
Parallel Hybrid Best-First Search for Cost Function Networks

Abdelkader Beldjilali, David Allouche, Simon de Givry
INRA, MIA Toulouse, UR-875
31320 Castanet-Tolosan, France

Introduction
Cost Function Networks (CFNs), also known as Weighted
Constraint Satisfaction Problems (Meseguer, Rossi, and
Schiex 2006) is a mathematical model which has been de-
rived from Constraint Satisfaction Problems by replacing
constraints with cost functions. In a CFN, we are given a
set of variables with an associated finite domain and a set
of local cost functions. Each cost function involves some
variables and associates a non-negative integer cost to each
of the possible combinations of values they may take. The
usual problem considered is to assign all variables in a
way that minimizes the sum of all costs. This problem is
NP-hard, and exact methods usually rely on Branch and
Bound (B&B) algorithms exploring a binary search tree
with propagation at each node in order to improve the prob-
lem lower bound and prune domain values with a forbidden
cost (Cooper et al. 2010). Several B&B search methods have
been developed in the CFN solver toulbar21.

In this work we describe a first parallel version of Hybrid
Best-First Search (HBFS) (Allouche et al. 2015) and give a
preliminary empirical evaluation on combinatorial optimiza-
tion problems from uncapacitated warehouse location, com-
putational protein design, and genetics. This last section in-
cludes solving time and speed-up comparisons between our
approach within toulbar2 and other parallel approaches
available in IBM Ilog cplex and daoopt (Otten and
Dechter 2017) (i.e., respectively a Mixed Integer Program-
ming and an AND/OR search Graphical Model solver).

Parallel HBFS
The sequential version of HBFS (Allouche et al. 2015) is
a B&B method for CFNs that combines Best-First Search
(BFS) and Depth-First Search (DFS). Like BFS, HBFS pro-
vides an anytime global lower bound on the optimum, while
also providing anytime upper bounds, like DFS. Hence, it
provides feedback on the progress of search and solution
quality in the form of an optimality gap. Besides, it exhibits
highly dynamic behavior that allows it to perform on par
with methods like Limited Discrepancy Search (LDS) and
frequent restarting in terms of quickly finding good solu-
tions. As in BFS, HBFS maintains a frontier of open search
nodes. It expands each open node using DFS with a limit on

1https://github.com/toulbar2/toulbar2

its number of backtracks. Each bounded DFS returns a new
list of open nodes to be inserted in the BFS frontier.

The parallel version of HBFS is based on the Master-
Worker parallel paradigm (Ralphs et al. 2018) where the
Master is in charge of the open node frontier and dispatches
the current best (with minimum lower bound) open node
plus the current best solution found so far to the next avail-
able Worker. The Worker performs a bounded DFS start-
ing from the received node and returns to the Master the
resulting list of open nodes (see Fig. 1, with a DFS limit
of 3 backtracks). Each open node is associated to a corre-
sponding lower bound and a vector of search decisions. The
Worker also returns the best solution found during its lim-
ited search if any. Only the Master has a global view of the
whole search and reports optimality gaps until the proof of
optimality is reached (when the current best frontier lower
bound, including active Worker starting nodes, is equal or
greater than the cost of the best solution found so far).

Idle workers’ queue

Map : activeWork

Open nodes 
(priority queue)

1

2

6

8

7

3

4 5

Worker 1Master

Solution + cub

Vector of decisions

Worker 3Worker 2

23

[1,lb]

Leaves

Figure 1: Parallel HBFS using the Master-Worker paradigm.

Experimental Results
We implemented parallel HBFS inside toulbar2 using
the MPI library. Experiments were performed on 24-core

Instance n d
Time (sec.) Speed-up

HBFS HBFS-24
capmo1 200 100 10.92 5.14 2.12
capmo2 200 100 1.80 2.04 0.88
capmo3 200 100 6.09 3.73 1.63
capmo4 200 100 4.36 3.21 1.36
capmo5 200 100 2.69 2.58 1.04

Table 1: Warehouse benchmark (Larrosa et al. 2005) with n,
number of variables, and d, maximum domain size.



Instance n d
Time (sec.) Speed-up

HBFS HBFS-24
1xaw 107 412 721.43 568.50 1.27
3lf9 120 416 407.28 407.92 1
5dbl 130 384 122.84 171.82 0.71
5e10 133 400 147.73 198.23 0.75
5e0z 136 420 148.26 193.41 0.77
5eqz 138 434 3,366.11 1,049.11 3.21
1dvo 152 389 622.03 463.29 1.34
4bxp 170 439 327.46 395.16 0.83
1is1 185 431 - 2,545.82 -
2gee 188 397 797.22 863.64 0.92
5jdd 263 406 - 2,758.98 -
3r8q 271 418 1,605.30 1,294.97 1.24
1f00 282 430 - 2,140.40 -

Table 2: Computational Protein Design (CPD) bench-
mark (Ouali et al. 2017). A ’–’ indicates that the correspond-
ing method failed to prove optimality in less than 1 hour.

Instance n d cplex cplex-10 HBFS HBFS-10 Speed-up
1UBI 13 198 - - 1,023 214.02 4.78
2DHC 14 198 - - 8.2 5.83 1.41
2DRI 37 186 - - 135.5 30.00 4.52
1CDL 40 186 - - 392.6 54.95 7.14
1CM1 42 186 - 6,177 6.6 6.11 1.08
1BRS 44 194 - - 555.3 107.86 5.15
1GVP 52 182 - - 596.1 185.75 3.21
1RIS 56 182 - - 129.7 36.23 3.58

3CHY 74 66 - 5,259 88.7 20.71 4.28

Table 3: Another CPD benchmark (Allouche et al. 2014). A
’–’ indicates that the corresponding method failed to prove
optimality in less than 9, 000 seconds. Only instances solved
in more than 5 sec. by any successful method are reported.

servers (Intel Xeon E5-2680/87 at 2.50/3GHz and 256 GB)
and the GenoToul cluster (64-core nodes of Intel Xeon E5-
2683 at 2.10GHz). We report in Table 1 and Table 2 solv-
ing times to find and prove optimality on Warehouse and
CPD benchmarks for the sequential and 24-core parallel ver-
sions of HBFS. Parallel HBFS solved three more CPD in-
stances within the 1-hour time-out. The maximum speed-up
was 2.12 (resp. 3.21) for Warehouse (resp. CPD), which is
rather limited compared to the number of cores used. Ex-
periments on difficult instances of another CPD benchmark
using only 10 cores resulted in better speed-ups (up to 7.14
on 1CDL, see Table 3). Moreover our CFN approach was
much faster than cplex. In Table 4, we compared cplex,
daoopt, and HBFS on the Linkage benchmark. We report
daoopt time from (Otten and Dechter 2017), obtained on
a cluster of dual 2.67 GHz Intel Xeon X5650 6-core CPUs
and 24 GB of RAM. Here, the sequential version of HBFS
is dominated by cplex on three instances among four. But,
the parallel version of HBFS got better relative speed-ups
than cplex when the number of cores increases. We found
daoopt got very good speed-ups on these instances but still
was far from cplex in terms of CPU times.

Conclusions
Parallel HBFS is a first parallel approach for HBFS. It pro-
vides interesting results on several instances, outperform-
ing in some cases state of the art solvers like cplex and
daoopt. Even if the scalability of our approach must be

pedigree19 pedigree31 pedigree44 pedigree51
n 793 1,183 811 1,152
d 5 5 4 5
cplex 790 59.30 6.35 36.23
//10 191(4.14) 9.00(6.59) 2.48 (2.56) 9.43 (3.84)
//30 75(10.53) 7.17(8.27) 2.69 (2.36) 5.34 (6.78)
daoopt 375,110 16,238 95,830 101,788
//20 27,281 (13.75) 1,055 (15.39) 6,739 (14.22) 6,406 (15.89)
//100 7,492(50.07) 201 (80.79) 1,799 (53.27) 1,578 (64.50)
HBFS 3,126 4.34 39.72 1,608
//10 434.27 (7.20) 1.51 (2.87) 6.08 (6.53) 179.22 (8.97)
//20 227.02 (13.77) 1.39(3.12) 3.18(12.49) 72.30(22.24)
//100 119.43(26.17) 0.97(4.47) 1.64 (24.22) 31.40 (51.21)

Table 4: Linkage benchmark (Favier et al. 2011) with differ-
ent number of cores (speed-up in parentheses).

subject of deeper investigation, due to the minimal size of
the information shared between the Master and the Workers,
the approach is very likely compliant with a larger number
of cores. We found that the speed-up was very instance de-
pendent, and must be also investigated.

As future work, we will take into account the structure of
CFNs by parallelizing Backtrack with Tree Decomposition
(BTD-HBFS) (Allouche et al. 2015). The resulting parallel
method could replace LDS inside a parallel large neighbor-
hood search strategy (Ouali et al. 2017) offering better any-
time lower and upper bounds.

Acknowledgments This work has been partially funded by
the french Agence nationale de la Recherche, reference ANR-16-
C40-0028. We are grateful to the genotoul bioinformatics platform
Toulouse Midi-Pyrenees (Bioinfo Genotoul) for providing comput-
ing and storage resources.

References
Allouche, D.; André, I.; Barbe, S.; Davies, J.; de Givry, S.; Kat-
sirelos, G.; O’Sullivan, B.; Prestwich, S.; Schiex, T.; and Traoré, S.
2014. Computational protein design as an optimization problem.
Artificial Intelligence 212:59–79.
Allouche, D.; de Givry, S.; Katsirelos, G.; Schiex, T.; and Zytnicki,
M. 2015. Anytime Hybrid Best-First Search with Tree Decompo-
sition for Weighted CSP. In Proc. of CP, 12–28.
Cooper, M.; de Givry, S.; Sanchez, M.; Schiex, T.; Zytnicki, M.;
and Werner, T. 2010. Soft arc consistency revisited. AI 174:449–
478.
Favier, A.; Givry, S.; Legarra, A.; and Schiex, T. 2011. Pairwise
decomposition for combinatorial optim. in graphical models. In
Proc. of IJCAI, 2126–2132.
Larrosa, J.; de Givry, S.; Heras, F.; and Zytnicki, M. 2005. Ex-
istential arc consistency: getting closer to full arc consistency in
weighted CSPs. In Proc. of IJCAI, 84–89.
Meseguer, P.; Rossi, F.; and Schiex, T. 2006. Soft constraints pro-
cessing. In Handbook of Constraint Programming. Elsevier. chap-
ter 9, 279–326.
Otten, L., and Dechter, R. 2017. And/or branch-and-bound on a
computational grid. JAIR 59:351–435.
Ouali, A.; Allouche, D.; de Givry, S.; Loudni, S.; Lebbah, Y.; Eck-
hardt, F.; and Loukil, L. 2017. Iterative Decomposition Guided
Variable Neighborhood Search for Graphical Model Energy Mini-
mization. In Proc. of UAI-17, 550–559.
Ralphs, T.; Shinano, Y.; Berthold, T.; and Koch, T. 2018. Hand-
book of Parallel Constraint Reasoning. Springer. chapter Parallel
Solvers for Mixed Integer Linear Optimization, 283–336.


