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Abstract. Applications regarding the crop allocation problem (CAP)
are required tools for agricultural advisors to design more efficient farm-
ing systems. Despite this issue has been extensively treated by agronomists
in the past, few methods tackle the crop allocation problem considering
both the spatial and the temporal aspects of the CAP. In this paper, we
precisely propose an original approach based on weighted CSP (WCSP)
to address the crop allocation planning problem while taking farmers’
management choices into account. These are represented as hard and
preference constraints. We illustrate our proposition by some results
based on a virtual case study. This preliminary work foreshadows the
development of a decision-aid tool for supporting farmers in their crop
allocation strategies.

Key words: Weighted CSP, constraint satisfaction, optimization, spatio-
temporal planning, crop allocation problem

1 Introduction

The design of a cropping plan is one of the first step in the process of crop
production and is an important decision that farmers have to take. By cropping
plan, we mean the acreages occupied by all the different crops every year and
their spatial allocation within a farming land. The cropping plan decision can be
summarized as (1) the choice of crops to be grown, (2) the determination of all
crops’ acreages, and (3) their allocation to plots. Despite the apparent simplicity
of the decision problem, the cropping plan decisions depend on multiple spatial
and temporal factors interacting at different levels of the farm management.
The cropping plan decision-making combines long term planning activities, with
managerial and operational activities to timely control the crop production pro-
cess. Modelling a decision-making process to support such farmers’ decisions
therefore requires to consider the planning of crop allocation over a finite hori-
zon, and to explicitly consider the sequence of problem-solving imposed by the
changing context (e.g. weather, price).
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Fig. 1. Schematic representation of the spatial and temporal aspect of the decision-
making problem (ti: year, b: block, pj : plot, xb,i: landunit, kp: preceding effect)

In this paper, we precisely focus on the activity of planning seen as a spatio-
temporal crop allocation problem (CAP) whose relevance is assessed by a global
objective function. In addition to many approaches based on optimization pro-
cedure, the objective of the work is to propose new directions to address crop
allocation while taking farmers’ decision factors into account. These factors are
formalized as hard and preference constraints in the WCSP framework. The
choice of constraints is based on a survey of farmers’ processes taking into ac-
count annual working hours capacity restrictions [5]. However, designing crop-
ping plans with such an approach is still an open question due to many other
decision factors that could be taken into account to solve the crop allocation
problem. This preliminary work foreshadows the implementation of a spatially
explicit decision-aid tool, namely CRASH (Crop Rotation and Allocation Simu-
lator using Heuristics), developed for supporting farmers in their crop allocation
strategies.

This paper is organized as follows. In section 2, we describe the crop allocation
problem. It introduces some specific definitions and emphasize crop allocation
problem. Section 3 describes existing approaches used to design cropping plans
with a focus on their main limitations. In section 4, we introduce the constraint
model compliant with the weighted CSP framework. In section 5, we illustrate
our modelling approach by a virtual case study in order to highlight the interests
of the proposed approach. And finally in section 6 we discuss and conclude the
relevance and limits of using WCSP to solve the CAP.



Solving crop allocation problem 3

2 Crop allocation problem (CAP)

2.1 Global description of the problem

Let us consider a set of landunits defined as a piece of indivisible and homo-
geneous land whose historic and biophysical properties are identical. We define
crop allocation as a spatio-temporal planning problem in which crops are as-
signed to landunits xb,i over a fixed horizon H of time (Fig. 1). These landunits
are spatial sampling of the farmland where xb,i denotes the landunit i of block
b.

The planning problem depends on multiple spatial and temporal factors. In
space, these factors are organized in many different organizational levels called
management units (Fig.1). These management units are decided by the farmer
to organize his work and allocate resources. In order to simplify our example, we
only considered the two main management units: plot (pj) and block b. The first
concerns the annual management of crops. A plot is a combination of landunits.
Their delimitations are adapted over years in order to enforce the spatial bal-
anced of crop acreages. As shown by Fig.1 blocks are subset of plots managed
in a coherent way. Blocks are characterized by one cropping system defined by
the same collection of crops and by the use of a coherent set of production tech-
niques applied to these crops (e.g. fertilizer, irrigation water). The delimitation
of blocks are not reshaped in the CAP considered in this work. They are mostly
defined by the structural properties of the farm such as the availability of re-
sources (e.g. access to irrigation water) and by the biophysical properties (eg.
soil type, accessibility, topography). These biophysical properties are also used
to define if a crop could not be produced in good condition on certain soil types.

In time, the sequence of crops on the same landunit is not allowed or not
advisable without facing decrease in soil fertility, or increase in diseases or weeds
infestation. We deal with these temporal factors by summarizing the assessment
of crop sequence quality in two indicators: the minimum return time (rt) and the
Preceding effect(kp). The minimum return time (rt) is defined as the minimum
number of years before growing the same crop on a same landunit. On the figure
1, the minimum return time of the crop produced on x3,2 (landunit 2 of block 3)
at t1 is equal to 2 years. More generally let t, t′ be two different years (t < t′),
xb,i a landunit and v a crop, xtb,i = xt

′

b,i = v if (t′ − t) ≥ rt(v).

The preceding effect (kp) is an indicator representing the effect of the previous
crop on the next one [12]. Based on kp, some crop sequence can be ignored for
their effects or recommended for their beneficial effects for production purposes.
Further, some authors [4] have argued that the reproducibility of a cropping
system over time is only ensured when crop allocation choices are derived from
finite crop sequence which can be repeated over the time. We therefore introduce
the concept of repeatability while looking for such a crop sequence. This means
that the proposed crop sequence could be repeated over time without breaking
the constraint rt. We introduce this concept, known as a “crop rotation”, because
it is widely used by farmers as decision indicator.
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2.2 Constraints description

Solving the crop allocation problem (CAP) is to assign crops to landunits xb,i
over a fixed horizon H of time. An assignment of crops must satisfy a set of
constraints.

We retained as hard constraints the minimum returned time (rt), the his-
toric of landunits and the physical properties (soil types, resource accessibility).
Preference constraints are related to the preceding effects (kp) and the spatio-
temporal balance of crop acreages such that resources are efficiently used. Hard
and preference constraints are defined either at:

– plot level to express for each plot (i) if they can be split/combined, (ii) if
they must be fixed over the planning horizon in order to enforce the static
aspect of the plot.

– block level to express for each landunit and crop the spatial compatibility of
crop, the return time and the preceding effect.

– farm level to express preferences or the global use of resources.

Let us consider the crop allocation problem described in Fig. 2. In this prob-
lem, we consider 4 blocks and 15 plots sampled into 120 landunits. The size of
the farmland (180 ha) and its sampling into landunits correspond to a middle
real-world CAP. Four crops are produced over the all blocks: winter wheat (BH),
spring barley (OP), maize (MA) and winter rape (CH). Each block has a fixed
area (see Fig. 2). The blocks 1 and 3 have an access to irrigation equipments r1
and r2. The annual quota of irrigation water over the blocks is 6000m3 (respec-
tively 4000m3) for r1 (respectively r2). Only the maize (MA) can be irrigated.
There are two different types of soil: type 1 (block 1, 3) and type 2 (block 2, 4).
The table on Fig. 2 shows the sequence of crops produced by each plot during
the five previous years.

Spatio-temporal hard constraints

1. h-SCC - spatial compatibility of crops: for instance, the crop CH cannot
be assigned to landunits whose soil type is 1 (block 1,3). This biophysical
property is not suitable for the crop growing.

2. h-EQU - landunit equality : landunits on the plots p7 (respectively p9) and
p8 (respectively p10) must have the same crop every year. Indeed, these
landunits are decided by the farmer to be managed in the same manner.

3. h-HST - landunit historic: each landunit has defined historic values. The
table in Fig. 2 defines the historic of each plot.

4. h-TSC - temporal sequence of crop: for each couple of crops and landunits,
the minimum returned time rt must always be enforced. For instance in the
CAP above, rt(BH) = 2, rt(OP ) = 3, rt(MA) = 2 and rt(CH) = 3.

5. h-CCS - cyclicity of crop sequence: for each landunit, the crop sequence
after the historic must be endlessly repeated by enforcing temporal sequence
of crops.
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r1

r2

b = 1 area = 48ha b = 2 area = 24ha

b = 3 area = 48ha

b = 4 area = 60ha

x p1 p2

p3p4

p5

p6

p7

p8

p9

p10

p11 p12 p13 p14 p15

Plots t1 t2 t3 t4 t5

p1 MA MA BH OP MA
p2 OP MA MA BH OP
p3 BH OP MA MA BH
p4 MA BH OP MA MA
p5 BH OP BH CH BH
p6 OP BH CH BH OP
p7 MA MA MA MA MA
p8 MA MA MA MA MA
p9 MA MA MA MA MA
p10 MA MA MA MA MA
p11 BH CH BH OP BH
p12 CH BH OP BH CH
p13 BH OP BH CH BH
p14 OP BH CH BH OP
p15 BH CH BH OP BH

Fig. 2. A virtual farm with 4 blocks, 15 plots (12ha for each plot) split into 120
landunits. The grey blocks have their own irrigation equipment (r1, r2). The table
contains the historic values for each plot

previous crops
BH OP MA CH

BH 4 1 1 0
OP 2 3 1 0
MA 0 0 3 0
CH 0 0 0 4

Fig. 3. Table of preceding effect

6. h-RSC - resources capacity : a fixed amount of resources are available. The
quantities of resources accumulated on the landunits do not exceed some
limits. For instance, in the CAP defined above, we have only one irrigated
crop (maize - MA). Knowing that we need 165m3 of water by hectare, the
annual production of MA on the blocks 1 cannot exceed 36, 36 ha.

7. h-SCA - same crops assigned : over the time, the same subset of crops must
be assigned to every landunit of the same block.

Spatio-temporal preferences

1. s-TOP - Farm topology : landunits where the same crops are assigned must
be spatially grouped. By this we mean that it is preferable to group as most
as possible the same crop on the same block. Thus, traveling time can be
reduced as well as the time spend by the farmers on operational activities
that control the crop production process. Therefore, every isolated landunit
is penalized by a cost δ1.

2. s-SBC - Spatial balanced of crop acreages: a defined acreage of some crops
every year. For instance, in the CAP defined above, the acreage of MA should
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be within the range [24, 48] ha on block 1 and [12, 24] ha on block 3. Any
deviation is penalized by a cost δ2.

3. s-TBC - temporal balanced of crop acreages: a defined acreage of some crops
on each landunit over years. In the CAP defined above, between [12, 24] ha
of crop CH should be produced on every landunit. Any deviation is penalized
by a cost δ3.

4. s-CSQ - Crop sequence quality : each pair of successive crops is associated
to a cost kp that defines its preceding effect. Fig. 3 define all kp values.

In practice, we suggest to define the costs kp, δ1, δ2 and δ3 such that
∑
kp >∑

δ2 >
∑
δ1 >

∑
δ3. By doing so, a realistic hierarchy can be introduced

among the soft constraints. Indeed, first and foremost, the preceding effects kp
must be minimized because of their consequences on the next crops. The spatial
balanced of crop acreages related to cost δ2, implicitly defines the annual receipts
of the farmer. It must be ensured as much as possible. Afterwards the working
hours can be reduced by grouping the same crops together (δ1). Lastly, the
additional preferences related to the temporal balanced of crop acreages (δ3)
can be enforced.

3 Related work

Since Heady [7], the cropping plan decision was represented in most modelling
approaches as the search of the best land-crop combination [11]. Objectives
to achieve a suitable cropping plan were often based on complete rationality
paradigm using a single monetary criteria optimization, multi-attribute opti-
mization [1] or assessment procedures [2]. In these approaches, the cropping
plan decision is mainly represented into models by one of the two concepts, i.e.
the cropping acreage [13, 10, 18] or crop rotation [6, 4]. These two concepts are
two sides of the cropping plan decision problem, i.e. the spatial and temporal
aspects. The originality of our approach lies on the consideration of both dimen-
sions, i.e. spatial and temporal while solving the CAP. In most of the modelling
approaches, the cropping plan is not spatially represented and is summarized as
simple crop acreage distributions across various land types. At the farm level,
the heterogeneity of a farm territory is generally described using soil type as the
sole criterion [5].

4 Weighted CSP model of crop allocation

4.1 Weighted CSP Formalism

According to the CAP definition, and assuming a purely CSP formalism cannot
deal with preferences easily, we focus on the Weighted CSP (WCSP) formalism
which is more appropriate for solving optimization problems. The WCSP formal-
ism [14] extends the CSP formalism by associating cost functions (or preferences)
to constraints. A WCSP is a triplet 〈X ,D,W〉 where:
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– X = {1, · · · , n} is a finite set of n variables.
– D = {D1, · · · , Dn} is a finite set of variables domain. Each variable i ∈ X

has a finite domain Di ∈ D of values.
– W = {WS1

, · · · ,WSe
} is a set of cost functions where Si ⊂ X be a subset of

variables (i.e., the scope). We denote l(Si) the set of tuples over Si. Each cost
function WSi

is defined over a subset of variables Si (WSi
: l(Si) → [0,m]

where m ∈ [1, · · · ,+∞]).

Solving a WCSP is to find a complete assignment A ∈ l(X ) that minimizes

min(A∈l(X ))

[∑
WSi
∈WWSi

(A[Si])
]
, where A[Si] is the projection of a tuple on

the set of variables Si.

4.2 Crop allocation problem definition

The CAP is defined by a set of landunits and crops. The planning problem is
defined over a finite horizon H. We define the associated WCSP problem as
follow.

X a set of variables xt
b,i that define the landunit i in block b (i ∈ [1,Nb] , b ∈ [1,B]

B = 4 and N1 = 32 in the CAP described in Fig. 2) at year t (t ∈ [1,H]). Thus,
each landunit is described by H variables that represent the landunit occupation
at every time. We define [1, h] and [h+1,H] respectively the historic and the future
times. For instance, following Fig. 2) and considering H = 9 and h = 5, landunit
i in block b will be represented by 9 variables where the first five variables (white
nodes) are historic variables.

x1
b,i x2

b,i x3
b,i x4

b,i x5
b,i x6

b,i x7
b,i x8

b,i x9
b,i

kp kp kp kp kp kp kp kp

Fig. 4. A temporal sequence of variables over landunit i in block b

D the domains Db,i of variables xt
b,i is the set of possible crops over the landunit i

in block b. Considering the problem in Fig. 2, ∀b ∈ [1,B], ∀i ∈ [1,Nb], Db,i =
{1, 2, 3, 4} = {BH,OP,MA,CH}

W the cost functions are divided into five different types of hard and soft constraints:
(1) simple tabular cost functions (arity up to 5), (2) same global constraint, (3)
regular global constraint, (4) gcc global cardinality constraint, (5) soft-gcc soft
global cardinality constraint. These cost functions are precisely defined in the next
sections.

4.3 Simple cost functions

The hard and soft constraints h-SCC, h-EQU, h-HST, s-TOP and s-CSQ are
defined by:
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h-SCC : ∀t ∈ [h + 1,H], ∀b ∈ B, ∀i ∈ Nb, let WSCC
xt
b,i

be a unary cost function

associated to spatial compatibility of crops.

∀a ∈ Db,i,W
SCC
xt
b,i

(a) =

{
∞ if a is forbidden for block b, landunit i
0 otherwise

(1)

h-EQU : ∀t ∈ [h + 1,H], ∀b ∈ B, for all couple of landunits (i, j) ∈ Nb × Nb

that are decided by the farmer to be managed in the same manner, we define an
equality constraint WEQU

xt
b,i,x

t
b,j

between the two landunits.

∀a ∈ Db,i,∀a′ ∈ Db,j ,W
EQU
xt
b,i,x

t
b,j

(a, a′) =

{
0 if a = a′

∞ otherwise
(2)

h-HST : ∀b ∈ B, ∀i ∈ Nb, ∀t ∈ [1, h], let WHST
xt
b,i

be an unary cost function

associated to the historic values of landunits.

∀a ∈ Db,i,W
HST
xt
b,i

(a) =

{
0 if a = historic(xtb,i)
∞ otherwise

(3)

where historic(xtb,i) returns the historic value of landunit i in block b at time t.

s-TOP : ∀t ∈ [1,H], ∀b ∈ B, ∀i ∈ Nb, let WTOP
S be an n-ary cost function asso-

ciated to the farm land topology. We define a neighborhood function neighbor(i)
which returns the landunits j ∈ Nb spatially close to i. For instance, in the
CAP presented on Fig. 2, we consider the 4 nearest neighbors, the so-called von
Neumann neighborhood. Here, the scope S is equal to {xtb,i, xtb,n, xtb,s, xtb,e, xtb,w}
where landunits n, s, e, w are the 4 nearest neighbors respectively at the North,
South, East and West of i. ∀a ∈ Db,i,∀an ∈ Db,n,∀as ∈ Db,s,∀ae ∈ Db,e,∀aw ∈
Db,w

WTOP
S (a, an, as, ae, aw) =

{
0 if a = an = as = ae = aw
δ1 otherwise

(4)

According to the position of i in its block, the arity of WTOP
S could be reduced

to 4 or 3.

s-CSQ : ∀t ∈ [1,H], ∀b ∈ B, ∀i ∈ Nb , let WCSQ

xt
b,i,x

t+1
b,i

be a binary cost function

associated to the preceding effect kp.
We define a function KP(a, a′) that returns the preceding effect kp of doing

the crop a′ after a.

∀a ∈ Db,i,∀a′ ∈ Db,i,W
CSQ

xt
b,i,x

t+1
b,i

(a, a′) = KP(a, a′) (5)
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4.4 Crop collection over a block using same constraints

h-SCA : considering a block b, the subset of (H − h) future variables xtb,i
(with t ∈ [h + 1,H]) associated to each landunit i in b must be assigned to the
same crop collection. Thus, ∀(i, j) ∈ Nb × Nb (with i 6= j), the set of values
assigned to the temporal sequence of variables defining i is a permutation of
those of j. By using the same constraint introduced in [3] we define h-SCA. For
each block b, we choose a leading landunit i. We then define a 2 ∗ (H − h)-
ary cost function WSCA

S associated to each pair of sequence of variables that
defines xtb,i and xtb,j (i 6= j). Thus, the scope S is {xh+1

b,i , · · · , xHb,i, x
h+1
b,j , · · · , xHb,j}.

Let A[xh+1
b,i , · · · , xHb,i] and A[xh+1

b,j , · · · , xHb,j ] denote the two sub-assignments of

the variables in S. The constraint WSCA
S requires that A[xh+1

b,i , · · · , xHb,i] is a

permutation of A[xh+1
b,j , · · · , xHb,j ].

WSCA
S = same(xh+1

b,i , · · · , xHb,i︸ ︷︷ ︸
i

, xh+1
b,j , · · · , xHb,j︸ ︷︷ ︸

j

) (6)

4.5 Crop sequence using regular global constraints

The constraints h-TSC and h-CCS are related to temporal crop sequences. We
represent them by using the regular constraint [16]. ∀t ∈ [1,H], ∀b ∈ B, ∀i ∈ Nb,
∀a ∈ Db,i , let Ma

b,i be a non deterministic finite automaton (NFA), L(Ma
b,i)

the language defined by Ma
b,i, and Sb,i a temporal sequence of H variables that

describes landunit i of block b over the horizon. Solving a regular(Sb,i,M
a
b,i)

constraint is to find an assignment A[Sb,i] such that A[Sb,i] ∈ L(Ma
b,i).

h-TSC : considering each landunit xb,i, the crop sequence is enforced by defining
for each crop a ∈ Db,i a language L(Ma

b,i) such that the same value a is assigned

to (xtb,i and xt
′

b,i) iff xt
′

b,i enforces the minimum returned time rt(a) i.e., ∀t′ 6=
t, t′ ≥ t+ rt(a). We define regular(Sb,i,M

a
b,i) where Ma

b,i is described as in Fig.
5 for crop a = CH the minimum return time of which is rt(CH) = 3 years.
Here, the initial state is 0 while final states are 4, 5, 6. Arcs are labelled with
crop values.

As shown by the NFA in Fig. 5, the historic variables are used to enforce the
minimum return time over the future variables. We then define an H-ary cost
function WTSCa

Sb,i
associated to each pair of landunit i in block b and each crop

a such that:

∀b ∈ B,∀i ∈ Nb,∀a ∈ Db,i,W
TSCa

Sb,i
= regular(x1b,i, · · · , xtb,i, · · · , xHb,i,Ma

b,i) (7)

h-CCS : considering each landunit xb,i, we combine h-TSC with a repeatability
constraint also defined by a set of regular constraints. The constraint h-CCS
ensures that any crop sequence assignment after the historic can be endlessly
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v CH
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Fig. 5. Automaton for crop CH with rt(CH) = 3 and h = 4. v denotes any value
in Db,i. The notation CH corresponds to Db,i \ {CH}. The associated language ac-
cepts every pattern over the historic variables and only the patterns that enforce the
minimum return time in the future variables (e.g., OP-CH-OP-CH-BH-OP-CH-BH).

repeated without violating the minimum return time constraint h-TSC. Fig. 6
describes a cyclic NFA for crop CH. The initial state is 0 while final states are
3, 6, 9, 12. The scope of the cost function WCCSa

Sb,i
is restricted to future variables.

∀b ∈ B,∀i ∈ Nb,∀a ∈ Db,i,W
CCSa

Sb,i
= regular(xh+1

b,i , · · · , xHb,i,Ma
b,i) (8)

0

41 7 10
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CH
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CH CH

CH CH

CH

CH

CH

CH

CH

CH

CH

CH

Fig. 6. Cyclic automaton for the crop CH with rt(CH) = 3 and H− h = 4.

4.6 Resource capacity constraints using global cardinality
constraints

In CAP, each landunit consumes a fixed amount of resources according to some
structural (crop type, the area of landunits, etc.) and numerical (the irrigation
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dose) requirements. For instance, the maize (MA) is an irrigated crop whereas
winter wheat (BH) does not need irrigation. A classical approach to deal with
resources is to solve a shortest path problem with resource constraints [9]. The
problem is NP-hard if the path needed is elementary. Loosely, solving a resource
allocation problem involves both sequencing and counting reasoning. We assume
in the CAP that this problem can be reduced to a counting problem under
hypothesis 1 and 2.

Hypothesis 1 : Resources are supposed to be usable and systematically renewed
every year without doing anything (e.g. annual quota of irrigation water).

This hypothesis is closed to a real CAP because farmers usually have a fixed
quota of irrigation water. That can be exactly the case for the working hours
capacity in a year if work regulations is taken into account.

Hypothesis 2 : ∀t ∈ [1,H], ∀(b, b′) ∈ B×B a couple of blocks, ∀(i, j) ∈ Nb×N ′b
a couple of landunits. The areas of landunits i and j of block b (respectively b′)
can be considered equivalent according to the problem size.

We make the assumption that the spatial sampling of the farm land into
landunits is homogeneous. Under these hypothesis the annual resource allocation
is seen as a counting problem at every time t ∈ [h + 1,H]. Thus, given annual
resources capacities for a CAP, we define for each time t ∈ [h + 1,H] an upper
and lower bound to the number of variables xti,b that are assigned to a given
crop according to both structural and numerical requirements.

h-RSC : to enforce resource capacity constraints h-RSC, we use the global
cardinality constraint gcc [17] over the assignments of crops to landunits.
∀t ∈ [h+1,H], let WRSC

St
b

be a Nb-ary global constraint associated to resource

capacities.
Given St

b = (xtb,1, · · · , xtb,Nb
) the global cardinality constraint (gcc) specifies,

for each value a ∈
⋃
Db,i, an upper bound ub(a) and a lower bound lb(a) to the

number of variables xtb,i that are assigned to a.

WRSC
St
b

= gcc(St
b, lb, ub) (9)

has a solution if there exists an assignment of St
b such that

∀a ∈
⋃
Db,i, lb(a) ≤ |{xtb,i ∈ St

b|xtb,i = a}| ≤ ub(a) (10)

4.7 Spatio-temporal balance of crops using soft-gcc

Preferences related to the spatio-temporal balance of crops (s-SBC and s-TBC)
are defined as soft global cardinality constraints (soft-gcc) that allow the viola-
tion of both lower and upper bounds of the associated hard constraint gcc.
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soft-gcc(S, lb, ub, z, µ) = {(A[S], az)|A[S] ∈ l(S), az ∈ Dz, µ(A[S]) ≤ az}(11)

where lb and ub are respectively the lower and upper bounds, z a cost variable
with finite domain Dz, µ the violation measure for the global constraint soft-
gcc. In this work, we use the variable-based violation measure (see [8]) which
is the minimum number of variables whose values must be changed in order to
satisfy the associated gcc constraint. Thus soft-gcc(S, lb, ub, z, µ) has a solution
if ∃ A[S] such that min(Dz) ≤ µ(A[S]) ≤ max(Dz). Based on this definition the
constraints s-SBC and s-TBC are formalized as follow.

s-SBC : ∀t ∈ [h+1,H], ∀b ∈ B′ ⊆ B. Let WSBC
St
b

be a |B′|-ary soft-gcc constraint

associated to block b at time t. The scope St
b = {xtb,i|i ∈ [1 · · · Nb]}.

WSBC
St
b

= soft-gcc(St
b, lb, ub, z, µ) (12)

s-TBC : ∀b ∈ B′ ⊆ B, ∀i ∈ Nb. Let WTBC
Sb,i

be a (H− h)-ary soft-gcc constraint

associated to each landunit i. The scope Sb,i = {xh+1
b,i , · · · , xHb,i}. Excepted the

scope, WTBC
Sb,i

is exactly defined as the global soft cardinality constraint defined
for s-SBC.

5 Implementation

5.1 CAP instances description

We performed the experimentations by using four instances of the virtual farm
presented in Fig. 2. Each instance corresponds to a new sampling of landunits.
The number of landunits is increased from 15 to 120 (15, 30, 60, 120). For the
CAP instance with 15 landunits, N1 = N3 = 4,N2 = 2 and N4 = 5 where Ni

denotes the number of landunits in the block i. In this problem, sampling is done
such that the plots (see Fig. 2) are also the landunits (12 ha per landunit). These
landunits are gradually refined by splitting them into 2, 4 and 8 smaller ones, to
respectively build the instances with 30, 60 and 120 landunits. These sampling
are chosen to be representative of different farm sizes. The planning horizon is
nine years. According to the minimum return time (winter wheat rt(BH) = 2,
spring barley rt(OP ) = 3, maize rt(MA) = 2 and winter rape rt(CH) = 3) the
four last years are dedicated to the future while the five first are historic ones.
We use the historic values presented in Fig. 2.

We should emphasis that there is no constraints or preferences between blocks
as described in Section 2.2. Thus, we first focus on solving each block indepen-
dently. The instances associated to the block 1 are B1-LU4, B1-LU8, B1-LU16,
B1-LU32 respectively for 4, 8, 16, 32 landunits. For all these experimentations the
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costs associated to s-TOP, s-SBC and s-TBC are respectively δ1 = 2, δ2 = 100
and δ3 = 10. By doing so, we implicitly introduce a hierarchy among the soft
constraints according to the criterion defined in the last paragraph of section
2.2. To fine-tune the weight of preceding effects kp in the global cost function,
we introduced a factor δ4 = 10 such that kp are set to δ4 ∗KP . By doing so, the
crop sequences that minimize the preceding effects are desired to be satisfied as
much as possible.

Secondly, we add a new preference over all blocks in our original model. We
define a new cost function WSBC

St , extending the previous WSBC
St
b

described in

section 2.2 such that the annual global acreage of MA and BH over all blocks
should be respectively within the range [40, 72] ha and [70, 100] ha. The CAP
instances B1[1-4]-LU15(*), B[1-4]-LU30(*), B[1-4]-LU60(*) and B[1-4]-LU120(*)
are associated to these new problems. The blocks are now interdependent and
consequently the maximum arity of soft global cardinality constraints is equal
to the total number of landunits. All of these instances are available in the cost
function benchmark1.

For each instance, the number of constraints depends on the domain size d
(d = 4), the number of blocks b (from 1 to 4), the number Ni of landunits in the
block i and the planning horizon h (h = 9). Let h− and h+ respectively be the size
of historic and future. According to the instance, the number of global cardinality
constraints (h-RSC, s-SBC, s-TBC) increase from (2h++2) to (6h++56). There
are more than half of these constraints whose arity is Ni while the maximum can
be
∑
Ni. The number of h-ary and h+-ary regular constraints (h-TSC, h-CCS)

is 2d
∑
Ni. There are

∑
Ni − b 2h+-ary same constraint (h-SCA). In addition

to these constraints we can enumerate at least h−
∑
Ni unary cost functions

(h-SCC, h-HST), (h − 1)
∑
Ni binary cost functions (s-CSQ) and about

∑
Ni

cost functions whose arity is more than two (s-TOP, h-EQU).

5.2 Analysis of the results

For solving the CAP, we use a Depth-First Branch and Bound (DFBB) algo-
rithm implemented in the Toulbar2 solver2 (version 0.9.1) using default options.
Columns |X | and |W| of Tab. 1 shows the number of variables and constraints
for each instance.

The results presented in Tab. 1 are performed on a 2.27GHz Intel(R) Xeon(R)
processor. Total CPU times are in seconds. We measure total times to find
and prove optimality (column Time(s) of One optimal (DFBB)) starting with
a relatively good upper bound (column UB). The initial upper bound has an
important impact on performance. We chose its value empirically. Based on
optimal values, we also measure total times to find all the optimal solutions
(column Time(s) of All optimal (DFBB)) by setting the initial upper bound to
the optimum (column Opt.) plus one.

1 http://www.costfunction.org/benchmark?task=browseAnonymous&idb=33
2 http://mulcyber.toulouse.inra.fr/projects/toulbar2



14 A Weighted CSP approach

Table 1. An 0ptimal and all optimal solutions using DFBB

Instance of CAP |X | UB |W| Opt. One optimal (DFBB) All optimal DFBB

Time(s) Nodes BT Time(s) Nodes BT Nb.Sol

B1-LU4 36 1000 91 92 0.39 17 10 0.08 8 4 5

B1-LU8 72 2000 175 184 2.96 94 49 0.21 32 16 17

B1-LU16 144 4000 343 368 21.47 413 209 2.64 256 512 257

B1-LU32 288 6000 679 640 228 285 147 6.19 38 19 17

B2-LU2 18 1000 47 38 0.08 2 2 0.06 2 1 1

B2-LU4 36 2000 95 116 0.22 8 4 0.22 8 4 1

B2-LU8 72 4000 191 392 4.19 6 5 0.36 2 1 1

B2-LU16 144 6000 383 752 7.9 10 9 0.78 2 1 1

B3-LU4 36 1000 99 328 0.3 14 7 0.29 16 8 2

B3-LU8 72 2000 199 656 0.64 14 7 0.6 16 8 2

B3-LU16 144 4000 367 1312 1.51 18 9 1.37 16 8 2

B3-LU32 288 6000 703 2592 4.1 20 10 3.79 18 9 2

B4-LU5 45 1000 119 46 0.53 4 4 0.08 0 0 1

B4-LU10 90 2000 239 192 11.64 5 4 0.57 0 0 1

B4-LU20 180 4000 479 752 12.32 12 10 0.73 0 0 1

B4-LU40 360 6000 959 1504 39.33 23 19 1.97 2 1 1

B[1-4]-LU15(*) 135 2000 360 704 21.02 257 131 7.87 96 48 2

B[1-4]-LU30(*) 270 4000 712 1560 323.02 1029 521 155.9 498 249 12

B[1-4]-LU60(*) 540 4000 1384 3852 2412.97 1297 658 3697.23 2228 1114 136

B[1-4]-LU120(*) 1080 8000 2728 - - - - - - - -

While focusing on independent blocks, the best solution is got in less than
a minute excepte for B1-LU32. The optimum is found and proved for all the
instances. The differences between CPU times to find one optimal and all the
optimal solutions is mainly due to the quality of the initial upper bound. The
results found while introducing interdependence between blocks are also accept-
able compared to the problem size. Indeed, the scope of some gcc and soft-gcc
constraints is equal to the number of landunits (120 variables in the worse case).
This may explain why the instance B[1-4]-LU120(*) is not closed after 48 hours.

6 Conclusion

In this paper, we have modelled the crop allocation problem (CAP) using the
Weighted CSP formalism. Contrary to existing approaches for solving such a
problem, our proposition combines both the spatial and the temporal aspects
of crop allocation. We explicitly described how the farmers’ hard and soft con-
straints can be addressed as a global objective function optimization problem.
The results have shown that on small and middle CAP, the Toulbar2 solver
can deliver relevant solutions in acceptable computational time. In the future,
we will investigate the cumulative constraint for expressing more complex re-
source management and the costRegular constraint for mixing the return
time and preceding effects, taking inspiration from the work done by [15].
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17. J.-C. Régin. Generalized arc consistency for global cardinality constraint. In
AAAI’96, pages 209–215, 1996.

18. R. Sarker and T. Ray. An improved evolutionary algorithm for solving multi-
objective crop planning models. Computers and Electronics in Agriculture,
68(2):191–199, 2009.


