x0j

� �
�Ei,j v,xj

� �h i

The computation complexity of δ2i,vð Þ, k,wð Þ xð Þ may look similar to

that of δi,v xð Þ. However, according to the values of i and k, some sim-

plifications reduce the complexity. When i¼ k, then x0i ¼w,

and 8j� li,x0j ¼ xj,

δ2i,vð Þ, i,wð Þ xð Þ¼ Ei xið Þ�Ei wð Þþ
X
j � li

Ei,j xi,xj
� ��Ei,j w,xj

� �� 	

This case is the worst case. The time complexity is the same as

for δi,v xð Þ computation. When i≠ k, and k =2 li, then, x0i ¼ xi ,

and 8j� li,x0j ¼ xj,

δ2i,vð Þ, k,wð Þ xð Þ¼0

This case is the best case, and if j li j is bounded, it is the most

common case. The complexity is 0. When i≠ k, and k� li , then,

x0i ¼ xi, 8j� li ∖ kf g,x0j ¼ xj,

δ2i,vð Þ, k,wð Þ xð Þ¼ Ei,k xi ,xkð Þ�Ei,k xi ,x
0
k

� �þEi,k v,x0k
� ��Ei,k v,xkð Þ

In this case, the time complexity to compute δ2i,vð Þ, k,wð Þ xð Þ is only

three operations.

Overall, to update the δi,v xð Þ values for all neighbors i,vð Þ, the
complexity is li þ1j Þþ3 j lk jð . j li j and j lk j are bounded by ℓ�1,

the complexity of the update of all δ values is bounded by 4ℓ, which is

a linear complexity.

2.2 | Algorithms

2.2.1 | ILS

Iterated local search consists in building a sequence of locally optimal

solutions by iteratively perturbing the current local minimum and apply-

ing a local search operator.17 The ILS used in this work is given in

Algorithm S1. The main components of the algorithm are the perturba-

tion operator and the local search operator. A perturbation of strength k

consists in randomly modifying the value of k variables in the solution.

The local search operator used is a steepest descent. This cycle of per-

turbations and local searches iterates while keeping track of the best

solution until a limit number of solution evaluations is reached, or if

no improvement occurs in a predetermined number of iterations.

The steepest descent algorithm used as local search operator is

given in Algorithm S2. Double incremental evaluation is used to find

the best neighbor at each iteration of the algorithm. A Binary Search

Tree is used to select one of the best neighbor with complex-

ity O logðjN jÞð Þ.

2.2.2 | PILS

The algorithm of PILS (see Algorithm 1) is built on the generic form of

the ILS. It introduces a second perturbation operator: the partition

crossover. The partition crossover exploits the structure of the vari-

able interaction graph in order to efficiently mix two solutions.21 A

description of this crossover operator is presented in Algorithm S3.

The partition crossover operator takes two parent solutions as input.

First, it removes from the interaction graph all edges linking variables

with equal values in both solutions. These values are preserved in the

child solution. Then, it evaluates each parent solution on the set of

connected components in the variable interaction graph. For each var-

iable in each connected component, the values from the best parent

are used in the child solution. The main loop in PILS algorithm gener-

ates two local minima solutions (sol1 and sol2) by perturbation and

steepest descent. The two local minima are then combined using par-

tition crossover to produce a new solution. A local minimum is

reached from this new solution and stored in sol1. The loop iterates

until a limit number of evaluations is reached, or if no improvement

occurs in a predetermined number of iterations.

Algorithm 1. PILS algorithm

1: Inputs: emax: maximum number of “evaluations”
steady_max: maximum number of evaluations with-

out improvement

2: sol1 random_init(sol1)

3: sol1 steepest-descent(sol1), update(etot)

4: abort False

5: repeat

6: sol2 perturbation(sol1, k)

7: sol2 steepest-descent(sol2), update(etot)

8: sol1 partition-crossover(sol1, sol2)

9: sol1 steepest-descent(sol1), update(etot)

10: If no improvement in steady_max itera-

tions: abort True

11: until etot ≥ emax or abort

12: Output: sol1: best solution found

BEUVIN ET AL. 3



3 | RESULTS AND DISCUSSION

We evaluated the performance of PILS compared to ILS and Rosetta

fixbb protocol on a benchmark of 30 proteins of size ranging from

53 to 159 residues, representing all folding classes (α,β,α=β,αþβ). All

calculations were run on the high-performance computing center of

the University of Toulouse (CALMIP). Each method was run 100 times

on each protein target. All calculations were performed on Skylake

6140 CPUs on the HPC cluster CALMIP. The time needed for Rosetta

fixbb protocol to complete the benchmark was used as reference,

and the stopping criterion of PILS and ILS were calibrated in order to

obtain comparable total CPU times. Rosetta fixbb protocol needed

9days and 4 h to complete the benchmark, ILS needed 9days and

16h, and PILS needed 8days and 23h. Both ILS and PILS were

allowed 60000 energy function evaluations per run. ILS and PILS runs

were stopped if no improvement was observed during respectively

1500 and 500 iterations. The perturbation strength was set to 2 for

ILS and 1/3 of the protein sequence length for PILS. The perturbation

strengths are set differently for the two methods because of their dif-

ferent nature: ILS uses perturbations in order to escape local minima

whereas PILS needs diverse solutions for efficient breeding with the

crossover operator. In this section, we present a statistical analysis of

TABLE 1 Median and best
performance of PILS, ILS, and Rosetta

Target

Median Best

PILS ILS Rosetta PILS ILS Rosetta

erw �124.01 �123.42 �122.64 �124.01* �124.01 �123.82
cmp �142.24 �140.24 �140.94 �143.75* �142.96 �142.71
ku3 �147.03 �145.57 �145.35 �147.75 �147.5 �147.03
f94 �159.67 �158.27 �157.85 �159.86 �159.86 �159.45
cjj �144.74 �141.52 �141.03 �145.4* �144.93 �145.0
orc �188.96 �188.03 �186.92 �189.27* �189.27 �189.14
uoy �173.16 �171.99 �171.72 �173.16* �173.16 �173.16
hcs �179.84 �178.65 �175.67 �180.02* �180.02 �179.9
pgx �198.14 �194.27 �196.46 �198.21* �198.09 �197.88
hoe �211.47 �208.45 �208.45 �211.75* �211.46 �210.78
k3v �196.52 �190.56 �189.27 �196.63 �196.5 �194.57
x3o �238.62 �235.08 �235.98 �239.17* �238.71 �238.08
ckx �184.94 �179.86 �181.51 �186.77 �186.54 �186.09
vjk �295.58 �290.88 �292.4 �295.65* �294.9 �295.42
dsl �280.6 �271.88 �278.29 �281.39* �280.32 �281.31
x6j �212.99 �207.89 �209.3 �213.09 �212.99 �212.27
fna �268.79 �263.54 �264.73 �269.76* �267.65 �268.11
yxm �307.3 �302.5 �304.92 �307.42* �307.13 �307.16
cqy �302.06 �294.03 �297.8 �302.3* �302.04 �301.32
pcy �299.02 �292.97 �294.9 �299.27* �298.91 �298.27
fqt �355.78 �351.54 �351.9 �356.01* �355.84 �355.44
a0b �322.85 �316.32 �316.35 �324.84 �324.07 �322.6
pnd �377.85 �368.87 �372.04 �378.96 �378.18 �377.83
mvo �361.06 �350.11 �351.73 �365.56 �364.06 �364.25
qlc �373.0 �359.51 �361.81 �377.54 �372.07 �370.6
aqt �423.93 �411.3 �416.34 �426.64 �422.5 �423.93
z3v �409.61 �402.46 �403.89 �410.55 �408.85 �408.68
f04 �414.42 �403.38 �409.53 �417.8 �415.01 �415.86
tzv �420.67 �408.78 �414.38 �425.75 �422.26 �421.84
z2u �411.05 �401.17 �402.31 �413.0 �411.51 �410.34

Note: Solutions annotated with * are global optimum proven by POMPd. Only best solutions of PILS are

annotated since they are consistently superior to solutions from other methods. For all targets, PILS

systematically outperforms both other methods on median energy values according to Mann-Whitney

U test.
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each problem instance, results in terms of energy minimization and

native sequence recovery rates, and provide some statistics on the

search dynamics of PILS.

3.1 | Benchmark description and statistics

The PDB code and length of each protein in the benchmark, as well as

main statistics extracted from the interaction graph associated with

each protein are shown in Table S1. These statistics reflect the topol-

ogy of the proteins. The neighborhood size, which is the cumulative

number of rotamers at each position in the protein sequence, naturally

grows with the length of the proteins, as well as the number of links

that sums up all edges in the interaction graph. The average number of

rotamers per position (j N j =ℓ) remains stable, ranging from approxi-

mately 250 to 300. The density of the interaction graph, computed as

the number of edges in the graph divided by the number of possible

edges, tend to decrease with the length of the proteins. The average

number of edges per residue grows with the length, translating the

fact that buried residues are more connected, and that the number of

buried residues increases with the length for globular proteins.

3.2 | Energy minimization

PILS performs consistently better than ILS and Rosetta fixbb in

terms of energy minimization. Table 1 shows the median energy and

the best energy out of 100 runs for each method. The median energy

achieved by PILS is significantly better on all instances according to

Mann-Whitney U test. Furthermore, the energy gap between median

values of PILS and respectively ILS and Rosetta fixbb seems to

increase linearly with the size of the problems (see Figure 1). The lin-

ear regression line has a steeper slope for the energy gap between

PILS and ILS, but the same tendency is observed in both cases. This

result put in evidence the benefits of using PILS to solve difficult CPD

problems. When looking at the best energy values obtained for each

method on each target, PILS either outperforms both other methods

or achieved equal performance. PILS and ILS find the same best value

on five protein targets, PILS and Rosetta fixbb on one protein target.

In order to check where PILS stands in the energy landscape, we

attempted to compute the global optimum of the energy function for

each target protein with POMPd.14 POMPd could identify the GMEC

on 18 instances out of 30 within a time limit of 100 h. PILS reaches

the GMEC on 16 instances out of 18 (indicated with a star in Table 1),

whereas ILS and Rosetta fixbb were respectively able to locate the

GMEC on four and one instances. As pointed out in a previous study,

the energy gap between sequences predicted with Rosetta fixbb

and the GMEC increases with the size of the problem.12 PILS closes

this gap on almost all instances for which the GMEC could be found,

showing that such enhanced iterative local search methods are prefer-

able to simulated annealing for solving CPD instances when the size

of the problems prevent global optimization methods from returning

the global optimum. They could also speed up these global optimiza-

tion methods by providing better initial upper bounds.

3.3 | Native sequence recovery

Solutions returned by PILS are closer to the native sequences on aver-

age in comparison with ILS and Rosetta fixbb. Native sequence

recovery is a well-known and accepted measure for CPD in silico

assessment. This test relies on the relationship between protein

sequence and structure: the more two sequences are similar, the more

they tend to fold into the same three-dimensional structure. Thus, if a

computationally designed sequence is close to the native sequence of

the target structure, it has good chances of adopting the correct fold.

Table 2 shows average native sequence recovery rates over 100 runs

for PILS, ILS and Rosetta fixbb on all protein targets. Significantly,

better results according to Mann-Whitney U test are highlighted in

bold. PILS outperforms other methods on 18 protein targets out of

30, whereas ILS is better on one target and Rosetta fixbb is better

on five targets. Mann-Whitney U test was not conclusive for six pro-

tein targets. Putting these statistics in perspective with PILS results

on energy minimization (Table 1), sequences of lower energy are

closer on average to native sequences. This suggests that the all atom

energy function developed by Rosetta has become accurate enough

so that improved energy minimization is more beneficial than

sequence space sampling with simulated annealing.

3.4 | PILS search dynamics

Figure 2 (top) shows the average best solution per iteration on

100 runs for protein targets 2erw and 1z2u. These two proteins are

respectively the smallest and the largest in our benchmark. The slope

of the curves is steep in the first iterations, showing that PILS is able

F IGURE 1 Gap between median energies achieved by PILS, ILS,
and Rosetta fixbb against compressed problem size. Gap between
PILS and ILS is shown in blue, gap between PILS and Rosetta fixbb
is shown in orange. The size of a problem is defined as the amount of
bits needed to store the CPD residue interaction graph of a protein
target in compressed JSON format. The energy gap is computed as
the difference in energy between the two median values. Linear
regression lines are plotted with same colors as data points

BEUVIN ET AL. 5



F IGURE 2 Average energy of the best solution per iteration on targets 2erw (top left) and 1z2u (top right). Average number of connected
components and successful partition crossovers per iteration on targets 2erw (bottom left) and 1z2u (bottom right) [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Mean native sequence
recovery percentages for PILS, ILS, and
Rosetta

Target PILS ILS Rosetta Target PILS ILS Rosetta

erw 53.86 52.61 51.8 1x6j 40.11 36.48 37.12

cmp 38.19 38.61 37.14 1fna 41.98 37.77 37.52

ku3 43.58 42.52 41.66 2yxm 47.61 46.24 46.42

f94 37.27 34.94 34.84 1cqy 54.09 47.94 49.37

cjj 39.97 36.74 37.41 2pcy 51.6 50.34 52.03

orc 41.01 42.53 43.98 1fqt 56.79 53 52.89

uoy 44 45.15 44.45 2a0b 38.69 35.99 37.81

hcs 53.62 49.94 49.62 2pnd 39.68 37.99 39.3

pgx 47.41 40.06 43.93 1mvo 44.99 42.76 42.3

hoe 47.65 47.58 49.66 2qlc 46.72 42.97 45.1

k3v 29.32 30.75 30.72 1aqt 44.91 41.05 44.49

x3o 50.97 49.13 49.98 2z3v 50.12 48.93 50.61

ckx 40.66 39.59 40.92 3f04 43.74 39.05 40.82

vjk 62.69 58.14 60.94 1tzv 41.72 39.96 41.49

dsl 43.07 41.9 45.6 1z2u 43.01 40.56 40.8

Note: Statistically significant results according to Mann-Whitney U test are in bold.
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to quickly identify good solutions. The curve flattens a bit faster in the

case of 2erw, which is an easier target. In both cases, we observe that

PILS converges to a minimum in less than 600 iterations.

We then looked at the average number of connected compo-

nents, and the average number of successful crossovers on the same

two protein targets (Figure 2, bottom). We consider a crossover as

successful if it allows to reach a solution with a lower energy than that

of its two parent solutions. We observe different behaviors depending

on the protein target. The average number of connected components

seems to be constant across iterations in both cases, but is smaller in

the case of 2erw. As a consequence, there are few successful cross-

overs in the first iterations and no successful crossover happens after

50 iterations. In the case of 1z2u, the average number of connected

components is higher and allows more successful crossovers.

Although the frequency decreases with the iterations, the crossover

still has some impact near the end of the runs. 2erw is an easy target

on which PILS and ILS could find the global optimum. On this target,

the iterated local search on its own is sufficient to quickly find good

solutions. The smaller number of connected components translates

the fact that the search quickly focuses on the correct region in the

search space. It leaves no room for solution diversity that is essential

for connected components to appear. On the other side, 1z2u is the

longest protein target, with the biggest neighborhood size (Table S1),

and could be considered as the most difficult target in the benchmark.

In this case, the partition crossover in PILS helps finding better solu-

tions. PILS can be seen as a hybrid evolutionary algorithm with a pop-

ulation of two solutions, partition crossover as a stochastic operator

and ILS as a local search operator. From that perspective, increasing

the size of the population and defining an appropriate selection opera-

tor (selecting solutions for crossover so that the number of connected

components is maximized) would probably increase the number of

successful crossovers, and as a consequence improve the perfor-

mance of the algorithm. The local search operator can run indepen-

dently on each solution and could easily be parallelized to benefit

from the computing power of high-performance computing centers.

4 | CONCLUSION

CPD has become a major tool in protein engineering and fundamental

structural biology. The massive amount of sequence data and the con-

tinuously growing number of structures in the Protein Data Bank

combined with nowadays-computational resources and experimental

validation techniques have greatly contributed to our understanding

of the determinants of protein design modeling. Efficient optimization

algorithms become crucial in order to fully benefit from the increasing

accuracy of energy functions and progress in protein design modeling.

Recent findings on the properties of the energy landscapes describing

CPD problems shed light on some misfit of classically used local sea-

rch optimization techniques such as simulated annealing. The energy

landscapes appear particularly rugged, and methods able to better

escape local minima are needed.

The algorithm presented in this article, PILS, combines an iterated

local search algorithm with a partition crossover operator. This algo-

rithm relies on a fast double incremental steepest descent algorithm

and on a crossover, which exploits the structure of the residue inter-

action graph to find new solutions. Our results on a benchmark of

30 proteins demonstrate the efficiency of PILS in terms of energy

minimization and native sequence recovery. The energy gap between

PILS and the other tested methods increases linearly with the size of

the problems. Additionally, PILS was able to locate the GMEC on

16 out of 18 targets on which the global optimum could be proven by

a global optimization method. Solutions of better energy found

by PILS often correspond to sequences having a higher sequence

identity with the native sequences. The role of the partition crossover

has been identified as preponderant on difficult targets, and could be

used in a variety of parallel population-based optimization methods

for CPD.
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